Itron, Inc.

TEST REPORT FOR

CCU100 Models: CCU100D & CCU100RD* *(See Appendix B for Manufacturer's Declaration)

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928MHz)

Report No.: 107461-2

Date of issue: December 5, 2022

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 185 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	
15.247(a) Transmitter Characteristics	13
15.247(a)(1) 20 dB Bandwidth	13
15.247(a)(1) Carrier Separation	20
15.247(a)(1)(iii) Number of Channels	22
15.247(b)(2) Output Power	26
15.247(d) RF Conducted Emissions & Band Edge	40
15.247(d) Radiated Emissions & Band Edge	57
15.207 AC Conducted Emissions	173
Appendix A: Customer Provided Data	
15.35(c) Duty Cycle Correction Factor	
Appendix B: Manufacturer Declaration	
Supplemental Information	
Measurement Uncertainty	
Emissions Test Details	

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc. 2111 N. Molter Road Liberty Lake, WA 99019

Representative: Jack McPeck Customer Reference Number: 266633 **REPORT PREPARED BY:**

Viviana Prado CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 107461

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING:

October 1, 2022 October 1 through 21, 24, and 26, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: <u>https://standards.gov/cabs/designations.html</u>

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

NP = CKC Laboratories Inc. was not contracted to perform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

ARM ISM Power was set to 15 for all tests except Fundamental and Conducted Spurs/Conducted Band Edge, the ARM ISM Power setting was reduced to 11 at time of test to fine tune the power of the unit for Fundamental compliance. The higher power used for other testing is representative of worst case. This is a test software setting and the manufacturer performs a calibration of each production unit with its appropriate software.

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1 = Attached SuperRaptor, Internal GPS, Attached Cellular

Equipment Tested:			
Device	Manufacturer	Model #	S/N
CCU100	ltron, Inc.	CCU100D	74049600

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Dell	Latitude E6430	NA
Switch	Netgear	FS105	NA
Antenna (attached ISM)	PCTEL	BOA9025NM-ITR	NA
Antenna (attached WAN)	PCTEL	MHO3G4G02NM	NA

Configuration 2 = Attached SuperRaptor, Remote GPS, Remote Cellular

Equipment Tested:			
Device	Manufacturer	Model #	S/N
CCU100	ltron, Inc.	CCU100RD	74049603

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Dell	Latitude E6430	NA
Switch	Netgear	FS105	NA
Antenna (attached ISM)	PCTEL	BOA9025NM-ITR	NA
Antenna (remote WAN)	Taoglas	OMB.6912.03F21	NA
Antenna (remote GPS)	Trimble	101898-00	NA

Configuration 3 = Remote SuperRaptor, Remote GPS, Remote Cellular

Equipment Tested:

CCU100 Itron, Inc.	CCU100RD	74049603

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop	Dell	Latitude E6430	NA
Switch	Netgear	FS105	NA
Antenna (remote ISM)	PCTEL	BOA9028	NA
1dB Attenuator (Qty: 2)	Mini-Circuits	15542 UNAT-1+	NA
Surge Protector	Times Microwave Systems	LP-BTRW-NMP	NA
Antenna (remote WAN)	Taoglas	OMB.6912.03F21	NA
Antenna (remote GPS)	Trimble	101898-00	NA

General Product Information:

Product Information	Manufacturer-Provided Details		
Equipment Type:	Stand-Alone Equipment		
Type of Wideband System:	FHSS		
Operating Frequency Range:	903-926.8 MHz		
Number of Hopping Channels:	80 channels (AM), 120 channels (FM)		
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.		
Modulation Type(s):	16kbit/sec AM (OOK) 12.5kbit/sec FM (FSK) 37.5 kbit/sec FM (FSK)		
Maximum Duty Cycle:	Tested at 100%		
Number of TX Chains:	1		
Antenna Type(s) and Gain:	Omni-Directional / 5.5 & 8.15 dBi		
Beamforming Type:	NA		
Antenna Connection Type:	External Connector		
Nominal Input Voltage:	115VAC/60Hz		
ARM FW 2.27.0.0 DSP FW 7.22.0.0 Firmware / Software used for Test: FPGA FW 4.14 SRTest100 4.11.1.99 TeraTerm 4.62			
The validity of results is dependent of assumes full responsibility.	on the stated product details, the accuracy of which the manufacturer		

EUT Photo(s)

CCU Poletop

Page 8 of 185 Report No.: 107461-2

Support Equipment Photo(s)

Attached ISM Antenna

Attached WAN Antenna

Laptop and Switch

Remote ISM Antenna

Remote WAN and GPS Antennas

Page 11 of 185 Report No.: 107461-2

Block Diagram of Test Setup(s)

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions				
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison/M. Atkinson	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	10/6/2022 to 10/13/2022	
Configuration:	Configuration: 1			
Test Setup:EUT is setup for conducted measurements. It is directly connected to the Signal Analyzer via an Attenuator and a Cable.				
For the AM channel plan, normal AM modulation is used.				
For the FM channel plan, a test mode with CW modulation was used.				

Environmental Conditions						
Temperature (^o C)	23	Relative Humidity (%):	52			

Test Equipment								
Asset# Description Manufacturer Model Cal Date Cal								
02872	Spectrum Analyzer	Agilent	E4440A	11/29/2021	11/29/2023			
P05503	Attenuator	Narda	766-10	6/8/2021	6/8/2023			
P06008	Cable	Andrew	Heliax	9/2/2022	9/2/2024			

15.247(a)(1) 20 dB Bandwidth

	Test Data Summary								
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results				
908.0	1	AM	170.2	≤500	Pass				
915.0	1	AM	181.3	≤500	Pass				
923.8	1	AM	168.9	≤500	Pass				
903.0	1	FM 12.5k	139.7	≤500	Pass				
915.0	1	FM 12.5k	139.9	≤500	Pass				
926.8	1	FM 12.5k	139.4	≤500	Pass				
903.0	1	FM 37.5k	85.7	≤500	Pass				
915.0	1	FM 37.5k	86.5	≤500	Pass				
926.8	1	FM 37.5k	87.5	≤500	Pass				

Plot(s)

Low Channel

High Channel

Low Channel

High Channel

<u>FM 37.5k</u>

Low Channel

High Channel

15.247(a)(1) Carrier Separation

	Test Data Summary							
Limit applied: 2	Limit applied: 20dB bandwidth of the hopping channel.							
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results				
1	AM channel plan	200.2	>181.3	Pass				
1	FM channel plan	200.1	>87.5	Pass				

Plot(s)

AM Channel Plan

FM Channel Plan

15.247(a)(1)(iii) Number of Channels

	Test Data Summary								
$Limit = \begin{cases} 50 \ Channels \ 20 \ dB \ BW < 250 \ kHz \\ 25 \ Channels \ 20 \ dB \ BW \ge 250 \ kHz \end{cases}$									
Antenna Port	Antenna Operational Mode		Limit (Channels)	Results					
1	1 AM channel plan		≥50	Pass					
1	1 FM channel plan		≥50	Pass					

Plot(s)

AM Number of Channels

1st 20 Channels

2nd 20 Channels

3rd 20 Channels

4th 20 Channels

FM Number of Channels

15.247(b)(2) Output Power

	Test Data Summary - Voltage Variations								
Frequency (MHz) Modulation / Ant Port		V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)				
908.0	AM	29.8	29.8	29.8	0.0				
915.0	FM 12.5k	29.4	29.4	29.4	0.0				
915.0	FM 37.5k	27.2	27.2	27.2	0.0				

Test performed using operational mode with the highest output power, representing worst-case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	115
V _{Minimum} :	90
V _{Maximum} :	265

	Test Data Summary - RF Conducted Measurement								
$1 1 m_1 t - 1$	$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \ge 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \mid < 50 \ Channels \ (min \ 25) \end{cases}$								
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results				
908.0	AM	Omni-Directional / 5.5 dBi	29.8	≤ 30	Pass				
915.0	AM	Omni-Directional / 5.5 dBi	29.7	≤ 30	Pass				
923.8	AM	Omni-Directional / 5.5 dBi	29.4	≤ 30	Pass				
908.0	AM	Omni-Directional / 8.15 dBi *	29.8	≤ 30	Pass				
915.0	AM	Omni-Directional / 8.15 dBi *	29.7	≤ 30	Pass				
923.8	AM	Omni-Directional / 8.15 dBi *	29.4	≤ 30	Pass				
903.0	FM 12.5k	Omni-Directional / 5.5 dBi	26.6	≤ 30	Pass				
915.0	FM 12.5k	Omni-Directional / 5.5 dBi	29.4	≤ 30	Pass				
926.8	FM 12.5k	Omni-Directional / 5.5 dBi	26.0	≤ 30	Pass				
903.0	FM 12.5k	Omni-Directional / 8.15 dBi *	26.6	≤ 30	Pass				
915.0	FM 12.5k	Omni-Directional / 8.15 dBi *	29.4	≤ 30	Pass				
926.8	FM 12.5k	Omni-Directional / 8.15 dBi *	26.0	≤ 30	Pass				
903.0	FM 37.5k	Omni-Directional / 5.5 dBi	27.2	≤ 30	Pass				
915.0	FM 37.5k	Omni-Directional / 5.5 dBi	29.6	≤ 30	Pass				
926.8	FM 37.5k	Omni-Directional / 5.5 dBi	26.3	≤ 30	Pass				
903.0	FM 37.5k	Omni-Directional / 8.15 dBi *	27.2	≤ 30	Pass				
915.0	FM 37.5k	Omni-Directional / 8.15 dBi *	29.6	≤ 30	Pass				
926.8	FM 37.5k	Omni-Directional / 8.15 dBi *	26.3	≤ 30	Pass				

*Net gain is 5.95 dBi. The manufacturer declares minimum of 2.2dB of path loss to remote 8.15dBi antenna.

<u>AM</u>

Low Channel

High Channel

Low Channel

High Channel

<u>FM 37.5k</u>

Low Channel

High Channel

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717					
Customer:	Itron, Inc.					
Specification:	15.247(b) Power Output (902-928 MHz D	TS)				
Work Order #:	107461	Date:	10/6/2022			
Test Type:	Conducted Emissions	Time:	07:44:38			
Tested By:	Matt Harrison	Sequence#:	1			
Software:	EMITest 5.03.20		120V 60Hz			

Equipment Tested:

Device	Manufacturer	Model #	S/N						
Configuration 1									
Support Equipment:									
Device	Manufacturer	Model #	S/N						
Configuration 1									
Test Conditions / 1	Notes:								
Test Environment	Conditions:								
Temperature: 21°C									
Humidity: 40%									
Pressure: 102.5kPa									
Frequency Range:	Fundamental								
Protocol /MCS/Mo	dulation: AM								
Antenna type: Omr	ni-Directional								
Duty Cycle: Tested	l at 100%								
Test Method: ANS	I C63.10 (2013)								
Test Mode: Contin	uously Transmitting								
Test Setup: EUT is	setup for Conducted Measurement	nts. It is directly connect	ed to the SA via an Attenuator.						

Itron, Inc. WO#: 107461 Sequence#: 1 Date: 10/6/2022 15.247(b) Power Output (902-928 MHz DTS) Test Lead: 120V 60Hz Antenna Port

^{*} Average Readings Software Version: 5.03.20

- 1 - 15.247(b) Power Output (902-928 MHz DTS)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T3	ANP06008	Cable	Heliax	9/2/2022	9/2/2024

Measu	rement Data:	Re	Reading listed by margin.			Test Lead: Antenna Port					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	908.078M	126.1	+10.1	+0.0	+0.6		+0.0	136.8	137.0	-0.2	Anten
									ARM ISM	I Power =	
									11		
2	915.080M	126.0	+10.1	+0.0	+0.6		+0.0	136.7	137.0	-0.3	Anten
									ARM ISM	Power =	
									15		
3	923.786M	125.7	+10.1	+0.0	+0.6		+0.0	136.4	137.0	-0.6	Anten
									ARM ISM	I Power =	
									15		

Test Location:	CKC Laboratories, Inc. • 22116	23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(b) Power Output (902-9	928 MHz DTS)	
Work Order #:	107461	Date:	10/3/2022
Test Type:	Conducted Emissions	Time:	07:36:30
Tested By:	Matt Harrison	Sequence#:	2
Software:	EMITest 5.03.20		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 21°C Humidity: 40% Pressure: 102.5kPa

Frequency Range: Fundamental Protocol /MCS/Modulation: **FM 12.5k**

Antenna type: Omni-Directional

Duty Cycle: Tested at 100%

Test Method: ANSI C63.10 (2013) Test Mode: Continuously Transmitting Test Setup: EUT is setup for Conducted Measurements. It is directly connected to the SA via an Attenuator.

Itron, Inc. WO#: 107461 Sequence#: 2 Date: 10/3/2022 15.247(b) Power Output (902-928 MHz DTS) Test Lead: 120V 60Hz Antenna Port

^{*} Average Readings Software Version: 5.03.20

Ambient
1 - 15.247(b) Power Output (902-928 MHz DTS)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024

Measurement Data:		Re	Reading listed by margin.			Test Lead: Antenna Port					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	914.896M	125.7	+10.1	+0.6			+0.0	136.4	137.0	-0.6	Anten
2	903.140M	123.2	+10.1	+0.6			+0.0	133.9	137.0	-3.1	Anten
3	926.672M	122.3	+10.1	+0.6			+0.0	133.0	137.0	-4.0	Anten

Test Location:	CKC Laboratories, Inc. • 22116 23r	d Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(b) Power Output (902-928	MHz DTS)	
Work Order #:	107461	Date:	10/4/2022
Test Type:	Conducted Emissions	Time:	07:34:38
Tested By:	Matt Harrison	Sequence#:	3
Software:	EMITest 5.03.20		120V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 21°C Humidity: 40% Pressure: 102.5kPa

Frequency Range: Fundamental Protocol /MCS/Modulation: **FM 37.5k**

Antenna type: Omni-Directional

Duty Cycle: Tested at 100%

Test Method: ANSI C63.10 (2013) Test Mode: Continuously Transmitting Test Setup: EUT is setup for Conducted Measurements. It is directly connected to the SA via an Attenuator.

Itron, Inc. WO#: 107461 Sequence#: 3 Date: 10/4/2022 15.247(b) Power Output (902-928 MHz DTS) Test Lead: 120V 60Hz Antenna Port

^{*} Average Readings Software Version: 5.03.20

Ambient
1 - 15.247(b) Power Output (902-928 MHz DTS)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	1: Antenna	l Port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	915.062M	125.9	+10.1	+0.6			+0.0	136.6	137.0	-0.4	Anten
2	903.104M	123.5	+10.1	+0.6			+0.0	134.2	137.0	-2.8	Anten
-	000000	100 (10.1	0.6			0.0	100.0	107.0	2.7	A .
3	926.686M	122.6	+10.1	+0.6			+0.0	133.3	137.0	-3.7	Anten

Test Setup Photo(s)

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive S	E, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	107461	Date:	10/24/2022
Test Type:	Conducted Emissions	Time:	14:00:25
Tested By:	Michael Atkinson	Sequence#:	1
Software:	EMITest 5.03.20	_	120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 20.9°C Humidity:49% Pressure: 101.1kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-10GHz

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

AM Modulation

Itron, Inc. WO#: 107461 Sequence#: 1 Date: 10/24/2022 15.247(d) Conducted Spurious Emissions Test Lead: 120V 60Hz Antenna Port

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
Т3	ANP07226	Attenuator	PE7004-6	8/9/2021	8/9/2023
	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024

Measu	rement Data:	Re	eading list	ted by ma	rgin.			Test Lead	l: Antenna	n Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	289.180M	55.4	+10.1	+0.3	+5.8		+0.0	71.6	117.0	-45.4	Anten
2	1815.980M	46.3	+10.2	+0.9	+5.9		+0.0	63.3	117.0	-53.7	Anten
3	1829.990M	46.2	+10.2	+0.9	+5.9		+0.0	63.2	117.0	-53.8	Anten
4	1847.615M	45.4	+10.2	+0.9	+5.9		+0.0	62.4	117.0	-54.6	Anten

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive S	E, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	107461	Date:	10/24/2022
Test Type:	Conducted Emissions	Time:	14:22:17
Tested By:	Michael Atkinson	Sequence#:	3
Software:	EMITest 5.03.20		120V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 20.9°C Humidity: 49% Pressure: 101.1kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-10GHz

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM12.5 Modulation

Itron, Inc. WO#: 107461 Sequence#: 3 Date: 10/24/2022 15.247(d) Conducted Spurious Emissions Test Lead: 120V 60Hz Antenna Port

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
Т3	ANP07226	Attenuator	PE7004-6	8/9/2021	8/9/2023
	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024

Meası	irement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	l Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	6321.350M	57.5	+0.0	+1.6	+5.5		+0.0	64.6	114.0	-49.4	Anten
2	1830.115M	46.4	+10.2	+0.9	+5.9		+0.0	63.4	114.0	-50.6	Anten
3	1806.100M	45.5	+10.2	+0.9	+5.9		+0.0	62.5	114.0	-51.5	Anten
4	1853.710M	44.4	+10.2	+0.9	+5.9		+0.0	61.4	114.0	-52.6	Anten
5	6405.350M	46.5	+0.0	+1.6	+5.7		+0.0	53.8	114.0	-60.2	Anten
6	6487.990M	45.4	+0.0	+1.6	+5.9		+0.0	52.9	114.0	-61.1	Anten

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive S	E, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	107461	Date:	10/24/2022
Test Type:	Conducted Emissions	Time:	14:42:47
Tested By:	Michael Atkinson	Sequence#:	5
Software:	EMITest 5.03.20		120V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 20.9°C Humidity:49% Pressure: 101.1kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-10GHz

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM37.5 Modulation

Itron, Inc. WD#: 107461 Sequence#: 5 Date: 10/24/2022 15.247(d) Conducted Spurious Emissions Test Lead: 120V 60Hz Antenna Port

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
Т2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
Т3	ANP07226	Attenuator	PE7004-6	8/9/2021	8/9/2023
	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024

Measu	irement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Antenna	l Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	6321.120M	57.3	+0.0	+1.6	+5.5		+0.0	64.4	114.0	-49.6	Anten
2	1830.020M	46.2	+10.2	+0.9	+5.9		+0.0	63.2	114.0	-50.8	Anten
3	1805.950M	45.1	+10.2	+0.9	+5.9		+0.0	62.1	114.0	-51.9	Anten
4	1853.530M	43.8	+10.2	+0.9	+5.9		+0.0	60.8	114.0	-53.2	Anten
5	6404.940M	46.0	+0.0	+1.6	+5.7		+0.0	53.3	114.0	-60.7	Anten
6	6487.530M	44.2	+0.0	+1.6	+5.9		+0.0	51.7	114.0	-62.3	Anten

Band Edge

	Band Edge Summary									
Limit applied:	Limit applied: Max Power/100kHz - 20dB.									
Operating Mo	ode: Single Channel (Low and High)									
Frequency	Modulation	Measured	Limit	Results						
(MHz)	Woddiation	(dBµV)	(dBµV)	Results						
902	AM	79.1	<117.0	Pass						
928	AM	76.4	<117.0	Pass						
902	FM12.5	93.3	<114.0	Pass						
928	FM12.5	81.5	<113.0	Pass						
902	FM37.5	91.7	<114.0	Pass						
928	FM37.5	81.6	<113.0	Pass						

Note: Limit converted to $dB\mu V$ from dBm, for 50ohm system dBm-107 = $dB\mu V$

	Band Edge Summary									
Limit applied: Max Power/100kHz - 20dB. Operating Mode: Hopping										
Frequency (MHz)	Modulation	Measured (dBµV)	Limit (dBµV)	Results						
902	AM	83.3	<117.0	Pass						
928	AM	84.4	<117.0	Pass						
902	FM12.5	90.5	<114.0	Pass						
928	FM12.5	80.8	<113.0	Pass						
902	FM37.5	91.8	<114.0	Pass						
928	FM37.5	79.7	<113.0	Pass						

Note: Limit converted to $dB\mu V$ from dBm, for 50ohm system $dBm-107 = dB\mu V$

Band Edge Plots

Single Channel (Low and High)

Hopping

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717						
Customer:	Itron, Inc.						
Specification:	15.247(d) Conducted Spurious Emissions						
Work Order #:	107461	Date:	10/24/2022				
Test Type:	Conducted Emissions	Time:	14:16:07				
Tested By:	Michael Atkinson	Sequence#:	2				
Software:	EMITest 5.03.20		120V 60Hz				

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Fauinment				

Support Equipment.				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 20.9°C Humidity:49% Pressure: 101.1kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

AM Modulation.

