Itron, Inc.

TEST REPORT FOR

CCU100

Models: CCU100B and CCU100RB*

(*See Appendix B for Manufacturer Declaration)

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928 MHz)

Report No.: 103220-2

Date of issue: November 4, 2020

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 109 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	8
FCC Part 15 Subpart C	9
15.247(a) Transmitter Characteristics	9
15.247(a)(1) 20 dB Bandwidth	9
15.247(a)(1) Carrier Separation	15
15.247(a)(1)(i) Number of Hopping Channels	17
15.247(b)(1) Output Power	20
15.35(c) Duty Cycle Correction Factor	25
15.247(d) RF Conducted Emissions & Band Edge	26
15.247(d) Radiated Emissions & Band Edge	38
15.207 AC Conducted Emissions	98
Appendix A: Modifications Photos	106
Appendix B: Manufacturer Declaration	107
Supplemental Information	108
Measurement Uncertainty	108
Emissions Tost Datails	100

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Itron, Inc. Terri Rayle

2111 N. Molter Road CKC Laboratories, Inc.
Liberty Lake, WA 99019 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Jay Holcomb Project Number: 103220

Customer Reference Number: 192996

DATE OF EQUIPMENT RECEIPT: September 24, 2020

DATE(S) OF TESTING: September 24, 2020 – October 1-12, 2020

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve J Be

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 109 Report No.: 103220-2

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.19

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 109 Report No.: 103220-2

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	Mod. #1	Pass
15.247(a)(1)(i)	Number of Hopping Channels	Mod. #1	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	Mod. #1	Pass
15.247(d)	RF Conducted Emissions & Band Edge	Mod. #1	Pass
15.247(d)	Radiated Emissions & Band Edge	Mod. #1	Pass
15.207	AC Conducted Emissions	Mod. #1	Pass

NA = Not Applicable

NP = CKC Laboratories was not contracted to perform test. See Appendix B for Manufacturer Declaration.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

Modification #1: Updated back cover and front cover for internal GPS antenna, both with conductive spray coating.

The updated front and back covers used during test allowed for an internal GPS antenna and an externally connected optical port. These options require openings in the conductive coating which is considered worst case. Other covers will have these areas coated with the conductive coating.

See Appendix A for photos of modifications made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

Prior to testing: DSP ISM Power set to 140 for middle channel.

Manufacturer declares setting this level is normal, e.g. during production the power level is set to stay under limits as the setting will vary from unit to unit. In the test application used for compliance testing, this level is manually set to the correct level, to allow for unit to unit variations. So, the request to turn down the DSP power to 140 in the test application is expected and normal in order to set the power level during test.

Page 5 of 109 Report No.: 103220-2

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
CCU100	Itron, Inc.	CCU100B	103220-RAD1

Support Equipment:

Device	Manufacturer	Model #	S/N
Omnidirectional Antenna	PCTEL	BOA9025NM-ITR	208
Omnidirectional Antenna*	PCTEL	MHO3G4G02NM	NA

^{*}Antenna Cellular Ports are terminated during testing.

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
CCU100	Itron, Inc.	CCU100B	103220-RAD1

Support Equipment:

Device	Manufacturer	Model #	S/N
Omnidirectional Antenna	PCTEL	BOA9028	NA
Omnidirectional Antenna*	PCTEL	MHO3G4G02NM	NA

^{*}Antenna Cellular Ports are terminated during testing.

Configuration 3

Equipment Tested:

Device	Manufacturer	Model #	S/N
CCU100	Itron, Inc.	CCU100B	103220-AC1

Support Equipment:

Device	Manufacturer	Model #	S/N
Omnidirectional Antenna	PCTEL	BOA9025NM-ITR	208

Page 6 of 109 Report No.: 103220-2

Configuration 4

Equipment Tested:

Device	Manufacturer	Model #	S/N
CCU100	Itron, Inc.	CCU100RB	103220-RAD1

Support Equipment:

Device	Manufacturer	Model #	S/N
Omnidirectional Antenna	PCTEL	BOA9025NM-ITR	208
Omnidirectional Antenna*	Taoglas	OMB.6912.03F21	NA
GPS Antenna	Trimble	57861-00	213100611

^{*}Antenna Cellular Ports are terminated during testing.

Configuration 5

Equipment Tested:

Device	Manufacturer	Model #	S/N
CCU100	Itron, Inc.	CCU100RB	103220-RAD1

Support Equipment:

Device	Manufacturer	Model #	S/N
Omnidirectional Antenna	PCTEL	BOA9028	NA
Omnidirectional Antenna*	Taoglas	OMB.6912.03F21	NA
GPS Antenna	Trimble	57861-00	213100611

^{*}Antenna Cellular Ports are terminated during testing.

