Itron, Inc.

TEST REPORT FOR

CCU100
Models: CCU100D \& CCU100RD*
*(See Appendix B for Manufacturer's Declaration)

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)
15.207 \& 15.247
(FHSS 902-928MHz)

Report No.: 107461-2

Date of issue: December 5, 2022

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

Test Certificate \# 803.01

TABLE OF CONTENTS

Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results5
Modifications During Testing5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 7
FCC Part 15 Subpart C 13
15.247(a) Transmitter Characteristics 13
15.247(a)(1) 20 dB Bandwidth 13
15.247(a)(1) Carrier Separation 20
15.247(a)(1)(iii) Number of Channels 22
15.247(b)(2) Output Power 26
15.247(d) RF Conducted Emissions \& Band Edge 40
15.247(d) Radiated Emissions \& Band Edge 57
15.207 AC Conducted Emissions 173
Appendix A: Customer Provided Data 181
15.35(c) Duty Cycle Correction Factor 181
Appendix B: Manufacturer Declaration 183
Supplemental Information 184
Measurement Uncertainty 184
Emissions Test Details 184

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jack McPeck
Customer Reference Number: 266633

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Viviana Prado
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 107461

October 1, 2022
October 1 through 21, 24, and 26, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services
CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
Canyon Park
22116 23rd Drive S.E., Suite A
Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .20

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082 C	A-0136
Brea, CA	US0103	US1024	3082 D	A-0136
Fremont, CA	US0103	US1024	3082 B	A-0136
Mariposa, CA	US0103	US1024	3082 A	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	Pass
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	Pass
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	Pass
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(2)$	Output Power	NA	Pass
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	Pass
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable
NP = CKC Laboratories Inc. was not contracted to perform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

ARM ISM Power was set to 15 for all tests except Fundamental and Conducted Spurs/Conducted Band Edge, the ARM ISM Power setting was reduced to 11 at time of test to fine tune the power of the unit for Fundamental compliance. The higher power used for other testing is representative of worst case. This is a test software setting and the manufacturer performs a calibration of each production unit with its appropriate software.

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1 = Attached SuperRaptor, Internal GPS, Attached Cellular
Equipment Tested:

Device	Manufacturer	Model \#	S/N
CCU100	Itron, Inc.	CCU100D	74049600

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	Dell	Latitude E6430	NA
Switch	Netgear	FS105	NA
Antenna (attached ISM)	PCTEL	BOA9025NM-ITR	NA
Antenna (attached WAN)	PCTEL	MHO3G4G02NM	NA

Configuration 2 = Attached SuperRaptor, Remote GPS, Remote Cellular
Equipment Tested:

Device	Manufacturer	Model \#	S/N
CCU100	Itron, Inc.	CCU100RD	74049603

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	Dell	Latitude E6430	NA
Switch	Netgear	FS105	NA
Antenna (attached ISM)	PCTEL	BOA9025NM-ITR	NA
Antenna (remote WAN)	Taoglas	OMB.6912.03F21	NA
Antenna (remote GPS)	Trimble	$101898-00$	NA

Configuration 3 = Remote SuperRaptor, Remote GPS, Remote Cellular
Equipment Tested:

Device	Manufacturer	Model \#	S/N
CCU100	Itron, Inc.	CCU100RD	74049603

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	Dell	Latitude E6430	NA
Switch	Netgear	FS105	NA
Antenna (remote ISM)	PCTEL	BOA9028	NA
1dB Attenuator (Qty: 2)	Mini-Circuits	15542 UNAT-1+	NA
Surge Protector	Times Microwave Systems	LP-BTRW-NMP	NA
Antenna (remote WAN)	Taoglas	OMB.6912.03F21	NA
Antenna (remote GPS)	Trimble	$101898-00$	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	$903-926.8 \mathrm{MHz}$
Number of Hopping Channels:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Receiver Bandwidth and	
Synchronization:	$16 \mathrm{kbit/sec} \mathrm{AM} \mathrm{(OOK)}$
Modulation Type(s):	$12.5 \mathrm{kbit} / \mathrm{sec}$ FM (FSK)
	$37.5 \mathrm{kbit} / \mathrm{sec}$ FM (FSK)

EUT Photo(s)

CCU Poletop

Support Equipment Photos)

Attached ISM Antenna

Attached WAN Antenna

Laptop and Switch

Remote ISM Antenna

Remote WAN and GPS Antennas

Block Diagram of Test Setup(s)

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions			
Test Location:	Bothell Lab C3	Test Engineer:	M. Harrison/M. Atkinson
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$10 / 6 / 2022$ to 10/13/2022
Configuration:	1	EUT is setup for conducted measurements. It is directly connected to the Signal Analyzer via an Attenuator and a Cable. Test Setup: For the AM channel plan, normal AM modulation is used. For the FM channel plan, a test mode with CW modulation was used.	

Environmental Conditions				
Temperature (으)	23	Relative Humidity (\%):	52	

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02872	Spectrum Analyzer	Agilent	E4440A	$11 / 29 / 2021$	11/29/2023	
P05503	Attenuator	Narda	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$	
P06008	Cable	Andrew	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$	

15.247(a)(1) 20 dB Bandwidth

Test Data Summary					
Frequency $(\mathbf{M H z})$	Antenna Port	Modulation	Measured $\mathbf{(k H z)}$	Limit $(\mathbf{k H z})$	Results
908.0	1	AM	170.2	≤ 500	Pass
915.0	1	AM	181.3	≤ 500	Pass
923.8	1	AM	168.9	≤ 500	Pass
903.0	1	FM 12.5k	139.7	≤ 500	Pass
915.0	1	FM 12.5k	139.9	≤ 500	Pass
926.8	1	FM 12.5k	139.4	≤ 500	Pass
903.0	1	FM 37.5k	85.7	≤ 500	Pass
915.0	1	FM 37.5k	86.5	≤ 500	Pass
926.8	1	FM 37.5k	87.5	≤ 500	Pass

Plot(s)

AM

Low Channel

Medium Channel
Page 14 of 185
Report No.: 107461-2

High Channel

FM 12.5k

Low Channel

Medium Channel

High Channel

FM 37.5k

Low Channel

Medium Channel

High Channel

15.247(a)(1) Carrier Separation

Test Data Summary
Limit applied: 20dB bandwidth of the hopping channel.

Antenna Port	Operational Mode	Measured $\mathbf{(k H z)}$	Limit $\mathbf{(k H z)}$	Results
1	AM channel plan	200.2	>181.3	Pass
1	FM channel plan	200.1	>87.5	Pass

Plots)

AM Channel Plan

FM Channel Plan

15.247(a)(1)(iii) Number of Channels

Test Data Summary
Limit $=\left\{\begin{array}{l}50 \text { Channels } \mid 20 \mathrm{~dB} B W<250 \mathrm{kHz} \\ 25 \text { Channels } \mid 20 \mathrm{~dB} B W \geq 250 \mathrm{kHz}\end{array}\right.$

Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results
1	AM channel plan	80	≥ 50	Pass
1	FM channel plan	120	≥ 50	Pass

Plot(s)

AM Number of Channels

$1^{\text {st }} 20$ Channels

$3^{\text {rd }} 20$ Channels

FM Number of Channels

$1^{\text {st }} 60$ Channels

$2^{\text {nd }} 60$ Channels

15.247(b)(2) Output Power

Test Data Summary - Voltage Variations						
Frequency $(\mathbf{M H z})$	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Nominal }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Maximum }}$ (dBm)	Max Deviation from $\mathbf{V}_{\text {Nominal }}(\mathbf{d B)}$	
908.0	AM	29.8	29.8	29.8	0.0	
915.0	FM 12.5k	29.4	29.4	29.4	0.0	
915.0	FM 37.5k	27.2	27.2	27.2	0.0	

Test performed using operational mode with the highest output power, representing worst-case.

Parameter Definitions:

Measurements performed at input voltage Vnominal $\pm 15 \%$.

Parameter	Value
V Nominal :	115
V $_{\text {Minimum: }}:$	90
V $_{\text {Maximum: }}:$	265

Test Data Summary - RF Conducted Measurement

Limit $=\left\{\begin{array}{l}30 \mathrm{dBm} \text { Conducted } / 36 \mathrm{dBm} \text { EIRP } \mid \geq 50 \text { Channels } \\ 24 \mathrm{dBm} \text { Conducted } / 30 \mathrm{dBm} \text { EIRP } \mid<50 \text { Channels (min 25) }\end{array}\right.$

Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
908.0	AM	Omni-Directional / 5.5 dBi	29.8	≤ 30	Pass
915.0	AM	Omni-Directional / 5.5 dBi	29.7	≤ 30	Pass
923.8	AM	Omni-Directional / 5.5 dBi	29.4	≤ 30	Pass
908.0	AM	Omni-Directional / 8.15 dBi *	29.8	≤ 30	Pass
915.0	AM	Omni-Directional / $8.15 \mathrm{dBi}^{*}$	29.7	≤ 30	Pass
923.8	AM	Omni-Directional / 8.15 dBi *	29.4	≤ 30	Pass
903.0	FM 12.5k	Omni-Directional / 5.5 dBi	26.6	≤ 30	Pass
915.0	FM 12.5k	Omni-Directional / 5.5 dBi	29.4	≤ 30	Pass
926.8	FM 12.5k	Omni-Directional / 5.5 dBi	26.0	≤ 30	Pass
903.0	FM 12.5k	Omni-Directional / $8.15 \mathrm{dBi}^{*}$	26.6	≤ 30	Pass
915.0	FM 12.5k	Omni-Directional / $8.15 \mathrm{dBi}^{*}$	29.4	≤ 30	Pass
926.8	FM 12.5k	Omni-Directional / 8.15 dBi *	26.0	≤ 30	Pass
903.0	FM 37.5k	Omni-Directional / 5.5 dBi	27.2	≤ 30	Pass
915.0	FM 37.5k	Omni-Directional / 5.5 dBi	29.6	≤ 30	Pass
926.8	FM 37.5k	Omni-Directional / 5.5 dBi	26.3	≤ 30	Pass
903.0	FM 37.5k	Omni-Directional / $8.15 \mathrm{dBi}^{*}$	27.2	≤ 30	Pass
915.0	FM 37.5k	Omni-Directional / 8.15 dBi *	29.6	≤ 30	Pass
926.8	FM 37.5k	Omni-Directional / 8.15 dBi *	26.3	≤ 30	Pass

[^0]

Medium Channel

High Channel

FM 12.5k

Low Channel

Medium Channel

High Channel

FM 37.5k

Low Channel

Medium Channel

High Channel

Test Setup / Conditions / Data

Test Location:
Customer:
Specification Work Order \#:
Test Type:
Tested By:
Software:

CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(b) Power Output (902-928 MHz DTS)

107461
Conducted Emissions
Matt Harrison
EMITest 5.03.20

Date: 10/6/2022
Time: 07:44:38
Sequence\#: 1
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 40%
Pressure: 102.5 kPa
Frequency Range: Fundamental
Protocol /MCS/Modulation: AM
Antenna type: Omni-Directional

Duty Cycle: Tested at 100%
Test Method: ANSI C63.10 (2013)
Test Mode: Continuously Transmitting
Test Setup: EUT is setup for Conducted Measurements. It is directly connected to the SA via an Attenuator.

Itron. Inc. WO\#: 107461 Sequence\#: 1 Date: 10/6/2022 15.247 (b) Power Output ($902-928 \mathrm{MHz}$ DTS) Test Lead: 120 V 60 Hz Antenna Port

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T3	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$

Measu	ement Data	Reading listed by margin.				Test Lead: Antenna Port					
\#	Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	dB	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1	908.078 M	126.1	+10.1	+0.0	+0.6		+0.0	136.8	$\quad 137.0$ ARM ISM 11	-0.2 Power =	Anten
2	915.080M	126.0	+10.1	+0.0	+0.6		+0.0	136.7	137.0 ARM ISM 15	-0.3 Power =	Anten
3	923.786M	125.7	+10.1	+0.0	+0.6		+0.0	136.4	$\begin{aligned} & \quad 137.0 \\ & \text { ARM IS } \\ & 15 \end{aligned}$	-0.6 Power =	Anten

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(b) Power Output (902 -928 MHz DTS)

107461 Date: 10/3/2022
Conducted Emissions
Matt Harrison
EMIT est 5.03.20

Time: 07:36:30
Sequence\#: 2
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 40%
Pressure: 102.5 kPa
Frequency Range: Fundamental
Protocol /MCS/Modulation: FM 12.5k
Antenna type: Omni-Directional
Duty Cycle: Tested at 100%
Test Method: ANSI C63.10 (2013)
Test Mode: Continuously Transmitting
Test Setup: EUT is setup for Conducted Measurements. It is directly connected to the SA via an Attenuator.

Itron. Inc. WO\#: 107461 Sequence\#: 2 Date: 10/3/2022 15.247 (b) Power Output ($902-928 \mathrm{MHz}$ DTS) Test Lead: 120 V 60 Hz Antenna Port

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$

Measu	ement Data:	Reading listed by margin.					Test Lead: Antenna Port				
\#	Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	914.896M	125.7	+10.1	+0.6			+0.0	136.4	137.0	-0.6	Anten
2	903.140M	123.2	+10.1	+0.6			+0.0	133.9	137.0	-3.1	Anten
3	926.672M	122.3	+10.1	+0.6			+0.0	133.0	137.0	-4.0	Anten

Customer:
Specification: Work Order \#: Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(b) Power Output (902-928 MHz DTS)

107461 Date: 10/4/2022
Conducted Emissions
Matt Harrison
EMIT est 5.03.20

Time: 07:34:38
Sequence\#: 3
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 40\%
Pressure: 102.5 kPa

Frequency Range: Fundamental
Protocol /MCS/Modulation: FM 37.5k
Antenna type: Omni-Directional
Duty Cycle: Tested at 100%

Test Method: ANSI C63.10 (2013)
Test Mode: Continuously Transmitting
Test Setup: EUT is setup for Conducted Measurements. It is directly connected to the SA via an Attenuator.