ID	Asset #	ŧ	Descri	ption		Model		Calibratio	n Date	Cal Due D	ate
T1	ANP05	503	Atten	uator		766-10		6/8/2021		6/8/2023	
T2	ANP06	008	Cable			Heliax		9/2/2022		9/2/2024	
Т3	ANP07	226	Atten	uator		PE7004-6		8/9/2021		8/9/2023	
	AN038	03	Spectr	um Analy	yzer	E4440A		2/23/2022	2	2/23/2024	1
<i>Measurement Data:</i> Reading listed by margin.							Test Lead	d: Antenn	a Port		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	928.000M	67.9	+10.1	+0.6	+5.	8	+0.0	84.4	117.0	-32.6	Anten

								Hopping		
2	902.000M	66.8	+10.1	+0.6	+5.8	+0.0	83.3	117.0	-33.7	Anten
								Hopping		
3	902.000M	62.6	+10.1	+0.6	+5.8	+0.0	79.1	117.0	-37.9	Anten
								SC		
4	928.000M	59.9	+10.1	+0.6	+5.8	+0.0	76.4	117.0	-40.6	Anten
								SC		

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive S	E, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	107461	Date:	10/24/2022
Test Type:	Conducted Emissions	Time:	14:37:43
Tested By:	Michael Atkinson	Sequence#:	4
Software:	EMITest 5.03.20		120V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 20.9°C Humidity:49% Pressure: 101.1kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM12.5 Modulation.

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
Т3	ANP07226	Attenuator	PE7004-6	8/9/2021	8/9/2023
	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Antenna	ı Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	902.000M	76.8	+10.1	+0.6	+5.8		+0.0	93.3	114.0	-20.7	Anten
2	902.000M	74.0	+10.1	+0.6	+5.8		+0.0	90.5	114.0	-23.5	Anten
3	928.000M	65.0	+10.1	+0.6	+5.8		+0.0	81.5	113.0	-31.5	Anten
4	928.000M	64.3	+10.1	+0.6	+5.8		+0.0	80.8	113.0	-32.2	Anten

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive S	E, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	107461	Date:	10/24/2022
Test Type:	Conducted Emissions	Time:	14:55:18
Tested By:	Michael Atkinson	Sequence#:	6
Software:	EMITest 5.03.20		120V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 20.9°C Humidity:49% Pressure: 101.1kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM37.5 Modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	6/8/2021	6/8/2023
T2	ANP06008	Cable	Heliax	9/2/2022	9/2/2024
T3	ANP07226	Attenuator	PE7004-6	8/9/2021	8/9/2023
	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024

Measu	Measurement Data: Reading listed by margin.					Test Lead: Antenna Port					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	902.000M	75.3	+10.1	+0.6	+5.8		+0.0	91.8	114.0	-22.2	Anten
2	902.000M	75.2	+10.1	+0.6	+5.8		+0.0	91.7	114.0	-22.3	Anten
3	928.000M	65.1	+10.1	+0.6	+5.8		+0.0	81.6	113.0	-31.4	Anten
4	928.000M	63.2	+10.1	+0.6	+5.8		+0.0	79.7	113.0	-33.3	Anten

Test Setup Photo(s)

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116 23rd D	Prive SE, Suite A • I	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurious	Emissions	
Work Order #:	107461	Date:	10/19/2022
Test Type:	Maximized Emissions	Time:	07:24:23
Tested By:	Michael Atkinson / Matt Harrison	Sequence#:	1
Software:	EMITest 5.03.20	-	

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup:

Unit is on foam table 80cm high for below 1GHz and 150cm High for above 1GHz. Horizontal and Vertical antenna polarities investigated, worst-case reported; unit is continuously transmitting with modulation.

Configuration 1 (Attached SuperRaptor, Internal GPS, Attached Cellular). **AM Modulation**, LMH channels

Itron, Inc. WO#: 107461 Sequence#: 1 Date: 10/19/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
Τ7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T11	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

#	<i>rement Data:</i> Freq	Rdng	eading lis T1	T2	T3	T4	Dist	Corr	e: 3 Meters Spec	Margin	Pola
#	rieq	Kulig	T5	T6	T7	T4 T8	Dist	Coll	spec	Margin	Fola
			T9	T10	T11	10					
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBuV/m	dB	Ant
1	960.200M	15.4	+0.0	+0.3	+1.5	+2.4	+0.0	50.3	54.0	-3.7	Vert
1	700.200M	13.4	+30.7	+0.0	+0.0	+0.0	10.0	50.5	54.0	5.7	ven
			+0.0	+0.0	+0.0	10.0					
2	4575.000M	43.9	+0.0	+0.6	+3.5	+0.0	+0.0	47.5	54.0	-6.5	Vert
2	1575.00011	15.9	+0.0	+0.0	-33.6	+32.2	10.0	17.5	51.0	0.5	1010
			+0.4	+0.5	+0.0	132.2					
3	7264.000M	50.9	+0.0	+1.2	+4.5	+0.0	+0.0	47.4	54.0	-6.6	Vert
	Ave		+0.0	+0.0	-34.9	+37.2					
			+0.7	+0.3	+12.5						
۸	7264.000M	50.9	+0.0	+1.2	+4.5	+0.0	+0.0	59.9	54.0	+5.9	Vert
			+0.0	+0.0	-34.9	+37.2					
			+0.7	+0.3	+0.0						
5	3631.855M	44.8	+0.0	+0.6	+3.3	+0.0	+0.0	47.3	54.0	-6.7	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+0.0						
6	3660.000M	43.9	+0.0	+0.6	+3.3	+0.0	+0.0	46.3	54.0	-7.7	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.2	+0.0						
7	263.800M	16.9	+0.0	+0.2	+0.8	+1.1	+0.0	38.3	46.0	-7.7	Hori
			+19.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
8	3695.435M	43.8	+0.0	+0.6	+3.3	+0.0	+0.0	46.3	54.0	-7.7	Ver
			+0.0	+0.0	-33.8	+31.9					
			+0.3	+0.2	+0.0						
	7320.000M	48.9	+0.0	+1.3	+4.5	+0.0	+0.0	46.1	54.0	-7.9	Ver
	Ave		+0.0	+0.0	-34.9	+37.5					
	5000 0000 (10.0	+0.7	+0.6	+12.5	0.0		7 0 4			
Λ	7320.000M	48.9	+0.0	+1.3	+4.5	+0.0	+0.0	58.6	54.0	+4.6	Vert
			+0.0	+0.0	-34.9	+37.5					
11	0172 00014	16.2	+0.7	+0.6	+0.0	.0.0	.0.0	45 1	540	0.0	N.C.
	8172.000M	46.3	+0.0	+1.2	+5.1	+0.0	+0.0	45.1	54.0	-8.9	Vert
	Ave		+0.0	+0.0	-35.0	+38.6					
^	9172 000M	16.2	+0.7	+0.7	+12.5			576	54.0	126	Vor
	8172.000M	46.3	$^{+0.0}_{+0.0}$	$^{+1.2}_{+0.0}$	+5.1 -35.0	+0.0 +38.6	+0.0	57.6	54.0	+3.6	Ver
			+0.0 +0.7	+0.0 +0.7	-55.0 +0.0	+30.0					
13	8235.000M	45.8	+0.7 +0.0	+0.7 +1.2	+0.0 +5.1	+0.0	+0.0	44.8	54.0	-9.2	Ver
	Ave	45.0	$^{+0.0}_{+0.0}$	$^{+1.2}_{+0.0}$	-34.9	+0.0 +38.6	± 0.0	44.0	54.0	-7.4	v el
			+0.0 +0.7	+0.0 +0.8	-34.9 +12.5	±30.0					
^	8235.000M	45.8	+0.0	+1.2	+12.5	+0.0	+0.0	57.3	54.0	+3.3	Ver
	0233.000141	+5.0	+0.0 +0.0	+1.2 $+0.0$	-34.9	+38.6	10.0	51.5	54.0	10.0	v CI
			+0.0	+0.0 +0.8	+0.0	10.0					

15 7390.400M	46.5	+0.0	+1.3	+4.5		+0.0	43.7	54.0	-10.3	Vert
Ave		+0.0	+0.0	-34.9	+37.4					
		+0.7	+0.7	+12.5						
^ 7390.400M	46.5	+0.0	+1.3	+4.5	+0.0	+0.0	56.2	54.0	+2.2	Vert
		+0.0	+0.0	-34.9	+37.4					
		+0.7	+0.7	+0.0						
17 4619.000M	52.3	+0.0	+0.6	+3.5	+0.0	+0.0	43.5	54.0	-10.5	Vert
Ave		+0.0	+0.0	-33.6	+32.4					
		+0.4	+0.4	+12.5						
^ 4619.000M	52.3	+0.0	+0.6	+3.5	+0.0	+0.0	56.0	54.0	+2.0	Vert
		+0.0	+0.0	-33.6	+32.4					
		+0.4	+0.4	+0.0						
19 2745.130M	44.2	+0.0	+0.5	+2.7	+0.0	+0.0	43.4	54.0	-10.6	Vert
		+0.0	+0.0	-34.1	+29.3					
		+0.5	+0.3	+0.0						
20 4540.000M	52.2	+0.0	+0.6	+3.5	+0.0	+0.0	43.2	54.0	-10.8	Vert
Ave		+0.0	+0.0	-33.6	+32.1					
		+0.3	+0.6	+12.5						
^ 4540.000M	52.2	+0.0	+0.6	+3.5	+0.0	+0.0	55.7	54.0	+1.7	Vert
		+0.0	+0.0	-33.6	+32.1					
		+0.3	+0.6	+0.0						
22 2724.090M	43.5	+0.0	+0.5	+2.7	+0.0	+0.0	42.7	54.0	-11.3	Horiz
		+0.0	+0.0	-34.1	+29.4					
		+0.5	+0.2	+0.0						
23 5448.000M	48.2	+0.0	+0.8	+4.0	+0.0	+0.0	42.5	54.0	-11.5	Vert
Ave		+0.0	+0.0	-33.6	+34.7					
		+0.5	+0.4	+12.5						
^ 5448.000M	48.2	+0.0	+0.8	+4.0	+0.0	+0.0	55.0	54.0	+1.0	Vert
		+0.0	+0.0	-33.6	+34.7					
		+0.5	+0.4	+0.0						
25 8314.200M	42.9	+0.0	+1.2	+5.2	+0.0	+0.0	42.2	54.0	-11.8	Vert
Ave		+0.0	+0.0	-34.9	+38.7					
		+0.7	+0.9	+12.5						
^ 8314.200M	42.9	+0.0	+1.2	+5.2	+0.0	+0.0	54.7	54.0	+0.7	Vert
		+0.0	+0.0	-34.9	+38.7					
		+0.7	+0.9	+0.0						
27 9150.000M	42.8	+0.0	+0.9	+5.0	+0.0	+0.0	41.3	54.0	-12.7	Vert
Ave		+0.0	+0.0	-34.4	+37.7					
		+0.7	+1.1	+12.5						
^ 9150.000M	42.8	+0.0	+0.9	+5.0	+0.0	+0.0	53.8	54.0	-0.2	Vert
		+0.0	+0.0	-34.4	+37.7					
		+0.7	+1.1	+0.0						
29 9080.000M	42.4	+0.0	+0.9	+4.9	+0.0	+0.0	40.6	54.0	-13.4	Vert
Ave		+0.0	+0.0	-34.6	+38.0					
		+0.7	+0.8	+12.5						
^ 9080.000M	42.4	+0.0	+0.9	+4.9	+0.0	+0.0	53.1	54.0	-0.9	Vert
		+0.0	+0.0	-34.6	+38.0					
		+0.7	+0.8	+0.0						
31 6355.740M	55.8	+0.0	+0.9	+4.4	+0.0	+0.0	63.2	112.0	-48.8	Vert
	22.0	+0.0	+0.9	-34.0	+35.1		55.2			
		+0.6	+0.4	+0.0						
		10.0	10.1	10.0						

32	6466.825M	54.0	+0.0	+0.9	+4.5	+0.0	+0.0	61.6	112.0	-50.4	Vert
			+0.0	+0.0	-34.0	+34.9					
			+0.7	+0.6	+0.0						
33	6404.530M	53.1	+0.0	+0.9	+4.5	+0.0	+0.0	60.6	112.0	-51.4	Vert
			+0.0	+0.0	-34.0	+35.0					
			+0.6	+0.5	+0.0						
34	5542.705M	50.4	+0.0	+0.8	+4.0	+0.0	+0.0	57.2	112.0	-54.8	Vert
			+0.0	+0.0	-33.6	+34.6					
			+0.5	+0.5	+0.0						
35	5490.025M	48.3	+0.0	+0.8	+4.0	+0.0	+0.0	55.1	112.0	-56.9	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.5	+0.4	+0.0						
36	1816.210M	50.5	+0.0	+0.4	+2.1	+0.0	+0.0	46.6	112.0	-65.4	Vert
			+0.0	+0.0	-34.7	+27.4					
			+0.3	+0.6	+0.0						
37	1847.650M	49.3	+0.0	+0.4	+2.1	+0.0	+0.0	45.6	112.0	-66.4	Vert
			+0.0	+0.0	-34.7	+27.6					
			+0.3	+0.6	+0.0						
38	43.600M	29.6	+0.0	+0.1	+0.3	+0.5	+0.0	44.8	112.0	-67.2	Vert
			+14.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
39	499.500M	17.2	+0.0	+0.2	+1.1	+1.6	+0.0	44.3	112.0	-67.7	Horiz
			+24.2	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
40	56.200M	30.2	+0.0	+0.1	+0.3	+0.5	+0.0	43.5	112.0	-68.5	Vert
			+12.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
41	1830.000M	45.8	+0.0	+0.4	+2.1	+0.0	+0.0	42.0	112.0	-70.0	Vert
			+0.0	+0.0	-34.7	+27.5					
			+0.3	+0.6	+0.0						
42	159.000M	20.1	+0.0	+0.1	+0.6	+0.8	+0.0	37.9	112.0	-74.1	Vert
			+16.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
43	98.900M	22.7	+0.0	+0.1	+0.5	+0.6	+0.0	37.6	112.0	-74.4	Vert
			+13.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
44	182.300M	18.4	+0.0	+0.1	+0.6	+0.9	+0.0	35.7	112.0	-76.3	Horiz
			+15.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
45	145.400M	20.0	+0.0	+0.1	+0.5	+0.8	+0.0	35.4	112.0	-76.6	Horiz
			+14.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
46	86.300M	21.7	+0.0	+0.1	+0.4	+0.6	+0.0	35.2	112.0	-76.8	Vert
			+12.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
47	86.300M	21.4	+0.0	+0.1	+0.4	+0.6	+0.0	34.9	112.0	-77.1	Vert
			+12.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
48	144.500M	19.5	+0.0	+0.1	+0.5	+0.8	+0.0	34.9	112.0	-77.1	Horiz
			+14.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

49	61.000M	21.2	+0.0	+0.1	+0.4	+0.5	+0.0	34.8	112.0	-77.2	Horiz
49	01.000101	21.2					± 0.0	54.0	112.0	-77.2	TIOUTZ
			+12.6	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
50	141.600M	18.1	+0.0	+0.1	+0.5	+0.8	+0.0	33.4	112.0	-78.6	Vert
			+13.9	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
51	9.846k	77.7	+0.0	+0.1	+0.0	+0.0	-80.0	14.0	112.0	-98.0	Vert
			+0.0	+16.2	+0.0	+0.0					
			+0.0	+0.0	+0.0						
52	29.224M	45.0	+0.0	+0.1	+0.3	+0.0	-40.0	9.3	112.0	-102.7	Vert
			+0.0	+3.9	+0.0	+0.0					
			+0.0	+0.0	+0.0						
53	23.134M	38.0	+0.0	+0.1	+0.2	+0.0	-40.0	4.4	112.0	-107.6	Vert
			+0.0	+6.1	+0.0	+0.0					
			+0.0	+0.0	+0.0						
54	29.910M	39.5	+0.0	+0.1	+0.3	+0.0	-40.0	3.5	112.0	-108.5	Vert
			+0.0	+3.6	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717								
Customer:	Itron, Inc.								
Specification:	15.247(d) / 15.209 Radiated S	purious Emissions							
Work Order #:	107461	Date:	10/12/2022						
Test Type:	Maximized Emissions	Time:	11:46:45						
Tested By:	Matt Harrison	Sequence#:	2						
Software:	EMITest 5.03.20								

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 1 (Attached SuperRaptor, Internal GPS, Attached Cellular). FM 12.5k Modulation, LMH channels.

Itron, Inc. WO#: 107461 Sequence#: 2 Date: 10/12/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T5	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
Т6	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Τ7	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т8	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
Т9	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T10	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

#	rement Data: Freq	Rdng	T1	ted by ma T2	T3	T4	Dist	Corr	e: 3 Meters Spec	Margin	Polar
	ireq	ittang	T5	T6	T7	T8	Dist	com	Spee	margin	1 0141
			T9	T10							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	4574.565M	43.9	+0.6	+3.5	+0.0	+0.0	+0.0	47.5	54.0	-6.5	Vert
			+0.0	-33.6	+32.2	+0.4					
			+0.5	+0.0							
2	7320.000M	49.8	+1.3	+4.5	+0.0	+0.0	+0.0	47.0	54.0	-7.0	Vert
I	Ave		+0.0	-34.9	+37.5	+0.7					
			+0.6	+12.5							
۸	7320.000M	49.8	+1.3	+4.5	+0.0	+0.0	+0.0	59.5	54.0	+5.5	Vert
			+0.0	-34.9	+37.5	+0.7					
			+0.6	+0.0							
4	3660.185M	44.4	+0.6	+3.3	+0.0	+0.0	+0.0	46.8	54.0	-7.2	Vert
			+0.0	-33.8	+31.7	+0.4					
			+0.2	+0.0							
5	3612.490M	44.4	+0.5	+3.2	+0.0	+0.0	+0.0	46.7	54.0	-7.3	Vert
			+0.0	-33.8	+31.7	+0.4					
		10.0	+0.3	+0.0							
6	3707.090M	43.8	+0.6	+3.3	+0.0	+0.0	+0.0	46.4	54.0	-7.6	Vert
			+0.0	-33.8	+32.0	+0.3					
	0005 0001 (16.1	+0.2	+0.0	0.0	0.0	0.0	45.1	54.0	0.0	¥7 .
	8235.000M	46.1	+1.2	+5.1	+0.0	+0.0	+0.0	45.1	54.0	-8.9	Vert
I	Ave		+0.0	-34.9	+38.6	+0.7					
^	9225 000M	46.1	+0.8	+12.5	.0.0	.0.0	.0.0	57.6	540	.2.6	X <i>T</i> 4
χ	8235.000M	46.1	+1.2	+5.1	+0.0	+0.0	+0.0	57.6	54.0	+3.6	Vert
			+0.0	-34.9	+38.6	+0.7					
0	4634.000M	52.2	+0.8 +0.6	+0.0 +3.6	+0.0	+0.0	+0.0	43.5	54.0	-10.5	Vert
		32.2	+0.0 $+0.0$	+3.6 -33.6	+0.0 +32.4	+0.0 +0.4	+0.0	45.5	34.0	-10.5	ven
1	Ave		+0.0 $+0.4$	+12.5	+32.4	+0.4					
^	4634.000M	52.2	+0.4 +0.6	+12.5 +3.6	+0.0	+0.0	+0.0	56.0	54.0	+2.0	Vert
	4034.000101	52.2	+0.0 +0.0	-33.6	+32.4	+0.0 $+0.4$	± 0.0	50.0	54.0	± 2.0	ven
			+0.0 +0.4	+0.0	±J2. 4	±0 . 4					
11	2709.120M	44.1	+0.5	+2.7	+0.0	+0.0	+0.0	43.4	54.0	-10.6	Vert
11	2107.120141	77.1	+0.0	-34.1	+29.5	+0.0 $+0.5$	10.0	т Ј.Т	54.0	10.0	ven
			+0.2	+0.0	1 27.5	10.5					
12	5418.530M	36.2	+0.8	+4.0	+0.0	+0.0	+0.0	43.1	54.0	-10.9	Vert
	Ave	20.2	+0.0	-33.6	+34.7	+0.6	. 0.0		2 110	-0.7	1 011
1			+0.4	+0.0							
۸	5418.530M	46.6	+0.8	+4.0	+0.0	+0.0	+0.0	53.5	54.0	-0.5	Vert
			+0.0	-33.6	+34.7	+0.6					
			+0.4	+0.0							
14	2745.030M	43.6	+0.5	+2.7	+0.0	+0.0	+0.0	42.8	54.0	-11.2	Vert
			+0.0	-34.1	+29.3	+0.5					
			+0.3	+0.0							
15	2780.870M	43.5	+0.5	+2.7	+0.0	+0.0	+0.0	42.7	54.0	-11.3	Vert
			+0.0	-34.1	+29.3	+0.5					
			+0.3	+0.0							