Page 7 of 109 Report No.: 103220-2



General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	903-926.8 MHz
Number of Hopping Channels:	120 (FSK 12.5kbit and FSK 37.5kbit) 80 (AM)
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	37.5kbit/sec FM (FSK) 12.5kbit/sec FM (FSK) 16.384kbit/sec AM (OOK)
Maximum Duty Cycle:	100% (Tested Worst-Case)
Number of TX Chains:	1
Antenna Type(s) and Gain:	Omnidirectional / 5.5dBi Omnidirectional / 8.15dBi with 2dB attenuation
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	115VAC
Firmware / Software used for Test:	ARM = Version 2.27.0.0, DSP = Version 7.22.0.0 and FPGA = Version 4.14, SR Test 100 version 4.11.1.42

Block Diagram of Test Setup(s)

Test Setup Block Diagram

Page 8 of 109 Report No.: 103220-2

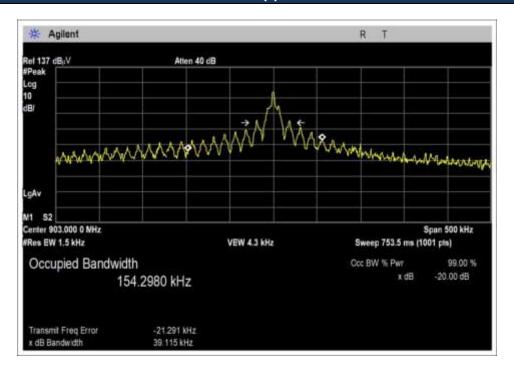
FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

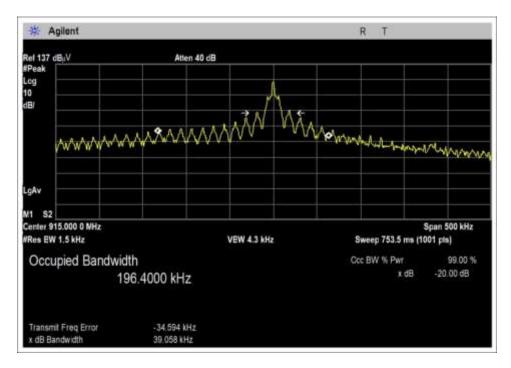
Test Setup/Conditions				
Test Location:	Bothell Lab Bench	Test Engineer:	M. Harrison	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	9/24/2020	
Configuration:	1			
Test Setup:	Test Setup: The equipment under test (EUT) is placed on the tabletop.			
	The output of the EUT is connected to the spectrum analyzer using a coaxial cable and			
attenuator.				
	The EUT is transmitting at its rated output power.			

Environmental Conditions				
Temperature (°C)	25	Relative Humidity (%):	45	

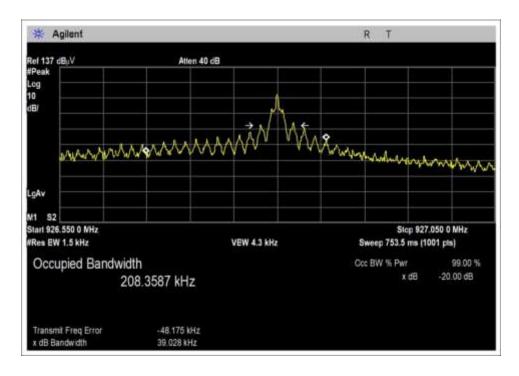
Test Equipment						
Asset#	Asset# Description Manufacturer Model Cal Date Cal Due					
02673	Spectrum Analyzer	Agilent	E4446A	2/22/2019	2/22/2021	
P05503	Attenuator	Narda	766-10	7/30/2019	7/30/2021	


15.247(a)(1) 20 dB Bandwidth

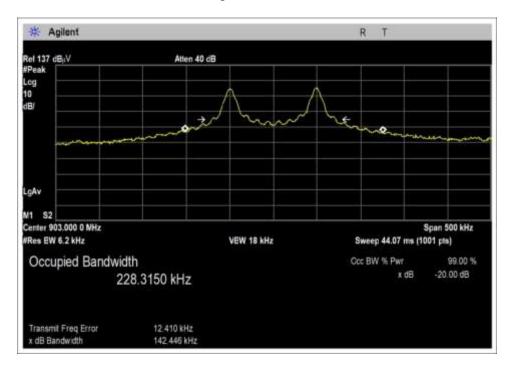
Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
903	1	FM 12.5kbit	142.5	≤500	Pass	
915	1	FM 12.5kbit	142.8	≤500	Pass	
926.8	1	FM 12.5kbit	142.1	≤500	Pass	
903	1	FM 37.5kbit	53.1	≤500	Pass	
915	1	FM 37.5kbit	53	≤500	Pass	
926.8	1	FM 37.5kbit	53.2	≤500	Pass	
903	1	AM	39.1	≤500	Pass	
915	1	AM	39.1	≤500	Pass	
926.8	1	AM	39	≤500	Pass	


Page 9 of 109 Report No.: 103220-2

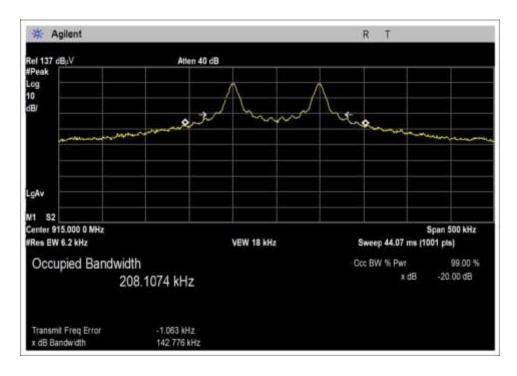
Plot(s)