Itron, Inc. WO\#: 107461 Sequence\#: 3 Date: 10/4/2022 15.247 (b) Power Output ($902-928 \mathrm{MHz}$ DTS) Test Lead: 120 V 60 Hz Antenna Port

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$

Measu	ement Data:	Reading listed by margin.					Test Lead: Antenna Port				
\#	Freq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1	915.062M	125.9	+10.1	+0.6			+0.0	136.6	137.0	-0.4	Anten
2	903.104M	123.5	+10.1	+0.6			+0.0	134.2	137.0	-2.8	Anten
3	926.686M	122.6	+10.1	+0.6			+0.0	133.3	137.0	-3.7	Anten

Test Setup Photo(s)

15.247(d) RF Conducted Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717

Customer:
Specification: Work Order \#: Test Type: Tested By:
Software:

Itron, Inc.
15.247(d) Conducted Spurious Emissions 107461
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/24/2022
Time: 14:00:25
Sequence\#: 1
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $20.9^{\circ} \mathrm{C}$
Humidity:49\%
Pressure: 101.1 kPa

Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-10 \mathrm{GHz}$
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

AM Modulation

Itron, Inc. WO\#: 107461 Sequence\#: 1 Date: 10/24/2022 15.247 (d) Conducted Spurious Emissions Test Lead: 120 V 60 Hz Antenna Port

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
T3	ANP07226	Attenuator	PE7004-6	$8 / 9 / 2021$	$8 / 9 / 2023$
	AN03803	Spectrum Analyzer	E4440A	$2 / 23 / 2022$	$2 / 23 / 2024$

Customer:
Specification: Work Order \#: Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(d) Conducted Spurious Emissions

107461
Conducted Emissions
Michael Atkinson
EMIT est 5.03.20

Date: 10/24/2022
Time: 14:22:17
Sequence\#: 3
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $20.9^{\circ} \mathrm{C}$
Humidity: 49\%
Pressure: 101.1 kPa
Test Method: ANSI C63.10 (2013)
Frequency: 9kHz-10GHz
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM12.5 Modulation

> | Itron, Inc. WO\#: 107461 Sequence\#: 3 Date: $10 / 24 / 2022$ |
| :--- |
| 15.247 (d) Conducted Spurious Emissions Test Lead: 120 V 60 Hz Antenna Port |

	Sweep Data		
0	Peak Readings	\times	
*	Average Readings	∇	
	Software Version: 5.03 .20		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
T3	ANP07226	Attenuator	PE7004-6	$8 / 9 / 2021$	$8 / 9 / 2023$
	AN03803	Spectrum Analyzer	E4440A	$2 / 23 / 2022$	$2 / 23 / 2024$

Measurement Data: Reading listed by margin. Test Lead: Antenna Port

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	Dist dable	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant		
1	6321.350 M	57.5	+0.0	+1.6	+5.5		+0.0	64.6	114.0	-49.4	Anten
2	1830.115 M	46.4	+10.2	+0.9	+5.9	+0.0	63.4	114.0	-50.6	Anten	
3	1806.100 M	45.5	+10.2	+0.9	+5.9	+0.0	62.5	114.0	-51.5	Anten	
4	1853.710 M	44.4	+10.2	+0.9	+5.9	+0.0	61.4	114.0	-52.6	Anten	
5	6405.350 M	46.5	+0.0	+1.6	+5.7	+0.0	53.8	114.0	-60.2	Anten	
6	6487.990 M	45.4	+0.0	+1.6	+5.9	+0.0	52.9	114.0	-61.1	Anten	

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(d) Conducted Spurious Emissions

107461
Conducted Emissions
Michael Atkinson
EMIT est 5.03.20

Date: 10/24/2022
Time: 14:42:47
Sequence\#: 5
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $20.9^{\circ} \mathrm{C}$
Humidity:49\%
Pressure: 101.1 kPa
Test Method: ANSI C63.10 (2013)
Frequency: 9kHz-10GHz
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM37.5 Modulation

Itron, Inc. WO\#: 107461 Sequence\#: 5 Date: 10/24/2022
 15.247(d) Conducted Spurious Emissions Test Lead: 120 V 60 Hz Antenna Port

	Sweep Data
Peak Readings	- Readings
*	Average Readings
	QP Readings
	Software Version: 5.03 .20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
T3	ANP07226	Attenuator	PE7004-6	$8 / 9 / 2021$	$8 / 9 / 2023$
	AN03803	Spectrum Analyzer	E4440A	$2 / 23 / 2022$	$2 / 23 / 2024$

LABORATORIES, INC.

Band Edge

Band Edge Summary

Limit applied: Max Power/100kHz-20dB.
Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Measured $(\mathrm{dB} \mu \mathrm{V})$	Limit $(\mathrm{dB} \boldsymbol{\mathrm { V })})$	Results
902	AM	79.1	<117.0	Pass
928	AM	76.4	<117.0	Pass
902	FM12.5	93.3	<114.0	Pass
928	FM12.5	81.5	<113.0	Pass
902	FM37.5	91.7	<114.0	Pass
928	FM37.5	81.6	<113.0	Pass

Note: Limit converted to $\mathrm{dB} \mu \mathrm{V}$ from dBm , for 50 ohm system $\mathrm{dBm}-107=\mathrm{dB} \mu \mathrm{V}$

Band Edge Summary

Limit applied: Max Power/100kHz - 20dB.
Operating Mode: Hopping

Frequency $(\mathbf{M H z})$	Modulation	Measured $(\mathbf{d B} \mu \mathrm{V})$	Limit $(\mathrm{dB} \mu \mathrm{V})$	Results
902	AM	83.3	<117.0	Pass
928	AM	84.4	<117.0	Pass
902	FM12.5	90.5	<114.0	Pass
928	FM12.5	80.8	<113.0	Pass
902	FM37.5	91.8	<114.0	Pass
928	FM37.5	79.7	<113.0	Pass

Note: Limit converted to $\mathrm{dB} \mu \mathrm{V}$ from dBm , for 50 ohm system $\mathrm{dBm}-107=\mathrm{dB} \mu \mathrm{V}$

Band Edge Plots

Single Channel (Low and High)

Hopping

Test Setup / Conditions / Data

Test Location:
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(d) Conducted Spurious Emissions

107461
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/24/2022
Time: 14:16:07
Sequence\#: 2
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $20.9^{\circ} \mathrm{C}$
Humidity:49\%
Pressure: 101.1 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

AM Modulation.
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
T3	ANP07226	Attenuator	PE7004-6	$8 / 9 / 2021$	$8 / 9 / 2023$
	AN03803	Spectrum Analyzer	E4440A	$2 / 23 / 2022$	$2 / 23 / 2024$

Measu	ement Data:	Reading listed by margin.				Test Lead: Antenna Port					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	dB	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	928.000 M	67.9	+10.1	+0.6	+5.8		+0.0	84.4	117.0	-32.6	Anten
									Hopping		
2	902.000M	66.8	+10.1	+0.6	+5.8		+0.0	83.3	117.0	-33.7	Anten
									Hopping		
3	902.000 M	62.6	+10.1	+0.6	+5.8		+0.0	79.1	117.0	-37.9	Anten
									SC		
4	928.000M	59.9	+10.1	+0.6	+5.8		+0.0	76.4	117.0	-40.6	Anten
									SC		

Laboratories, inc:

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. •22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(d) Conducted Spurious Emissions

107461
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/24/2022
Time: 14:37:43
Sequence\#: 4
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $20.9^{\circ} \mathrm{C}$
Humidity:49\%
Pressure: 101.1 kPa

Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM12.5 Modulation.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
T3	ANP07226	Attenuator	PE7004-6	$8 / 9 / 2021$	$8 / 9 / 2023$
	AN03803	Spectrum Analyzer	E4440A	$2 / 23 / 2022$	$2 / 23 / 2024$

Measu	ement Data	Reading listed by margin.				Test Lead: Antenna Port					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \hline \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V}$	$\begin{gathered} \text { Margin } \\ \text { dB } \end{gathered}$	Polar Ant
1	902.000M	76.8	+10.1	+0.6	+5.8		+0.0	93.3	114.0	-20.7	Anten
2	902.000M	74.0	+10.1	+0.6	+5.8		+0.0	90.5	114.0	-23.5	Anten
3	928.000M	65.0	+10.1	+0.6	+5.8		+0.0	81.5	113.0	-31.5	Anten
4	928.000M	64.3	+10.1	+0.6	+5.8		+0.0	80.8	113.0	-32.2	Anten

laboratories, inc:

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. •22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717 Itron, Inc.
15.247(d) Conducted Spurious Emissions

107461
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/24/2022
Time: 14:55:18
Sequence\#: 6
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $20.9^{\circ} \mathrm{C}$
Humidity:49\%
Pressure: 101.1 kPa

Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
EUT is continuously transmitting with modulation, connected to spectrum analyzer directly through appropriate attenuation.

FM37.5 Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	$766-10$	$6 / 8 / 2021$	$6 / 8 / 2023$
T2	ANP06008	Cable	Heliax	$9 / 2 / 2022$	$9 / 2 / 2024$
T3	ANP07226	Attenuator	PE7004-6	$8 / 9 / 2021$	$8 / 9 / 2023$
	AN03803	Spectrum Analyzer	E4440A	$2 / 23 / 2022$	$2 / 23 / 2024$

Measurement Data: \quad Reading listed by margin. Test Lead: Antenna Port

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \text { T3 } \\ \text { dB } \\ \hline \end{array}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	902.000 M	75.3	+10.1	+0.6	+5.8		+0.0	91.8	114.0	-22.2	Anten
2	902.000M	75.2	+10.1	+0.6	+5.8		+0.0	91.7	114.0	-22.3	Anten
3	928.000 M	65.1	+10.1	+0.6	+5.8		+0.0	81.6	113.0	-31.4	Anten
4	928.000 M	63.2	+10.1	+0.6	+5.8		+0.0	79.7	113.0	-33.3	Anten

Test Setup Photo(s)

15.247(d) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717

Customer:
Specification: Work Order \#: Test Type: Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461 Date: 10/19/2022
Maximized Emissions
Michael Atkinson / Matt Harrison
EMITest 5.03.20

Time: 07:24:23
Sequence\#: 1

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa

Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup:
Unit is on foam table 80 cm high for below 1 GHz and 150 cm High for above 1 GHz . Horizontal and Vertical antenna polarities investigated, worst-case reported; unit is continuously transmitting with modulation.

Configuration 1 (Attached SuperRaptor, Internal GPS, Attached Cellular).
AM Modulation, LMH channels

Itron, Inc. WO\#: 107461 Sequence\#: 1 Date: $10 / 19 / 2022$
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

——eadings
\times QP Readings
$\times \quad$ Ambient
$1-15.247$ (d) / 15.209 Radiated Spurious Emissions
O Peak Readings

* Average Readings
Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T10	AN03170	Duty Cycle		No Cal Required	No Cal Required
T11	ANDCCF	Correction Factor			

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

$\begin{array}{ll} \# & \text { Freq } \\ & \mathrm{MHz} \end{array}$	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \text { dB } \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \text { dB } \end{gathered}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$1 \quad 960.200 \mathrm{M}$	15.4	$\begin{array}{r} +0.0 \\ +30.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	+0.0	50.3	54.0	-3.7	Vert
24575.000 M	43.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	+0.0	47.5	54.0	-6.5	Vert
$\begin{aligned} & 37264.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	50.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.2 \end{array}$	+0.0	47.4	54.0	-6.6	Vert
$\wedge 7264.000 \mathrm{M}$	50.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.2 \end{array}$	+0.0	59.9	54.0	+5.9	Vert
5 3631.855M	44.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	47.3	54.0	-6.7	Vert
63660.000 M	43.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	46.3	54.0	-7.7	Vert
$7 \quad 263.800 \mathrm{M}$	16.9	$\begin{array}{r} +0.0 \\ +19.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \end{aligned}$	+0.0	38.3	46.0	-7.7	Horiz
8 3695.435M	43.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.9 \end{array}$	+0.0	46.3	54.0	-7.7	Vert
$\begin{aligned} & 97320.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	+0.0	46.1	54.0	-7.9	Vert
$\wedge 7320.000 \mathrm{M}$	48.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	+0.0	58.6	54.0	+4.6	Vert
$\begin{aligned} & 118172.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.0 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	45.1	54.0	-8.9	Vert
$\wedge 8172.000 \mathrm{M}$	46.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	57.6	54.0	+3.6	Vert
$\begin{aligned} & 13 \text { 8235.000M } \\ & \text { Ave } \end{aligned}$	45.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	44.8	54.0	-9.2	Vert
$\wedge 8235.000 \mathrm{M}$	45.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	57.3	54.0	+3.3	Vert

$\begin{aligned} & 157390.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	$+0.0$	43.7	54.0	-10.3	Vert
$\wedge 7390.400 \mathrm{M}$	46.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	$+0.0$	56.2	54.0	+2.2	Vert
$\begin{aligned} & 17 \text { 4619.000M } \\ & \text { Ave } \end{aligned}$	52.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +33.5 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	43.5	54.0	-10.5	Vert
$\wedge 4619.000 \mathrm{M}$	52.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	56.0	54.0	+2.0	Vert
19 2745.130M	44.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.7 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	$+0.0$	43.4	54.0	-10.6	Vert
$\begin{gathered} 204540.000 \mathrm{M} \\ \text { Ave } \end{gathered}$	52.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.1 \end{array}$	$+0.0$	43.2	54.0	-10.8	Vert
$\wedge 4540.000 \mathrm{M}$	52.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.1 \end{array}$	$+0.0$	55.7	54.0	+1.7	Vert
22 2724.090M	43.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.7 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.4 \end{array}$	$+0.0$	42.7	54.0	-11.3	Horiz
$\begin{aligned} & 235448.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	42.5	54.0	-11.5	Vert
$\wedge 5448.000 \mathrm{M}$	48.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	55.0	54.0	+1.0	Vert
$\begin{gathered} 25 \text { 8314.200M } \\ \text { Ave } \end{gathered}$	42.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.2 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.7 \end{array}$	$+0.0$	42.2	54.0	-11.8	Vert
$\wedge 8314.200 \mathrm{M}$	42.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.2 \\ -34.9 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +38.7 \end{array}$	$+0.0$	54.7	54.0	+0.7	Vert
$\begin{aligned} & 27 \text { 9150.000M } \\ & \text { Ave } \end{aligned}$	42.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.0 \\ -34.4 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.7 \end{array}$	$+0.0$	41.3	54.0	-12.7	Vert
$\wedge 9150.000 \mathrm{M}$	42.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.0 \\ -34.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.7 \end{array}$	$+0.0$	53.8	54.0	-0.2	Vert
$\begin{aligned} & \hline 29 \text { 9080.000M } \\ & \text { Ave } \end{aligned}$	42.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	+0.0	40.6	54.0	-13.4	Vert
$\wedge 9080.000 \mathrm{M}$	42.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	$+0.0$	53.1	54.0	-0.9	Vert
31 6355.740M	55.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} \hline+4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.1 \end{array}$	$+0.0$	63.2	112.0	-48.8	Vert

32	6466.825M	54.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	$+0.0$	61.6	112.0	-50.4	Vert
33	6404.530M	53.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	+0.0	60.6	112.0	-51.4	Vert
34	5542.705M	50.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.6 \end{array}$	+0.0	57.2	112.0	-54.8	Vert
35	5490.025M	48.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	55.1	112.0	-56.9	Vert
36	1816.210M	50.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.4 \end{array}$	+0.0	46.6	112.0	-65.4	Vert
37	1847.650M	49.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.6 \end{array}$	$+0.0$	45.6	112.0	-66.4	Vert
38	43.600 M	29.6	$\begin{array}{r} +0.0 \\ +14.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	44.8	112.0	-67.2	Vert
39	499.500M	17.2	$\begin{array}{r} +0.0 \\ +24.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \end{aligned}$	+0.0	44.3	112.0	-67.7	Horiz
40	56.200 M	30.2	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	43.5	112.0	-68.5	Vert
41	1830.000M	45.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	$+0.0$	42.0	112.0	-70.0	Vert
42	159.000M	20.1	$\begin{array}{r} +0.0 \\ +16.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \end{aligned}$	+0.0	37.9	112.0	-74.1	Vert
43	98.900M	22.7	$\begin{array}{r} +0.0 \\ +13.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \end{aligned}$	+0.0	37.6	112.0	-74.4	Vert
44	182.300M	18.4	$\begin{array}{r} +0.0 \\ +15.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \end{aligned}$	+0.0	35.7	112.0	-76.3	Horiz
45	145.400M	20.0	$\begin{array}{r} +0.0 \\ +14.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	+0.0	35.4	112.0	-76.6	Horiz
46	86.300M	21.7	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \end{aligned}$	$+0.0$	35.2	112.0	-76.8	Vert
47	86.300M	21.4	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \end{aligned}$	$+0.0$	34.9	112.0	-77.1	Vert
48	144.500M	19.5	$\begin{array}{r} +0.0 \\ +14.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	+0.0	34.9	112.0	-77.1	Horiz

Page 61 of 185

49	61.000 M	21.2	$\begin{array}{r} +0.0 \\ +12.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$+0.0$	34.8	112.0	-77.2	Horiz
50	141.600 M	18.1	$\begin{array}{r} +0.0 \\ +13.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	$+0.0$	33.4	112.0	-78.6	Vert
51	9.846 k	77.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.1 \\ +16.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	14.0	112.0	-98.0	Vert
52	29.224 M	45.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +3.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	9.3	112.0	-102.7	Vert
53	23.134 M	38.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	4.4	112.0	-107.6	Vert
54	29.910 M	39.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +3.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	3.5	112.0	-108.5	Vert

LABORATORIES, INC.