16	7414 40034	11.0	1.0		0.0	0.0	0.0	41.4	54.0	10.6	X 7 .
	7414.400M	44.3	+1.3	+4.4	+0.0	+0.0	+0.0	41.4	54.0	-12.6	Vert
4	Ave		+0.0	-34.9	+37.4	+0.7					
•	7414 40014	44.2	+0.7	+12.5	.0.0	.0.0	.0.0	52.0	54.0	0.1	XI
X	7414.400M	44.3	+1.3	+4.4	+0.0	+0.0	+0.0	53.9	54.0	-0.1	Vert
			+0.0	-34.9	+37.4	+0.7					
10	9107 2001	42.0	+0.7	+0.0	.0.0	.0.0	.0.0	10.0	54.0	12.4	M
	8127.390M	42.0	+1.2	+5.1	+0.0	+0.0	+0.0	40.6	54.0	-13.4	Vert
4	Ave		+0.0	-35.1	+38.6	+0.7					
	9127 200M	42.0	+0.6	+12.5				53.1	54.0	0.0	Mart
A	8127.390M	42.0	$^{+1.2}_{+0.0}$	+5.1	+0.0 +38.6	+0.0	+0.0	55.1	54.0	-0.9	Vert
			+0.0 +0.6	-35.1 +0.0	+38.0	+0.7					
20	4514.995M	45.4		+0.0 +3.5	+0.0	+0.0	+0.0	36.4	54.0	-17.6	Vert
		43.4	$^{+0.6}_{+0.0}$				+0.0	30.4	54.0	-17.0	ven
4	Ave		+0.0 +0.5	-33.6 +12.5	+32.2	+0.3					
^	4514.995M	45.4	+0.5 $+0.6$	+12.3 +3.5	+0.0	+0.0	+0.0	48.9	54.0	-5.1	Vert
	4314.993WI	43.4	+0.0 $+0.0$	-33.6	+0.0 +32.2	+0.0 +0.3	+0.0	40.9	54.0	-3.1	ven
			+0.0 $+0.5$	+0.0	+32.2	± 0.5					
22	6321.635M	53.7	+0.9	+0.0	+0.0	+0.0	+0.0	61.2	109.0	-47.8	Vert
22	0521.0551	55.7	+0.9 $+0.0$	-34.0	+35.2	+0.0 +0.6	± 0.0	01.2	109.0	-4/.0	ven
			+0.0 $+0.4$	+0.0	+35.2	± 0.0					
23	6404.815M	52.1	+0.9	+4.5	+0.0	+0.0	+0.0	59.6	109.0	-49.4	Vert
25	0404.015101	52.1	+0.0	-34.0	+35.0	+0.6	10.0	57.0	107.0		Vert
			+0.5	+0.0	155.0	10.0					
24	6487.135M	51.6	+0.9	+4.5	+0.0	+0.0	+0.0	59.2	109.0	-49.8	Vert
27	0407.155101	51.0	+0.0	-34.0	+34.9	+0.7	10.0	57.2	107.0	-+7.0	Vert
			+0.6	+0.0	134.7	10.7					
25	7224.415M	46.2	+1.2	+4.6	+0.0	+0.0	+0.0	55.0	109.0	-54.0	Vert
25	7221.115101	10.2	+0.0	-34.9	+37.0	+0.7	10.0	55.0	107.0	51.0	vert
			+0.2	+0.0	10/10						
26	5490.400M	45.9	+0.8	+4.0	+0.0	+0.0	+0.0	52.7	109.0	-56.3	Vert
-0	0.000000		+0.0	-33.6	+34.7	+0.5		0217	10,10	0010	
			+0.4	+0.0							
27	5561.190M	45.6	+0.8	+4.0	+0.0	+0.0	+0.0	52.3	109.0	-56.7	Vert
			+0.0	-33.6	+34.5	+0.5					
			+0.5	+0.0							
28	1831.710M	55.4	+0.4	+2.1	+0.0	+0.0	+0.0	51.6	109.0	-57.4	Vert
			+0.0	-34.7		+0.3					
			+0.6	+0.0							
29	1852.405M	47.4	+0.4	+2.1	+0.0	+0.0	+0.0	43.7	109.0	-65.3	Vert
			+0.0	-34.7	+27.6	+0.3					
			+0.6	+0.0							
30	56.200M	30.3	+0.1	+0.3	+0.5	+12.4	+0.0	43.6	109.0	-65.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
31	56.200M	29.9	+0.1	+0.3	+0.5	+12.4	+0.0	43.2	109.0	-65.8	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
32	1806.140M	46.9	+0.4	+2.1	+0.0	+0.0	+0.0	42.9	109.0	-66.1	Vert
			+0.0	-34.7	+27.3	+0.3					
			+0.6	+0.0							

33	59.100M	28.5	+0.1	+0.4	+0.5	+12.5	+0.0	42.0	109.0	-67.0	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
34	160.000M	21.8	+0.1	+0.6	+0.8	+16.1	+0.0	39.4	109.0	-69.6	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
35	98.900M	23.0	+0.1	+0.5	+0.6	+13.7	+0.0	37.9	109.0	-71.1	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
36	143.500M	20.8	+0.1	+0.5	+0.8	+14.0	+0.0	36.2	109.0	-72.8	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
37	182.300M	18.7	+0.1	+0.6	+0.9	+15.7	+0.0	36.0	109.0	-73.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
38	145.400M	20.4	+0.1	+0.5	+0.8	+14.0	+0.0	35.8	109.0	-73.2	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
39	57.200M	22.1	+0.1	+0.3	+0.5	+12.4	+0.0	35.4	109.0	-73.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
40	101.800M	18.5	+0.1	+0.5	+0.6	+14.0	+0.0	33.7	109.0	-75.3	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
41	29.224M	44.2	+0.1	+0.3	+0.0	+0.0	-40.0	8.5	109.0	-100.5	Vert
			+3.9	+0.0	+0.0	+0.0					
			+0.0	+0.0							
42	23.134M	37.6	+0.1	+0.2	+0.0	+0.0	-40.0	4.0	109.0	-105.0	Vert
		-	+6.1	+0.0	+0.0	+0.0				-	
			+0.0	+0.0							
43	29.910M	39.2	+0.1	+0.3	+0.0	+0.0	-40.0	3.2	109.0	-105.8	Vert
			+3.6	+0.0	+0.0	+0.0					
			+0.0	+0.0							
44	45.096k	45.9	+0.1	+0.0	+0.0	+0.0	-80.0	-23.9	109.0	-132.9	Vert
			+10.1	+0.0	+0.0	+0.0				/	
			+0.0	+0.0							
l											

Test Location:	CKC Laboratories, Inc. • 22116	23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated S	purious Emissions	
Work Order #:	107461	Date:	10/12/2022
Test Type:	Maximized Emissions	Time:	12:56:09
Tested By:	Matt Harrison	Sequence#:	3
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 1 (Attached SuperRaptor, Internal GPS, Attached Cellular). FM 37.5k Modulation, LMH channels.

Itron, Inc. WO#: 107461 Sequence#: 3 Date: 10/12/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
Т2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
Τ7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T11	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

#	ement Data:			ted by ma T2	T3	T4	Dist	Corr	e: 3 Meters		Pola
#	Freq	Rdng	T1 T5	T2 T6	13 T7	14 T8	Dist	Corr	Spec	Margin	Pola
			13 T9	T10	T11	10					
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1 4	4575.400M	44.2	+0.0	+0.6	+3.5	+0.0	+0.0	47.8	54.0	-6.2	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.4	+0.5	+0.0						
2	3707.320M	44.3	+0.0	+0.6	+3.3	+0.0	+0.0	46.9	54.0	-7.1	Vert
			+0.0	+0.0	-33.8	+32.0					
			+0.3	+0.2	+0.0						
3	3659.925M	44.2	+0.0	+0.6	+3.3	+0.0	+0.0	46.6	54.0	-7.4	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.2	+0.0						
4 ′	7320.000M	49.1	+0.0	+1.3	+4.5	+0.0	+0.0	46.3	54.0	-7.7	Vert
A	Ave		+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+12.5						
^ '	7320.000M	49.1	+0.0	+1.3	+4.5	+0.0	+0.0	58.8	54.0	+4.8	Vert
			+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+0.0						
6	3611.900M	43.6	+0.0	+0.5	+3.2	+0.0	+0.0	45.9	54.0	-8.1	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+0.0						
7	8235.000M	45.9	+0.0	+1.2	+5.1	+0.0	+0.0	44.9	54.0	-9.1	Vert
A	Ave		+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+12.5						
^	8235.000M	45.9	+0.0	+1.2	+5.1	+0.0	+0.0	57.4	54.0	+3.4	Vert
			+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+0.0						
9 1	2709.205M	44.0	+0.0	+0.5	+2.7	+0.0	+0.0	43.3	54.0	-10.7	Vert
			+0.0	+0.0	-34.1	+29.5					
			+0.5	+0.2	+0.0						
	4634.000M	51.9	+0.0	+0.6	+3.6	+0.0	+0.0	43.2	54.0	-10.8	Vert
A	Ave		+0.0	+0.0	-33.6	+32.4					
			+0.4	+0.4	+12.5						
^ .	4634.000M	51.9	+0.0	+0.6	+3.6	+0.0	+0.0	55.7	54.0	+1.7	Vert
			+0.0	+0.0	-33.6	+32.4					
			+0.4	+0.4	+0.0			10.0			
12	2745.135M	43.6	+0.0	+0.5	+2.7	+0.0	+0.0	42.8	54.0	-11.2	Vert
			+0.0	+0.0	-34.1	+29.3					
10	0700 0103 5	12.2	+0.5	+0.3	+0.0		. 0. 0	10.4	E 4 0	11.4	17
13	2780.310M	43.2	+0.0	+0.5	+2.7	+0.0	+0.0	42.4	54.0	-11.6	Vert
			+0.0	+0.0	-34.1	+29.3					
14	7414 4003 4	22.7	+0.5	+0.3	+0.0			40.0	E 4 0	117	17
	7414.400M	32.7	+0.0	+1.3	+4.4	+0.0	+0.0	42.3	54.0	-11.7	Vert
P	Ave		+0.0	+0.0	-34.9	+37.4					
•	7414 4003 4	42.0	+0.7	+0.7	+0.0	.0.0	.0.0	50 A	E 4 0	0.4	X 7
Λ	7414.400M	43.8	+0.0	+1.3	+4.4	+0.0	+0.0	53.4	54.0	-0.6	Vert
			+0.0	+0.0	-34.9	+37.4					
			+0.7	+0.7	+0.0						

16	5418.000M	45.8	+0.0	+0.8	+4.0	+0.0	+0.0	40.2	54.0	-13.8	Vert
	Ave		+0.0	+0.0	-33.6	+34.7					
			+0.6	+0.4	+12.5						
^	5418.000M	45.8	+0.0	+0.8	+4.0	+0.0	+0.0	52.7	54.0	-1.3	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.6	+0.4	+0.0						
18	8127.000M	41.6	+0.0	+1.2	+5.1	+0.0	+0.0	40.2	54.0	-13.8	Vert
	Ave		+0.0	+0.0	-35.1	+38.6					
			+0.7	+0.6	+12.5						
^	8127.000M	41.6	+0.0	+1.2	+5.1	+0.0	+0.0	52.7	54.0	-1.3	Vert
			+0.0	+0.0	-35.1	+38.6					
			+0.7	+0.6	+0.0						
20	4515.080M	44.9	+0.0	+0.6	+3.5	+0.0	+0.0	35.9	54.0	-18.1	Vert
	Ave		+0.0	+0.0	-33.6	+32.2					
			+0.3	+0.5	+12.5						
^	4515.080M	44.9	+0.0	+0.6	+3.5	+0.0	+0.0	48.4	54.0	-5.6	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.3	+0.5	+0.0						
22	6321.365M	52.9	+0.0	+0.9	+4.4	+0.0	+0.0	60.4	109.0	-48.6	Vert
			+0.0	+0.0	-34.0	+35.2					
			+0.6	+0.4	+0.0						
23	6404.910M	51.8	+0.0	+0.9	+4.5	+0.0	+0.0	59.3	109.0	-49.7	Vert
			+0.0	+0.0	-34.0	+35.0					
			+0.6	+0.5	+0.0						
24	6487.405M	51.2	+0.0	+0.9	+4.5	+0.0	+0.0	58.8	109.0	-50.2	Vert
			+0.0	+0.0	-34.0	+34.9					
			+0.7	+0.6	+0.0						
25	7224.040M	45.6	+0.0	+1.2	+4.6	+0.0	+0.0	54.4	109.0	-54.6	Vert
			+0.0	+0.0	-34.9	+37.0					
			+0.7	+0.2	+0.0						
26	5560.760M	45.7	+0.0	+0.8	+4.0	+0.0	+0.0	52.4	109.0	-56.6	Vert
			+0.0	+0.0	-33.6	+34.5					
			+0.5	+0.5	+0.0						
27	5490.385M	45.2	+0.0	+0.8	+4.0	+0.0	+0.0	52.0	109.0	-57.0	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.5	+0.4	+0.0						
28	1831.100M	51.6	+0.0	+0.4	+2.1		+0.0	47.8	109.0	-61.2	Vert
			+0.0	+0.0	-34.7	+27.5					
			+0.3	+0.6	+0.0						
29	57.200M	29.9	+0.0	+0.1	+0.3	+0.5	+0.0	43.2	109.0	-65.8	Vert
			+12.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
30	56.200M	29.6	+0.0	+0.1	+0.3	+0.5	+0.0	42.9	109.0	-66.1	Vert
			+12.4	+0.0	+0.0	+0.0					
<u> </u>			+0.0	+0.0	+0.0						
31	1853.515M	46.5	+0.0	+0.4	+2.1	+0.0	+0.0	42.9	109.0	-66.1	Vert
			+0.0	+0.0	-34.7	+27.7					
			+0.3	+0.6	+0.0						
32	1805.650M	45.9	+0.0	+0.4	+2.1	+0.0	+0.0	41.9	109.0	-67.1	Vert
			+0.0	+0.0	-34.7	+27.3					
			+0.3	+0.6	+0.0						

33	160.000M	20.9	+0.0	+0.1	+0.6	+0.8	+0.0	38.5	109.0	-70.5	Vert
			+16.1	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
34	98.900M	23.1	+0.0	+0.1	+0.5	+0.6	+0.0	38.0	109.0	-71.0	Vert
			+13.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
35	98.900M	22.8	+0.0	+0.1	+0.5	+0.6	+0.0	37.7	109.0	-71.3	Vert
			+13.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
36	57.200M	24.1	+0.0	+0.1	+0.3	+0.5	+0.0	37.4	109.0	-71.6	Horiz
			+12.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
37	184.200M	19.6	+0.0	+0.1	+0.7	+0.9	+0.0	36.9	109.0	-72.1	Vert
			+15.6	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
38	143.500M	20.8	+0.0	+0.1	+0.5	+0.8	+0.0	36.2	109.0	-72.8	Horiz
			+14.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
39	142.500M	20.6	+0.0	+0.1	+0.5	+0.8	+0.0	35.9	109.0	-73.1	Horiz
			+13.9	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
40	29.224M	43.4	+0.0	+0.1	+0.3	+0.0	-40.0	7.7	109.0	-101.3	Perp/
			+0.0	+3.9	+0.0	+0.0					-
			+0.0	+0.0	+0.0						
41	23.134M	38.8	+0.0	+0.1	+0.2	+0.0	-40.0	5.2	109.0	-103.8	Perp/
			+0.0	+6.1	+0.0	+0.0					-
			+0.0	+0.0	+0.0						
42	29.910M	35.6	+0.0	+0.1	+0.3	+0.0	-40.0	-0.4	109.0	-109.4	Perp/
			+0.0	+3.6	+0.0	+0.0					•
			+0.0	+0.0	+0.0						
43	48.057k	47.0	+0.0	+0.1	+0.0	+0.0	-80.0	-22.9	109.0	-131.9	Perp/
			+0.0	+10.0	+0.0	+0.0					•
			+0.0	+0.0	+0.0						
44	47.634k	46.5	+0.0	+0.1	+0.0	+0.0	-80.0	-23.4	109.0	-132.4	Perp/
			+0.0	+10.0	+0.0	+0.0					1
			+0.0	+0.0	+0.0						
L											

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717						
Customer:	Itron, Inc.						
Specification:	15.247(d) / 15.209 Radiated	Spurious Emissions					
Work Order #:	107461	Date:	10/15/2022				
Test Type:	Maximized Emissions	Time:	12:05:07				
Tested By:	Matt Harrison	Sequence#:	4				
Software:	EMITest 5.03.20						

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 22°C Humidity: 48% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2 (Attached SuperRaptor, Remote GPS, Remote Cellular). **AM Modulation**, LMH channels.

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
T7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	ANP07504	Cable	CLU40-KMKM- 02.00F	1/26/2021	1/26/2023
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T11	ANDCCF	Duty Cycle Correction Factor		No Cal Required	No Cal Required

	ement Data:			ted by m					e: 3 Meters		D 1
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Pola
			T5	T6	T7	T8					
	MII-	JD. V	T9	T10	T11	ЧĿ	Table	JD. V/m	JD. V/m	ЧĿ	A
1 /	MHz	dBµV	dB	dB	dB	dB		$\frac{dB\mu V/m}{46.0}$		dB	Ant
	7264.170M	50.4	+0.0	+1.2	+4.5	+0.0	+0.0	46.9	54.0	-7.1	Vert
P	ve		+0.0	+0.0	-34.9	+37.2					
^ /	7264.170M	50.4	+0.7	+0.3 +1.2	+12.5	+0.0		59.4	54.0	15 /	Vert
~	/204.1/01	30.4	$^{+0.0}_{+0.0}$	$^{+1.2}_{+0.0}$	+4.5 -34.9	+0.0 +37.2	+0.0	39.4	34.0	+5.4	ven
			+0.0 +0.7	+0.0 +0.3	-34.9 +0.0	+37.2					
3 /	2744.985M	47.4	+0.0	+0.5	+2.7	+0.0	+0.0	46.6	54.0	-7.4	Vert
5.	2744.905101	47.4	+0.0 $+0.0$	+0.3 +0.0	-34.1	+29.3	± 0.0	40.0	54.0	-/.4	ven
			+0.5	+0.3	+0.0	127.5					
4	7320.065M	49.4	+0.0	+1.3	+4.5	+0.0	+0.0	46.6	54.0	-7.4	Vert
	ve	r7.4	+0.0	+0.0	-34.9	+37.5	10.0	10.0	57.0	/	7 011
1			+0.7	+0.6	+12.5	101.0					
<u>۸</u>	7320.065M	49.4	+0.0	+1.3	+4.5	+0.0	+0.0	59.1	54.0	+5.1	Ver
	/02010000112	.,,,,	+0.0	+0.0	-34.9	+37.5		0,11	6 110		
			+0.7	+0.6	+0.0						
6	3695.100M	44.0	+0.0	+0.6	+3.3	+0.0	+0.0	46.5	54.0	-7.5	Ver
			+0.0	+0.0	-33.8	+31.9					
			+0.3	+0.2	+0.0						
7 ′	7390.365M	48.9	+0.0	+1.3	+4.5	+0.0	+0.0	46.1	54.0	-7.9	Vert
	ve		+0.0	+0.0	-34.9	+37.4					
			+0.7	+0.7	+12.5						
<u>۸</u>	7390.365M	48.9	+0.0	+1.3	+4.5	+0.0	+0.0	58.6	54.0	+4.6	Ver
			+0.0	+0.0	-34.9	+37.4					
			+0.7	+0.7	+0.0						
9 4	4574.960M	42.1	+0.0	+0.6	+3.5	+0.0	+0.0	45.7	54.0	-8.3	Ver
			+0.0	+0.0	-33.6	+32.2					
			+0.4	+0.5	+0.0						
10	8171.355M	46.4	+0.0	+1.2	+5.1	+0.0	+0.0	45.2	54.0	-8.8	Ver
A	ve		+0.0	+0.0	-35.0	+38.6					
			+0.7	+0.7	+12.5						
^	8171.355M	46.4	+0.0	+1.2	+5.1	+0.0	+0.0	57.7	54.0	+3.7	Ver
			+0.0	+0.0	-35.0	+38.6					
			+0.7	+0.7	+0.0						
	8235.065M	45.1	+0.0	+1.2	+5.1	+0.0	+0.0	44.1	54.0	-9.9	Ver
A	ve		+0.0	+0.0	-34.9	+38.6					
•	0005 05515	4 7 1	+0.7	+0.8	+12.5	.0.0	. 0. 0		540		17
~	8235.065M	45.1	+0.0	+1.2	+5.1	+0.0	+0.0	56.6	54.0	+2.6	Ver
			+0.0	+0.0	-34.9	+38.6					
1.4	2771 2051 4	42 7	+0.7	+0.8	+0.0	.0.0	.0.0	42.0	54.0	11.1	N7
14	2771.205M	43.7	+0.0	+0.5	+2.7	+0.0	+0.0	42.9	54.0	-11.1	Ver
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						