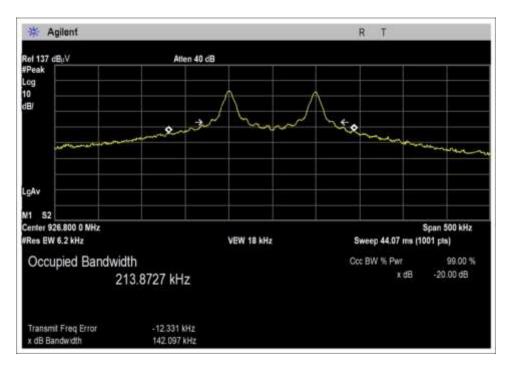
Low Channel, AM



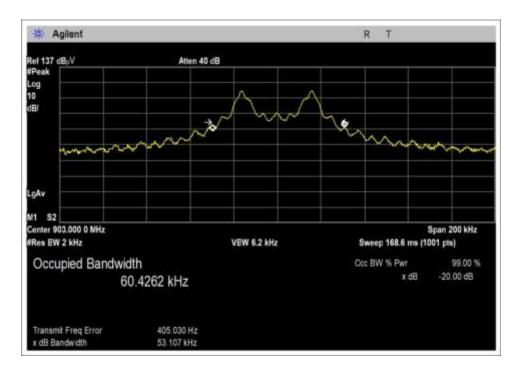
Middle Channel, AM



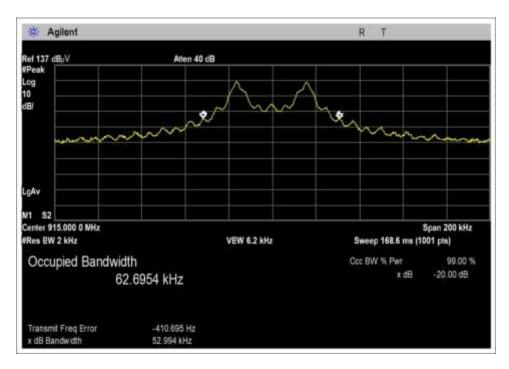
High Channel, AM



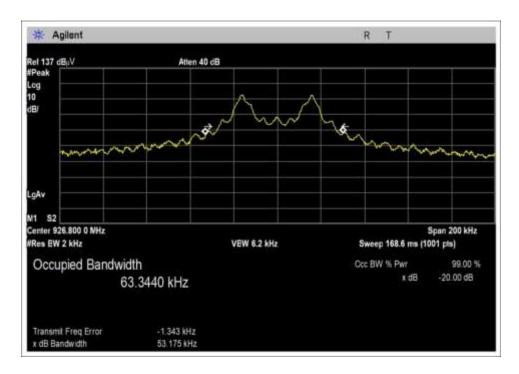
Low Channel, FM12.5kbit



Middle Channel, FM12.5kbit



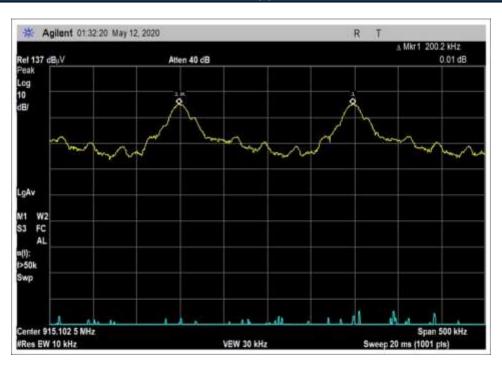
High Channel, FM12.5kbit



Low Channel, FM37.5kbit

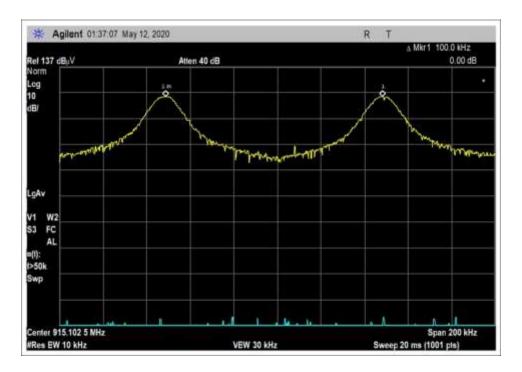
Middle Channel, FM37.5kbit

High Channel, FM37.5kbit


Page 14 of 109 Report No.: 103220-2

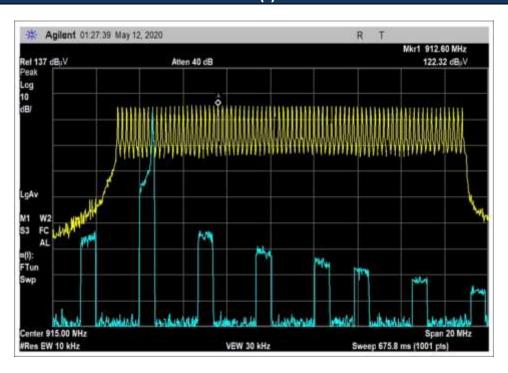
15.247(a)(1) Carrier Separation

Test Data Summary						
Limit applied: 1	Limit applied: minimum 25kHz.					
Antenna Port	Operational Mode Results					
1	Transmitting, FSK Channel Plan	100	>25	Pass		
1	Transmitting, AM Channel Plan	200.2	>25	Pass		