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717

Customer:
Specification: Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Matt Harrison
EMIT est 5.03.20

Date: 10/12/2022
Time: 11:46:45
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 1 (Attached SuperRaptor, Internal GPS, Attached Cellular). FM 12.5k Modulation, LMH channels.

Itron, Inc. WO\#: 107461 Sequence\#\#: 2 Date: 10/12/2022
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E444OA	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T5	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T6	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T7	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T8	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T9	AN03170	Duty Cycle		No Cal Required	No Cal Required
T10	ANDCCF	Correction Factor			

$\begin{gathered} 167414.400 \mathrm{M} \\ \text { Ave } \end{gathered}$	44.3	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	+0.0	41.4	54.0	-12.6	Vert
$\wedge 7414.400 \mathrm{M}$	44.3	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	+0.0	53.9	54.0	-0.1	Vert
$\begin{aligned} & 18 \text { 8127.390M } \\ & \text { Ave } \end{aligned}$	42.0	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$+0.0$	40.6	54.0	-13.4	Vert
$\wedge 8127.390 \mathrm{M}$	42.0	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$+0.0$	53.1	54.0	-0.9	Vert
$\begin{gathered} 204514.995 \mathrm{M} \\ \text { Ave } \end{gathered}$	45.4	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	36.4	54.0	-17.6	Vert
$\wedge ~ 4514.995 \mathrm{M}$	45.4	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	48.9	54.0	-5.1	Vert
22 6321.635M	53.7	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$+0.0$	61.2	109.0	-47.8	Vert
23 6404.815M	52.1	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$+0.0$	59.6	109.0	-49.4	Vert
24 6487.135M	51.6	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$+0.0$	59.2	109.0	-49.8	Vert
257224.415 M	46.2	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.6 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	+0.0	55.0	109.0	-54.0	Vert
265490.400 M	45.9	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	52.7	109.0	-56.3	Vert
27 5561.190M	45.6	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$+0.0$	52.3	109.0	-56.7	Vert
28 1831.710M	55.4	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	51.6	109.0	-57.4	Vert
291852.405 M	47.4	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.6 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	+0.0	43.7	109.0	-65.3	Vert
$30 \quad 56.200 \mathrm{M}$	30.3	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +12.4 \\ +0.0 \end{array}$	$+0.0$	43.6	109.0	-65.4	Vert
3156.200 M	29.9	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+12.4 \\ +0.0 \end{array}$	+0.0	43.2	109.0	-65.8	Vert
32 1806.140M	46.9	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	42.9	109.0	-66.1	Vert

33	59.100M	28.5	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+12.5 \\ +0.0 \end{array}$	+0.0	42.0	109.0	-67.0	Vert
34	160.000M	21.8	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+16.1 \\ +0.0 \end{array}$	+0.0	39.4	109.0	-69.6	Vert
35	98.900 M	23.0	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +13.7 \\ +0.0 \end{array}$	+0.0	37.9	109.0	-71.1	Vert
36	143.500M	20.8	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+14.0 \\ +0.0 \end{array}$	+0.0	36.2	109.0	-72.8	Horiz
37	182.300M	18.7	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+15.7 \\ +0.0 \end{array}$	+0.0	36.0	109.0	-73.0	Horiz
38	145.400M	20.4	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+14.0 \\ +0.0 \end{array}$	+0.0	35.8	109.0	-73.2	Horiz
39	57.200 M	22.1	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+12.4 \\ +0.0 \end{array}$	+0.0	35.4	109.0	-73.6	Horiz
40	101.800M	18.5	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+14.0 \\ +0.0 \end{array}$	+0.0	33.7	109.0	-75.3	Horiz
41	29.224 M	44.2	$\begin{aligned} & \hline+0.1 \\ & +3.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-40.0	8.5	109.0	-100.5	Vert
42	23.134M	37.6	$\begin{aligned} & +0.1 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	4.0	109.0	-105.0	Vert
43	29.910 M	39.2	$\begin{aligned} & \hline+0.1 \\ & +3.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-40.0	3.2	109.0	-105.8	Vert
44	45.096k	45.9	$\begin{array}{r} +0.1 \\ +10.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-23.9	109.0	-132.9	Vert

Test Location: CKC Laboratories, Inc. •22116 23rd Drive SE, Suite A • Bethel, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Matt Harrison
EMIT est 5.03.20

Date: 10/12/2022
Time: 12:56:09
Sequence\#: 3

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 1 (Attached SuperRaptor, Internal GPS, Attached Cellular). FM 37.5k Modulation, LMH channels.

Itron, Inc. WO\#: 107461 Sequence\#: 3 Date: 10/12/2022
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T10	AN03170	Duty Cycle		No Cal Required	No Cal Required
T11	ANDCCF	Correction Factor			

Measurement Data:		Reading listed by margin.				Test Distance: 3 Meters					
\#	FreqMHz	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	$\mathrm{T} 10$	$\mathrm{T} 11$						
		$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
	4575.400M	44.2	+0.0	+0.6	+3.5	+0.0	+0.0	47.8	54.0	-6.2	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.4	+0.5	+0.0						
	3707.320M	44.3	+0.0	+0.6	+3.3	+0.0	+0.0	46.9	54.0	-7.1	Vert
			+0.0	+0.0	-33.8	+32.0					
			+0.3	+0.2	+0.0						
3	3659.925 M	44.2	+0.0	+0.6	+3.3	+0.0	+0.0	46.6	54.0	-7.4	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.2	+0.0						
	7320.000 M	49.1	+0.0	+1.3	+4.5	+0.0	+0.0	46.3	54.0	-7.7	Vert
	Ave		+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+12.5						
\wedge	7320.000 M	49.1	+0.0	+1.3	+4.5	+0.0	+0.0	58.8	54.0	+4.8	Vert
			+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+0.0						
6	3611.900M	43.6	+0.0	+0.5	+3.2	+0.0	+0.0	45.9	54.0	-8.1	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+0.0						
7	8235.000M	45.9	+0.0	+1.2	+5.1	+0.0	+0.0	44.9	54.0	-9.1	Vert
	Ave		+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+12.5						
\wedge	8235.000M	45.9	+0.0	+1.2	+5.1	+0.0	+0.0	57.4	54.0	+3.4	Vert
			+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+0.0						
9	2709.205 M	44.0	+0.0	+0.5	+2.7	+0.0	+0.0	43.3	54.0	-10.7	Vert
			+0.0	+0.0	-34.1	+29.5					
			+0.5	+0.2	+0.0						
10	4634.000M	51.9	+0.0	+0.6	+3.6	+0.0	+0.0	43.2	54.0	-10.8	Vert
	Ave		+0.0	+0.0	-33.6	+32.4					
			+0.4	+0.4	+12.5						
\wedge	4634.000M	51.9	+0.0	+0.6	+3.6	+0.0	+0.0	55.7	54.0	+1.7	Vert
			+0.0	+0.0	-33.6	+32.4					
			+0.4	+0.4	+0.0						
12	2745.135M	43.6	+0.0	+0.5	+2.7	+0.0	+0.0	42.8	54.0	-11.2	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
13	2780.310M	43.2	+0.0	+0.5	+2.7	+0.0	+0.0	42.4	54.0	-11.6	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
$\begin{aligned} & 147414.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$		32.7	+0.0	+1.3	+4.4	+0.0	+0.0	42.3	54.0	-11.7	Vert
			+0.0	+0.0	-34.9	+37.4					
			+0.7	+0.7	+0.0						
\wedge	7414.400M	43.8	+0.0	+1.3	+4.4	+0.0	$+0.0$	53.4	54.0	-0.6	Vert
			+0.0	+0.0	-34.9	+37.4					
			+0.7	+0.7	+0.0						

$\begin{aligned} & 165418.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	45.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	40.2	54.0	-13.8	Vert
$\wedge 5418.000 \mathrm{M}$	45.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	52.7	54.0	-1.3	Vert
$\begin{aligned} & 18 \text { 8127.000M } \\ & \text { Ave } \end{aligned}$	41.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	40.2	54.0	-13.8	Vert
$\wedge 8127.000 \mathrm{M}$	41.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	52.7	54.0	-1.3	Vert
$\begin{aligned} & 204515.080 \mathrm{M} \\ & \text { Ave } \end{aligned}$	44.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	+0.0	35.9	54.0	-18.1	Vert
$\wedge ~ 4515.080 \mathrm{M}$	44.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	$+0.0$	48.4	54.0	-5.6	Vert
22 6321.365M	52.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \end{array}$	$+0.0$	60.4	109.0	-48.6	Vert
23 6404.910M	51.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	$+0.0$	59.3	109.0	-49.7	Vert
24 6487.405M	51.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	+0.0	58.8	109.0	-50.2	Vert
257224.040 M	45.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.6 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	$+0.0$	54.4	109.0	-54.6	Vert
265560.760 M	45.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	+0.0	52.4	109.0	-56.6	Vert
275490.385 M	45.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	52.0	109.0	-57.0	Vert
28 1831.100M	51.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	$+0.0$	47.8	109.0	-61.2	Vert
$29 \quad 57.200 \mathrm{M}$	29.9	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	43.2	109.0	-65.8	Vert
$30 \quad 56.200 \mathrm{M}$	29.6	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$+0.0$	42.9	109.0	-66.1	Vert
$31 \quad 1853.515 \mathrm{M}$	46.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.7 \end{array}$	+0.0	42.9	109.0	-66.1	Vert
32 1805.650M	45.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	$+0.0$	41.9	109.0	-67.1	Vert

Page 71 of 185

33	160.000M	20.9	$\begin{array}{r} +0.0 \\ +16.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	+0.0	38.5	109.0	-70.5	Vert
34	98.900 M	23.1	$\begin{array}{r} +0.0 \\ +13.7 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \end{aligned}$	+0.0	38.0	109.0	-71.0	Vert
35	98.900 M	22.8	$\begin{array}{r} +0.0 \\ +13.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \end{aligned}$	+0.0	37.7	109.0	-71.3	Vert
36	57.200 M	24.1	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	37.4	109.0	-71.6	Horiz
37	184.200M	19.6	$\begin{array}{r} +0.0 \\ +15.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \end{aligned}$	+0.0	36.9	109.0	-72.1	Vert
38	143.500M	20.8	$\begin{array}{r} +0.0 \\ +14.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	+0.0	36.2	109.0	-72.8	Horiz
39	142.500M	20.6	$\begin{array}{r} +0.0 \\ +13.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \end{aligned}$	+0.0	35.9	109.0	-73.1	Horiz
40	29.224 M	43.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +3.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	7.7	109.0	-101.3	Perp/
41	23.134M	38.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	5.2	109.0	-103.8	Perp/
42	29.910 M	35.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +3.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-0.4	109.0	-109.4	Perp/
43	48.057 k	47.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-22.9	109.0	-131.9	Perp/
44	47.634k	46.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-23.4	109.0	-132.4	Perp/

Test Location: CKC Laboratories, Inc. •22116 23rd Drive SE, Suite A • Bethel, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Matt Harrison
EMIT est 5.03.20

Date: 10/15/2022
Time: 12:05:07
Sequence\#: 4

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $22^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2 (Attached SuperRaptor, Remote GPS, Remote Cellular).
AM Modulation, LMH channels.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T10	AN03170	Duty Cycle		No Cal Required	No Cal Required
T11	ANDCCF	Correction Factor			

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Measurement Data: \& \multicolumn{4}{|r|}{Reading listed by margin.} \& \multicolumn{6}{|c|}{Test Distance: 3 Meters}

\hline \# Freq \& \multirow[t]{4}{*}{Rdng
$$
\mathrm{dB} \mu \mathrm{~V}
$$} \& T1 \& T2 \& T3 \& T4 \& \multirow[t]{2}{*}{Dist} \& \multirow[t]{2}{*}{Corr} \& \multirow[t]{2}{*}{Spec} \& \multirow[t]{2}{*}{Margin} \& \multirow[t]{2}{*}{Polar}

\hline \multirow[t]{3}{*}{Freq

MHz} \& \& T5 \& T6 \& T7 \& \multirow[t]{2}{*}{T8} \& \& \& \& \&

\hline \& \& T9 \& $$
\mathrm{T} 10
$$ \& T11 \& \& \& \& \& \&

\hline \& \& dB \& $$
\mathrm{dB}
$$ \& \& \multirow[t]{2}{*}{+0.0} \& Table \& $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ \& $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ \& dB \& Ant

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 17264.170 \mathrm{M} \\
& \text { Ave }
\end{aligned}
$$} \& \multirow[t]{3}{*}{50.4} \& +0.0 \& +1.2 \& +4.5 \& \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{46.9} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{-7.1} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -34.9 \& \multirow[t]{2}{*}{+37.2} \& \& \& \& \&

\hline \& \& +0.7 \& +0.3 \& +12.5 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 7264.170 \mathrm{M}$} \& \multirow[t]{3}{*}{50.4} \& +0.0 \& +1.2 \& +4.5 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
+0.0 \\
+37.2
\end{array}
$$} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{59.4} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{+5.4} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -34.9 \& \& \& \& \& \&

\hline \& \& +0.7 \& +0.3 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{3 2744.985M} \& \multirow[t]{3}{*}{47.4} \& +0.0 \& +0.5 \& +2.7 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
+0.0 \\
+29.3
\end{array}
$$} \& \multirow[t]{3}{*}{$+0.0$} \& \multirow[t]{3}{*}{46.6} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{-7.4} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -34.1 \& \& \& \& \& \&

\hline \& \& +0.5 \& +0.3 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 47320.065 \mathrm{M} \\
& \text { Ave }
\end{aligned}
$$} \& \multirow[t]{3}{*}{49.4} \& +0.0 \& +1.3 \& +4.5 \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
+0.0 \\
+37.5
\end{array}
$$
\]} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{46.6} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{-7.4} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -34.9 \& \& \& \& \& \&

\hline \& \& +0.7 \& +0.6 \& +12.5 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 7320.065 \mathrm{M}$} \& \multirow[t]{3}{*}{49.4} \& +0.0 \& +1.3 \& +4.5 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
+0.0 \\
+37.5
\end{array}
$$} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{59.1} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{+5.1} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -34.9 \& \& \& \& \& \&

\hline \& \& +0.7 \& +0.6 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{63695.100 M} \& \multirow[t]{3}{*}{44.0} \& +0.0 \& +0.6 \& +3.3 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
+0.0 \\
+31.9
\end{array}
$$} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{46.5} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{-7.5} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -33.8 \& \& \& \& \& \&

\hline \& \& +0.3 \& +0.2 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 77390.365 \mathrm{M} \\
& \text { Ave }
\end{aligned}
$$} \& \multirow[t]{3}{*}{48.9} \& +0.0 \& +1.3 \& +4.5 \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
+0.0 \\
+37.4
\end{array}
$$
\]} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{46.1} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{-7.9} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -34.9 \& \& \& \& \& \&