15	4618.965M	50.9	+0.0	+0.6	+3.5	+0.0	+0.0	42.1	54.0	-11.9	Vert
	Ave	50.7	+0.0	+0.0	-33.6	+32.4	10.0	72.1	54.0	-11.7	ven
	1100		+0.4	+0.4	+12.5	152.4					
^	4618.965M	50.9	+0.0	+0.6	+3.5	+0.0	+0.0	54.6	54.0	+0.6	Vert
	1010.902.01	20.7	+0.0	+0.0	-33.6	+32.4	10.0	0 110	5 110	10.0	vert
			+0.4	+0.4	+0.0						
17	4540.170M	49.7	+0.0	+0.6	+3.5	+0.0	+0.0	40.7	54.0	-13.3	Vert
	Ave		+0.0	+0.0	-33.6	+32.1					
			+0.3	+0.6	+12.5						
^	4540.170M	49.7	+0.0	+0.6	+3.5	+0.0	+0.0	53.2	54.0	-0.8	Vert
			+0.0	+0.0	-33.6	+32.1					
			+0.3	+0.6	+0.0						
19	8314.165M	41.4	+0.0	+1.2	+5.2	+0.0	+0.0	40.7	54.0	-13.3	Vert
	Ave		+0.0	+0.0	-34.9	+38.7					
			+0.7	+0.9	+12.5						
^	8314.165M	41.4	+0.0	+1.2	+5.2	+0.0	+0.0	53.2	54.0	-0.8	Vert
			+0.0	+0.0	-34.9	+38.7					
			+0.7	+0.9	+0.0						
	5448.170M	46.0	+0.0	+0.8	+4.0	+0.0	+0.0	40.3	54.0	-13.7	Vert
	Ave		+0.0	+0.0	-33.6	+34.7					
			+0.5	+0.4	+12.5						
^	5448.170M	46.0	+0.0	+0.8	+4.0	+0.0	+0.0	52.8	54.0	-1.2	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.5	+0.4	+0.0						
	9079.940M	41.9	+0.0	+0.9	+4.9	+0.0	+0.0	40.1	54.0	-13.9	Vert
	Ave		+0.0	+0.0	-34.6	+38.0					
	0070 04014	41.0	+0.7	+0.8	+12.5	.0.0	.0.0	52.6	54.0	1.4	X 7 /
	9079.940M	41.9	+0.0	+0.9	+4.9	+0.0	+0.0	52.6	54.0	-1.4	Vert
			+0.0 +0.7	+0.0	-34.6	+38.0					
25	2723.735M	52.1	+0.7 +0.0	+0.8 +0.5	+0.0 +2.7	+0.0	+0.0	38.8	54.0	-15.2	Vert
	Ave	32.1	$^{+0.0}_{+0.0}$	+0.3 +0.0	-34.1	+0.0 +29.4	+0.0	20.0	54.0	-13.2	ven
	Ave		+0.0 +0.5	+0.0 $+0.2$	+12.5	+2 7.4					
^	2723.735M	52.1	+0.0	+0.5	+2.7	+0.0	+0.0	51.3	54.0	-2.7	Vert
	2723.733101	52.1	+0.0 +0.0	+0.3 $+0.0$	-34.1	+29.4	± 0.0	51.5	54.0	-2.1	ven
			+0.5	+0.2	+0.0	127.4					
27	3660.000M	47.1	+0.0	+0.6	+3.3	+0.0	+0.0	37.0	54.0	-17.0	Vert
	Ave	. / . 1	+0.0	+0.0		+31.7	10.0	27.0	21.0	17.0	
			+0.4	+0.2	+12.5	,					
^	3660.000M	47.1	+0.0	+0.6	+3.3	+0.0	+0.0	49.5	54.0	-4.5	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.2	+0.0						
29	3631.980M	46.4	+0.0	+0.6	+3.3	+0.0	+0.0	36.4	54.0	-17.6	Vert
	Ave		+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+12.5						
^	3631.980M	46.4	+0.0	+0.6	+3.3	+0.0	+0.0	48.9	54.0	-5.1	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+0.0						
31	6355.850M	55.7	+0.0	+0.9	+4.4	+0.0	+0.0	63.1	112.0	-48.9	Vert
			+0.0	+0.0	-34.0	+35.1					
			+0.6	+0.4	+0.0						

32	6466.635M	52.8	+0.0	+0.9	+4.5	+0.0	+0.0	60.4	112.0	-51.6	Vert
			+0.0	+0.0	-34.0	+34.9					
			+0.7	+0.6	+0.0						
33	6404.935M	51.6	+0.0	+0.9	+4.5	+0.0	+0.0	59.1	112.0	-52.9	Vert
			+0.0	+0.0	-34.0	+35.0					
			+0.6	+0.5	+0.0						
34	5542.880M	46.4	+0.0	+0.8	+4.0	+0.0	+0.0	53.2	112.0	-58.8	Vert
			+0.0	+0.0	-33.6	+34.6					
			+0.5	+0.5	+0.0						
35	5489.995M	45.3	+0.0	+0.8	+4.0	+0.0	+0.0	52.1	112.0	-59.9	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.5	+0.4	+0.0						
36	1816.025M	55.7	+0.0	+0.4	+2.1	+0.0	+0.0	51.8	112.0	-60.2	Vert
			+0.0	+0.0	-34.7	+27.4					
			+0.3	+0.6	+0.0						
37	1847.690M	55.5	+0.0	+0.4	+2.1	+0.0	+0.0	51.8	112.0	-60.2	Vert
			+0.0	+0.0	-34.7	+27.6					
			+0.3	+0.6	+0.0						
38	1829.945M	54.0	+0.0	+0.4	+2.1	+0.0	+0.0	50.2	112.0	-61.8	Vert
			+0.0	+0.0	-34.7	+27.5					
			+0.3	+0.6	+0.0						
39	46.500M	32.6	+0.0	+0.1	+0.3	+0.5	+0.0	46.6	112.0	-65.4	Vert
			+13.1	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
40	52.300M	33.0	+0.0	+0.1	+0.3	+0.5	+0.0	46.2	112.0	-65.8	Vert
			+12.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
41	51.300M	32.4	+0.0	+0.1	+0.3	+0.5	+0.0	45.6	112.0	-66.4	Vert
			+12.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
42	54.200M	31.5	+0.0	+0.1	+0.3	+0.5	+0.0	44.7	112.0	-67.3	Vert
			+12.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
43	53.300M	29.0	+0.0	+0.1	+0.3	+0.5	+0.0	42.2	112.0	-69.8	Horiz
			+12.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
44	10.974k	81.7	+0.0	+0.1	+0.0	+0.0	-80.0	17.4	112.0	-94.6	Perp/
			+0.0	+15.6	+0.0	+0.0					- r .
			+0.0	+0.0	+0.0						
45	23.134M	38.8	+0.0	+0.1	+0.2	+0.0	-40.0	5.2	112.0	-106.8	Perp/
		2 0.0	+0.0	+6.1	+0.2	+0.0					' F'
			+0.0	+0.1 $+0.0$	+0.0	. 0.0					
L			10.0	10.0	10.0						

46	19.702M	37.2	+0.0	+0.1	+0.2	+0.0	-40.0	3.9	112.0	-108.1	Perp/
			+0.0	+6.4	+0.0	+0.0					
			+0.0	+0.0	+0.0						
47	25.881M	36.7	+0.0	+0.1	+0.2	+0.0	-40.0	2.5	112.0	-109.5	Perp/
			+0.0	+5.5	+0.0	+0.0					
			+0.0	+0.0	+0.0						
48	43.686k	61.7	+0.0	+0.1	+0.0	+0.0	-80.0	-8.1	112.0	-120.1	Perp/
			+0.0	+10.1	+0.0	+0.0					
			+0.0	+0.0	+0.0						
49	73.860k	53.7	+0.0	+0.1	+0.0	+0.0	-80.0	-16.7	112.0	-128.7	Perp/
			+0.0	+9.5	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717						
Customer:	Itron, Inc.						
Specification:	15.247(d) / 15.209 Radiated S	purious Emissions					
Work Order #:	107461	Date:	10/15/2022				
Test Type:	Maximized Emissions	Time:	12:52:04				
Tested By:	Matt Harrison	Sequence#:	5				
Software:	EMITest 5.03.20						

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 22°C Humidity: 48% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2 (Attached SuperRaptor, Remote GPS, Remote Cellular). FM 12.5k Modulation, LMH channels.

Itron, Inc. WO#: 107461 Sequence#: 5 Date: 10/15/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
Τ7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T11	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

	ement Data:			ted by ma		T 4			e: 3 Meters		D 1
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Pola
			T5	T6	T7	T8					
	MHz	dBµV	T9 dB	T10 dB	T11 dB	dB	Table	dBµV/m	dBuV/m	dB	Ant
1 4	4514.925M	44.5	+0.0	+0.6	+3.5	+0.0	+0.0	48.0	54.0	-6.0	Vert
1	1911.925101	11.5	+0.0	+0.0	-33.6	+32.2	10.0	10.0	51.0	0.0	vert
			+0.3	+0.5	+0.0	132.2					
2 3	3707.060M	44.6	+0.0	+0.6	+3.3	+0.0	+0.0	47.2	54.0	-6.8	Vert
			+0.0	+0.0	-33.8	+32.0	1010		0 110	010	
			+0.3	+0.2	+0.0						
3 3	3612.135M	44.5	+0.0	+0.5	+3.2	+0.0	+0.0	46.8	54.0	-7.2	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+0.0						
4 4	4575.445M	42.7	+0.0	+0.6	+3.5	+0.0	+0.0	46.3	54.0	-7.7	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.4	+0.5	+0.0						
5 ´	7320.000M	48.8	+0.0	+1.3	+4.5	+0.0	+0.0	46.0	54.0	-8.0	Vert
A	Ave		+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+12.5						
~ ~	7320.000M	48.8	+0.0	+1.3	+4.5	+0.0	+0.0	58.5	54.0	+4.5	Ver
			+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+0.0						
7 2	2745.070M	44.9	+0.0	+0.5	+2.7	+0.0	+0.0	44.1	54.0	-9.9	Ver
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
	8235.000M	44.7	+0.0	+1.2	+5.1	+0.0	+0.0	43.7	54.0	-10.3	Vert
A	Ave		+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+12.5						
^ 8	8235.000M	44.7	+0.0	+1.2	+5.1	+0.0	+0.0	56.2	54.0	+2.2	Vert
			+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+0.0						
10 2	2780.670M	43.4	+0.0	+0.5	+2.7	+0.0	+0.0	42.6	54.0	-11.4	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
11 2	2709.015M	43.1	+0.0	+0.5	+2.7	+0.0	+0.0	42.4	54.0	-11.6	Vert
			+0.0	+0.0	-34.1	+29.5					
10	0107 000M	40.1	+0.5	+0.2	+0.0	.0.0	.0.0	40.7	540	12.2	17
	8127.000M	42.1	+0.0	+1.2	+5.1	+0.0	+0.0	40.7	54.0	-13.3	Vert
A	Ave		+0.0	+0.0	-35.1	+38.6					
Λ (8127.000M	40.1	+0.7	+0.6	+12.5			52.0	54.0	-0.8	Varia
~ ?	0127.000M	42.1	$^{+0.0}_{+0.0}$	$^{+1.2}_{+0.0}$	+5.1 -35.1	+0.0 +38.6	+0.0	53.2	54.0	-0.8	Ver
			+0.0 +0.7	+0.0 +0.6	+0.0	+30.0					
14 4	5418.000M	45.0	+0.7 +0.0	+0.0 +0.8	+0.0 +4.0	+0.0	+0.0	39.4	54.0	-14.6	Var
	5418.000M	43.0	+0.0 +0.0	$^{+0.8}_{+0.0}$		+0.0	+0.0	39.4	54.0	-14.0	Ver
P	100		+0.0 +0.6	+0.0 +0.4	-33.6 +12.5	+34./					
^	5418.000M	45.0	+0.0 +0.0	+0.4 +0.8	+12.3 +4.0	+0.0	+0.0	51.9	54.0	-2.1	Vert
•	J+10.0001VI	45.0	+0.0 +0.0	+0.8 +0.0	-33.6	+0.0	± 0.0	51.9	54.0	-2.1	ven
			+0.0 +0.6	+0.0 +0.4		+34./					
			+0.0	+0.4	+0.0						

1.0	4622.01514	47.7	.0.0	0.0	.2.6	. 0. 0	.0.0	20.0	54.0	150	X 7 (
	4633.815M	47.7	+0.0	+0.6	+3.6	+0.0	+0.0	39.0	54.0	-15.0	Vert
	Ave		+0.0	+0.0	-33.6	+32.4					
	4622 915M	177	+0.4	+0.4	+12.5		.0.0	515	540	2.5	Vert
	4633.815M	47.7	+0.0	+0.6	+3.6	+0.0	+0.0	51.5	54.0	-2.5	Vert
			+0.0	+0.0	-33.6	+32.4					
10	2650 610M	46.3	+0.4	+0.4 +0.6	+0.0	+0.0		26.0	54.0	-17.8	Vert
	3659.610M Ave	40.5	$^{+0.0}_{+0.0}$	+0.0 $+0.0$	+3.3 -33.8	+0.0 +31.7	+0.0	36.2	54.0	-17.0	ven
	Ave		+0.0 +0.4	+0.0 $+0.2$	-55.8 +12.5	+31.7					
^	3659.610M	46.3	+0.4 +0.0	+0.2 +0.6	+12.3 $+3.3$	+0.0	+0.0	48.7	54.0	-5.3	Vert
	3039.010M	40.5	$^{+0.0}_{+0.0}$	+0.0 $+0.0$	-33.8	+0.0 +31.7	+0.0	40.7	54.0	-5.5	ven
			+0.0 +0.4	+0.0 $+0.2$	+0.0	+31.7					
20	6321.500M	51.9	+0.4 +0.0	+0.9	+4.4	+0.0	+0.0	59.4	112.0	-52.6	Vert
20	0321.300101	51.9	$^{+0.0}_{+0.0}$	+0.9 +0.0	-34.0	+35.2	± 0.0	J9.4	112.0	-32.0	ven
			+0.0 +0.6	+0.0 +0.4	+0.0	±33.2					
21	6405.250M	51.4	+0.0	+0.9	+4.5	+0.0	+0.0	58.9	112.0	-53.1	Vert
21	0405.250141	51.4	+0.0	+0.0	-34.0	+35.0	10.0	50.7	112.0	-55.1	ven
			+0.6	+0.5	+0.0	155.0					
22	6487.205M	49.1	+0.0	+0.9	+4.5	+0.0	+0.0	56.7	112.0	-55.3	Vert
22	0107.20510	17.1	+0.0	+0.0	-34.0	+34.9	10.0	50.7	112.0	55.5	vert
			+0.7	+0.6	+0.0	10119					
23	7224.675M	44.4	+0.0	+1.2	+4.6	+0.0	+0.0	53.2	112.0	-58.8	Vert
			+0.0	+0.0	-34.9	+37.0					
			+0.7	+0.2	+0.0						
24	5490.190M	45.3	+0.0	+0.8	+4.0	+0.0	+0.0	52.1	112.0	-59.9	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.5	+0.4	+0.0						
25	5560.870M	44.8	+0.0	+0.8	+4.0	+0.0	+0.0	51.5	112.0	-60.5	Vert
			+0.0	+0.0	-33.6	+34.5					
			+0.5	+0.5	+0.0						
26	1829.985M	53.0	+0.0	+0.4	+2.1	+0.0	+0.0	49.2	112.0	-62.8	Vert
			+0.0	+0.0	-34.7	+27.5					
			+0.3	+0.6	+0.0						
27	1853.460M	50.7	+0.0	+0.4	+2.1	+0.0	+0.0	47.1	112.0	-64.9	Vert
			+0.0	+0.0	-34.7	+27.7					
			+0.3	+0.6	+0.0						
28	51.300M	32.9	+0.0	+0.1	+0.3	+0.5	+0.0	46.1	112.0	-65.9	Vert
			+12.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
29	45.500M	31.2	+0.0	+0.1	+0.3	+0.5	+0.0	45.6	112.0	-66.4	Vert
			+13.5	+0.0	+0.0	+0.0					
	10060075	40 -	+0.0	+0.0	+0.0		0.0		110.0		**
30	1806.295M	48.6	+0.0	+0.4	+2.1	+0.0	+0.0	44.6	112.0	-67.4	Vert
			+0.0	+0.0	-34.7	+27.3					
21	C4 0003 4	20.7	+0.3	+0.6	+0.0	.0.7	.0.0	44 5	112.0		N 7 -
31	64.900M	30.7	+0.0	+0.1	+0.4	+0.5	+0.0	44.5	112.0	-67.5	Vert
			+12.8	+0.0	+0.0	+0.0					
	(2.000) 4	20.4	+0.0	+0.0	+0.0	.0.7	.0.0	42.2	110.0	<0 7	V.
32	63.000M	29.6	+0.0	+0.1	+0.4	+0.5	+0.0	43.3	112.0	-68.7	Vert
			+12.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

33	23.134M	38.9	+0.0	+0.1	+0.2	+0.0	-40.0	5.3	112.0	-106.7	Perp/
			+0.0	+6.1	+0.0	+0.0					
			+0.0	+0.0	+0.0						
34	19.702M	37.2	+0.0	+0.1	+0.2	+0.0	-40.0	3.9	112.0	-108.1	Perp/
			+0.0	+6.4	+0.0	+0.0					
			+0.0	+0.0	+0.0						
35	25.702M	36.9	+0.0	+0.1	+0.2	+0.0	-40.0	2.8	112.0	-109.2	Perp/
			+0.0	+5.6	+0.0	+0.0					
			+0.0	+0.0	+0.0						
36	18.588k	57.1	+0.0	+0.1	+0.0	+0.0	-80.0	-9.7	112.0	-121.7	Perp/
			+0.0	+13.1	+0.0	+0.0					
			+0.0	+0.0	+0.0						
37	19.434k	45.7	+0.0	+0.1	+0.0	+0.0	-80.0	-21.4	112.0	-133.4	Perp/
			+0.0	+12.8	+0.0	+0.0					
			+0.0	+0.0	+0.0						
38	43.686k	47.8	+0.0	+0.1	+0.0	+0.0	-80.0	-22.0	112.0	-134.0	Perp/
			+0.0	+10.1	+0.0	+0.0					
			+0.0	+0.0	+0.0						
39	51.723k	44.6	+0.0	+0.1	+0.0	+0.0	-80.0	-25.5	112.0	-137.5	Perp/
			+0.0	+9.8	+0.0	+0.0					-
			+0.0	+0.0	+0.0						
40	45.378k	43.9	+0.0	+0.1	+0.0	+0.0	-80.0	-25.9	112.0	-137.9	Perp/
			+0.0	+10.1	+0.0	+0.0					-
			+0.0	+0.0	+0.0						

Test Location:	CKC Laboratories, Inc. • 2211	6 23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated S	Spurious Emissions	
Work Order #:	107461	Date:	10/17/2022
Test Type:	Maximized Emissions	Time:	06:52:18
Tested By:	Matt Harrison	Sequence#:	6
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 22°C Humidity: 48% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2 (Attached SuperRaptor, Remote GPS, Remote Cellular). FM 37.5k Modulation, LMH channels.