Plot(s)

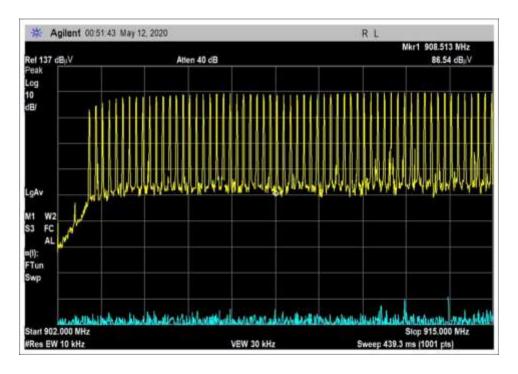
 AM

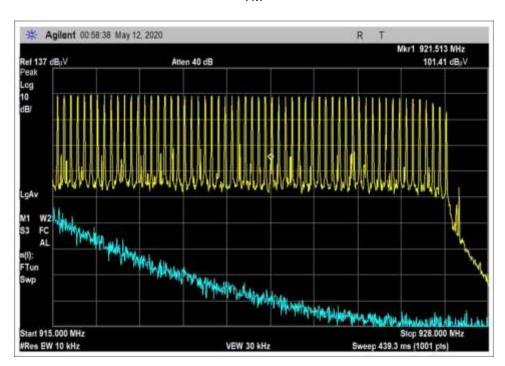
Page 15 of 109 Report No.: 103220-2


FM

15.247(a)(1)(i) Number of Hopping Channels

Test Data Summary						
$Limit = \begin{cases} 50 \text{ Channels } 20 \text{ dB } BW < 250 \text{kHz} \\ 25 \text{ Channels } 20 \text{ dB } BW \ge 250 \text{kHz} \end{cases}$						
Antenna Port	Antenna Operational Mode Measured Limit Results					
1	Transmitting, FSK Channel Plan	120	≥25	Pass		
1	Transmitting, AM Channel Plan	80	≥25	Pass		


Plot(s)


 AM

Page 17 of 109 Report No.: 103220-2


FΜ

FΜ

Test Setup Photo(s)

Page 19 of 109 Report No.: 103220-2

15.247(b)(2) Output Power

Test Setup/Conditions				
Test Location:	Bothell Lab Bench	Test Engineer:	M. Harrison	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	10/5/2020	
Configuration:	1			
Test Setup:	The equipment under test (EUT) is The output of the EUT is connect attenuator. The EUT is transmitting at its rated Modification #1 was in place during	ted to the spectrum a	p. Inalyzer using a coaxial cable and	

Environmental Conditions				
Temperature (°C) 26 Relative Humidity (%): 44				

Test Equipment							
Asset#	Asset# Description Manufacturer Model Cal Date Cal Due						
02673	Spectrum Analyzer	Agilent	E4446A	2/22/2019	2/22/2021		
P05503	Attenuator	Narda	766-10	7/30/2019	7/30/2021		
01359	AC Power Source: Variac	Superior Electric	1256D	4/15/2020	4/15/2022		

	Test Data Summary - Voltage Variations										
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)						
903	FM 12.5kbit as worst case / 1	26.6	26.7	26.5	0.2						
915	FM 12.5kbit as worst case / 1	29.6	29.6	29.6	0.0						
926.8	FM 12.5kbit as worst case / 1	24.5	24.6	24.5	0.1						

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	115
V _{Minimum} :	98
V _{Maximum} :	132

Page 20 of 109 Report No.: 103220-2

Test Data Summary - RF Conducted Measurement

 $Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \geq 50 \ Channels \end{cases}$

 $Limit = \{24dBm\ Conducted/30dBm\ EIRP \mid < 50\ Channels\ (min\ 25)\}$

Configuration 1

Frequency (MHz)	Modulation / Ant Port	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
903	FM 12.5kbit as worst case / 1	Omnidirectional/5.5	26.7	≤ 30	Pass
915	FM 12.5kbit as worst case / 1	Omnidirectional/5.5	29.6	≤ 30	Pass
926.8	FM 12.5kbit as worst case / 1	Omnidirectional/5.5	24.6	≤ 30	Pass

Test Data Summary - RF Conducted Measurement

 $Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \geq 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \mid \leq 50 \ Channels \end{cases}$

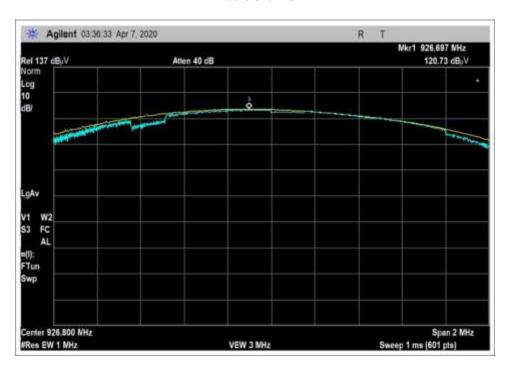
 $Limit = \{24dBm\ Conducted/30dBm\ EIRP \mid < 50\ Channels\ (min\ 25)\}$

Configuration 2

Frequency (MHz)	Modulation / Ant Port	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
903	FM 12.5kbit as worst case / 1	Omnidirectional/8.15	26.7	≤ 30	Pass
915	FM 12.5kbit as worst case / 1	Omnidirectional/8.15	29.6	≤ 30	Pass
926.8	FM 12.5kbit as worst case / 1	Omnidirectional/8.15	24.6	≤ 30	Pass


^{*}Manufacturer declares 2 dB of system loss via cable and attenuators to be attached before antenna.