\hline \& \& +0.7 \& +0.7 \& +12.5 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 7390.365 \mathrm{M}$} \& \multirow[t]{3}{*}{48.9} \& +0.0 \& +1.3 \& +4.5 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
+0.0 \\
+37.4
\end{array}
$$} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{58.6} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{+4.6} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -34.9 \& \& \& \& \& \&

\hline \& \& +0.7 \& +0.7 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{94574.960 M} \& \multirow[t]{3}{*}{42.1} \& +0.0 \& +0.6 \& +3.5 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
+0.0 \\
+32.2
\end{array}
$$} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{45.7} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{-8.3} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -33.6 \& \& \& \& \& \&

\hline \& \& +0.4 \& +0.5 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 108171.355 \mathrm{M} \\
& \text { Ave }
\end{aligned}
$$} \& \multirow[t]{3}{*}{46.4} \& +0.0 \& +1.2 \& +5.1 \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
+0.0 \\
+38.6
\end{array}
$$
\]} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{45.2} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{-8.8} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -35.0 \& \& \& \& \& \&

\hline \& \& +0.7 \& +0.7 \& +12.5 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 8171.355 \mathrm{M}$} \& \multirow[t]{3}{*}{46.4} \& +0.0 \& +1.2 \& +5.1 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
+0.0 \\
+38.6
\end{array}
$$} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{57.7} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{+3.7} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -35.0 \& \& \& \& \& \&

\hline \& \& +0.7 \& +0.7 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 128235.065 \mathrm{M} \\
& \text { Ave }
\end{aligned}
$$} \& \multirow[t]{3}{*}{45.1} \& +0.0 \& +1.2 \& +5.1 \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
+0.0 \\
+38.6
\end{array}
$$
\]} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{44.1} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{-9.9} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -34.9 \& \& \& \& \& \&

\hline \& \& +0.7 \& +0.8 \& +12.5 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 8235.065 \mathrm{M}$} \& \multirow[t]{3}{*}{45.1} \& +0.0 \& +1.2 \& +5.1 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
+0.0 \\
+38.6
\end{array}
$$} \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{56.6} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{+2.6} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -34.9 \& \& \& \& \& \&

\hline \& \& +0.7 \& +0.8 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{14 2771.205M} \& \multirow[t]{3}{*}{43.7} \& +0.0 \& +0.5 \& +2.7 \& +0.0 \& \multirow[t]{3}{*}{+0.0} \& \multirow[t]{3}{*}{42.9} \& \multirow[t]{3}{*}{54.0} \& \multirow[t]{3}{*}{-11.1} \& \multirow[t]{3}{*}{Vert}

\hline \& \& +0.0 \& +0.0 \& -34.1 \& \multirow[t]{2}{*}{$$
+29.3
$$} \& \& \& \& \&

\hline \& \& +0.5 \& +0.3 \& +0.0 \& \& \& \& \& \&

\hline
\end{tabular}

$\begin{aligned} & 15 \text { 4618.965M } \\ & \text { Ave } \end{aligned}$	50.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	42.1	54.0	-11.9	Vert
$\wedge 4618.965 \mathrm{M}$	50.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	54.6	54.0	+0.6	Vert
$\begin{aligned} & 17 \text { 4540.170M } \\ & \text { Ave } \end{aligned}$	49.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +33.5 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.1 \end{array}$	+0.0	40.7	54.0	-13.3	Vert
$\wedge 4540.170 \mathrm{M}$	49.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.1 \end{array}$	$+0.0$	53.2	54.0	-0.8	Vert
$\begin{aligned} & 19 \text { 8314.165M } \\ & \text { Ave } \end{aligned}$	41.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.2 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.7 \end{array}$	$+0.0$	40.7	54.0	-13.3	Vert
$\wedge 8314.165 \mathrm{M}$	41.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.2 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.7 \end{array}$	+0.0	53.2	54.0	-0.8	Vert
$\begin{aligned} & 215448.170 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	40.3	54.0	-13.7	Vert
$\wedge 5448.170 \mathrm{M}$	46.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	52.8	54.0	-1.2	Vert
$\begin{aligned} & 23 \text { 9079.940M } \\ & \text { Ave } \end{aligned}$	41.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	$+0.0$	40.1	54.0	-13.9	Vert
$\wedge 9079.940 \mathrm{M}$	41.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	+0.0	52.6	54.0	-1.4	Vert
$\begin{aligned} & 25 \text { 2723.735M } \\ & \text { Ave } \end{aligned}$	52.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.7 \\ -34.1 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.4 \end{array}$	$+0.0$	38.8	54.0	-15.2	Vert
$\wedge 2723.735 \mathrm{M}$	52.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.7 \\ -34.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +29.4 \end{array}$	$+0.0$	51.3	54.0	-2.7	Vert
$\begin{aligned} & 27 \text { 3660.000M } \\ & \text { Ave } \end{aligned}$	47.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	$+0.0$	37.0	54.0	-17.0	Vert
$\wedge 3660.000 \mathrm{M}$	47.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	$+0.0$	49.5	54.0	-4.5	Vert
$\begin{gathered} 293631.980 \mathrm{M} \\ \text { Ave } \end{gathered}$	46.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	36.4	54.0	-17.6	Vert
$\wedge 3631.980 \mathrm{M}$	46.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	$+0.0$	48.9	54.0	-5.1	Vert
316355.850 M	55.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.1 \end{array}$	$+0.0$	63.1	112.0	-48.9	Vert

32	6466.635M	52.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	+0.0	60.4	112.0	-51.6	Vert
33	6404.935M	51.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	+0.0	59.1	112.0	-52.9	Vert
34	5542.880 M	46.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.6 \end{array}$	+0.0	53.2	112.0	-58.8	Vert
35	5489.995M	45.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	52.1	112.0	-59.9	Vert
36	1816.025M	55.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.4 \end{array}$	+0.0	51.8	112.0	-60.2	Vert
37	1847.690M	55.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.6 \end{array}$	+0.0	51.8	112.0	-60.2	Vert
38	1829.945M	54.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	+0.0	50.2	112.0	-61.8	Vert
39	46.500M	32.6	$\begin{array}{r} +0.0 \\ +13.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	46.6	112.0	-65.4	Vert
40	52.300 M	33.0	$\begin{array}{r} +0.0 \\ +12.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	46.2	112.0	-65.8	Vert
41	51.300 M	32.4	$\begin{array}{r} +0.0 \\ +12.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	45.6	112.0	-66.4	Vert
42	54.200 M	31.5	$\begin{array}{r} +0.0 \\ +12.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	44.7	112.0	-67.3	Vert
43	53.300 M	29.0	$\begin{array}{r} +0.0 \\ +12.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	42.2	112.0	-69.8	Horiz
44	10.974 k	81.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +15.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	17.4	112.0	-94.6	Perp/
45	23.134 M	38.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	5.2	112.0	-106.8	Perp/

46	19.702 M	37.2	+0.0	+0.1	+0.2	+0.0	-40.0	3.9	112.0	-108.1	Perp/	
			+0.0	+6.4	+0.0	+0.0						
			+0.0	+0.0	+0.0							
47	25.881 M	36.7	+0.0	+0.1	+0.2	+0.0	-40.0	2.5	112.0	-109.5	Perp/	
			+0.0	+5.5	+0.0	+0.0						
48	43.686 k	61.7	+0.0	+0.0	+0.0		+0.1	+0.0	+0.0	-80.0	-8.1	112.0
			+0.0	+10.1	+0.0	+0.0		-120.1	Perp/			
			+0.0	+0.0	+0.0							
49	73.860 k	53.7	+0.0	+0.1	+0.0	+0.0	-80.0	-16.7	112.0	-128.7	Perp/	
			+0.0	+9.5	+0.0	+0.0						
			+0.0	+0.0	+0.0							

Test Location: CKC Laboratories, Inc. •22116 23rd Drive SE, Suite A • Bethel, WA 98021•(425) 402-1717
Customer:
Specification: Work Order \#: Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Matt Harrison
EMIT est 5.03.20

Date: 10/15/2022
Time: 12:52:04
Sequence\#: 5

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $22^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2 (Attached SuperRaptor, Remote GPS, Remote Cellular).
FM 12.5k Modulation, LMH channels.

Itron, Inc. WO\#: 107461 Sequence\#: 5 Date: $10 / 15 / 2022$
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
\times QP Readings

- Ambient

1-15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Software Version: 5.03 .20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T10	AN03170	Duty Cycle		No Cal Required	No Cal Required
T11	ANDCCF	Correction Factor			

Measurement Data:		Reading listed by margin.				Test Distance: 3 Meters					
\#	FreqMHz	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
		$\mathrm{dB} \mu \mathrm{V}$	T9	$\mathrm{T} 10$	$\mathrm{T} 11$			$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, V/	dB	Ant
	4514.925M		+0.0	+0.6	+35			48.0	54.0		Vert
	4514.925 M	44.5	+0.0	+0.6	+3.5	+0.0	+0.0	48.0	54.0	-6.0	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.3	+0.5	+0.0						
	3707.060M	44.6	+0.0	+0.6	+3.3	+0.0	+0.0	47.2	54.0	-6.8	Vert
			+0.0	+0.0	-33.8	+32.0					
			+0.3	+0.2	+0.0						
	3612.135 M	44.5	+0.0	+0.5	+3.2	+0.0	+0.0	46.8	54.0	-7.2	Vert
			+0.0	+0.0	-33.8	+31.7					
			+0.4	+0.3	+0.0						
4	4575.445M	42.7	+0.0	+0.6	+3.5	+0.0	+0.0	46.3	54.0	-7.7	Vert
			+0.0	+0.0	-33.6	+32.2					
			+0.4	+0.5	+0.0						
	7320.000M	48.8	+0.0	+1.3	+4.5	+0.0	+0.0	46.0	54.0	-8.0	Vert
	Ave		+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+12.5						
	7320.000M	48.8	+0.0	+1.3	+4.5	+0.0	+0.0	58.5	54.0	+4.5	Vert
			+0.0	+0.0	-34.9	+37.5					
			+0.7	+0.6	+0.0						
7	2745.070M	44.9	+0.0	+0.5	+2.7	+0.0	+0.0	44.1	54.0	-9.9	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
	8235.000M	44.7	+0.0	+1.2	+5.1	+0.0	+0.0	43.7	54.0	-10.3	Vert
	Ave		+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+12.5						
	8235.000 M	44.7	+0.0	+1.2	+5.1	+0.0	+0.0	56.2	54.0	+2.2	Vert
			+0.0	+0.0	-34.9	+38.6					
			+0.7	+0.8	+0.0						
10	2780.670M	43.4	+0.0	+0.5	+2.7	+0.0	+0.0	42.6	54.0	-11.4	Vert
			+0.0	+0.0	-34.1	+29.3					
			+0.5	+0.3	+0.0						
11 2709.015M		43.1	+0.0	+0.5	+2.7	+0.0	+0.0	42.4	54.0	-11.6	Vert
			+0.0	+0.0	-34.1	+29.5					
			+0.5	+0.2	+0.0						
$\begin{aligned} & 128127.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$		42.1	+0.0	+1.2	+5.1	+0.0	+0.0	40.7	54.0	-13.3	Vert
			+0.0	+0.0	-35.1	+38.6					
			+0.7	+0.6	+12.5						
$\wedge 8127.000 \mathrm{M}$		42.1	+0.0	+1.2	+5.1	+0.0	+0.0	53.2	54.0	-0.8	Vert
			+0.0	+0.0	-35.1	+38.6					
			+0.7	+0.6	+0.0						
$\begin{aligned} & 145418.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$		45.0	+0.0	+0.8	+4.0	+0.0	+0.0	39.4	54.0	-14.6	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.6	+0.4	+12.5						
$\wedge 5418.000 \mathrm{M}$		45.0	+0.0	+0.8	+4.0	+0.0	+0.0	51.9	54.0	-2.1	Vert
			+0.0	+0.0	-33.6	+34.7					
			+0.6	+0.4	+0.0						

Page 81 of 185

$\begin{aligned} & 164633.815 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	39.0	54.0	-15.0	Vert
$\wedge 4633.815 \mathrm{M}$	47.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	51.5	54.0	-2.5	Vert
$\begin{aligned} & 18 \text { 3659.610M } \\ & \text { Ave } \end{aligned}$	46.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	36.2	54.0	-17.8	Vert
$\wedge 3659.610 \mathrm{M}$	46.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	48.7	54.0	-5.3	Vert
206321.500 M	51.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \end{array}$	+0.0	59.4	112.0	-52.6	Vert
21 6405.250M	51.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	+0.0	58.9	112.0	-53.1	Vert
22 6487.205M	49.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	$+0.0$	56.7	112.0	-55.3	Vert
23 7224.675M	44.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.6 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	+0.0	53.2	112.0	-58.8	Vert
245490.190 M	45.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	52.1	112.0	-59.9	Vert
255560.870 M	44.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	+0.0	51.5	112.0	-60.5	Vert
261829.985 M	53.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	$+0.0$	49.2	112.0	-62.8	Vert
27 1853.460M	50.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.7 \end{array}$	$+0.0$	47.1	112.0	-64.9	Vert
2851.300 M	32.9	$\begin{array}{r} +0.0 \\ +12.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	46.1	112.0	-65.9	Vert
$29 \quad 45.500 \mathrm{M}$	31.2	$\begin{array}{r} +0.0 \\ +13.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$+0.0$	45.6	112.0	-66.4	Vert
$30 \quad 1806.295 \mathrm{M}$	48.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	$+0.0$	44.6	112.0	-67.4	Vert
3164.900 M	30.7	$\begin{array}{r} +0.0 \\ +12.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$+0.0$	44.5	112.0	-67.5	Vert
32 63.000M	29.6	$\begin{array}{r} +0.0 \\ +12.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	43.3	112.0	-68.7	Vert

Page 82 of 185

33	23.134M	38.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +6.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	5.3	112.0	-106.7	Perp/
34	19.702M	37.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +6.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	3.9	112.0	-108.1	Perp/
35	25.702M	36.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	2.8	112.0	-109.2	Perp/
36	18.588k	57.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +13.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-9.7	112.0	-121.7	Perp/
37	19.434k	45.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +12.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-80.0	-21.4	112.0	-133.4	Perp/
38	43.686k	47.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +10.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-22.0	112.0	-134.0	Perp/
39	51.723 k	44.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +9.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-25.5	112.0	-137.5	Perp/
40	45.378 k	43.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +10.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-25.9	112.0	-137.9	Perp/

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Matt Harrison
EMIT est 5.03.20

Date: 10/17/2022
Time: 06:52:18
Sequence\#: 6

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $22^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2 (Attached SuperRaptor, Remote GPS, Remote Cellular).
FM 37.5k Modulation, LMH channels.