Itron, Inc. WO#: 107461 Sequence#: 6 Date: 10/17/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
Т2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
Τ7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T11	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

#	trement Data: Freq	Rdng	T1	ted by ma T2	T3	T4	Dist	Corr	e: 3 Meters Spec	Margin	Pola
π	incq	Kung	T5	T6	T7	T8	Dist	Con	spec	Margin	1 014
			T9	T10	T11	10					
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBuV/m	dB	Ant
1	3707.200M	45.6	+0.0	+0.6	+3.3	+0.0	+0.0	48.2	54.0	-5.8	Vert
1	3707.20014	45.0	+0.0	+0.0	-33.8	+32.0	10.0	40.2	54.0	5.0	vert
			+0.3	+0.0	+0.0	152.0					
2	4514.970M	44.7	+0.0	+0.6	+3.5	+0.0	+0.0	48.2	54.0	-5.8	Vert
-	10111970101	,	+0.0	+0.0	-33.6	+32.2	10.0	10.2	5 110	5.0	v ert
			+0.3	+0.5	+0.0	10212					
3	7320.000M	50.0	+0.0	+1.3	+4.5	+0.0	+0.0	47.2	54.0	-6.8	Vert
Ave		+0.0	+0.0	-34.9	+37.5						
			+0.7	+0.6	+12.5						
^	7320.000M	50.0	+0.0	+1.3	+4.5	+0.0	+0.0	59.7	54.0	+5.7	Vert
			+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+0.0						
5	4574.930M	43.0	+0.0	+0.6	+3.5	+0.0	+0.0	46.6	54.0	-7.4	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.4	+0.5	+0.0						
6	8235.000M	45.8	+0.0	+1.2	+5.1	+0.0	+0.0	44.8	54.0	-9.2	Vert
	Ave		+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+12.5						
^	8235.000M	45.8	+0.0	+1.2	+5.1	+0.0	+0.0	57.3	54.0	+3.3	Vert
			+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+0.0						
8	2709.160M	43.6	+0.0	+0.5	+2.7	+0.0	+0.0	42.9	54.0	-11.1	Vert
			+0.0	+0.0	-34.1	+29.5					
			+0.5	+0.2	+0.0						
9	2780.250M	43.4	+0.0	+0.5	+2.7	+0.0	+0.0	42.6	54.0	-11.4	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
10	2744.990M	42.7	+0.0	+0.5	+2.7	+0.0	+0.0	41.9	54.0	-12.1	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
11	8127.000M	42.3	+0.0	+1.2	+5.1	+0.0	+0.0	40.9	54.0	-13.1	Vert
	Ave		+0.0	+0.0	-35.1	+38.6					
	0107 0001 (10.0	+0.7	+0.6	+12.5	0.0	0.0	52.4	54.0	0.6	
Л	8127.000M	42.3	+0.0	+1.2	+5.1	+0.0	+0.0	53.4	54.0	-0.6	Vert
			+0.0	+0.0	-35.1	+38.6					
12	5 / 1 Q Q Q Q A	46.2	+0.7	+0.6	+0.0	.0.0	10.0	40.7	540	12.2	17.
13	5418.000M	46.3	+0.0	+0.8	+4.0	+0.0	+0.0	40.7	54.0	-13.3	Ver
	Ave		+0.0	+0.0	-33.6	+34.7					
^	5/10 00014	162	+0.6	+0.4	+12.5	100		52.0	540	0.0	V
~	5418.000M	46.3	+0.0	+0.8	+4.0	+0.0	+0.0	53.2	54.0	-0.8	Vert
		+0.0 +0.6	$^{+0.0}_{+0.4}$	-33.6 +0.0	+34.7						

15 4634.000M	49.2	+0.0	+0.6	+3.6	+0.0	+0.0	40.5	54.0	-13.5	Vert
Ave		+0.0	+0.0	-33.6	+32.4					
		+0.4	+0.4	+12.5						
^ 4634.000M	49.2	+0.0	+0.6	+3.6	+0.0	+0.0	53.0	54.0	-1.0	Vert
		+0.0	+0.0	-33.6	+32.4					
		+0.4	+0.4	+0.0						
17 9150.000M	41.6	+0.0	+0.9	+5.0	+0.0	+0.0	40.1	54.0	-13.9	Vert
Ave		+0.0	+0.0	-34.4	+37.7					
		+0.7	+1.1	+12.5						
^ 9150.000M	41.6	+0.0	+0.9	+5.0	+0.0	+0.0	52.6	54.0	-1.4	Vert
		+0.0	+0.0	-34.4	+37.7					
		+0.7	+1.1	+0.0						
19 7414.200M	42.5	+0.0	+1.3	+4.5	+0.0	+0.0	39.7	54.0	-14.3	Vert
Ave		+0.0	+0.0	-34.9	+37.4					
		+0.7	+0.7	+12.5						
^ 7414.200M	42.5	+0.0	+1.3	+4.5	+0.0	+0.0	52.2	54.0	-1.8	Vert
		+0.0	+0.0	-34.9	+37.4					
		+0.7	+0.7	+0.0						
21 3660.000M	48.6	+0.0	+0.6	+3.3	+0.0	+0.0	38.5	54.0	-15.5	Vert
Ave		+0.0	+0.0	-33.8	+31.7					
		+0.4	+0.2	+12.5						
^ 3660.000M	48.6	+0.0	+0.6	+3.3	+0.0	+0.0	51.0	54.0	-3.0	Vert
		+0.0	+0.0	-33.8	+31.7					
		+0.4	+0.2	+0.0						
23 3612.030M	47.3	+0.0	+0.5	+3.2	+0.0	+0.0	37.1	54.0	-16.9	Vert
Ave		+0.0	+0.0	-33.8	+31.7					
		+0.4	+0.3	+12.5						
^ 3612.030M	47.3	+0.0	+0.5	+3.2	+0.0	+0.0	49.6	54.0	-4.4	Vert
		+0.0	+0.0	-33.8	+31.7					
		+0.4	+0.3	+0.0						
25 830.200M	40.0	+0.0	+0.3	+1.4	+2.2	+0.0	73.2	112.0	-38.8	Horiz
		+29.3	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
26 6321.110M	53.3	+0.0	+0.9	+4.4	+0.0	+0.0	60.8	112.0	-51.2	Vert
		+0.0	+0.0	-34.0	+35.2					
		+0.6	+0.4	+0.0						
27 6404.685M	52.7	+0.0	+0.9	+4.5	+0.0	+0.0	60.2	112.0	-51.8	Vert
		+0.0	+0.0	-34.0	+35.0					
		+0.6	+0.5	+0.0						
28 6487.645M	49.7	+0.0	+0.9	+4.5	+0.0	+0.0	57.3	112.0	-54.7	Vert
		+0.0	+0.0	-34.0	+34.9					
		+0.7	+0.6	+0.0						
29 1830.010M	56.8	+0.0	+0.4	+2.1	+0.0	+0.0	53.0	112.0	-59.0	Vert
		+0.0	+0.0	-34.7	+27.5					
		+0.3	+0.6	+0.0						
30 5490.260M	45.9	+0.0	+0.8	+4.0	+0.0	+0.0	52.7	112.0	-59.3	Vert
		+0.0	+0.0	-33.6	+34.7					
		+0.5	+0.4	+0.0						
31 7224.130M	43.8	+0.0	+1.2	+4.6	+0.0	+0.0	52.6	112.0	-59.4	Vert
		+0.0	+0.0	-34.9	+37.0					
		+0.7	+0.2	+0.0						

32	5560.770M	45.2	+0.0	+0.8	+4.0	+0.0	+0.0	51.9	112.0	-60.1	Vert
52	5500.77014	10.2	+0.0	+0.0	-33.6	+34.5	10.0	51.7	112.0	00.1	vert
			+0.5	+0.0	+0.0	151.5					
33	1806.175M	52.1	+0.0	+0.4	+2.1	+0.0	+0.0	48.1	112.0	-63.9	Vert
55	10001172111	02.1	+0.0	+0.0	-34.7	+27.3	10.0	10.1	112.0	05.7	vort
			+0.3	+0.6	+0.0	127.5					
34	1853.565M	51.7	+0.0	+0.4	+2.1	+0.0	+0.0	48.1	112.0	-63.9	Vert
			+0.0	+0.0	-34.7	+27.7					
			+0.3	+0.6	+0.0						
35	51.300M	32.0	+0.0	+0.1	+0.3	+0.5	+0.0	45.2	112.0	-66.8	Vert
			+12.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
36	64.900M	27.1	+0.0	+0.1	+0.4	+0.5	+0.0	40.9	112.0	-71.1	Vert
			+12.8	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
37	23.134M	39.0	+0.0	+0.1	+0.2	+0.0	-40.0	5.4	112.0	-106.6	Perp/
			+0.0	+6.1	+0.0	+0.0					
			+0.0	+0.0	+0.0						
38	19.702M	37.9	+0.0	+0.1	+0.2	+0.0	-40.0	4.6	112.0	-107.4	Perp/
			+0.0	+6.4	+0.0	+0.0					
			+0.0	+0.0	+0.0						
39	25.702M	36.8	+0.0	+0.1	+0.2	+0.0	-40.0	2.7	112.0	-109.3	Perp/
			+0.0	+5.6	+0.0	+0.0					
			+0.0	+0.0	+0.0						
40	45.942k	43.3	+0.0	+0.1	+0.0	+0.0	-80.0	-26.5	112.0	-138.5	Perp/
			+0.0	+10.1	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Test Location:	CKC Laboratories, Inc. • 2211	6 23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated S	Spurious Emissions	
Work Order #:	107461	Date:	10/18/2022
Test Type:	Maximized Emissions	Time:	14:47:46
Tested By:	Matt Harrison	Sequence#:	7
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 22°C Humidity: 48% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 3 (Remote SuperRaptor, Remote GPS, Remote Cellular antennas). **AM Modulation**, LMH channels.

Itron, Inc. WO#: 107461 Sequence#: 7 Date: 10/18/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
Т2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
	ANP05360	Cable	RG214	2/4/2022	2/4/2024
	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
T4	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
T5	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т6	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Τ7	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
Т8	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
Т9	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

	rement Data:			ted by ma	-	T 4			e: 3 Meters		D 1
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5 T9	T6	Τ7	T8					
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBuV/m	dB	Ant
1	7264.125M	<u>54.1</u>	+0.0	+1.2	+4.5	+0.0	+0.0	50.6	54.0	-3.4	Vert
	Ave	5	-34.9	+37.2	+0.7	+0.3	10.0	20.0	2110	5.1	. 011
			+12.5		1017	1010					
۸	7264.125M	54.1	+0.0	+1.2	+4.5	+0.0	+0.0	63.1	54.0	+9.1	Vert
			-34.9	+37.2	+0.7	+0.3					
			+0.0								
3	3659.725M	47.6	+0.0	+0.6	+3.3	+0.0	+0.0	50.0	54.0	-4.0	Vert
			-33.8	+31.7	+0.4	+0.2					
			+0.0								
4	3632.060M	47.1	+0.0	+0.6	+3.3	+0.0	+0.0	49.6	54.0	-4.4	Vert
			-33.8	+31.7	+0.4	+0.3					
	72 62 23 7 1		+0.0	1.0		0.0		10.0	- 4 0		
	7263.395M	51.8	+0.0	+1.2	+4.5	+0.0	+0.0	48.3	54.0	-5.7	Horiz
	Ave		-34.9	+37.2	+0.7	+0.3					
^	7263.395M	51.8	+12.5 +0.0	+1.2	+4.5	+0.0	+0.0	60.8	54.0	+6.8	Horiz
	7205.595W	51.0	+0.0 -34.9	+1.2 +37.2	+4.3 +0.7	+0.0 $+0.3$	+0.0	00.8	54.0	± 0.0	попл
			+0.0	<i>T</i> 37.2	+0.7	± 0.5					
7	3695.000M	45.2	+0.0	+0.6	+3.3	+0.0	+0.0	47.7	54.0	-6.3	Vert
,	5075.00000	15.2	-33.8	+31.9	+0.3	+0.2	10.0	17.7	51.0	0.5	vert
			+0.0								
8	7320.055M	50.3	+0.0	+1.3	+4.5	+0.0	+0.0	47.5	54.0	-6.5	Vert
	Ave		-34.9	+37.5	+0.7	+0.6					
			+12.5								
^	7320.055M	50.3	+0.0	+1.3	+4.5	+0.0	+0.0	60.0	54.0	+6.0	Vert
			-34.9	+37.5	+0.7	+0.6					
			+0.0								
10	4574.785M	43.3	+0.0	+0.6	+3.5	+0.0	+0.0	46.9	54.0	-7.1	Horiz
			-33.6	+32.2	+0.4	+0.5					
1.1	0171 50514	47.0	+0.0	1.0	<u> </u>	0.0	0.0	16.6	54.0		X 7 .
	8171.585M	47.8	+0.0	+1.2	+5.1	+0.0	+0.0	46.6	54.0	-7.4	Vert
	Ave		-35.0 +12.5	+38.6	+0.7	+0.7					
Δ	8171.585M	47.8	+12.3 $+0.0$	+1.2	15.1	+0.0	+0.0	59.1	54.0	+5.1	Vert
	01/1.30311	47.0	+0.0 -35.0	+1.2 +38.6	+5.1 +0.7	+0.0 +0.7	± 0.0	59.1	54.0	± 3.1	vert
			+0.0	150.0	10.7	10.7					
13	7390.158M	48.0	+0.0	+1.3	+4.5	+0.0	+0.0	45.2	54.0	-8.8	Vert
	Ave	10.0	-34.9	+37.4	+0.7	+0.7	10.0	10.2	21.0	0.0	, 011
			+12.5								
^	7390.158M	48.0	+0.0	+1.3	+4.5	+0.0	+0.0	57.7	54.0	+3.7	Vert
			-34.9	+37.4	+0.7	+0.7					
			+0.0								

15 9225 2001	A 45 A		+1.2	. 5 1	.0.0		4.4.4	54.0	0.6	Mart
15 8235.200N Ave	1 45.4	+0.0 -34.9	+1.2 +38.6	+5.1 +0.7	+0.0 +0.8	+0.0	44.4	54.0	-9.6	Vert
Ave		-34.9 +12.5	+38.0	+0.7	± 0.8					
^ 8235.200N	1 45.4	+0.0	+1.2	+5.1	+0.0	+0.0	56.9	54.0	+2.9	Vert
0233.2001	1 -10.4	-34.9	+38.6	+0.7	+0.8	10.0	50.7	54.0	12.9	Vert
		+0.0	150.0	10.7	10.0					
17 2745.030N	1 44.5	+0.0	+0.5	+2.7	+0.0	+0.0	43.7	54.0	-10.3	Vert
1, 2, 1010001		-34.1	+29.3	+0.5	+0.3	1010	1017	0.110	1010	
		+0.0								
18 8234.680N	1 44.1	+0.0	+1.2	+5.1	+0.0	+0.0	43.1	54.0	-10.9	Horiz
Ave		-34.9	+38.6	+0.7	+0.8					
		+12.5								
^ 8234.680N	1 44.1	+0.0	+1.2	+5.1	+0.0	+0.0	55.6	54.0	+1.6	Horiz
		-34.9	+38.6	+0.7	+0.8					
		+0.0								
20 2771.667N	43.5	+0.0	+0.5	+2.7	+0.0	+0.0	42.7	54.0	-11.3	Vert
		-34.1	+29.3	+0.5	+0.3					
		+0.0								
21 9150.342N	43.2	+0.0	+0.9	+5.0	+0.0	+0.0	41.7	54.0	-12.3	Vert
Ave		-34.4	+37.7	+0.7	+1.1					
		+12.5								
^ 9150.342N	43.2	+0.0	+0.9	+5.0	+0.0	+0.0	54.2	54.0	+0.2	Vert
		-34.4	+37.7	+0.7	+1.1					
22 0000 045		+0.0	0.0	1.0	0.0	0.0	41.4	54.0	10 (X X .
23 9080.845N	43.2	+0.0	+0.9	+4.9	+0.0	+0.0	41.4	54.0	-12.6	Vert
Ave		-34.6	+38.0	+0.7	+0.8					
^ 9080.845N	43.2	+12.5 +0.0	+0.9	+4.9	+0.0	+0.0	53.9	54.0	-0.1	Vert
9060.6431	1 43.2	-34.6	+0.9 +38.0	+4.9	+0.0 +0.8	+0.0	55.9	54.0	-0.1	ven
		+0.0	+30.0	+0.7	+0.0					
25 8314.575N	1 42.0	+0.0	+1.2	+5.2	+0.0	+0.0	41.3	54.0	-12.7	Vert
Ave	1 72.0	-34.9	+38.7	+0.7	+0.9	10.0	41.5	54.0	12.7	Vert
1100		+12.5	150.7	10.7	10.9					
^ 8314.575N	1 42.0	+0.0	+1.2	+5.2	+0.0	+0.0	53.8	54.0	-0.2	Vert
		-34.9	+38.7	+0.7	+0.9				•	
		+0.0								
27 4539.845N	1 50.0	+0.0	+0.6	+3.5	+0.0	+0.0	41.0	54.0	-13.0	Vert
Ave			+32.1							
		+12.5								
^ 4539.845N	1 50.0	+0.0	+0.6	+3.5	+0.0	+0.0	53.5	54.0	-0.5	Vert
		-33.6	+32.1	+0.3	+0.6					
		+0.0								
29 5447.900N	46.5	+0.0	+0.8	+4.0	+0.0	+0.0	40.8	54.0	-13.2	Horiz
Ave		-33.6	+34.7	+0.5	+0.4					
		+12.5								
^ 5447.900N	46.5	+0.0	+0.8	+4.0	+0.0	+0.0	53.3	54.0	-0.7	Horiz
		-33.6	+34.7	+0.5	+0.4					
		+0.0								

31	4619.133M	48.7	+0.0	+0.6	+3.5	+0.0	+0.0	39.9	54.0	-14.1	Vert
	Ave	-10.7	-33.6	+0.0 +32.4	+0.4	+0.0 +0.4	10.0	57.7	54.0	-14.1	ven
			+12.5	102.1		10.1					
٨	4619.133M	48.7	+0.0	+0.6	+3.5	+0.0	+0.0	52.4	54.0	-1.6	Vert
			-33.6	+32.4	+0.4	+0.4		-			
			+0.0								
33	7264.000M	42.7	+0.0	+1.2	+4.5	+0.0	+0.0	39.2	54.0	-14.8	Horiz
	Ave		-34.9	+37.2	+0.7	+0.3					
			+12.5								
۸	7264.000M	42.7	+0.0	+1.2	+4.5	+0.0	+0.0	51.7	54.0	-2.3	Horiz
			-34.9	+37.2	+0.7	+0.3					
			+0.0								
35	6355.580M	55.8	+0.0	+0.9	+4.4	+0.0	+0.0	63.2	112.0	-48.8	Vert
			-34.0	+35.1	+0.6	+0.4					
	<10 = 10 = 1 f	7 0 -	+0.0					<i></i>	110.0		
36	6405.105M	53.6	+0.0	+0.9	+4.5	+0.0	+0.0	61.1	112.0	-50.9	Vert
			-34.0	+35.0	+0.6	+0.5					
27	CACC 000M	52.2	+0.0	.0.0	. 1 5	.0.0	.0.0	(0.0	112.0	511	X Z and
37	6466.900M	53.3	+0.0	+0.9	+4.5	+0.0	+0.0	60.9	112.0	-51.1	Vert
			-34.0	+34.9	+0.7	+0.6					
29	5542.783M	47.9	+0.0 +0.0	+0.8	+4.0	+0.0	+0.0	54.7	112.0	-57.3	Vert
30	5542.785M	47.9	+0.0 -33.6	+0.8 +34.6	+4.0 +0.5	+0.0 +0.5	+0.0	34.7	112.0	-37.5	ven
			+0.0	+34.0	+0.5	+0.5					
30	9238.108M	42.3	+0.0	+0.9	+5.0	+0.0	+0.0	54.0	112.0	-58.0	Horiz
57	7230.100M	72.5	-34.3	+38.0	+0.7	+1.4	10.0	54.0	112.0	-50.0	HOHZ
			+0.0	150.0	10.7	11.4					
40	5489.850M	45.7	+0.0	+0.8	+4.0	+0.0	+0.0	52.5	112.0	-59.5	Vert
10	2109.02011	1017	-33.6	+34.7	+0.5	+0.4	10.0	02.0	112.0	07.0	vert
			+0.0								
41	9238.392M	40.4	+0.0	+0.9	+5.0	+0.0	+0.0	52.1	112.0	-59.9	Vert
			-34.3	+38.0	+0.7	+1.4					
			+0.0								
42	1847.500M	49.9	+0.0	+0.4	+2.1	+0.0	+0.0	46.2	112.0	-65.8	Vert
			-34.7	+27.6	+0.3	+0.6					
			+0.0								
43	1830.225M	47.9	+0.0	+0.4	+2.1	+0.0	+0.0	44.1	112.0	-67.9	Vert
			-34.7	+27.5	+0.3	+0.6					
			+0.0								
44	1815.880M	47.7	+0.0	+0.4	+2.1	+0.0	+0.0	43.8	112.0	-68.2	Vert
			-34.7	+27.4	+0.3	+0.6					
			+0.0								
45	10.974k	80.1	+0.0	+0.1	+0.0	+15.6	-80.0	15.8	112.0	-96.2	Perp/
			+0.0	+0.0	+0.0	+0.0					
4 -	2 0 <i>c</i> c c c	0.0.1	+0.0				40.0		44.5.0	100.0	
46	28.687M	38.6	+0.0	+0.1	+0.2	+4.2	-40.0	3.1	112.0	-108.9	Perp/
			+0.0	+0.0	+0.0	+0.0					
47	20.22037	25.4	+0.0	.0.1			40.0	0.1	112.0	111.0	D (
47	28.328M	35.4	+0.0	+0.1	+0.2	+4.4	-40.0	0.1	112.0	-111.9	Perp/
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

48	27.940M	34.6	+0.0	+0.1	+0.2	+4.5	-40.0	-0.6	112.0	-112.6	Perp/
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
49	41.007k	59.6	+0.0	+0.1	+0.0	+10.3	-80.0	-10.0	112.0	-122.0	Perp/
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
50	73.860k	49.9	+0.0	+0.1	+0.0	+9.5	-80.0	-20.5	112.0	-132.5	Perp/
			+0.0	+0.0	+0.0	+0.0					1
			+0.0								

Test Location:	CKC Laboratories, Inc. • 2211	6 23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated S	Spurious Emissions	
Work Order #:	107461	Date:	10/26/2022
Test Type:	Maximized Emissions	Time:	12:49:59
Tested By:	Matt Harrison	Sequence#:	8
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 22°C Humidity: 48% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 3 (Remote SuperRaptor, Remote GPS, Remote Cellular antennas). **FM 12.5k Modulation**, LMH channels.