Plots



Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362

Customer: Itron, Inc.

Specification: 15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

Work Order #: 103220 Date: 10/5/2020 Test Type: Conducted Emissions Time: 13:40:23

Tested By: Matthew Harrison Sequence#: 1

Software: EMITest 5.03.19 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 23° C Humidity: 39% Pressure: 101.1 kPa

Frequency Range: 903-926.8MHz Frequency tested: 903, 915, 926.8 MHz

Firmware power setting: Max

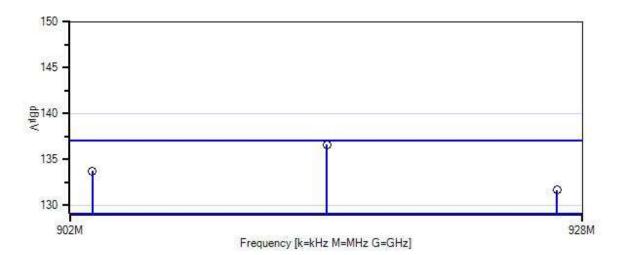
Antenna type: Omni-Directional

Antenna Gain: 5.5 dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2015

Test Mode: Transmitting


Test Setup: EUT is setup in for conducted measurements.

Modifications #1 was in place during testing.

Page 23 of 109 Report No.: 103220-2

Itron, Inc. WO#: 103220 Sequence#: 1 Date: 10/5/2020 15.247(b) Power Output (902-928 MHz FHSS >50 Channels) Test Lead: 120V 60Hz Antenna Port

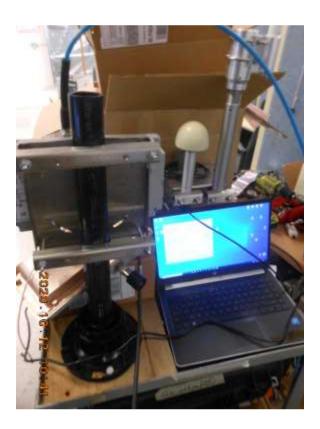
Sweep Data
Readings
O Peak Readings

QP Readings
Average Reading

★ Average Readings▼ Ambient

Software Version: 5.03.19
— 1 - 15.247(b) Power Output (902-928 MHz FHSS >50 Channels)

Test Equipment:


ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05503	Attenuator	766-10	7/30/2019	7/30/2021
T2	ANP06008	Cable	Heliax	1/22/2019	1/22/2021
T3	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Antenna	Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	914.950M	125.7	+10.1	+0.8	+0.0		+0.0	136.6	137.0	-0.4	Anten
									DSP ISM	Power	
									Setting 140	0	
2	903.137M	122.8	+10.1	+0.8	+0.0		+0.0	133.7	137.0	-3.3	Anten
3	926.697M	120.7	+10.1	+0.8	+0.0		+0.0	131.6	137.0	-5.4	Anten

Page 24 of 109 Report No.: 103220-2

Test Setup Photo(s)

15.35(c) Duty Cycle Correction Factor

	Test Data Summary										
Antenna Port	Operational Mode	Measured On Time (mS / Pobs)	Calculated DCCF (dB)								
1	Normal	23.8	12.5								

Observation Period, P_{obs} is the duration of the pulse train or maximum 100mS

Page 25 of 109 Report No.: 103220-2

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362

Customer: Itron, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 103220 Date: 10/12/2020
Test Type: Conducted Emissions Time: 12:39:41

Tested By: Matthew Harrison Sequence#: 2
Software: EMITest 5.03.19 Sequence#: 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 23° C Humidity: 39% Pressure: 101.1 kPa

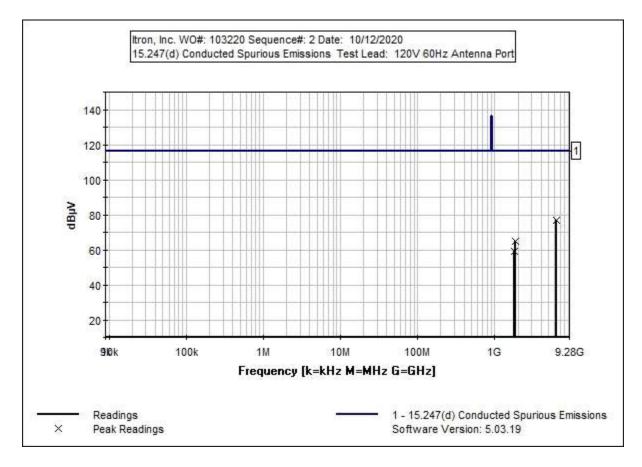
Frequency Range: 9kHz-10GHz Frequency tested: 903, 926.8 MHz Firmware power setting: Max

Antenna type: Omni-Directional

Antenna Gain: NA dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2015


Test Mode: Transmitting

Test Setup: EUT is setup in for conducted measurements.