Itron, Inc. WO\#: 107461 Sequence\#: 6 Date: 10/17/2022
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03 .20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T10	AN03170	Duty Cycle		No Cal Required	No Cal Required
T11	ANDCCF	Correction Factor			

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { T2 } \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
13707.200 M	45.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +32.0 \end{array}$	+0.0	48.2	54.0	-5.8	Vert
2 4514.970M	44.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	+0.0	48.2	54.0	-5.8	Vert
$\begin{aligned} & 37320.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	50.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	$+0.0$	47.2	54.0	-6.8	Vert
$\wedge 7320.000 \mathrm{M}$	50.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	+0.0	59.7	54.0	+5.7	Vert
54574.930 M	43.0	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	+0.0	46.6	54.0	-7.4	Vert
$\begin{aligned} & 6 \text { 8235.000M } \\ & \text { Ave } \end{aligned}$	45.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	44.8	54.0	-9.2	Vert
$\wedge 8235.000 \mathrm{M}$	45.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	57.3	54.0	+3.3	Vert
8 2709.160M	43.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} \hline+2.7 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.5 \end{array}$	+0.0	42.9	54.0	-11.1	Vert
9 2780.250M	43.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} \hline+2.7 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	+0.0	42.6	54.0	-11.4	Vert
$10 \quad 2744.990 \mathrm{M}$	42.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.7 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	+0.0	41.9	54.0	-12.1	Vert
$\begin{aligned} & 118127.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	42.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	40.9	54.0	-13.1	Vert
$\wedge 8127.000 \mathrm{M}$	42.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	53.4	54.0	-0.6	Vert
$\begin{aligned} & 135418.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	40.7	54.0	-13.3	Vert
$\wedge 5418.000 \mathrm{M}$	46.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	53.2	54.0	-0.8	Vert

Page 86 of 185

$\begin{aligned} & 154634.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	40.5	54.0	-13.5	Vert
$\wedge ~ 4634.000 \mathrm{M}$	49.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+3.6 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	53.0	54.0	-1.0	Vert
$\begin{aligned} & 17 \text { 9150.000M } \\ & \text { Ave } \end{aligned}$	41.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.0 \\ -34.4 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.7 \end{array}$	$+0.0$	40.1	54.0	-13.9	Vert
$\wedge 9150.000 \mathrm{M}$	41.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.0 \\ -34.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.7 \end{array}$	$+0.0$	52.6	54.0	-1.4	Vert
$\begin{aligned} & 197414.200 \mathrm{M} \\ & \text { Ave } \end{aligned}$	42.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	+0.0	39.7	54.0	-14.3	Vert
$\wedge 7414.200 \mathrm{M}$	42.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	+0.0	52.2	54.0	-1.8	Vert
$\begin{aligned} & 21 \text { 3660.000M } \\ & \text { Ave } \end{aligned}$	48.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	$+0.0$	38.5	54.0	-15.5	Vert
$\wedge 3660.000 \mathrm{M}$	48.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	$+0.0$	51.0	54.0	-3.0	Vert
$\begin{aligned} & 23 \text { 3612.030M } \\ & \text { Ave } \end{aligned}$	47.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.2 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	37.1	54.0	-16.9	Vert
$\wedge 3612.030 \mathrm{M}$	47.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.2 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	49.6	54.0	-4.4	Vert
$25 \quad 830.200 \mathrm{M}$	40.0	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.2 \\ & +0.0 \end{aligned}$	$+0.0$	73.2	112.0	-38.8	Horiz
266321.110 M	53.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \end{array}$	+0.0	60.8	112.0	-51.2	Vert
27 6404.685M	52.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	$+0.0$	60.2	112.0	-51.8	Vert
28 6487.645M	49.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	$+0.0$	57.3	112.0	-54.7	Vert
29 1830.010M	56.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	$+0.0$	53.0	112.0	-59.0	Vert
305490.260 M	45.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	52.7	112.0	-59.3	Vert
317224.130 M	43.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.6 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	$+0.0$	52.6	112.0	-59.4	Vert

Page 87 of 185

32	5560.770M	45.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	+0.0	51.9	112.0	-60.1	Vert
33	1806.175M	52.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	+0.0	48.1	112.0	-63.9	Vert
34	1853.565M	51.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +27.7 \end{array}$	+0.0	48.1	112.0	-63.9	Vert
35	51.300 M	32.0	$\begin{array}{r} +0.0 \\ +12.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	45.2	112.0	-66.8	Vert
36	64.900M	27.1	$\begin{array}{r} +0.0 \\ +12.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	40.9	112.0	-71.1	Vert
37	23.134M	39.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +6.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	5.4	112.0	-106.6	Perp/
38	19.702M	37.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +6.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	4.6	112.0	-107.4	Perp/
39	25.702 M	36.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +5.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	2.7	112.0	-109.3	Perp/
40	45.942k	43.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +10.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-26.5	112.0	-138.5	Perp/

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification: Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Matt Harrison
EMIT est 5.03.20

Date: 10/18/2022
Time: 14:47:46
Sequence\#: 7

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $22^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 3 (Remote SuperRaptor, Remote GPS, Remote Cellular antennas).
AM Modulation, LMH channels.

Itron, Inc. WO\#: 107461 Sequencef:: 7 Date: 10/18/2022
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03 .20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T4	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T5	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T6	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T7	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T8	AN03170	Duty Cycle		No Cal Required	No Cal Required
T9	ANDCCF				

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

$\begin{array}{ll} \# & \text { Freq } \\ & \mathrm{MHz} \end{array}$	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~T} 7 \\ & \mathrm{~dB} \end{aligned}$	T4 T8 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 17264.125 \mathrm{M} \\ & \text { Ave } \end{aligned}$	54.1	$\begin{array}{r} +0.0 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +37.2 \end{array}$	$\begin{aligned} & \hline+4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	+0.0	50.6	54.0	-3.4	Vert
$\wedge 7264.125 \mathrm{M}$	54.1	$\begin{array}{r} +0.0 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +37.2 \end{array}$	$\begin{aligned} & \hline+4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	63.1	54.0	+9.1	Vert
3 3659.725M	47.6	$\begin{array}{r} +0.0 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.6 \\ +31.7 \end{array}$	$\begin{aligned} & \hline+3.3 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$+0.0$	50.0	54.0	-4.0	Vert
4 3632.060M	47.1	$\begin{array}{r} +0.0 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.6 \\ +31.7 \end{array}$	$\begin{aligned} & +3.3 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	49.6	54.0	-4.4	Vert
$\begin{aligned} & 57263.395 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.8	$\begin{array}{r} +0.0 \\ -34.9 \\ +12.5 \end{array}$	$\begin{array}{r} +1.2 \\ +37.2 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	48.3	54.0	-5.7	Horiz
$\wedge 7263.395 \mathrm{M}$	51.8	$\begin{array}{r} +0.0 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +37.2 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	60.8	54.0	+6.8	Horiz
7 3695.000M	45.2	$\begin{array}{r} +0.0 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.6 \\ +31.9 \end{array}$	$\begin{aligned} & +3.3 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.0	47.7	54.0	-6.3	Vert
$\begin{aligned} & 87320.055 \mathrm{M} \\ & \text { Ave } \end{aligned}$	50.3	$\begin{array}{r} +0.0 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +1.3 \\ +37.5 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	+0.0	47.5	54.0	-6.5	Vert
$\wedge 7320.055 \mathrm{M}$	50.3	$\begin{array}{r} +0.0 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +1.3 \\ +37.5 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	+0.0	60.0	54.0	+6.0	Vert
$10 \quad 4574.785 \mathrm{M}$	43.3	$\begin{array}{r} +0.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.6 \\ +32.2 \end{array}$	$\begin{aligned} & +3.5 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	46.9	54.0	-7.1	Horiz
$\begin{aligned} & 118171.585 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.8	$\begin{array}{r} +0.0 \\ -35.0 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +38.6 \end{array}$	$\begin{aligned} & \hline+5.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	+0.0	46.6	54.0	-7.4	Vert
$\wedge 8171.585 \mathrm{M}$	47.8	$\begin{array}{r} +0.0 \\ -35.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +38.6 \end{array}$	$\begin{aligned} & +5.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$+0.0$	59.1	54.0	+5.1	Vert
$\begin{aligned} & 13 \text { 7390.158M } \\ & \text { Ave } \end{aligned}$	48.0	$\begin{array}{r} +0.0 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +1.3 \\ +37.4 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	+0.0	45.2	54.0	-8.8	Vert
^ 7390.158M	48.0	$\begin{array}{r} +0.0 \\ -34.9 \\ +0.0 \end{array}$	$\begin{array}{r} +1.3 \\ +37.4 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.7 \end{aligned}$	$+0.0$	57.7	54.0	+3.7	Vert

$\begin{aligned} & 158235.200 \mathrm{M} \\ & \text { Ave } \end{aligned}$	45.4	$\begin{array}{r} +0.0 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +38.6 \end{array}$	$\begin{aligned} & \hline+5.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	+0.0	44.4	54.0	-9.6	Vert
$\wedge 8235.200 \mathrm{M}$	45.4	$\begin{array}{r} +0.0 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +38.6 \end{array}$	$\begin{aligned} & +5.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	+0.0	56.9	54.0	+2.9	Vert
17 2745.030M	44.5	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.5 \\ +29.3 \end{array}$	$\begin{aligned} & +2.7 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	43.7	54.0	-10.3	Vert
$\begin{aligned} & 18 \text { 8234.680M } \\ & \text { Ave } \end{aligned}$	44.1	$\begin{array}{r} +0.0 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +38.6 \end{array}$	$\begin{aligned} & \hline+5.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.8 \end{aligned}$	+0.0	43.1	54.0	-10.9	Horiz
$\wedge 8234.680 \mathrm{M}$	44.1	$\begin{array}{r} +0.0 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +38.6 \end{array}$	$\begin{aligned} & +5.1 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	+0.0	55.6	54.0	+1.6	Horiz
$20 \quad 2771.667 \mathrm{M}$	43.5	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.5 \\ +29.3 \end{array}$	$\begin{aligned} & \hline+2.7 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	+0.0	42.7	54.0	-11.3	Vert
$\begin{aligned} & 21 \begin{array}{l} 9150.342 \mathrm{M} \\ \text { Ave } \end{array} \end{aligned}$	43.2	$\begin{array}{r} +0.0 \\ -34.4 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.9 \\ +37.7 \end{array}$	$\begin{aligned} & \hline+5.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	$+0.0$	41.7	54.0	-12.3	Vert
$\wedge 9150.342 \mathrm{M}$	43.2	$\begin{array}{r} +0.0 \\ -34.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.9 \\ +37.7 \end{array}$	$\begin{aligned} & +5.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	+0.0	54.2	54.0	+0.2	Vert
$\begin{aligned} & 239080.845 \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.2	$\begin{array}{r} +0.0 \\ -34.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.9 \\ +38.0 \end{array}$	$\begin{aligned} & \hline+4.9 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$+0.0$	41.4	54.0	-12.6	Vert
$\wedge 9080.845 \mathrm{M}$	43.2	$\begin{array}{r} +0.0 \\ -34.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.9 \\ +38.0 \end{array}$	$\begin{aligned} & \hline+4.9 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.8 \end{aligned}$	$+0.0$	53.9	54.0	-0.1	Vert
$\begin{aligned} & 25 \text { 8314.575M } \\ & \text { Ave } \end{aligned}$	42.0	$\begin{array}{r} +0.0 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +38.7 \end{array}$	$\begin{aligned} & +5.2 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.9 \end{aligned}$	$+0.0$	41.3	54.0	-12.7	Vert
$\wedge 8314.575 \mathrm{M}$	42.0	$\begin{array}{r} +0.0 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +38.7 \end{array}$	$\begin{aligned} & \hline+5.2 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.9 \end{aligned}$	+0.0	53.8	54.0	-0.2	Vert
$\begin{aligned} & 27 \text { 4539.845M } \\ & \text { Ave } \end{aligned}$	50.0	$\begin{array}{r} +0.0 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.6 \\ +32.1 \end{array}$	$\begin{aligned} & +3.5 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$+0.0$	41.0	54.0	-13.0	Vert
$\wedge ~ 4539.845 \mathrm{M}$	50.0	$\begin{array}{r} +0.0 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.6 \\ +32.1 \end{array}$	$\begin{aligned} & +3.5 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$+0.0$	53.5	54.0	-0.5	Vert
$\begin{aligned} & 295447.900 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.5	$\begin{array}{r} +0.0 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.8 \\ +34.7 \end{array}$	$\begin{aligned} & +4.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	+0.0	40.8	54.0	-13.2	Horiz
$\wedge 5447.900 \mathrm{M}$	46.5	$\begin{array}{r} +0.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.8 \\ +34.7 \end{array}$	$\begin{aligned} & +4.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$+0.0$	53.3	54.0	-0.7	Horiz

	$4619.133 \mathrm{M}$ Ave	48.7	$\begin{array}{r} +0.0 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.6 \\ +32.4 \end{array}$	$\begin{aligned} & +3.5 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \end{aligned}$	+0.0	39.9	54.0	-14.1	Vert
\wedge	4619.133M	48.7	$\begin{array}{r} +0.0 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.6 \\ +32.4 \end{array}$	$\begin{aligned} & +3.5 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	+0.0	52.4	54.0	-1.6	Vert
33	$7264.000 \mathrm{M}$ Ave	42.7	$\begin{array}{r} +0.0 \\ -34.9 \\ +12.5 \end{array}$	$\begin{array}{r} +1.2 \\ +37.2 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$+0.0$	39.2	54.0	-14.8	Horiz
\wedge	7264.000M	42.7	$\begin{array}{r} +0.0 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ +37.2 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.0	51.7	54.0	-2.3	Horiz
35	6355.580M	55.8	$\begin{array}{r} +0.0 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.9 \\ +35.1 \end{array}$	$\begin{aligned} & \hline+4.4 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	+0.0	63.2	112.0	-48.8	Vert
36	6405.105M	53.6	$\begin{array}{r} +0.0 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.9 \\ +35.0 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	61.1	112.0	-50.9	Vert
37	6466.900M	53.3	$\begin{array}{r} +0.0 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.9 \\ +34.9 \end{array}$	$\begin{aligned} & \hline+4.5 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	+0.0	60.9	112.0	-51.1	Vert
38	5542.783 M	47.9	$\begin{array}{r} +0.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.8 \\ +34.6 \end{array}$	$\begin{aligned} & +4.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	+0.0	54.7	112.0	-57.3	Vert
39	9238.108M	42.3	$\begin{array}{r} +0.0 \\ -34.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.9 \\ +38.0 \end{array}$	$\begin{aligned} & +5.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.4 \end{aligned}$	+0.0	54.0	112.0	-58.0	Horiz
40	5489.850M	45.7	$\begin{array}{r} +0.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.8 \\ +34.7 \end{array}$	$\begin{aligned} & +4.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	+0.0	52.5	112.0	-59.5	Vert
41	9238.392M	40.4	$\begin{array}{r} +0.0 \\ -34.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.9 \\ +38.0 \end{array}$	$\begin{aligned} & +5.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.4 \end{aligned}$	+0.0	52.1	112.0	-59.9	Vert
42	1847.500M	49.9	$\begin{array}{r} +0.0 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.4 \\ +27.6 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	+0.0	46.2	112.0	-65.8	Vert
43	1830.225M	47.9	$\begin{array}{r} +0.0 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.4 \\ +27.5 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	+0.0	44.1	112.0	-67.9	Vert
44	1815.880M	47.7	$\begin{array}{r} +0.0 \\ -34.7 \\ +0.0 \end{array}$	$\begin{array}{r} +0.4 \\ +27.4 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$+0.0$	43.8	112.0	-68.2	Vert
45	10.974 k	80.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+15.6 \\ +0.0 \end{array}$	-80.0	15.8	112.0	-96.2	Perp/
46	28.687M	38.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \end{aligned}$	-40.0	3.1	112.0	-108.9	Perp/
47	28.328M	35.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.4 \\ & +0.0 \end{aligned}$	-40.0	0.1	112.0	-111.9	Perp/

$\left.\begin{array}{|llllllllllll|}\hline 48 & 27.940 \mathrm{M} & 34.6 & \begin{array}{l}+0.0 \\ +0.0 \\ \\ \end{array} & & +0.0\end{array}\right)$

LABORATORIES, INC.