Itron, Inc. WO#: 107461 Sequence#: 8 Date: 10/26/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
Т2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
Τ7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T11	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

	rement Data:		-	ted by ma		T 4	Test Distance: 3 MetersDistCorrSpecMargin				D 1
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Pola
			T5	T6	T7	T8					
	MILa	4D. W	T9 dD	T10	T11 dB	dB	Table	dD. W/m	dD. V/m	٩D	Ant
1	MHz	$\frac{dB\mu V}{44.1}$	dB	dB				$\frac{dB\mu V/m}{47.6}$		dB	Ant
1	4514.625M	44.1	+0.0	+0.6	+3.5	+0.0	+0.0	47.6	54.0	-6.4	Horiz
			+0.0	+0.0	-33.6	+32.2					
2	7320.355M	50.4	+0.3 +0.0	+0.5 +1.3	+0.0 +4.5	+0.0	+0.0	47.6	54.0	-6.4	Vert
	Ave	30.4	+0.0 +0.0	$^{+1.5}_{+0.0}$	+4.5 -34.9	+0.0 +37.5	+0.0	47.0	34.0	-0.4	ven
	Ave		+0.0 +0.7	+0.0 +0.6	+12.5	+37.5					
٨	7320.355M	50.4	+0.0	+1.3	+4.5	+0.0	+0.0	60.1	54.0	+6.1	Vert
	7520.55511	50.4	+0.0 $+0.0$	+1.3 +0.0	-34.9	+37.5	± 0.0	00.1	54.0	± 0.1	ven
			+0.7	+0.6	+0.0	157.5					
4	4575.075M	43.8	+0.0	+0.6	+3.5	+0.0	+0.0	47.4	54.0	-6.6	Horiz
7	10 / 5.0 / 5141	r.J.U	+0.0	+0.0	-33.6	+32.2	10.0	1/.7	57.0	0.0	110112
			+0.0	+0.5	+0.0	1 5 2.2					
5	3612.083M	44.8	+0.0	+0.5	+3.2	+0.0	+0.0	47.1	54.0	-6.9	Vert
Ũ	201210000111		+0.0	+0.0	-33.8	+31.7		.,,,,	6 110	017	
			+0.4	+0.3	+0.0						
6	4514.745M	43.4	+0.0	+0.6	+3.5	+0.0	+0.0	46.9	54.0	-7.1	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.3	+0.5	+0.0						
7	4575.105M	42.3	+0.0	+0.6	+3.5	+0.0	+0.0	45.9	54.0	-8.1	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.4	+0.5	+0.0						
8	8234.490M	46.1	+0.0	+1.2	+5.1	+0.0	+0.0	45.1	54.0	-8.9	Vert
	Ave		+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+12.5						
۸	8234.490M	46.1	+0.0	+1.2	+5.1	+0.0	+0.0	57.6	54.0	+3.6	Vert
			+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+0.0						
10	2709.083M	42.8	+0.0	+0.5	+2.7	+0.0	+0.0	42.1	54.0	-11.9	Vert
			+0.0	+0.0	-34.1	+29.5					
			+0.5	+0.2	+0.0						
11	2780.580M	42.7	+0.0	+0.5	+2.7	+0.0	+0.0	41.9	54.0	-12.1	Vert
			+0.0	+0.0	-34.1	+29.3					
10	2747 10014	10.7	+0.5	+0.3	+0.0	0.0	0.0	41.0	54.0	10.1	¥7 .
12	2747.180M	42.7	+0.0	+0.5	+2.7	+0.0	+0.0	41.9	54.0	-12.1	Vert
			+0.0	+0.0	-34.1	+29.3					
10	9149.405M	42.2	+0.5	+0.3	+0.0	100		41.0	54.0	10.0	V
		43.3	+0.0	+0.9	+5.0	+0.0	+0.0	41.8	54.0	-12.2	Vert
	Ave		$^{+0.0}_{+0.7}$	+0.0	-34.4 +12.5	+37.7					
^	9149.405M	43.3		+1.1	+12.5			54.3	54.0	10.2	Vart
	7147.403WI	43.3	$^{+0.0}_{+0.0}$	$^{+0.9}_{+0.0}$	+5.0 -34.4	+0.0 +37.7	+0.0	54.5	54.0	+0.3	Vert
			+0.0	+0.0	-34.4	+37.7					

15	9127 000M	41.0		+1.2	- 5 1	+0.0		40.5	54.0	12.5	Vort
15	8127.900M	41.9	+0.0	+1.2	+5.1	+0.0	+0.0	40.5	54.0	-13.5	Vert
	Ave		+0.0 +0.7	$^{+0.0}_{+0.6}$	-35.1	+38.6					
^	8127.900M	41.9	+0.7 +0.0	+0.0 +1.2	+12.5 +5.1	+0.0	+0.0	53.0	54.0	-1.0	Vert
	8127.900M	41.7	+0.0 +0.0	+1.2 $+0.0$	-35.1	+0.0 +38.6	± 0.0	55.0	54.0	-1.0	ven
			+0.0 +0.7	+0.0 +0.6	+0.0	+30.0					
17	4633.810M	49.1	+0.0	+0.6	+3.6	+0.0	+0.0	40.4	54.0	-13.6	Horiz
17	Ave	4) .1	+0.0	+0.0	-33.6	+32.4	10.0	-0	54.0	-15.0	HOHZ
	1100		+0.4	+0.0	+12.5	152.1					
^	4633.810M	49.1	+0.0	+0.6	+3.6	+0.0	+0.0	52.9	54.0	-1.1	Horiz
	1055.010101	17.1	+0.0	+0.0	-33.6	+32.4	10.0	52.7	51.0	1.1	HOLL
			+0.4	+0.4	+0.0	132.1					
19	7415.195M	43.2	+0.0	+1.3	+4.4	+0.0	+0.0	40.3	54.0	-13.7	Vert
17	, 110.170101	13.2	+0.0	+0.0	-34.9	+37.4	10.0	10.0	5 1.0	10.7	, ert
			+0.7	+0.7	+12.5						
20	5417.255M	45.5	+0.0	+0.8	+4.0	+0.0	+0.0	39.9	54.0	-14.1	Vert
	Ave		+0.0	+0.0	-33.6	+34.7					
			+0.6	+0.4	+12.5						
^	5417.255M	45.5	+0.0	+0.8	+4.0	+0.0	+0.0	52.4	54.0	-1.6	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.6	+0.4	+0.0						
22	9031.040M	41.3	+0.0	+0.9	+4.9	+0.0	+0.0	39.3	54.0	-14.7	Vert
	Ave		+0.0	+0.0	-34.7	+38.0					
			+0.7	+0.7	+12.5						
^	9031.040M	41.3	+0.0	+0.9	+4.9	+0.0	+0.0	51.8	54.0	-2.2	Vert
			+0.0	+0.0	-34.7	+38.0					
			+0.7	+0.7	+0.0						
^	9031.040M	40.9	+0.0	+0.9	+4.9	+0.0	+0.0	51.4	54.0	-2.6	Vert
			+0.0	+0.0	-34.7	+38.0					
			+0.7	+0.7	+0.0						
25	3659.970M	47.5	+0.0	+0.6	+3.3	+0.0	+0.0	37.4	54.0	-16.6	Vert
	Ave		+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.2	+12.5						
^	3659.970M	47.5	+0.0	+0.6	+3.3	+0.0	+0.0	49.9	54.0	-4.1	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.2	+0.0						
	3707.255M	46.0	+0.0	+0.6	+3.3	+0.0	+0.0	36.1	54.0	-17.9	Vert
	Ave		+0.0	+0.0		+32.0					
			+0.3	+0.2	+12.5		0.5		-		
^	3707.255M	46.0	+0.0	+0.6	+3.3	+0.0	+0.0	48.6	54.0	-5.4	Vert
			+0.0	+0.0	-33.8	+32.0					
	C 40 4 7 4 7 1 7	50 0	+0.3	+0.2	+0.0		0.0	<i>(</i> () ()	100.0	40.5	* 7
29	6404.745M	52.8	+0.0	+0.9	+4.5	+0.0	+0.0	60.3	109.0	-48.7	Vert
			+0.0	+0.0	-34.0	+35.0					
	(201 0 40) (50.0	+0.6	+0.5	+0.0	. 0. 0	.0.0	50.5	100.0	40.5	X7 ·
30	6321.340M	52.0	+0.0	+0.9	+4.4	+0.0	+0.0	59.5	109.0	-49.5	Vert
			+0.0	+0.0	-34.0	+35.2					
	5400 2203 5	47 0	+0.6	+0.4	+0.0			EQ 0	100.0	<i></i>	¥7 ·
31	5490.320M	47.0	+0.0	+0.8	+4.0	+0.0	+0.0	53.8	109.0	-55.2	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.5	+0.4	+0.0						

32	7224.770M	45.0	+0.0	+1.2	+4.6	+0.0	+0.0	53.8	109.0	-55.2	Horiz
			+0.0	+0.0	-34.9	+37.0					
			+0.7	+0.2	+0.0						
33	7224.710M	44.4	+0.0	+1.2	+4.6	+0.0	+0.0	53.2	109.0	-55.8	Vert
			+0.0	+0.0	-34.9	+37.0					
			+0.7	+0.2	+0.0						
34	56.200M	32.5	+0.0	+0.1	+0.3	+0.5	+0.0	45.8	109.0	-63.2	Vert
			+12.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
35	6487.165M	49.2	+0.0	+0.9	+4.5	+0.0	+0.0	44.3	109.0	-64.7	Vert
			+0.0	+0.0	-34.0	+34.9					
			+0.7	+0.6	+12.5						
36	1830.060M	47.8	+0.0	+0.4	+2.1	+0.0	+0.0	44.0	109.0	-65.0	Vert
			+0.0	+0.0	-34.7	+27.5					
			+0.3	+0.6	+0.0						
37	1853.700M	47.4	+0.0	+0.4	+2.1	+0.0	+0.0	43.8	109.0	-65.2	Vert
			+0.0	+0.0	-34.7	+27.7					
			+0.3	+0.6	+0.0						
38	1806.100M	45.4	+0.0	+0.4	+2.1	+0.0	+0.0	41.4	109.0	-67.6	Horiz
			+0.0	+0.0	-34.7	+27.3					
			+0.3	+0.6	+0.0						
39	5561.280M	45.9	+0.0	+0.8	+4.0	+0.0	+0.0	40.1	109.0	-68.9	Vert
			+0.0	+0.0	-33.6	+34.5					
			+0.5	+0.5	+12.5						
40	28.687M	38.5	+0.0	+0.1	+0.2	+0.0	-40.0	3.0	109.0	-106.0	Perp/
			+0.0	+4.2	+0.0	+0.0					-
			+0.0	+0.0	+0.0						
41	28.567M	36.4	+0.0	+0.1	+0.2	+0.0	-40.0	0.9	109.0	-108.1	Perp/
			+0.0	+4.2	+0.0	+0.0					-
			+0.0	+0.0	+0.0						
42	28.328M	35.8	+0.0	+0.1	+0.2	+0.0	-40.0	0.5	109.0	-108.5	Perp/
			+0.0	+4.4	+0.0	+0.0					-
			+0.0	+0.0	+0.0						
43	44.109k	44.8	+0.0	+0.1	+0.0	+0.0	-80.0	-25.0	109.0	-134.0	Perp/
			+0.0	+10.1	+0.0	+0.0					
			+0.0	+0.0	+0.0						
44	48.621k	44.3	+0.0	+0.1	+0.0	+0.0	-80.0	-25.6	109.0	-134.6	Perp/
			+0.0	+10.0	+0.0	+0.0				-	1
			+0.0	+0.0	+0.0						

Test Location:	CKC Laboratories, Inc. • 22116 23rd	l Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurio	ous Emissions	
Work Order #:	107461	Date:	10/26/2022
Test Type:	Maximized Emissions	Time:	14:41:58
Tested By:	Matt Harrison	Sequence#:	9
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 22°C Humidity: 48% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: 9kHz-9.28GHz

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 3 (Remote SuperRaptor, Remote GPS, Remote Cellular antennas). **FM 37.5k Modulation,** LMH channels.

Itron, Inc. WO#: 107461 Sequence#: 9 Date: 10/26/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023
Т6	AN00052	Loop Antenna	6502	5/11/2022	5/11/2024
Τ7	AN03540	Preamp	83017A	5/14/2021	5/14/2023
Т8	AN02374ANSI	Horn Antenna	RGA-60	5/25/2021	5/25/2023
Т9	ANP07504	Cable	CLU40-KMKM-	1/26/2021	1/26/2023
			02.00F		
T10	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T11	ANDCCF	Duty Cycle		No Cal Required	No Cal Required
		Correction Factor			

	ement Data:			ted by ma					e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Pola
			T5	T6	T7	T8					
	MHz	dBµV	T9 dB	T10 dB	T11 dB	dB	Tabla	dBµV/m	dD. V/m	dB	Ant
1	8235.050M		+0.0	+1.2	+5.1	+0.0		53.8	<u>α</u> <u>υ</u>	-0.2	Ant Vert
1	8255.050M	42.3	+0.0 +0.0	$^{+1.2}_{+0.0}$	+3.1 -34.9	+0.0 +38.6	+0.0	33.8	34.0	-0.2	ven
			+0.0 +0.7	+0.0 +0.8	-34.9 +0.0	+30.0					
2	5418.060M	45.6	+0.7 +0.0	+0.8	+0.0 +4.0	+0.0	+0.0	52.5	54.0	-1.5	Vert
	Ave	45.0	+0.0+0.0	+0.8 $+0.0$	-33.6	+34.7	+0.0	52.5	54.0	-1.5	VCII
1	170		+0.6	+0.0	+0.0	134.7					
٨	5418.060M	45.6	+0.0	+0.8	+4.0	+0.0	+0.0	40.0	54.0	-14.0	Vert
		1010	+0.0	+0.0	-33.6	+34.7		1010	6 110	1.110	
			+0.6	+0.4	+12.5						
4	9150.100M	40.1	+0.0	+0.9	+5.0	+0.0	+0.0	51.1	54.0	-2.9	Vert
			+0.0	+0.0	-34.4	+37.7					
			+0.7	+1.1	+0.0						
5	7414.500M	40.9	+0.0	+1.3	+4.4	+0.0	+0.0	50.5	54.0	-3.5	Ver
			+0.0	+0.0	-34.9	+37.4					
			+0.7	+0.7	+0.0						
6	8127.190M	39.1	+0.0	+1.2	+5.1	+0.0	+0.0	50.2	54.0	-3.8	Ver
			+0.0	+0.0	-35.1	+38.6					
			+0.7	+0.6	+0.0						
7	8127.250M	38.6	+0.0	+1.2	+5.1	+0.0	+0.0	49.7	54.0	-4.3	Hori
			+0.0	+0.0	-35.1	+38.6					
			+0.7	+0.6	+0.0						
8	5418.150M	41.7	+0.0	+0.8	+4.0	+0.0	+0.0	48.6	54.0	-5.4	Hori
			+0.0	+0.0	-33.6	+34.7					
0	4575 00014	42.4	+0.6	+0.4	+0.0	.0.0	.0.0	47.0	54.0	7.0	TT
9	4575.080M	43.4	+0.0	+0.6	+3.5	+0.0	+0.0	47.0	54.0	-7.0	Hori
			+0.0	+0.0	-33.6	+32.2					
10	1063.000M	45.5	+0.4 +0.0	+0.5 +0.3	+0.0 +1.6	+0.0	+0.0	46.7	54.0	-7.3	Ver
10	1005.0001	45.5	+0.0 +0.0	+0.3 +0.0	+1.0 -36.7	+0.0 +24.4	± 0.0	40.7	54.0	-1.5	ver
			+0.0 +0.2	+0.0 $+11.4$	+0.0	127.7					
11	7320.050M	49.2	+0.0	+1.3	+4.5	+0.0	+0.0	46.4	54.0	-7.6	Ver
	Ave	17.2	+0.0	+0.0	-34.9	+37.5	10.0	10.1	21.0	7.0	, 01
1	. =		+0.7	+0.6	+12.5						
Λ	7320.010M	49.2	+0.0	+1.3	+4.5	+0.0	+0.0	58.9	54.0	+4.9	Ver
			+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+0.0						
13	3707.300M	43.6	+0.0	+0.6	+3.3	+0.0	+0.0	46.2	54.0	-7.8	Ver
			+0.0	+0.0	-33.8	+32.0					
			+0.3	+0.2	+0.0						
14	3612.090M	43.8	+0.0	+0.5	+3.2	+0.0	+0.0	46.1	54.0	-7.9	Ver
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+0.0						

15	7320.090M	48.2	+0.0	+1.3	+4.5	+0.0	+0.0	45.4	54.0	-8.6	Horiz
10	Ave	10.2	+0.0	+0.0	-34.9	+37.5	10.0	1011	5 110	0.0	110112
			+0.7	+0.6	+12.5						
^	7320.090M	45.7	+0.0	+1.3	+4.5	+0.0	+0.0	55.4	54.0	+1.4	Horiz
			+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+0.0						
17	4515.090M	41.6	+0.0	+0.6	+3.5	+0.0	+0.0	45.1	54.0	-8.9	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.3	+0.5	+0.0						
18	4575.110M	40.4	+0.0	+0.6	+3.5	+0.0	+0.0	44.0	54.0	-10.0	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.4	+0.5	+0.0						
19	3612.100M	40.7	+0.0	+0.5	+3.2	+0.0	+0.0	43.0	54.0	-11.0	Horiz
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+0.0						
20	2709.030M	43.5	+0.0	+0.5	+2.7	+0.0	+0.0	42.8	54.0	-11.2	Vert
			+0.0	+0.0	-34.1	+29.5					
			+0.5	+0.2	+0.0						
21	8234.980M	43.4	+0.0	+1.2	+5.1	+0.0	+0.0	42.4	54.0	-11.6	Horiz
	Ave		+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+12.5						
^	8234.980M	43.4	+0.0	+1.2	+5.1	+0.0	+0.0	54.9	54.0	+0.9	Horiz
			+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+0.0						
23	2780.500M	42.8	+0.0	+0.5	+2.7	+0.0	+0.0	42.0	54.0	-12.0	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
24	8235.050M	42.7	+0.0	+1.2	+5.1	+0.0	+0.0	41.7	54.0	-12.3	Vert
			+0.0	+0.0	-34.9	+38.6					
25	0744.00014	40.1	+0.7	+0.8	+12.5	.0.0	.0.0	41.0	54.0	10.7	X 7 /
25	2744.990M	42.1	+0.0	+0.5	+2.7	+0.0	+0.0	41.3	54.0	-12.7	Vert
			+0.0	+0.0	-34.1	+29.3					
26	2709.040M	40.6	+0.5	+0.3 +0.5	+0.0		+0.0	39.9	54.0	-14.1	Horiz
20	2/09.040W	40.0	$^{+0.0}_{+0.0}$	+0.5 +0.0	+2.7 -34.1	+0.0 +29.5	+0.0	37.9	54.0	-14.1	HOLIZ
			+0.0 +0.5	+0.0 +0.2	+0.0	<i>⊤∠7.J</i>					
27	1531.000M	46.2	+0.0	+0.2 +0.4	+0.0 +1.9	+0.0	+0.0	39.7	54.0	-14.3	Vert
21	1551.000141	-10.2	+0.0 +0.0	+0.4 $+0.0$		+0.0 +25.6	10.0	57.1	50	17.3	VCIL
			+0.0 +0.2	+0.0 +0.5	+0.0	123.0					
28	9150.100M	41.2	+0.2	+0.9	+5.0	+0.0	+0.0	39.7	54.0	-14.3	Vert
20	2120.100101	11.4	+0.0	+0.0	-34.4	+37.7	10.0	57.1	5 1.0	17.5	, 011
			+0.0	+1.1	+12.5						
29	4634.180M	47.9	+0.0	+0.6	+3.6	+0.0	+0.0	39.2	54.0	-14.8	Horiz
	Ave		+0.0	+0.0	-33.6	+32.4		<i></i>	2 110	110	
			+0.4	+0.4	+12.5						
^	4634.180M	47.1	+0.0	+0.6	+3.6	+0.0	+0.0	50.9	54.0	-3.1	Horiz
		. , . 1	+0.0	+0.0	-33.6	+32.4			2 110	5.1	
			+0.4	+0.4	+0.0						
L											