Modifications #1 was in place during testing.

Page 26 of 109 Report No.: 103220-2

Test Equipment:

ID	Asset # Description		Model	Calibration Date	Cal Due Date		
T1	ANP05503	5503 Attenuator		7/30/2019	7/30/2021		
T2	ANP06008	Cable	Heliax	1/22/2019	1/22/2021		
	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021		

Measurement Data:		Re	Reading listed by margin.				Test Lead: Antenna Port				
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	6321.000M	74.2	+0.0	+2.7			+0.0	76.9	116.2	-39.3	Anten
2	1832.000M	53.6	+10.2	+1.1			+0.0	64.9	116.2	-51.3	Anten
3	1802.000M	47.8	+10.2	+1.1			+0.0	59.1	116.2	-57.1	Anten

Page 27 of 109 Report No.: 103220-2

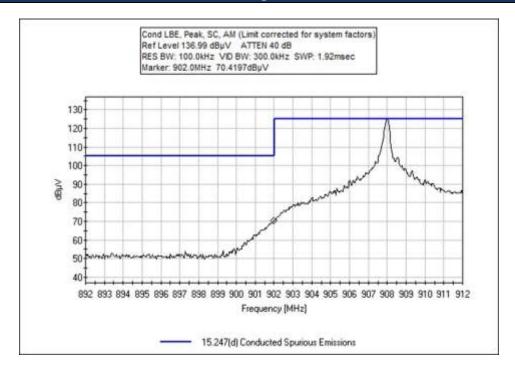
Band Edge

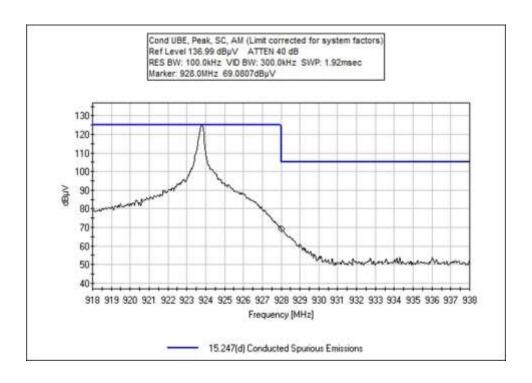
Band Edge Summary Limit applied: Max Power/100kHz - 20dB.

Operating Mode: Single Channel (Low and High)

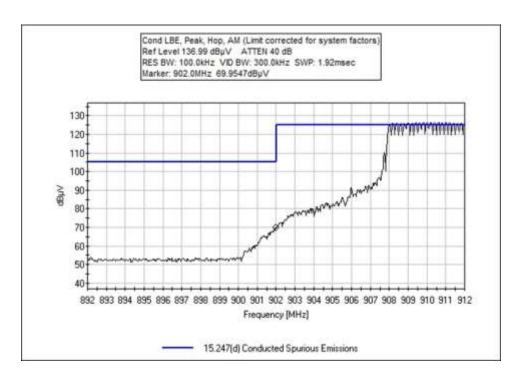
Frequency Measured Limit Modulation Results (dBm) (dBm) (MHz) 902 FM 12.5kbit 94.9 < 116.2 Pass 928 FM 12.5kbit 81.6 < 116.2 Pass 902 FM 37.5kbit 93.8 < 116.2 Pass 81.4 928 FM 37.5kbit < 116.2 Pass 902 81.3 < 116.2 Pass AM 928 AM 80 < 116.2 Pass

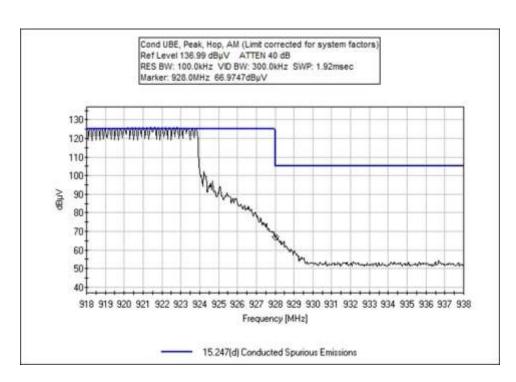
Band Edge Summary


Limit applied: Max Power/100kHz - 20dB.

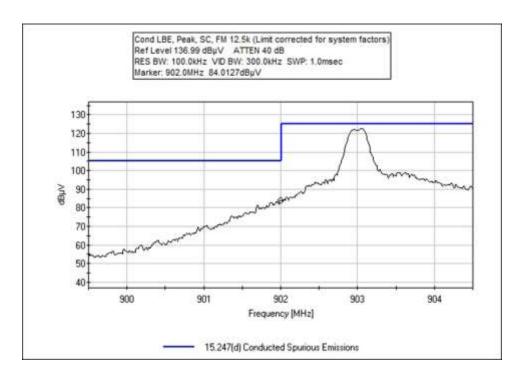

Operating Mo	Operating Mode: Hopping										
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results							
902	FM 12.5kbit	91	< 116.2	Pass							
928	FM 12.5kbit	80.5	< 116.2	Pass							
902	FM 37.5kbit	91.6	< 116.2	Pass							
928	FM 37.5kbit	81.5	< 116.2	Pass							
902	AM	80.9	< 116.2	Pass							
928	AM	77.9	< 116.2	Pass							