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717

Customer:
Specification: Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Matt Harrison
EMIT est 5.03.20

Date: 10/26/2022
Time: 12:49:59
Sequence\#: 8

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $22^{\circ} \mathrm{C}$
Humidity: 48\%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 3 (Remote SuperRaptor, Remote GPS, Remote Cellular antennas).
FM 12.5k Modulation, LMH channels.

Itron, Inc. WO\#: 107461 Sequence\#: 8 Date: 10/26/2022
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T10	AN03170	Duty Cycle		No Cal Required	No Cal Required
T11	ANDCCF	Correction Factor			

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Measurement Data: \& \multicolumn{4}{|r|}{Reading listed by margin.} \& \multicolumn{6}{|c|}{Test Distance: 3 Meters}

\hline \# Freq \& Rdng \& T1 \& T2 \& T3 \& T4 \& \multirow[t]{2}{*}{Dist} \& \multirow[t]{2}{*}{Corr} \& \multirow[t]{2}{*}{Spec} \& \multirow[t]{2}{*}{Margin} \& \multirow[t]{2}{*}{Polar}

\hline \multirow[t]{3}{*}{Freq

MHz} \& \& T5 \& T6 \& T7 \& \multirow[t]{2}{*}{T8} \& \& \& \& \&

\hline \& \& T9 \& $$
\mathrm{T} 10
$$ \& \[

\mathrm{T} 11
\] \& \& \& \& \& \&

\hline \& $\mathrm{dB} \mu \mathrm{V}$ \& dB \& \& \& dB \& Table \& $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ \& $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ \& dB \& Ant

\hline 14514.625 M \& 44.1 \& +0.0 \& +0.6 \& +3.5 \& +0.0 \& +0.0 \& 47.6 \& 54.0 \& -6.4 \& Horiz

\hline \& \& +0.0 \& +0.0 \& -33.6 \& +32.2 \& \& \& \& \&

\hline \& \& +0.3 \& +0.5 \& +0.0 \& \& \& \& \& \&

\hline 27320.355 M \& 50.4 \& +0.0 \& +1.3 \& +4.5 \& +0.0 \& +0.0 \& 47.6 \& 54.0 \& -6.4 \& Vert

\hline Ave \& \& +0.0 \& +0.0 \& -34.9 \& +37.5 \& \& \& \& \&

\hline \& \& +0.7 \& +0.6 \& +12.5 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 7320.355 \mathrm{M}$} \& 50.4 \& +0.0 \& +1.3 \& +4.5 \& +0.0 \& +0.0 \& 60.1 \& 54.0 \& +6.1 \& Vert

\hline \& \& +0.0 \& +0.0 \& -34.9 \& +37.5 \& \& \& \& \&

\hline \& \& +0.7 \& +0.6 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{44575.075 M} \& 43.8 \& +0.0 \& +0.6 \& +3.5 \& +0.0 \& +0.0 \& 47.4 \& 54.0 \& -6.6 \& Horiz

\hline \& \& +0.0 \& +0.0 \& -33.6 \& +32.2 \& \& \& \& \&

\hline \& \& +0.4 \& +0.5 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{53612.083 M} \& 44.8 \& +0.0 \& +0.5 \& +3.2 \& +0.0 \& +0.0 \& 47.1 \& 54.0 \& -6.9 \& Vert

\hline \& \& +0.0 \& +0.0 \& -33.8 \& +31.7 \& \& \& \& \&

\hline \& \& +0.4 \& +0.3 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{64514.745 M} \& 43.4 \& +0.0 \& +0.6 \& +3.5 \& +0.0 \& +0.0 \& 46.9 \& 54.0 \& -7.1 \& Vert

\hline \& \& +0.0 \& +0.0 \& -33.6 \& +32.2 \& \& \& \& \&

\hline \& \& +0.3 \& +0.5 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{7 4575.105M} \& 42.3 \& +0.0 \& +0.6 \& +3.5 \& +0.0 \& +0.0 \& 45.9 \& 54.0 \& -8.1 \& Vert

\hline \& \& +0.0 \& +0.0 \& -33.6 \& +32.2 \& \& \& \& \&

\hline \& \& +0.4 \& +0.5 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 8 \text { 8234.490M } \\
& \text { Ave }
\end{aligned}
$$} \& 46.1 \& +0.0 \& +1.2 \& +5.1 \& +0.0 \& +0.0 \& 45.1 \& 54.0 \& -8.9 \& Vert

\hline \& \& +0.0 \& +0.0 \& -34.9 \& +38.6 \& \& \& \& \&

\hline \& \& +0.7 \& +0.8 \& +12.5 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 8234.490 \mathrm{M}$} \& 46.1 \& +0.0 \& +1.2 \& +5.1 \& +0.0 \& +0.0 \& 57.6 \& 54.0 \& +3.6 \& Vert

\hline \& \& +0.0 \& +0.0 \& -34.9 \& +38.6 \& \& \& \& \&

\hline \& \& +0.7 \& +0.8 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$10 \quad 2709.083 \mathrm{M}$} \& 42.8 \& +0.0 \& +0.5 \& +2.7 \& +0.0 \& +0.0 \& 42.1 \& 54.0 \& -11.9 \& Vert

\hline \& \& +0.0 \& +0.0 \& -34.1 \& +29.5 \& \& \& \& \&

\hline \& \& +0.5 \& +0.2 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$11 \quad 2780.580 \mathrm{M}$} \& 42.7 \& +0.0 \& +0.5 \& +2.7 \& +0.0 \& +0.0 \& 41.9 \& 54.0 \& -12.1 \& Vert

\hline \& \& +0.0 \& +0.0 \& -34.1 \& +29.3 \& \& \& \& \&

\hline \& \& +0.5 \& +0.3 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{12 2747.180M} \& 42.7 \& +0.0 \& +0.5 \& +2.7 \& +0.0 \& +0.0 \& 41.9 \& 54.0 \& -12.1 \& Vert

\hline \& \& +0.0 \& +0.0 \& -34.1 \& +29.3 \& \& \& \& \&

\hline \& \& +0.5 \& +0.3 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 13 \text { 9149.405M } \\
& \text { Ave }
\end{aligned}
$$} \& 43.3 \& +0.0 \& +0.9 \& +5.0 \& +0.0 \& +0.0 \& 41.8 \& 54.0 \& -12.2 \& Vert

\hline \& \& +0.0 \& +0.0 \& -34.4 \& +37.7 \& \& \& \& \&

\hline \& \& +0.7 \& +1.1 \& +12.5 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 9149.405 \mathrm{M}$} \& 43.3 \& +0.0 \& +0.9 \& +5.0 \& +0.0 \& +0.0 \& 54.3 \& 54.0 \& +0.3 \& Vert

\hline \& \& +0.0 \& +0.0 \& -34.4 \& +37.7 \& \& \& \& \&

\hline \& \& +0.7 \& +1.1 \& +0.0 \& \& \& \& \& \&

\hline
\end{tabular}

$\begin{aligned} & 15 \text { 8127.900M } \\ & \text { Ave } \end{aligned}$	41.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	40.5	54.0	-13.5	Vert
$\wedge 8127.900 \mathrm{M}$	41.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} \hline+5.1 \\ -35.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	53.0	54.0	-1.0	Vert
$\begin{aligned} & 17 \text { 4633.810M } \\ & \text { Ave } \end{aligned}$		$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	40.4	54.0	-13.6	Horiz
$\wedge 4633.810 \mathrm{M}$	49.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	52.9	54.0	-1.1	Horiz
19 7415.195M	43.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	$+0.0$	40.3	54.0	-13.7	Vert
$\begin{aligned} & 205417.255 \mathrm{M} \\ & \text { Ave } \end{aligned}$	45.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	39.9	54.0	-14.1	Vert
$\wedge 5417.255 \mathrm{M}$	45.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	52.4	54.0	-1.6	Vert
$\begin{gathered} 22 \text { 9031.040M } \\ \text { Ave } \end{gathered}$	41.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.7 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	+0.0	39.3	54.0	-14.7	Vert
$\wedge 9031.040 \mathrm{M}$	41.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	+0.0	51.8	54.0	-2.2	Vert
$\wedge 9031.040 \mathrm{M}$	40.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +4.9 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.0 \end{array}$	+0.0	51.4	54.0	-2.6	Vert
$\begin{aligned} & 253659.970 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	37.4	54.0	-16.6	Vert
$\wedge 3659.970 \mathrm{M}$	47.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	49.9	54.0	-4.1	Vert
$\begin{aligned} & 273707.255 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.0 \end{array}$	+0.0	36.1	54.0	-17.9	Vert
$\wedge 3707.255 \mathrm{M}$	46.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.0 \end{array}$	+0.0	48.6	54.0	-5.4	Vert
296404.745 M	52.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	+0.0	60.3	109.0	-48.7	Vert
$30 \quad 6321.340 \mathrm{M}$	52.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \end{array}$	+0.0	59.5	109.0	-49.5	Vert
31 5490.320M	47.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.8 \\ +0.0 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	53.8	109.0	-55.2	Vert

32	7224.770M	45.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.6 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	+0.0	53.8	109.0	-55.2	Horiz
33	7224.710M	44.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +4.6 \\ -34.9 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	$+0.0$	53.2	109.0	-55.8	Vert
34	56.200M	32.5	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	45.8	109.0	-63.2	Vert
35	6487.165M	49.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	$+0.0$	44.3	109.0	-64.7	Vert
36	1830.060M	47.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	$+0.0$	44.0	109.0	-65.0	Vert
37	1853.700M	47.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.7 \end{array}$	$+0.0$	43.8	109.0	-65.2	Vert
38	1806.100M	45.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	+0.0	41.4	109.0	-67.6	Horiz
39	5561.280M	45.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	+0.0	40.1	109.0	-68.9	Vert
40	28.687M	38.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.1 \\ +4.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	3.0	109.0	-106.0	Perp/
41	28.567M	36.4	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +4.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	0.9	109.0	-108.1	Perp/
42	28.328M	35.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +4.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	0.5	109.0	-108.5	Perp/
43	44.109k	44.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.1 \\ +10.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-80.0	-25.0	109.0	-134.0	Perp/
44	48.621k	44.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.1 \\ +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-25.6	109.0	-134.6	Perp/

Test Location: CKC Laboratories, Inc. •22116 23rd Drive SE, Suite A • Bethel, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Matt Harrison
EMIT est 5.03.20

Date: 10/26/2022
Time: 14:41:58
Sequence\#: 9

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $22^{\circ} \mathrm{C}$
Humidity: 48%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}$
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 3 (Remote SuperRaptor, Remote GPS, Remote Cellular antennas).
FM 37.5k Modulation, LMH channels.

Itron, Inc. WO\#: 107461 Sequence\#\#: 9 Date: 10/26/2022
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

O Peak Readings

* Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03540	Preamp	$83017 A$	$5 / 14 / 2021$	$5 / 14 / 2023$
T8	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			High Pass Filter	HM1155-11SS	$9 / 16 / 2021$
T10	AN03170	Duty Cycle		No Cal Required	No Cal Required
T11	ANDCCF	Correction Factor			

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { T2 } \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
18235.050 M	42.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +5.1 \\ -34.9 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	53.8	54.0	-0.2	Vert
$\begin{aligned} & 25418.060 \mathrm{M} \\ & \text { Ave } \end{aligned}$	45.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	52.5	54.0	-1.5	Vert
$\wedge 5418.060 \mathrm{M}$	45.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	40.0	54.0	-14.0	Vert
4 9150.100M	40.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.0 \\ -34.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.7 \end{array}$	+0.0	51.1	54.0	-2.9	Vert
57414.500 M	40.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.3 \\ +0.0 \\ +0.7 \\ \hline \end{array}$	$\begin{array}{r} +4.4 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	$+0.0$	50.5	54.0	-3.5	Vert
6 8127.190M	39.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+5.1 \\ -35.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	50.2	54.0	-3.8	Vert
78127.250 M	38.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	49.7	54.0	-4.3	Horiz
8 5418.150M	41.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.8 \\ +0.0 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	+0.0	48.6	54.0	-5.4	Horiz
9 4575.080M	43.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	$+0.0$	47.0	54.0	-7.0	Horiz
$10 \quad 1063.000 \mathrm{M}$	45.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +11.4 \\ \hline \end{array}$	$\begin{array}{r} +1.6 \\ -36.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +24.4 \end{array}$	+0.0	46.7	54.0	-7.3	Vert
$\begin{aligned} & 117320.050 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	+0.0	46.4	54.0	-7.6	Vert
$\wedge 7320.010 \mathrm{M}$	49.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	$+0.0$	58.9	54.0	+4.9	Vert
13 3707.300M	43.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.0 \end{array}$	+0.0	46.2	54.0	-7.8	Vert
14 3612.090M	43.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+3.2 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	$+0.0$	46.1	54.0	-7.9	Vert

Page 102 of 185

	$\begin{aligned} & \text { 7320.090M } \\ & \text { Ave } \end{aligned}$	48.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	+0.0	45.4	54.0	-8.6	Horiz
\wedge	7320.090M	45.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.9 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +37.5 \end{array}$	+0.0	55.4	54.0	+1.4	Horiz
17	4515.090 M	41.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	+0.0	45.1	54.0	-8.9	Vert
18	4575.110M	40.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	+0.0	44.0	54.0	-10.0	Vert
19	3612.100 M	40.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +3.2 \\ -33.8 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	43.0	54.0	-11.0	Horiz
20	2709.030M	43.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.7 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.5 \end{array}$	+0.0	42.8	54.0	-11.2	Vert
	$8234.980 \mathrm{M}$ Ave	43.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +5.1 \\ -34.9 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	42.4	54.0	-11.6	Horiz
\wedge	8234.980M	43.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	54.9	54.0	+0.9	Horiz
23	2780.500 M	42.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.7 \\ -34.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	+0.0	42.0	54.0	-12.0	Vert
24	8235.050M	42.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	41.7	54.0	-12.3	Vert
25	2744.990M	42.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.7 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	$+0.0$	41.3	54.0	-12.7	Vert
26	2709.040M	40.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.7 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.5 \end{array}$	+0.0	39.9	54.0	-14.1	Horiz
27	1531.000M	46.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.9 \\ -35.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +25.6 \end{array}$	+0.0	39.7	54.0	-14.3	Vert
28	9150.100M	41.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.0 \\ -34.4 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.7 \end{array}$	+0.0	39.7	54.0	-14.3	Vert
	$\begin{aligned} & \text { 4634.180M } \\ & \text { Ave } \end{aligned}$	47.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	39.2	54.0	-14.8	Horiz
\wedge	4634.180M	47.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	50.9	54.0	-3.1	Horiz