21 4624 100 1	47.0	.0.0	.0.6	.2.0	.0.0	.0.0	20.0	54.0	14.0	XZ
31 4634.100M	47.9	+0.0	+0.6	+3.6	+0.0	+0.0	39.2	54.0	-14.8	Vert
Ave		$^{+0.0}_{+0.4}$	+0.0	-33.6	+32.4					
A 4624 100M	47.0		+0.4	+12.5	.0.0		51.7	540	2.2	Mart
^ 4634.100M	47.9	+0.0	+0.6	+3.6	+0.0	+0.0	51.7	54.0	-2.3	Vert
		+0.0	+0.0	-33.6	+32.4					
22 7414 590M	41.9	+0.4	+0.4 +1.3	+0.0 +4.4	+0.0	+0.0	39.0	54.0	-15.0	Homia
33 7414.580M Ave	41.9	$^{+0.0}_{+0.0}$	$^{+1.5}_{+0.0}$	+4.4 -34.9	+0.0 +37.4	+0.0	39.0	54.0	-13.0	Horiz
Ave		+0.0 +0.7	+0.0 $+0.7$	-34.9 +12.5	+37.4					
^ 7414.580M	41.9	+0.7 +0.0	+0.7 +1.3	+12.3 $+4.4$	+0.0	+0.0	51.5	54.0	-2.5	Horiz
7414.300M	41.9	+0.0 +0.0	+1.5 $+0.0$	-34.9	+0.0 +37.4	+0.0	51.5	54.0	-2.3	HOUL
		+0.0 +0.7	+0.0 $+0.7$	-34.9 +0.0	+37.4					
35 7414.500M	40.9	+0.7 +0.0	+0.7 +1.3	+0.0 +4.4	+0.0	+0.0	38.0	54.0	-16.0	Vert
55 /414.500M	40.9	+0.0 +0.0	$^{+1.5}_{+0.0}$	+4.4 -34.9	+0.0 +37.4	+0.0	38.0	54.0	-10.0	ven
		+0.0 +0.7	+0.0 $+0.7$	-34.9 +12.5	+37.4					
36 8127.190M	39.1	+0.7 +0.0	+0.7 +1.2		+0.0	+0.0	37.7	54.0	-16.3	Vert
50 8127.190M	39.1	+0.0 +0.0	$^{+1.2}_{+0.0}$	+5.1 -35.1	+0.0 +38.6	+0.0	57.7	54.0	-10.5	ven
		+0.0 +0.7	+0.0 +0.6	-55.1 +12.5	+38.0					
37 8127.250M	38.6	+0.7 +0.0	+0.0 +1.2	+12.3 $+5.1$	+0.0	+0.0	37.2	54.0	-16.8	Horiz
57 6127.250M	58.0	+0.0 +0.0	$^{+1.2}_{+0.0}$	-35.1	+0.0 +38.6	+0.0	51.2	54.0	-10.0	HOUL
		+0.0 +0.7	+0.0 $+0.6$	+12.5	+30.0					
38 9150.080M	38.7	+0.7 +0.0	+0.0 +0.9	+12.3 +5.0	+0.0	+0.0	37.2	54.0	-16.8	Horiz
36 9130.060W	36.7	+0.0 +0.0	+0.9 +0.0	+3.0 -34.4	+0.0 +37.7	+0.0	51.2	54.0	-10.8	HOUL
		+0.0 +0.7	+0.0 $+1.1$		+37.7					
39 4515.080M	45.7	+0.7 +0.0	+1.1 +0.6	+12.5 +3.5	+0.0	+0.0	36.7	54.0	-17.3	Horiz
Ave	45.7	+0.0 +0.0	+0.0 $+0.0$	-33.6	+0.0 +32.2	+0.0	50.7	54.0	-17.5	HOLIZ
Ave		+0.0 +0.3	+0.0 $+0.5$	+12.5	+32.2					
^ 4515.080M	45.7	+0.3 +0.0	+0.5 +0.6	+12.5 +3.5	+0.0	+0.0	49.2	54.0	-4.8	Horiz
4313.060M	45.7	+0.0 +0.0	+0.0 $+0.0$	-33.6	+0.0 +32.2	+0.0	49.2	54.0	-4.0	HOLIZ
		+0.0 $+0.3$	+0.0 $+0.5$	+0.0	<i>⊤J2.2</i>					
41 5418.150M	41.7	+0.0	+0.3	+4.0	+0.0	+0.0	36.1	54.0	-17.9	Horiz
41 J410.1J0M	41./	+0.0 $+0.0$	+0.8 $+0.0$	-33.6	+0.0 +34.7	± 0.0	50.1	54.0	-17.9	HOHZ
		+0.0 +0.6	+0.0 $+0.4$	+12.5	+34.7					
42 3660.050M	45.6	+0.0	+0.4	+3.3	+0.0	+0.0	35.5	54.0	-18.5	Vert
42 3000.030W	45.0	+0.0 +0.0	+0.0 $+0.0$	-33.8	+0.0 +31.7	± 0.0	55.5	54.0	-10.5	v CI l
AVC		+0.0 $+0.4$	+0.0 $+0.2$	+12.5	±31.7					
^ 3660.050M	45.6	+0.0	+0.6	+3.3	+0.0	+0.0	48.0	54.0	-6.0	Vert
3000.030WI	45.0	+0.0 $+0.0$	+0.0 $+0.0$		+31.7	± 0.0	40.0	54.0	-0.0	ven
		+0.0	+0.2	+0.0	131.7					
44 827.300M	32.2	+0.0	+0.2	+1.4	+2.2	+0.0	65.4	109.0	-43.6	Vert
++ 027.500WI	52.2	+29.3	+0.0	+0.0	+0.0	10.0	0.5.4	107.0	-+5.0	ven
		+0.0	+0.0	+0.0	10.0					
45 6321.240M	53.0	+0.0	+0.9	+4.4	+0.0	+0.0	60.5	109.0	-48.5	Horiz
15 0521.240141	55.0	+0.0	+0.0	-34.0	+35.2	10.0	00.5	107.0	10.5	110112
		+0.6	+0.4	+0.0	100.2					
46 6405.040M	51.3	+0.0	+0.9	+4.5	+0.0	+0.0	58.8	109.0	-50.2	Horiz
10 0100.040141	51.5	+0.0	+0.0	-34.0	+35.0	10.0	50.0	107.0	50.2	110112
		+0.6	+0.5	+0.0	1 55.0					
47 6321.190M	50.7	+0.0	+0.9	+4.4	+0.0	+0.0	58.2	109.0	-50.8	Vert
17 0521.170141	50.7	+0.0	+0.9	-34.0	+35.2	10.0	50.2	107.0	20.0	, 011
		+0.6	+0.4	+0.0	100.2					
		10.0	т О. Т	10.0						

48	6405.110M	50.0	+0.0	+0.9	+4.5	+0.0	+0.0	57.5	109.0	-51.5	Vert
			+0.0	+0.0	-34.0	+35.0					
			+0.6	+0.5	+0.0						
49	6487.700M	47.6	+0.0	+0.9	+4.5	+0.0	+0.0	55.2	109.0	-53.8	Vert
			+0.0	+0.0	-34.0	+34.9					
			+0.7	+0.6	+0.0						
50	6487.780M	47.5	+0.0	+0.9	+4.5	+0.0	+0.0	55.1	109.0	-53.9	Horiz
			+0.0	+0.0	-34.0	+34.9					
			+0.7	+0.6	+0.0						
51	7224.250M	42.8	+0.0	+1.2	+4.6	+0.0	+0.0	51.6	109.0	-57.4	Horiz
			+0.0	+0.0	-34.9	+37.0					
			+0.7	+0.2	+0.0						
52	5490.110M	44.7	+0.0	+0.8	+4.0	+0.0	+0.0	51.5	109.0	-57.5	Vert
			+0.0	+0.0	-33.6	+34.7					
		4.4.5	+0.5	+0.4	+0.0				100.0		**
53	5560.900M	44.6	+0.0	+0.8	+4.0	+0.0	+0.0	51.3	109.0	-57.7	Vert
			+0.0	+0.0	-33.6	+34.5					
~ .			+0.5	+0.5	+0.0		0.0		100.0		
54	5560.980M	44.6	+0.0	+0.8	+4.0	+0.0	+0.0	51.3	109.0	-57.7	Horiz
			+0.0	+0.0	-33.6	+34.5					
	700 (100) (10.1	+0.5	+0.5	+0.0	0.0	0.0	51.0	100.0	57 0	X 7 .
55	7224.190M	42.4	+0.0	+1.2	+4.6	+0.0	+0.0	51.2	109.0	-57.8	Vert
			+0.0	+0.0	-34.9	+37.0					
50	5400.04014	44.2	+0.7	+0.2	+0.0	.0.0	.0.0	511	100.0	57.0	II!
56	5490.040M	44.3	+0.0	+0.8	+4.0	+0.0	+0.0	51.1	109.0	-57.9	Horiz
			+0.0	+0.0	-33.6	+34.7					
57	5C 200M	20.1	+0.5	+0.4	+0.0	0.5		15 1	100.0	(2.6	Vart
57	56.200M	32.1	+0.0 +12.4	$^{+0.1}_{+0.0}$	+0.3 +0.0	+0.5 +0.0	+0.0	45.4	109.0	-63.6	Vert
			+12.4 +0.0			+0.0					
50	1830.080M	44.9	+0.0 +0.0	+0.0 +0.4	+0.0	+0.0	+0.0	41.1	109.0	-67.9	Vert
20	1020.060101	44.9	$^{+0.0}_{+0.0}$	$^{+0.4}_{+0.0}$	+2.1 -34.7	+0.0 +27.5	+0.0	41.1	109.0	-07.9	vert
			+0.0 +0.3	+0.0 $+0.6$	-34.7 +0.0	± 21.3					
50	1853.700M	44.6	+0.3 +0.0	+0.0 +0.4	+0.0 +2.1	+0.0	+0.0	41.0	109.0	-68.0	Vert
57	1055.700101	44.0	+0.0 +0.0	+0.4 +0.0	+2.1 -34.7	+0.0 +27.7	± 0.0	+1.0	107.0	-00.0	vert
			+0.0 +0.3	+0.0 +0.6	+0.0	121.1					
60	1806.030M	44.1	+0.0	+0.4	+2.1	+0.0	+0.0	40.1	109.0	-68.9	Vert
00	1000.03000		+0.0 $+0.0$		-34.7		10.0	70.1	107.0	00.7	vert
			+0.3	+0.6	+0.0	121.5					
61	1806.040M	41.7	+0.0	+0.4	+2.1	+0.0	+0.0	37.7	109.0	-71.3	Horiz
51	10001010111	/	+0.0	+0.0	-34.7	+27.3	10.0	57.1	107.0	, 1.5	110112
			+0.3	+0.6	+0.0	127.5					
62	28.687M	39.0	+0.0	+0.1	+0.2	+0.0	-40.0	3.5	109.0	-105.5	Perp/
52	20.00/101	27.0	+0.0	+4.2	+0.2 $+0.0$	+0.0	10.0	5.5	107.0	100.0	• • P'
			+0.0	+0.0	+0.0	. 0.0					

63	27.940M	37.8	+0.0	+0.1	+0.2	+0.0	-40.0	2.6	109.0	-106.4	Perp/
			+0.0	+4.5	+0.0	+0.0					
			+0.0	+0.0	+0.0						
64	28.567M	36.3	+0.0	+0.1	+0.2	+0.0	-40.0	0.8	109.0	-108.2	Perp/
			+0.0	+4.2	+0.0	+0.0					
			+0.0	+0.0	+0.0						
65	28.328M	35.9	+0.0	+0.1	+0.2	+0.0	-40.0	0.6	109.0	-108.4	Perp/
			+0.0	+4.4	+0.0	+0.0					
			+0.0	+0.0	+0.0						
66	16.332k	47.3	+0.0	+0.1	+0.0	+0.0	-80.0	-18.9	109.0	-127.9	Perp/
			+0.0	+13.7	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Band Edge

	Band Edge Summary Configuration 1								
Operating Mo	Operating Mode: Single Channel (Low and High)								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results				
614	AM	Omnidirectional	38.7	<46	Pass				
902	AM	Omnidirectional	75.0	<112	Pass				
928	AM	Omnidirectional	73.7	< 112	Pass				
960	AM	Omnidirectional	43.1	<54	Pass				
614	FM 12.5k	Omnidirectional	38.8	<46	Pass				
902	FM 12.5k	Omnidirectional	86.8	<109	Pass				
928	FM 12.5k	Omnidirectional	76.5	<109	Pass				
960	FM 12.5k	Omnidirectional	43.0	<54	Pass				
614	FM 37.5k	Omnidirectional	38.8	<46	Pass				
902	FM 37.5k	Omnidirectional	87.0	<109	Pass				
928	FM 37.5k	Omnidirectional	76.8	<109	Pass				
960	FM 37.5k	Omnidirectional	43.0	<54	Pass				

Band Edg	e Summarv	y Configuration	1
Dunia Lug	5° Janniary	y configuration	-

Operating Mode: Hopping					
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
614	AM	Omnidirectional	38.6	<46	Pass
902	AM	Omnidirectional	80.5	<112	Pass
928	AM	Omnidirectional	80.7	< 112	Pass
960	AM	Omnidirectional	42.8	<54	Pass
614	FM 12.5k	Omnidirectional	38.5	<46	Pass
902	FM 12.5k	Omnidirectional	87.9	<109	Pass
928	FM 12.5k	Omnidirectional	80.9	<109	Pass
960	FM 12.5k	Omnidirectional	42.9	<54	Pass
614	FM 37.5k	Omnidirectional	38.5	<46	Pass
902	FM 37.5k	Omnidirectional	85.0	<109	Pass
928	FM 37.5k	Omnidirectional	75.9	<46	Pass
960	FM 37.5k	Omnidirectional	42.9	<112	Pass

Band Edge Summary Configuration 2						
Operating Mo	Operating Mode: Single Channel (Low and High)					
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results	
614	AM	Omnidirectional	38.6	<46	Pass	
902	AM	Omnidirectional	77.5	<112	Pass	
928	AM	Omnidirectional	73.6	<112	Pass	
960	AM	Omnidirectional	42.9	<54	Pass	
614	FM 12.5k	Omnidirectional	38.6	<46	Pass	
902	FM 12.5k	Omnidirectional	87.6	<109	Pass	
928	FM 12.5k	Omnidirectional	78.2	<109	Pass	
960	FM 12.5k	Omnidirectional	42.9	<54	Pass	
614	FM 37.5k	Omnidirectional	38.6	<46	Pass	
902	FM 37.5k	Omnidirectional	86.6	<109	Pass	
928	FM 37.5k	Omnidirectional	78.0	<109	Pass	
960	FM 37.5k	Omnidirectional	42.9	<54	Pass	

Band	Edge Summa	ary Configuration 2	

Operating Mode: Hopping					
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
614	AM	Omnidirectional	38.5	<46	Pass
902	AM	Omnidirectional	79.8	<112	Pass
928	AM	Omnidirectional	80.8	<112	Pass
960	AM	Omnidirectional	42.8	<54	Pass
614	FM 12.5k	Omnidirectional	38.6	<46	Pass
902	FM 12.5k	Omnidirectional	89.3	<109	Pass
928	FM 12.5k	Omnidirectional	76.2	<109	Pass
960	FM 12.5k	Omnidirectional	80.4	<54	Pass
614	FM 37.5k	Omnidirectional	38.5	<46	Pass
902	FM 37.5k	Omnidirectional	86.2	<109	Pass
928	FM 37.5k	Omnidirectional	76.7	<109	Pass
960	FM 37.5k	Omnidirectional	42.8	<54	Pass

Band Edge Summary Configuration 3								
Operating Mode: Single Channel (Low and High)								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	AM	Omnidirectional	38.5	<46	Pass			
902	AM	Omnidirectional	75.6	<112	Pass			
928	AM	Omnidirectional	73.5	<112	Pass			
960	AM	Omnidirectional	42.9	<54	Pass			
614	FM 12.5k	Omnidirectional	38.5	<46	Pass			
902	FM 12.5k	Omnidirectional	87.5	<109	Pass			
928	FM 12.5k	Omnidirectional	78.0	<109	Pass			
960	FM 12.5k	Omnidirectional	42.8	<54	Pass			
614	FM 37.5k	Omnidirectional	38.5	<46	Pass			
902	FM 37.5k	Omnidirectional	88.1	<109	Pass			
928	FM 37.5k	Omnidirectional	77.6	<109	Pass			
960	FM 37.5k	Omnidirectional	42.8	<54	Pass			

Ba	and Edge Su	mmary Config	guration 3

Operating Mode: Hopping								
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	AM	Omnidirectional	38.5	<46	Pass			
902	AM	Omnidirectional	80.1	<112	Pass			
928	AM	Omnidirectional	79.3	<112	Pass			
960	AM	Omnidirectional	42.9	<54	Pass			
614	FM 12.5k	Omnidirectional	38.5	<46	Pass			
902	FM 12.5k	Omnidirectional	91.3	<109	Pass			
928	FM 12.5k	Omnidirectional	77.1	<109	Pass			
960	FM 12.5k	Omnidirectional	42.8	<54	Pass			
614	FM 37.5k	Omnidirectional	38.5	<46	Pass			
902	FM 37.5k	Omnidirectional	85.9	<109	Pass			
928	FM 37.5k	Omnidirectional	75.4	<109	Pass			
960	FM 37.5k	Omnidirectional	42.9	<54	Pass			

Band Edge Plots

Configuration 1; Single Channel (Low and High)

Page 111 of 185 Report No.: 107461-2

Page 112 of 185 Report No.: 107461-2

Page 113 of 185 Report No.: 107461-2

Configuration 1; Hopping

Page 119 of 185 Report No.: 107461-2

Page 120 of 185 Report No.: 107461-2

Page 123 of 185 Report No.: 107461-2

Page 124 of 185 Report No.: 107461-2

Page 125 of 185 Report No.: 107461-2

Page 126 of 185 Report No.: 107461-2

Page 127 of 185 Report No.: 107461-2

Configuration 2; Hopping

Page 131 of 185 Report No.: 107461-2

Page 133 of 185 Report No.: 107461-2

Configuration 3; Single Channel (Low and High)

Page 136 of 185 Report No.: 107461-2

Page 137 of 185 Report No.: 107461-2

Page 139 of 185 Report No.: 107461-2

Configuration 3; Hopping

Page 140 of 185 Report No.: 107461-2

Page 141 of 185 Report No.: 107461-2

Page 143 of 185 Report No.: 107461-2

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717						
Customer:	Itron, Inc.						
Specification:	15.247(d) / 15.209 Radiated	Spurious Emissions					
Work Order #:	107461	Date:	10/14/2022				
Test Type:	Maximized Emissions	Time:	17:18:05				
Tested By:	Michael Atkinson	Sequence#:	1				
Software:	EMITest 5.03.20						

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions / Not	es:		
Test Environment Co	nditions:		
Temperature: 24°C			
Humidity: 51%			
Pressure: 101.5kPa			
Test Method: ANSI C	263.10 (2013)		
Frequency: Band Edg	e		
Test Setup:			
Unit is on foam table	80cm high. Horizontal and Ve ting with modulation.	ertical antenna polarities i	nvestigated, worst-case reported, unit is
Configuration 1			
8	gle channel and hopping.		

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measu	rement Data:	Re	ading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	8.1	+0.3	+1.2	+1.9	+27.2	+0.0	38.7	46.0	-7.3	Vert
	QP								SC		
2	614.000M	8.0	+0.3	+1.2	+1.9	+27.2	+0.0	38.6	46.0	-7.4	Vert
	QP								Hopping		
3	960.000M	8.2	+0.3	+1.5	+2.4	+30.7	+0.0	43.1	54.0	-10.9	Vert
	QP								SC		
4	960.000M	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0	-11.2	Vert
	QP								Hopping		
5	928.000M	45.9	+0.3	+1.5	+2.4	+30.6	+0.0	80.7	112.0	-31.3	Vert
									Hopping		
6	902.000M	46.9	+0.3	+1.4	+2.3	+29.6	+0.0	80.5	112.0	-31.5	Vert
									Hopping		
7	902.000M	41.4	+0.3	+1.4	+2.3	+29.6	+0.0	75.0	112.0	-37.0	Vert
									SC		
8	928.000M	38.9	+0.3	+1.5	+2.4	+30.6	+0.0	73.7	112.0	-38.3	Vert
									SC		

Test Location:	CKC Laboratories, Inc. • 22116 23	rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spur	ious Emissions	
Work Order #:	107461	Date:	10/14/2022
Test Type:	Maximized Emissions	Time:	18:02:32
Tested By:	Michael Atkinson	Sequence#:	2
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 1

FM12.5k Modulation, single channel and hopping.