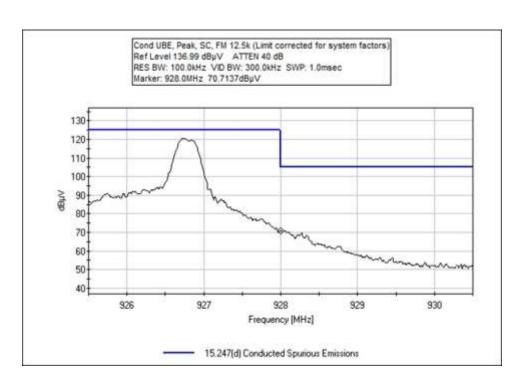
Page 28 of 109 Report No.: 103220-2

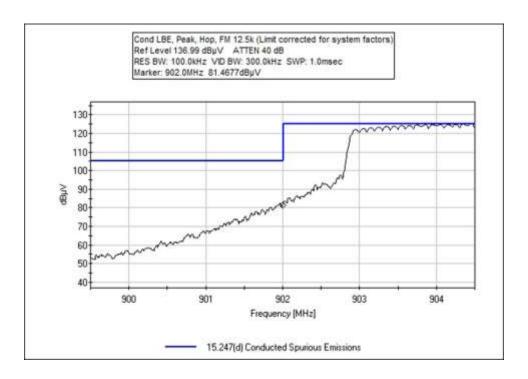

Band Edge Plots

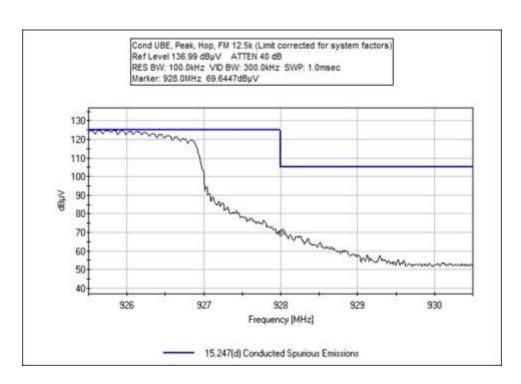


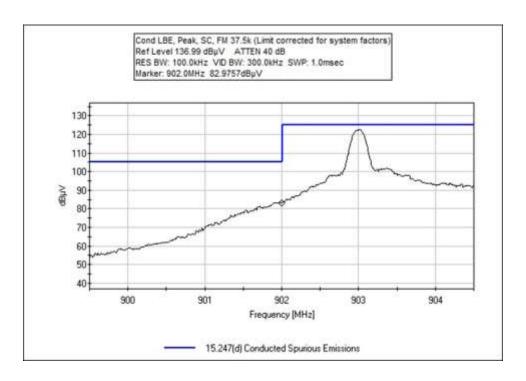
Page 29 of 109 Report No.: 103220-2

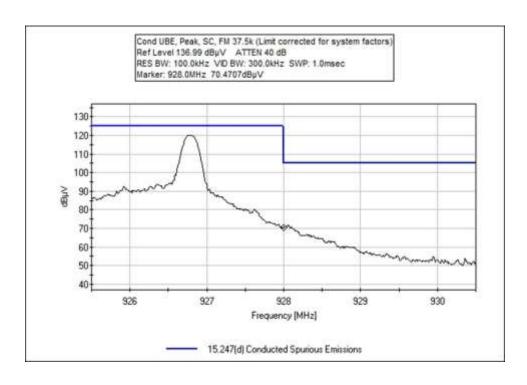




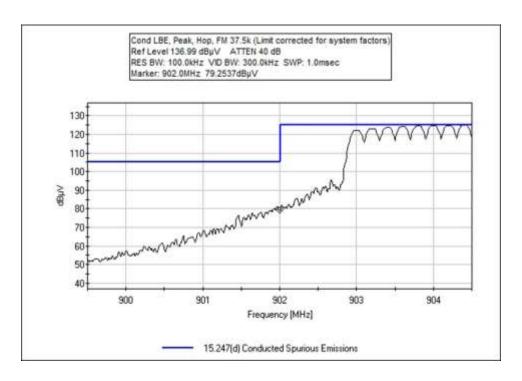

Page 30 of 109 Report No.: 103220-2







Page 32 of 109 Report No.: 103220-2



Page 33 of 109 Report No.: 103220-2

Page 34 of 109 Report No.: 103220-2

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362

Customer: Itron, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 103220 Date: 10/1/2020
Test Type: Conducted Emissions Time: 16:12:46
Tested By: Matthew Harrison Sequence#: 2

Software: EMITest 5.03.19 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 23° C Humidity: 39% Pressure: 101.1 kPa

Frequency Range: 902-928MHz Frequency tested: 903, 926.8 MHz Firmware power setting: Max

Antenna type: Omni-Directional

Antenna Gain: 5.5 dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2015

Test Mode: Transmitting

Test Setup: EUT is setup in for conducted measurements.