$\begin{aligned} & 31 \text { 4634.100M } \\ & \text { Ave } \end{aligned}$	47.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +12.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	39.2	54.0	-14.8	Vert
$\wedge 4634.100 \mathrm{M}$	47.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +3.6 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	51.7	54.0	-2.3	Vert
$\begin{aligned} & 337414.580 \mathrm{M} \\ & \text { Ave } \end{aligned}$	41.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	+0.0	39.0	54.0	-15.0	Horiz
$\wedge 7414.580 \mathrm{M}$	41.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	+0.0	51.5	54.0	-2.5	Horiz
357414.500 M	40.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.9 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.4 \end{array}$	$+0.0$	38.0	54.0	-16.0	Vert
368127.190 M	39.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	$+0.0$	37.7	54.0	-16.3	Vert
37 8127.250M	38.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.1 \\ -35.1 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.6 \end{array}$	+0.0	37.2	54.0	-16.8	Horiz
389150.080 M	38.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +5.0 \\ -34.4 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.7 \end{array}$	+0.0	37.2	54.0	-16.8	Horiz
$\begin{aligned} & 39 \text { 4515.080M } \\ & \text { Ave } \end{aligned}$	45.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	$+0.0$	36.7	54.0	-17.3	Horiz
$\wedge ~ 4515.080 \mathrm{M}$	45.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +3.5 \\ -33.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +32.2 \end{array}$	+0.0	49.2	54.0	-4.8	Horiz
415418.150 M	41.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	36.1	54.0	-17.9	Horiz
$\begin{aligned} & 423660.050 \mathrm{M} \\ & \text { Ave } \end{aligned}$	45.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +12.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	$+0.0$	35.5	54.0	-18.5	Vert
$\wedge 3660.050 \mathrm{M}$	45.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.3 \\ -33.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.7 \end{array}$	+0.0	48.0	54.0	-6.0	Vert
$44 \quad 827.300 \mathrm{M}$	32.2	$\begin{array}{r} +0.0 \\ +29.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	$+0.0$	65.4	109.0	-43.6	Vert
45 6321.240M	53.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \end{array}$	+0.0	60.5	109.0	-48.5	Horiz
46 6405.040M	51.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	+0.0	58.8	109.0	-50.2	Horiz
47 6321.190M	50.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.9 \\ +0.0 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +4.4 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.2 \end{array}$	+0.0	58.2	109.0	-50.8	Vert

48	6405.110M	50.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.0 \end{array}$	+0.0	57.5	109.0	-51.5	Vert
49	6487.700M	47.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	$+0.0$	55.2	109.0	-53.8	Vert
50	6487.780M	47.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +4.5 \\ -34.0 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.9 \end{array}$	$+0.0$	55.1	109.0	-53.9	Horiz
51	7224.250M	42.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +4.6 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	$+0.0$	51.6	109.0	-57.4	Horiz
52	5490.110 M	44.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	51.5	109.0	-57.5	Vert
53	5560.900 M	44.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	$+0.0$	51.3	109.0	-57.7	Vert
54	5560.980 M	44.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	$+0.0$	51.3	109.0	-57.7	Horiz
55	7224.190M	42.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.6 \\ -34.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	$+0.0$	51.2	109.0	-57.8	Vert
56	5490.040M	44.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -33.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.7 \end{array}$	$+0.0$	51.1	109.0	-57.9	Horiz
57	56.200 M	32.1	$\begin{array}{r} +0.0 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$+0.0$	45.4	109.0	-63.6	Vert
58	1830.080M	44.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.5 \end{array}$	$+0.0$	41.1	109.0	-67.9	Vert
59	1853.700M	44.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.7 \end{array}$	$+0.0$	41.0	109.0	-68.0	Vert
60	1806.030M	44.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	$+0.0$	40.1	109.0	-68.9	Vert
61	1806.040M	41.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.1 \\ -34.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	$+0.0$	37.7	109.0	-71.3	Horiz
62	28.687 M	39.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +4.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	3.5	109.0	-105.5	Perp/

Page 105 of 185

63	27.940 M	37.8	+0.0	+0.1	+0.2	+0.0	-40.0	2.6	109.0	-106.4	Perp/	
			+0.0	+4.5	+0.0	+0.0						
64	28.567 M	36.3	+0.0	+0.0	+0.1	+0.0		+0.0	-40.0	0.8	109.0	-108.2
			+0.0	+4.2	+0.0	+0.0						
			+0.0	+0.0	+0.0							
65	28.328 M	35.9	+0.0	+0.1	+0.2	+0.0	-40.0	0.6	109.0	-108.4	Perp/	
			+0.0	+4.4	+0.0	+0.0						
66	16.332 k	47.3	+0.0	+0.0	+0.0		+0.1	+0.0	+0.0	-80.0	-18.9	109.0
			+0.0	+13.7	+0.0	+0.0		-127.9	Perp/			
			+0.0	+0.0	+0.0							

LIABORATORIES, INC.

Band Edge

Band Edge Summary Configuration 1

Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ 3 \mathrm{~m})$	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 \mathrm{~m})$	Results
614	AM	Omnidirectional	38.7	<46	Pass
902	AM	Omnidirectional	75.0	<112	Pass
928	AM	Omnidirectional	73.7	<112	Pass
960	AM	Omnidirectional	43.1	<54	Pass
614	FM 12.5k	Omnidirectional	38.8	<46	Pass
902	FM 12.5k	Omnidirectional	86.8	<109	Pass
928	FM 12.5k	Omnidirectional	76.5	<109	Pass
960	FM 12.5k	Omnidirectional	43.0	<54	Pass
614	FM 37.5k	Omnidirectional	38.8	<46	Pass
902	FM 37.5k	Omnidirectional	87.0	<109	Pass
928	FM 37.5k	Omnidirectional	76.8	<109	Pass
960	FM 37.5k	Omnidirectional	43.0	<54	Pass

Band Edge Summary Configuration 1

Operating Mode: Hopping					
Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ \mathbf{3 m})$	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Results
614	AM	Omnidirectional	38.6	<46	Pass
902	AM	Omnidirectional	80.5	<112	Pass
928	AM	Omnidirectional	80.7	<112	Pass
960	AM	Omnidirectional	42.8	<54	Pass
614	FM 12.5k	Omnidirectional	38.5	<46	Pass
902	FM 12.5k	Omnidirectional	87.9	<109	Pass
928	FM 12.5k	Omnidirectional	80.9	<109	Pass
960	FM 12.5k	Omnidirectional	42.9	<54	Pass
614	FM 37.5k	Omnidirectional	38.5	<46	Pass
902	FM 37.5k	Omnidirectional	85.0	<109	Pass
928	FM 37.5k	Omnidirectional	75.9	<46	Pass
960	FM 37.5k	Omnidirectional	42.9	<112	Pass

LABORATORIES, INC.

Band Edge Summary Configuration 2
Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m @ 3 m})$	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Results
614	AM	Omnidirectional	38.6	<46	Pass
902	AM	Omnidirectional	77.5	<112	Pass
928	AM	Omnidirectional	73.6	<112	Pass
960	AM	Omnidirectional	42.9	<54	Pass
614	FM 12.5k	Omnidirectional	38.6	<46	Pass
902	FM 12.5k	Omnidirectional	87.6	<109	Pass
928	FM 12.5k	Omnidirectional	78.2	<109	Pass
960	FM 12.5k	Omnidirectional	42.9	<54	Pass
614	FM 37.5k	Omnidirectional	38.6	<46	Pass
902	FM 37.5k	Omnidirectional	86.6	<109	Pass
928	FM 37.5k	Omnidirectional	78.0	<109	Pass
960	FM 37.5k	Omnidirectional	42.9	<54	Pass

Band Edge Summary Configuration 2

Operating Mode: Hopping					
Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Results
614	AM	Omnidirectional	38.5	<46	Pass
902	AM	Omnidirectional	79.8	<112	Pass
928	AM	Omnidirectional	80.8	<112	Pass
960	AM	Omnidirectional	42.8	<54	Pass
614	FM 12.5k	Omnidirectional	38.6	<46	Pass
902	FM 12.5k	Omnidirectional	89.3	<109	Pass
928	FM 12.5k	Omnidirectional	76.2	<109	Pass
960	FM 12.5k	Omnidirectional	80.4	<54	Pass
614	FM 37.5k	Omnidirectional	38.5	<46	Pass
902	FM 37.5k	Omnidirectional	86.2	<109	Pass
928	FM 37.5k	Omnidirectional	76.7	<109	Pass
960	FM 37.5k	Omnidirectional	42.8	<54	Pass

LABORATORIES, INC.

Band Edge Summary Configuration 3
Operating Mode: Single Channel (Low and High)

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m @ 3 m})$	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Results
614	AM	Omnidirectional	38.5	<46	Pass
902	AM	Omnidirectional	75.6	<112	Pass
928	AM	Omnidirectional	73.5	<112	Pass
960	AM	Omnidirectional	42.9	<54	Pass
614	FM 12.5k	Omnidirectional	38.5	<46	Pass
902	FM 12.5k	Omnidirectional	87.5	<109	Pass
928	FM 12.5k	Omnidirectional	78.0	<109	Pass
960	FM 12.5k	Omnidirectional	42.8	<54	Pass
614	FM 37.5k	Omnidirectional	38.5	<46	Pass
902	FM 37.5k	Omnidirectional	88.1	<109	Pass
928	FM 37.5k	Omnidirectional	77.6	<109	Pass
960	FM 37.5k	Omnidirectional	42.8	<54	Pass

Band Edge Summary Configuration 3

Operating Mode: Hopping					
Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Results
614	AM	Omnidirectional	38.5	<46	Pass
902	AM	Omnidirectional	80.1	<112	Pass
928	AM	Omnidirectional	79.3	<112	Pass
960	AM	Omnidirectional	42.9	<54	Pass
614	FM 12.5k	Omnidirectional	38.5	<46	Pass
902	FM 12.5k	Omnidirectional	91.3	<109	Pass
928	FM 12.5k	Omnidirectional	77.1	<109	Pass
960	FM 12.5k	Omnidirectional	42.8	<54	Pass
614	FM 37.5k	Omnidirectional	38.5	<46	Pass
902	FM 37.5k	Omnidirectional	85.9	<109	Pass
928	FM 37.5k	Omnidirectional	75.4	<109	Pass
960	FM 37.5k	Omnidirectional	42.9	<54	Pass

Band Edge Plots

Configuration 1; Single Channel (Low and High)

Configuration 1; Hopping

RadBE Config 1 AM Hopping 902 (lint corrected for system factors)
Ref Level $103.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 10 dB
RES BW: 120.0 kHz VD BW: 1.01 MHz SWP: 20.0 msec
Marker: 902.0 MHz 46.8807 dBpV

-15.247(d) / 15.209 Radiated Spurious Emissions

Configuration 2; Single Channel (Low and High)

RadBE Config 2 AM SC 902 (Imt corrected for system factors)
Ref Level $106.99 \mathrm{~dB} \| \mathrm{V}$ ATTEN 10 dB
RES BW: 120.0 kHz VD BW: 1.0 MHz SWP. 20.0 msec
Marker: $902.0 \mathrm{MHz} 43.9107 d B y \mathrm{~V}$

-_ 15.247(d) / 15.209 Radisted Spurious Emissions

Configuration 2; Hopping

RadBE Config 2 AM Hopping 902 (lint corrected for system factors)
Ref Level $106.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 10 dB
RES BW: 120.0 kHz VID BW: 1.01 MHz SWP: 20.0 msec
Marker: 902.0 MHz 46.1637 dBpV

-_ 15.247 (d) / 15.209 Radiated Spurious Emissions

Configuration 3; Single Channel (Low and High)

RadBE Config 3 AM SC 902 (Imit corrected for system factors) Ref Level $99.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 10 dB
RES BW: 120.0 kHz VD BW: 1.0 MHz SWP, 20.0 msec
Marker: 902.0 MHz 42.0397 dBy V

RSS-2475.5 / RSS-GEN 8.9 Radialed Spunious Emissions

Configuration 3; Hopping

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. $\operatorname{22116} 23$ rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software: Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461 Date: 10/14/2022
Maximized Emissions Time: 17:18:05
Michael Atkinson
EMITest 5.03.20
Sequence\#: 1

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 1
AM Modulation, single channel and hopping.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
	$\begin{aligned} & 1 \begin{array}{l} 614.000 \mathrm{M} \\ \mathrm{QP} \\ \hline \end{array} \\ & \hline \end{aligned}$	8.1	+0.3	+1.2	+1.9	+27.2	+0.0	38.7	$\text { SC }{ }^{46.0}$	-7.3	Vert
	$\begin{aligned} & 2614.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	8.0	+0.3	+1.2	+1.9	+27.2	+0.0	38.6	46.0 Hopping	-7.4	Vert
	$\begin{aligned} & 3960.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	8.2	+0.3	+1.5	+2.4	+30.7	+0.0	43.1	$\mathrm{SC}^{54.0}$	-10.9	Vert
	$\begin{aligned} & 4960.000 \mathrm{M} \\ & \text { QP } \end{aligned}$	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0 Hopping	-11.2	Vert
	$5 \quad 928.000 \mathrm{M}$	45.9	+0.3	+1.5	+2.4	+30.6	+0.0	80.7	112.0 Hopping	-31.3	Vert
	$6 \quad 902.000 \mathrm{M}$	46.9	+0.3	+1.4	+2.3	+29.6	+0.0	80.5	112.0 Hopping	-31.5	Vert
	$7 \quad 902.000 \mathrm{M}$	41.4	+0.3	+1.4	+2.3	+29.6	+0.0	75.0	$\begin{aligned} & 112.0 \\ & \mathrm{SC} \end{aligned}$	-37.0	Vert
	$8 \quad 928.000 \mathrm{M}$	38.9	+0.3	+1.5	+2.4	+30.6	+0.0	73.7	$\begin{aligned} & 112.0 \\ & S C \end{aligned}$	-38.3	Vert

Test Location: CKC Laboratories, Inc. •22116 23rd Drive SE, Suite A • Bethel, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/14/2022
Time: 18:02:32
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 1
FM12.5k Modulation, single channel and hopping.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/14/2022
Time: 18:45:14
Sequence\#: 3

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 1
FM37.5k Modulation, single channel and hopping.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/17/2022
Time: 15:54:46
Sequence\#: 1

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2
AM Modulation, single channel and hopping.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	3142E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
$1 \quad 614.000 \mathrm{M}$	8.0	+0.0	+0.3	+1.2	+1.9	+0.0	38.6	46.0	-7.4	Vert
QP		+27.2						SC		
2 614.000M	7.9	+0.0	+0.3	+1.2	+1.9	+0.0	38.5	46.0	-7.5	Vert
QP		+27.2						Hopping		
$3 \quad 960.000 \mathrm{M}$	8.0	+0.0	+0.3	+1.5	+2.4	+0.0	42.9	54.0	-11.1	Vert
QP		+30.7						SC		
$4 \quad 960.000 \mathrm{M}$	7.9	+0.0	+0.3	+1.5	+2.4	+0.0	42.8	54.0	-11.2	Vert
QP		+30.7						Hopping		
$5 \quad 928.000 \mathrm{M}$	46.0	+0.0	+0.3	+1.5	+2.4	+0.0	80.8	112.0	-31.2	Vert
		+30.6						Hopping		
$6 \quad 902.000 \mathrm{M}$	46.2	+0.0	+0.3	+1.4	+2.3	+0.0	79.8	112.0	-32.2	Vert
		+29.6						Hopping		
$7 \quad 902.000 \mathrm{M}$	43.9	+0.0	+0.3	+1.4	+2.3	+0.0	77.5	112.0	-34.5	Vert
		+29.6						SC		
$8 \quad 928.000 \mathrm{M}$	38.8	+0.0	+0.3	+1.5	+2.4	+0.0	73.6	112.0	-38.4	Vert
		+30.6						SC		