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measu	rement Data:	Re	ading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	8.2	+0.3	+1.2	+1.9	+27.2	+0.0	38.8	46.0	-7.2	Vert
	QP								SC		
2	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								Hopping		
3	960.000M	8.1	+0.3	+1.5	+2.4	+30.7	+0.0	43.0	54.0	-11.0	Vert
	QP								SC		
4	960.000M	8.0	+0.3	+1.5	+2.4	+30.7	+0.0	42.9	54.0	-11.1	Vert
	QP								Hopping		
5	902.000M	54.3	+0.3	+1.4	+2.3	+29.6	+0.0	87.9	109.0	-21.1	Vert
									Hopping		
6	902.000M	53.2	+0.3	+1.4	+2.3	+29.6	+0.0	86.8	109.0	-22.2	Vert
									SC		
7	928.000M	46.1	+0.3	+1.5	+2.4	+30.6	+0.0	80.9	109.0	-28.1	Vert
									Hopping		
8	928.000M	41.7	+0.3	+1.5	+2.4	+30.6	+0.0	76.5	109.0	-32.5	Vert
									SC		

Test Location:	CKC Laboratories, Inc. • 22116 2	23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spu	rious Emissions	
Work Order #:	107461	Date:	10/14/2022
Test Type:	Maximized Emissions	Time:	18:45:14
Tested By:	Michael Atkinson	Sequence#:	3
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 1

FM37.5k Modulation, single channel and hopping.

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measu	rement Data:	Re	ading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	8.2	+0.3	+1.2	+1.9	+27.2	+0.0	38.8	46.0	-7.2	Vert
	QP								SC		
2	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								Hopping		
3	960.000M	8.1	+0.3	+1.5	+2.4	+30.7	+0.0	43.0	54.0	-11.0	Vert
	QP								SC		
4	960.000M	8.0	+0.3	+1.5	+2.4	+30.7	+0.0	42.9	54.0	-11.1	Vert
	QP								Hopping		
5	902.000M	53.4	+0.3	+1.4	+2.3	+29.6	+0.0	87.0	109.0	-22.0	Vert
									SC		
6	902.000M	51.4	+0.3	+1.4	+2.3	+29.6	+0.0	85.0	109.0	-24.0	Vert
									Hopping		
7	928.000M	42.0	+0.3	+1.5	+2.4	+30.6	+0.0	76.8	109.0	-32.2	Vert
									SC		
8	928.000M	41.1	+0.3	+1.5	+2.4	+30.6	+0.0	75.9	109.0	-33.1	Vert
									Hopping		

Test Location:	CKC Laboratories, Inc. • 22116	23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spu	rious Emissions	
Work Order #:	107461	Date:	10/17/2022
Test Type:	Maximized Emissions	Time:	15:54:46
Tested By:	Michael Atkinson	Sequence#:	1
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2

AM Modulation, single channel and hopping.

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T5	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	614.000M	8.0	+0.0	+0.3	+1.2	+1.9	+0.0	38.6	46.0	-7.4	Vert
	QP		+27.2						SC		
2	614.000M	7.9	+0.0	+0.3	+1.2	+1.9	+0.0	38.5	46.0	-7.5	Vert
	QP		+27.2						Hopping		
3	960.000M	8.0	+0.0	+0.3	+1.5	+2.4	+0.0	42.9	54.0	-11.1	Vert
	QP		+30.7						SC		
4	960.000M	7.9	+0.0	+0.3	+1.5	+2.4	+0.0	42.8	54.0	-11.2	Vert
	QP		+30.7						Hopping		
5	928.000M	46.0	+0.0	+0.3	+1.5	+2.4	+0.0	80.8	112.0	-31.2	Vert
			+30.6						Hopping		
6	902.000M	46.2	+0.0	+0.3	+1.4	+2.3	+0.0	79.8	112.0	-32.2	Vert
			+29.6						Hopping		
7	902.000M	43.9	+0.0	+0.3	+1.4	+2.3	+0.0	77.5	112.0	-34.5	Vert
			+29.6						SC		
8	928.000M	38.8	+0.0	+0.3	+1.5	+2.4	+0.0	73.6	112.0	-38.4	Vert
			+30.6						SC		

Test Location:	CKC Laboratories, Inc. • 22116	23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Sp	urious Emissions	
Work Order #:	107461	Date:	10/17/2022
Test Type:	Maximized Emissions	Time:	16:32:05
Tested By:	Michael Atkinson	Sequence#:	2
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 2				
Support Fauinment.				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2 FM12.5 Modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Meası	irement Data:	Re	eading lis	ted by ma	rgin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	8.0	+0.3	+1.2	+1.9	+27.2	+0.0	38.6	46.0	-7.4	Vert
	QP								SC		
2	614.000M	8.0	+0.3	+1.2	+1.9	+27.2	+0.0	38.6	46.0	-7.4	Vert
	QP								Hopping		
3	960.000M	8.0	+0.3	+1.5	+2.4	+30.7	+0.0	42.9	54.0	-11.1	Vert
	QP								SC		
4	901.995M	55.7	+0.3	+1.4	+2.3	+29.6	+0.0	89.3	109.0	-19.7	Vert
									Hopping		
5	902.000M	54.0	+0.3	+1.4	+2.3	+29.6	+0.0	87.6	109.0	-21.4	Vert
									SC		
6	928.065M	45.6	+0.3	+1.5	+2.4	+30.6	+0.0	80.4	109.0	-28.6	Vert
									Hopping		
7	928.000M	43.4	+0.3	+1.5	+2.4	+30.6	+0.0	78.2	109.0	-30.8	Vert
									SC		
8	928.000M	41.4	+0.3	+1.5	+2.4	+30.6	+0.0	76.2	109.0	-32.8	Vert
									Hopping		

Test Location:	CKC Laboratories, Inc. • 22116	23rd Drive SE, Suite A •	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Sp	urious Emissions	
Work Order #:	107461	Date:	10/17/2022
Test Type:	Maximized Emissions	Time:	17:00:43
Tested By:	Michael Atkinson	Sequence#:	3
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 2				
Support Fauinment.				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2 FM 37.5k modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measu	rement Data:	Re	ading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	8.0	+0.3	+1.2	+1.9	+27.2	+0.0	38.6	46.0	-7.4	Vert
	QP								SC		
2	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								Hopping		
3	960.000M	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0	-11.2	Vert
	QP								Hopping		
4	960.000M	7.8	+0.3	+1.5	+2.4	+30.7	+0.0	42.7	54.0	-11.3	Vert
	QP								SC		
5	902.000M	53.0	+0.3	+1.4	+2.3	+29.6	+0.0	86.6	109.0	-22.4	Vert
									SC		
6	902.000M	52.6	+0.3	+1.4	+2.3	+29.6	+0.0	86.2	109.0	-22.8	Vert
									Hopping		
7	928.000M	43.2	+0.3	+1.5	+2.4	+30.6	+0.0	78.0	109.0	-31.0	Vert
									SC		
8	928.000M	41.9	+0.3	+1.5	+2.4	+30.6	+0.0	76.7	109.0	-32.3	Vert
									Hopping		

Test Location:	CKC Laboratories, Inc. • 22116 2	23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spu	rious Emissions	
Work Order #:	107461	Date:	10/17/2022
Test Type:	Maximized Emissions	Time:	18:52:57
Tested By:	Michael Atkinson	Sequence#:	1
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N
Configuration 3			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 3			
Test Conditions / No	tes:		
Test Environment Co	onditions:		
Temperature: 24°C			
Humidity: 51%			
Pressure: 101.5kPa			
Test Method: ANSI	263.10 (2013)		
Frequency: Band Edg	ge		
Test Setup:			
Unit is on foam table	80cm high. Horizontal and Ve tting with modulation.	ertical antenna polarities	investigated, worst-case reported, unit is
Configuration 3			
AM Modulation			

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measu	irement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								SC		
2	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								Hopping		
3	960.000M	8.0	+0.3	+1.5	+2.4	+30.7	+0.0	42.9	54.0	-11.1	Vert
	QP								Hopping		
4	960.000M	8.0	+0.3	+1.5	+2.4	+30.7	+0.0	42.9	54.0	-11.1	Vert
	QP								SC		
5	901.960M	46.5	+0.3	+1.4	+2.3	+29.6	+0.0	80.1	112.0	-31.9	Vert
									Hopping		
6	928.000M	44.5	+0.3	+1.5	+2.4	+30.6	+0.0	79.3	112.0	-32.7	Vert
									Hopping		
7	902.000M	42.0	+0.3	+1.4	+2.3	+29.6	+0.0	75.6	112.0	-36.4	Vert
									SC		
8	928.000M	38.7	+0.3	+1.5	+2.4	+30.6	+0.0	73.5	112.0	-38.5	Vert
									SC		

Test Location:	CKC Laboratories, Inc. • 22116	23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated Sp	ourious Emissions	
Work Order #:	107461	Date:	10/17/2022
Test Type:	Maximized Emissions	Time:	19:34:25
Tested By:	Michael Atkinson	Sequence#:	2
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 3 FM12.5k Modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measu	rement Data:	Re	ading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								Hopping		
2	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								SC		
3	960.000M	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0	-11.2	Vert
	QP								Hopping		
4	960.000M	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0	-11.2	Vert
	QP								SC		
5	902.000M	57.7	+0.3	+1.4	+2.3	+29.6	+0.0	91.3	109.0	-17.7	Vert
									Hopping		
6	902.000M	53.9	+0.3	+1.4	+2.3	+29.6	+0.0	87.5	109.0	-21.5	Vert
									SC		
7	928.000M	43.2	+0.3	+1.5	+2.4	+30.6	+0.0	78.0	109.0	-31.0	Vert
									SC		
8	928.000M	42.3	+0.3	+1.5	+2.4	+30.6	+0.0	77.1	109.0	-31.9	Vert
									Hopping		

Test Location:	CKC Laboratories, Inc. • 22116	5 23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.247(d) / 15.209 Radiated S	purious Emissions	
Work Order #:	107461	Date:	10/17/2022
Test Type:	Maximized Emissions	Time:	19:55:18
Tested By:	Michael Atkinson	Sequence#:	3
Software:	EMITest 5.03.20		

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 3			

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 51% Pressure: 101.5kPa

Test Method: ANSI C63.10 (2013)

Frequency: Band Edge

Test Setup:

Unit is on foam table 80cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 3 FM 37.5k Modulation

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
T2	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
Т3	ANP05360	Cable	RG214	2/4/2022	2/4/2024
T4	AN03628	Biconilog Antenna	3142E	6/3/2021	6/3/2023

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								Hopping		
2	614.000M	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0	-7.5	Vert
	QP								SC		
3	960.000M	8.0	+0.3	+1.5	+2.4	+30.7	+0.0	42.9	54.0	-11.1	Vert
	QP								Hopping		
4	960.000M	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0	-11.2	Vert
	QP								SC		
5	902.000M	54.5	+0.3	+1.4	+2.3	+29.6	+0.0	88.1	109.0	-20.9	Vert
									SC		
6	902.000M	52.3	+0.3	+1.4	+2.3	+29.6	+0.0	85.9	109.0	-23.1	Vert
									Hopping		
7	928.000M	42.8	+0.3	+1.5	+2.4	+30.6	+0.0	77.6	109.0	-31.4	Vert
									SC		
8	928.000M	40.6	+0.3	+1.5	+2.4	+30.6	+0.0	75.4	109.0	-33.6	Vert
									Hopping		

Test Setup Photo(s)

Configuration 1

Below 1GHz; View 1

Below 1GHz; View 2

Above 1GHz; View 1

Above 1GHz; View 2

Configuration 2

Below 1GHz; View 1

Below 1GHz; View 2

Above 1GHz; View 1

Above 1GHz; View 2

GPS Antenna Investigation

Page 168 of 185 Report No.: 107461-2

Configuration 3

Below 1GHz; View 1

Below 1GHz; View 2

Above 1GHz; View 1

Above 1GHz; View 2

Above 1GHz; View 3

Above 1GHz; View 4

GPS Investigation Antenna

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22110	6 23rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	107461	Date:	10/13/2022
Test Type:	Conducted Emissions	Time:	20:18:56
Tested By:	Michael Atkinson	Sequence#:	5
Software:	EMITest 5.03.20		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 43% Pressure: 101.9kPa

Test Method: ANSI C63.10 (2013)

Frequency: 0.15-30MHz

Test Setup:

Configuration 1

AM, FM12.5, and FM37.5 modulations investigated, worst-case reported. Configuration 2 and 3 investigated, with and without battery investigated, also investigated with GPS antenna PN 57861-20 on configuration 2 and configuration 3, investigated with RV50 and RV50x cell modems installed and powered, worst-case data reported.

Itron, Inc. WO#: 107461 Sequence#: 5 Date: 10/13/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
	AN01311	50uH LISN-Line2 (N)	3816/2	2/23/2022	2/23/2024

	rement Data:		eading list					Test Lead			
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	3.815M	29.0	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	38.4	46.0	-7.6	Line
2	4.099M	29.0	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	38.4	46.0	-7.6	Line
3	3.792M	28.3	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	37.7	46.0	-8.3	Line
4	3.424M	28.1	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	37.5	46.0	-8.5	Line
5	8.717M	31.0	+0.0 +0.2	+0.1	+0.1	+9.1	+0.0	40.5	50.0	-9.5	Line
6	1.238M	26.6	+0.1 +0.1	+0.1	+0.1	+9.1	+0.0	36.1	46.0	-9.9	Line
7	3.742M	26.6	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	36.0	46.0	-10.0	Line
8	1.251M	26.4	+0.1 +0.1	+0.1	+0.1	+9.1	+0.0	35.9	46.0	-10.1	Line
9	9.388M	30.5	+0.0 +0.2	+0.0	+0.1	+9.1	+0.0	39.9	50.0	-10.1	Line
10	26.607M	29.6	+0.1 +0.0	+0.1	+0.2	+9.1	+0.0	39.1	50.0	-10.9	Line
11	1.494M	25.6	+0.1 +0.1	+0.1	+0.1	+9.1	+0.0	35.1	46.0	-10.9	Line
12	858.464k	25.3	+0.1 +0.1	+0.1	+0.0	+9.1	+0.0	34.7	46.0	-11.3	Line
13	26.490M	29.2	+0.1 +0.0	+0.1	+0.2	+9.1	+0.0	38.7	50.0	-11.3	Line
14	25.877M	29.0	+0.1 +0.0	+0.1	+0.2	+9.1	+0.0	38.5	50.0	-11.5	Line
15	28.685M	28.9	+0.1 +0.0	+0.1	+0.2	+9.1	+0.0	38.4	50.0	-11.6	Line
16	1.712M	24.9	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	34.3	46.0	-11.7	Line
17	3.674M	24.9	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	34.3	46.0	-11.7	Line
18	25.688M	28.7	+0.1 +0.0	+0.1	+0.2	+9.1	+0.0	38.2	50.0	-11.8	Line
19	27.160M	28.5	+0.1 +0.0	+0.1	+0.2	+9.1	+0.0	38.0	50.0	-12.0	Line
20	3.885M Ave	11.1	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	20.5	46.0	-25.5	Line
^	3.885M	30.7	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	40.1	46.0	-5.9	Line

Test Location:	CKC Laboratories, Inc. • 22116 2	3rd Drive SE, Suite A • 1	Bothell, WA 98021 • (425) 402-1717
Customer:	Itron, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	107461	Date:	10/13/2022
Test Type:	Conducted Emissions	Time:	20:27:17
Tested By:	Michael Atkinson	Sequence#:	7
Software:	EMITest 5.03.20	-	120V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Fauinment.				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions: Temperature: 24°C Humidity: 43% Pressure: 101.9kPa

Test Method: ANSI C63.10 (2013)

Frequency: 0.15-30MHz

Test Setup:

Configuration 1

AM, FM12.5, and FM37.5 modulations investigated, worst-case reported. Configuration 2 and 3 investigated, with and without battery investigated, also investigated with GPS antenna PN 57861-20 on configuration 2 and configuration 3, investigated with RV50 and RV50x cell modems installed and powered, worst-case data reported.

Itron, Inc. WO#: 107461 Sequence#: 7 Date: 10/13/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/29/2021	11/29/2023
T1	AN02611	High Pass Filter	HE9615-150K-	1/5/2022	1/5/2024
			50-720B		
T2	ANP06540	Cable	Heliax	1/17/2022	1/17/2024
Т3	ANP05305	Cable	ETSI-50T	9/15/2021	9/15/2023
T4	ANP06219	Attenuator	768-10	3/23/2022	3/23/2024
	AN01311	50uH LISN-Line1 (L)	3816/2	2/23/2022	2/23/2024
T5	AN01311	50uH LISN-Line2 (N)	3816/2	2/23/2022	2/23/2024

#	rement Data:		eading list T1	T2	T3	T4	Dist		d: Neutral	Margin	Polar
#	Freq	Rdng	T5	12	15	14	Dist	Corr	Spec	Margin	Pola
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	3.888M	30.0	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	39.4	46.0	-6.6	Neuti
2	3.764M	28.8	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	38.2	46.0	-7.8	Neuti
3	3.860M	28.8	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	38.2	46.0	-7.8	Neut
4	4.092M	28.7	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	38.1	46.0	-7.9	Neut
5	3.424M	28.4	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	37.8	46.0	-8.2	Neut
6	3.780M	28.2	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	37.6	46.0	-8.4	Neut
7	4.288M	27.1	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	36.5	46.0	-9.5	Neut
8	8.717M	30.8	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	40.2	50.0	-9.8	Neut
9	1.116M	26.4	+0.1 +0.1	+0.1	+0.1	+9.1	+0.0	35.9	46.0	-10.1	Neut
10	9.388M	30.4	+0.1 +0.0 +0.1	+0.0	+0.1	+9.1	+0.0	39.7	50.0	-10.3	Neut
11	3.732M	26.3	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	35.7	46.0	-10.3	Neut
12	1.345M	26.1	+0.1 +0.1	+0.1	+0.1	+9.1	+0.0	35.6	46.0	-10.4	Neut
13	1.474M	25.8	+0.1 +0.1	+0.1	+0.1	+9.1	+0.0	35.3	46.0	-10.7	Neut
14	26.490M	29.3	+0.1 +0.0	+0.1	+0.2	+9.1	+0.0	38.8	50.0	-11.2	Neut
15	26.607M	29.2	+0.0 +0.1 +0.0	+0.1	+0.2	+9.1	+0.0	38.7	50.0	-11.3	Neut
16	3.674M	25.1	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	34.5	46.0	-11.5	Neut
17	4.847M	25.1	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	34.5	46.0	-11.5	Neut
18	25.688M	29.0	+0.1 +0.0	+0.1	+0.2	+9.1	+0.0	38.5	50.0	-11.5	Neut
19	4.427M	25.0	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	34.4	46.0	-11.6	Neut
20	4.001M Ave	11.6	+0.0 +0.1	+0.1	+0.1	+9.1	+0.0	21.0	46.0	-25.0	Neut
^	4.001M	30.2	+0.1 +0.0 +0.1	+0.1	+0.1	+9.1	+0.0	39.6	46.0	-6.4	Neut

Test Setup Photo(s)

Configuration 1; Representative of Worst-Case

Configuration 2; Investigated

Configuration 3; Investigated

Page 180 of 185 Report No.: 107461-2

Appendix A: Customer Provided Data

15.35(c) Duty Cycle Correction Factor

Test Data Summary						
Antenna Port	Operational Mode	Measured On Time (mS / P _{obs})	Declared DCCF DCCF (dB)			
1	Operating	23.8	12.5			

Observation Period, P_{obs} is the duration of the pulse train or maximum 100mS

Measured results are calculated as follows:

$$On Time = \left(\sum_{Bursts} RF Burst On Time + \sum_{Control} Control Signal On time \right) \Big|_{P_{obs} (\max 100ms)}$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100
Number of RF Bursts / Pobs::	1
On time of RF Burst:	23.8
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	23.8

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$DCCF = 20 \cdot Log\left(\frac{On Time}{P_{obs}}\right)$$

Duty Cycle Correction Factor Test Data

Appendix B: Manufacturer Declaration

The following device/models were checked and worst-case provided for testing:

Device: CCU100 Models: CCU100D and CCU100RD

The manufacturer declares that the following additional models are identical electrically or any differences between them do not affect their EMC characteristics, and therefore meets the level of testing equivalent to the tested model.

CCU100D and CCU100RD are representatives of worst-case testing of the following models per the manufacturer:

CCU100D Repeater CCU100RD Repeater

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS					
	Meter reading (dBµV)					
+	Antenna Factor	(dB/m)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.