Test Location: CKC Laboratories, Inc. •22116 23rd Drive SE, Suite A • Bethel, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/17/2022
Time: 16:32:05
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2
FM12.5 Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
	$\begin{aligned} & 1814.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	8.0	+0.3	+1.2	+1.9	+27.2	+0.0	38.6	$\text { SC }{ }^{46.0}$	-7.4	Vert
	$\begin{aligned} & 614.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	8.0	+0.3	+1.2	+1.9	+27.2	+0.0	38.6	46.0 Hopping	-7.4	Vert
	$\begin{aligned} & 360.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	8.0	+0.3	+1.5	+2.4	+30.7	+0.0	42.9	$\begin{aligned} & 54.0 \\ & \text { SC } \\ & \hline \end{aligned}$	-11.1	Vert
4	4 901.995M	55.7	+0.3	+1.4	+2.3	+29.6	+0.0	89.3	$\begin{array}{r} 109.0 \\ \text { Hopping } \\ \hline \end{array}$	-19.7	Vert
5	$5 \quad 902.000 \mathrm{M}$	54.0	+0.3	+1.4	+2.3	+29.6	+0.0	87.6	SC	-21.4	Vert
6	6 928.065M	45.6	+0.3	+1.5	+2.4	+30.6	+0.0	80.4	109.0 Hopping	-28.6	Vert
7	7928.000 M	43.4	+0.3	+1.5	+2.4	+30.6	+0.0	78.2	$\begin{aligned} & 109.0 \\ & \text { SC } \end{aligned}$	-30.8	Vert
8	8928.000 M	41.4	+0.3	+1.5	+2.4	+30.6	+0.0	76.2	109.0 Hopping	-32.8	Vert

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/17/2022
Time: 17:00:43
Sequence\#: 3

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 2
FM 37.5k modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
	$\begin{aligned} & 1814.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	8.0	+0.3	+1.2	+1.9	+27.2	+0.0	38.6	$\text { SC }{ }^{46.0}$	-7.4	Vert
	$\begin{aligned} & 2614.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0 Hopping	-7.5	Vert
	$\begin{aligned} & 3960.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0 Hopping	-11.2	Vert
	$\begin{aligned} & 4960.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	7.8	+0.3	+1.5	+2.4	+30.7	+0.0	42.7	$\text { SC }{ }^{54.0}$	-11.3	Vert
	$5 \quad 902.000 \mathrm{M}$	53.0	+0.3	+1.4	+2.3	+29.6	+0.0	86.6	$\begin{aligned} & 109.0 \\ & S C \end{aligned}$	-22.4	Vert
	$6 \quad 902.000 \mathrm{M}$	52.6	+0.3	+1.4	+2.3	+29.6	+0.0	86.2	109.0 Hopping	-22.8	Vert
	$7 \quad 928.000 \mathrm{M}$	43.2	+0.3	+1.5	+2.4	+30.6	+0.0	78.0	$\begin{aligned} & 109.0 \\ & \text { SC } \\ & \hline \end{aligned}$	-31.0	Vert
	$8 \quad 928.000 \mathrm{M}$	41.9	+0.3	+1.5	+2.4	+30.6	+0.0	76.7	109.0 Hopping	-32.3	Vert

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/17/2022
Time: 18:52:57
Sequence\#: 1

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:
Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup:
Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is continuously transmitting with modulation.

Configuration 3
AM Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717

Customer:
Specification: Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/17/2022
Time: 19:34:25
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup:

Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is
continuously transmitting with modulation.
Configuration 3
FM12.5k Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \text { dB } \end{gathered}$	Polar Ant
	$\begin{aligned} & 1 \mathrm{614.000M} \\ & \mathrm{QP} \end{aligned}$	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	46.0 Hopping	-7.5	Vert
	$\begin{aligned} & 2614.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	7.9	+0.3	+1.2	+1.9	+27.2	+0.0	38.5	$\text { SC }{ }^{46.0}$	-7.5	Vert
	$\begin{aligned} & 3960.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	54.0 Hopping	-11.2	Vert
	$\begin{aligned} & 4960.000 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	7.9	+0.3	+1.5	+2.4	+30.7	+0.0	42.8	$\text { SC }{ }^{54.0}$	-11.2	Vert
	$5 \quad 902.000 \mathrm{M}$	57.7	+0.3	+1.4	+2.3	+29.6	+0.0	91.3	$\begin{array}{r} 109.0 \\ \text { Hopping } \\ \hline \end{array}$	-17.7	Vert
	$6 \quad 902.000 \mathrm{M}$	53.9	+0.3	+1.4	+2.3	+29.6	+0.0	87.5	$\text { SC }{ }^{109.0}$	-21.5	Vert
	$7 \quad 928.000 \mathrm{M}$	43.2	+0.3	+1.5	+2.4	+30.6	+0.0	78.0	$\begin{aligned} & 109.0 \\ & S C \end{aligned}$	-31.0	Vert
	$8 \quad 928.000 \mathrm{M}$	42.3	+0.3	+1.5	+2.4	+30.6	+0.0	77.1	$\begin{array}{r} 109.0 \\ \text { Hopping } \end{array}$	-31.9	Vert

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bethel, WA 98021•(425) 402-1717 Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

107461
Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/17/2022
Time: 19:55:18
Sequence\#: 3

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 3		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 3		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 51%
Pressure: 101.5 kPa
Test Method: ANSI C63.10 (2013)
Frequency: Band Edge
Test Setup:

Unit is on foam table 80 cm high. Horizontal and Vertical antenna polarities investigated, worst-case reported, unit is
continuously transmitting with modulation.
Configuration $\mathbf{3}$
FM 37.5k Modulation

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Test Setup Photo(s)

Configuration 1

Below 1GHz; View 1

Below 1GHz; View 2

Above 1GHz; View 1

Above 1GHz; View 2

Configuration 2

Below 1GHz; View 1

Below 1GHz; View 2

Above 1GHz; View 1

Above 1GHz; View 2

GPS Antenna Investigation

Configuration 3

Below 1GHz; View 1

Below 1GHz; View 2

Above 1GHz; View 1

Above 1GHz; View 2

Above 1GHz; View 3

Above 1GHz; View 4

GPS Investigation Antenna

LABORATORIES, INC.

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:
Customer:
Specification: Work Order \#: Test Type:
Tested By:
Software:

CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bethel, WA 98021•(425) 402-1717 Itron, Inc.
15.207 AC Mains - Average

107461

Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 10/13/2022
Time: 20:18:56
Sequence\#: 5
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 43%
Pressure: 101.9 kPa

Test Method: ANSI C63.10 (2013)
Frequency: $0.15-30 \mathrm{MHz}$
Test Setup:
Configuration 1
AM, FM12.5, and FM37.5 modulations investigated, worst-case reported. Configuration 2 and 3 investigated, with and without battery investigated, also investigated with GPS antenna PN 57861-20 on configuration 2 and configuration 3, investigated with RV50 and RV50x cell modems installed and powered, worst-case data reported.

Itron. Inc. WO\#: 107461 Sequence\#f: 5 Date: 10/13/2022
15.207 AC Mains - Average Test Lead: 120 V 60 Hz Line

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANO2872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	AN02611	High Pass Filter	HE9615-150K- 50-720B	$1 / 5 / 2022$	$1 / 5 / 2024$
			Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP06540	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05305	Cable	$768-10$	$3 / 23 / 2022$	$3 / 23 / 2024$
T4	ANP06219	Attenuator	$3816 / 2$	$2 / 23 / 2022$	$2 / 23 / 2024$
T5	AN01311	50uH LISN-Line1 (L)	$2 / 23 / 2022$	$2 / 23 / 2024$	
	AN01311	50uH LISN-Line2 (N)	$3816 / 2$		

Measu	ment Data:	Reading listed by margin.				Test Lead: Line					
\#	Freq	Rdng		T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			$\begin{aligned} & \text { T5 } \\ & \text { dB } \end{aligned}$	dB	dB	dB	Table			dB	Ant
1	3.815M	29.0	+0.0	+0.1	+0.1	+9.1	+0.0	38.4	46.0	-7.6	Line
			+0.1								
2	4.099 M	29.0	+0.0	+0.1	+0.1	+9.1	+0.0	38.4	46.0	-7.6	Line
			+0.1								
3	3.792M	28.3	+0.0	+0.1	+0.1	+9.1	+0.0	37.7	46.0	-8.3	Line
			+0.1								
4	3.424 M	28.1	+0.0	+0.1	+0.1	+9.1	+0.0	37.5	46.0	-8.5	Line
			+0.1								
5	8.717M	31.0	+0.0	+0.1	+0.1	+9.1	+0.0	40.5	50.0	-9.5	Line
			+0.2								
6	1.238 M	26.6	+0.1	+0.1	+0.1	+9.1	+0.0	36.1	46.0	-9.9	Line
			+0.1								
7	3.742M	26.6	+0.0	+0.1	+0.1	+9.1	+0.0	36.0	46.0	-10.0	Line
			+0.1								
8	1.251 M	26.4	+0.1	+0.1	+0.1	+9.1	+0.0	35.9	46.0	-10.1	Line
			+0.1								
9	9.388 M	30.5	+0.0	+0.0	+0.1	+9.1	+0.0	39.9	50.0	-10.1	Line
			+0.2								
10	26.607 M	29.6	+0.1	+0.1	+0.2	+9.1	+0.0	39.1	50.0	-10.9	Line
			+0.0								
11	1.494 M	25.6	+0.1	+0.1	+0.1	+9.1	+0.0	35.1	46.0	-10.9	Line
			+0.1								
12	858.464 k	25.3	+0.1	+0.1	+0.0	+9.1	+0.0	34.7	46.0	-11.3	Line
			+0.1								
13	26.490M	29.2	+0.1	+0.1	+0.2	+9.1	+0.0	38.7	50.0	-11.3	Line
			+0.0								
14	25.877 M	29.0	+0.1	+0.1	+0.2	+9.1	+0.0	38.5	50.0	-11.5	Line
			+0.0								
15	28.685M	28.9	+0.1	+0.1	+0.2	+9.1	+0.0	38.4	50.0	-11.6	Line
			+0.0								
16	1.712 M	24.9	+0.0	+0.1	+0.1	+9.1	+0.0	34.3	46.0	-11.7	Line
			+0.1								
17	3.674M	24.9	+0.0	+0.1	+0.1	+9.1	+0.0	34.3	46.0	-11.7	Line
			+0.1								
18	25.688 M	28.7	+0.1	+0.1	+0.2	+9.1	+0.0	38.2	50.0	-11.8	Line
			+0.0								
19	27.160M	28.5	+0.1	+0.1	+0.2	+9.1	+0.0	38.0	50.0	-12.0	Line
			+0.0								
20	3.885M	11.1	+0.0	+0.1	+0.1	+9.1	+0.0	20.5	46.0	-25.5	Line
	Ave		+0.1								
\wedge	3.885 M	30.7	+0.0	+0.1	+0.1	+9.1	+0.0	40.1	46.0	-5.9	Line
			+0.1								

LABORATORIES, INC.

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021•(425) 402-1717

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.
15.207 AC Mains - Average

107461
Conducted Emissions
Michael Atkinson
EMIT est 5.03.20

Date: 10/13/2022
Time: 20:27:17
Sequence\#: 7
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Test Environment Conditions:
Temperature: $24^{\circ} \mathrm{C}$
Humidity: 43\%
Pressure: 101.9 kPa
Test Method: ANSI C63.10 (2013)
Frequency: $0.15-30 \mathrm{MHz}$
Test Setup:

Configuration 1

AM, FM12.5, and FM37.5 modulations investigated, worst-case reported. Configuration 2 and 3 investigated, with and without battery investigated, also investigated with GPS antenna PN 57861-20 on configuration 2 and configuration 3, investigated with RV50 and RV50x cell modems installed and powered, worst-case data reported.

Itron, Inc. WO\#: 107461 Sequenceff: 7 Date: 10/13/2022
15.207 AC Mains - Average Test Lead: 120 V 60 Hz Neutral

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	AN02611	High Pass Filter	HE9615-150K-	$1 / 5 / 2022$	$1 / 5 / 2024$
			50-720B		
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP06219	Attenuator	$768-10$	$3 / 23 / 2022$	$3 / 23 / 2024$
	AN01311	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 23 / 2022$	$2 / 23 / 2024$
T5	AN01311	50uH LISN-Line2 (N)	$3816 / 2$	$2 / 23 / 2022$	$2 / 23 / 2024$

Measurement Data:			Reading listed by margin.			Test Lead: Neutral					
\#	Freq	Rdng		T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$	dB	Ant
1	3.888M	30.0	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	39.4	46.0	-6.6	Neutr
2	3.764 M	28.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	38.2	46.0	-7.8	Neutr
3	3.860M	28.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	38.2	46.0	-7.8	Neutr
4	4.092M	28.7	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	38.1	46.0	-7.9	Neutr
5	3.424 M	28.4	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	37.8	46.0	-8.2	Neutr
6	3.780M	28.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	37.6	46.0	-8.4	Neutr
7	4.288M	27.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	36.5	46.0	-9.5	Neutr
8	8.717M	30.8	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	40.2	50.0	-9.8	Neutr
9	1.116 M	26.4	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	35.9	46.0	-10.1	Neutr
10	9.388M	30.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+9.1	+0.0	39.7	50.0	-10.3	Neutr
11	3.732 M	26.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	35.7	46.0	-10.3	Neutr
12	1.345 M	26.1	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	35.6	46.0	-10.4	Neutr
13	1.474 M	25.8	$\begin{aligned} & \hline+0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	35.3	46.0	-10.7	Neutr
14	26.490M	29.3	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	38.8	50.0	-11.2	Neutr
15	26.607M	29.2	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	+0.0	38.7	50.0	-11.3	Neutr
16	3.674 M	25.1	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.1	+9.1	+0.0	34.5	46.0	-11.5	Neutr
17	4.847 M	25.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	34.5	46.0	-11.5	Neutr
18	25.688M	29.0	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	38.5	50.0	-11.5	Neutr
19	4.427M	25.0	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	34.4	46.0	-11.6	Neutr
20	$4.001 \mathrm{M}$ ve	11.6	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	21.0	46.0	-25.0	Neutr
\wedge	4.001 M	30.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	39.6	46.0	-6.4	Neutr

Test Setup Photo(s)

Configuration 1; Representative of Worst-Case

Configuration 2; Investigated

Configuration 3; Investigated

LABQRATORIES, INE.

Appendix A: Customer Provided Data

15.35(c) Duty Cycle Correction Factor

Test Data Summary			
Antenna Port	Operational Mode	Measured On Time $(\mathrm{ms} /$ Pobs $)$	Declared DCCF DCCF (dB)
1	Operating	23.8	12.5

Observation Period, Pobs is the duration of the pulse train or maximum 100 mS

Measured results are calculated as follows:

$$
\text { On Time }=\left.\left(\sum_{\text {Bursts }} R F \text { Burst On Time }+\sum_{\text {Control }} \text { Control Signal On time }\right)\right|_{P_{\text {obs }(\max 100 m s)}}
$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100
Number of RF Bursts / Pobs::	1
On time of RF Burst:	23.8
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	23.8

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$
D C C F=20 \cdot \log \left(\frac{\text { On Time }}{P_{\text {obs }}}\right)
$$

Duty Cycle Correction Factor Test Data

Appendix B: Manufacturer Declaration

The following device/models were checked and worst-case provided for testing:
Device: CCU100
Models: CCU100D and CCU100RD

The manufacturer declares that the following additional models are identical electrically or any differences between them do not affect their EMC characteristics, and therefore meets the level of testing equivalent to the tested model.

CCU100D and CCU100RD are representatives of worst-case testing of the following models per the manufacturer:

CCU100D Repeater

 CCU100RD Repeater
SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: *Net gain is 5.95 dBi . The manufacturer declares minimum of 2.2 dB of path loss to remote 8.15 dBi antenna.