Modifications #1 was in place during testing.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date	
T1	ANP05503	Attenuator	766-10	7/30/2019	7/30/2021	
T2	ANP06008	Cable	Heliax	1/22/2019	1/22/2021	
T3	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021	

Page 35 of 109 Report No.: 103220-2

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: Antenna	Port	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	902.000M	84.0	+10.1	+0.8	+0.0		+0.0	94.9	116.2	-21.3	Anten
									FM 12.5k,	SC	
2	902.000M	82.9	+10.1	+0.8	+0.0		+0.0	93.8	116.2	-22.4	Anten
									FM 37.5k,	SC	
3	902.000M	80.7	+10.1	+0.8	+0.0		+0.0	91.6	116.2	-24.6	Anten
									FM 37.5k,	Hop	
4	902.000M	80.1	+10.1	+0.8	+0.0		+0.0	91.0	116.2	-25.2	Anten
									FM 12.5k,		
5	928.000M	70.7	+10.1	+0.8	+0.0		+0.0	81.6	116.2	-34.6	Anten
									FM 12.5k,	SC	
6	928.000M	70.6	+10.1	+0.8	+0.0		+0.0	81.5	116.2	-34.7	Anten
									FM 37.5k,	Hop	
7	928.000M	70.5	+10.1	+0.8	+0.0		+0.0	81.4	116.2	-34.8	Anten
									FM 37.5k,	SC	
8	902.000M	70.4	+10.1	+0.8	+0.0		+0.0	81.3	116.2	-34.9	Anten
									AM, SC		
9	902.000M	70.0	+10.1	+0.8	+0.0		+0.0	80.9	116.2	-35.3	Anten
									AM, Hop		
10	928.000M	69.6	+10.1	+0.8	+0.0		+0.0	80.5	116.2	-35.7	Anten
									FM 12.5k,		
11	928.000M	69.1	+10.1	+0.8	+0.0		+0.0	80.0	116.2	-36.2	Anten
									AM, SC		
12	928.000M	67.0	+10.1	+0.8	+0.0		+0.0	77.9	116.2	-38.3	Anten
									AM, Hop		

Page 36 of 109 Report No.: 103220-2

Test Setup Photo(s)

Page 37 of 109 Report No.: 103220-2

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 103220 Date: 10/10/2020
Test Type: Radiated Scan Time: 10:59:02
Tested By: Matthew Harrison Sequence#: 1

Software: EMITest 5.03.19

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1, 4 and 5

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1, 4 and 5

Test Conditions / Notes:

Temperature: 23° C Humidity: 39% Pressure: 101.1 kPa

Frequency Range: 9kHz-10GHz Frequency tested: Low, Mid High Firmware power setting: Max

Modulation: FSK 12.5, FSK 37.5, and AM investigated, overall worst case reported.

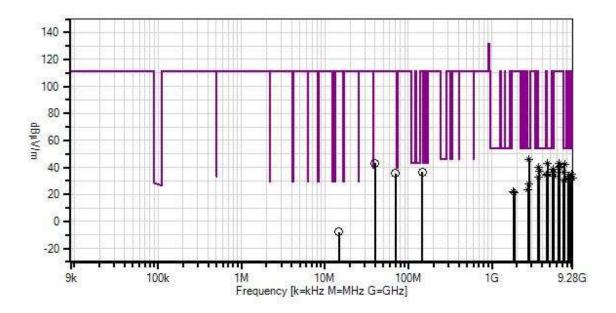
Antenna type: Omnidirectional Antenna Gain: 5.5 dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2013

Test Mode: Transmitting

Test Setup: EUT is setup in a tabletop configuration on a Styrofoam table.


Below 1GHz set 80cm high. Above 1GHz set 1.5m high

Modification #1 was in place during testing.

Page 38 of 109 Report No.: 103220-2

Itron, Inc. WO#: 103220 Sequence#: 1 Date: 10/10/2020 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horz + Vert

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.19

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	5/13/2019	5/13/2021
T2	AN01467	Horn Antenna-ANSI C63.5	3115	7/5/2019	7/5/2021
		Calibration			
T3	ANP06243	Attenuator	54A-10	1/27/2020	1/27/2022
T4	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T5	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
Т6	ANP07504	Cable	CLU40-KMKM-	1/17/2019	1/17/2021
			02.00F		
	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021
T7	AN03170	High Pass Filter	HM1155-11SS	10/23/2019	10/23/2021
T8	ANDCCF	Duty Cycle Correction	Multiple	10/1/2019	10/1/2021
		Factor			
Т9	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022
	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T10	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T11	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T12	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T13	ANP05360	Cable	RG214	2/3/2020	2/3/2022

Page 39 of 109 Report No.: 103220-2

Measi	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dΒμV	dB	dB	dB	dB		$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2780.235M	49.6	-34.1	+28.5	+10.0	+2.9	+0.0	45.7	54.0	-8.3	Horz
	Ave		+0.7	+0.2	+0.4	+12.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	2780.235M	53.1	-34.1	+28.5	+10.0	+2.9	+0.0	61.7	54.0	+7.7	Horz
			+0.7	+0.2	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	452425035	44.6	+0.0		0.0	2.0	0.0	42.2	7.4.0	10.5	**
3	4634.360M	41.6	-33.6	+32.1	+9.8	+3.8	+0.0	43.3	54.0	-10.7	Horz
	Ave		+0.9	+0.6	+0.6	+12.5					
			+0.0	+0.0	+0.0	+0.0					
	462426034	40.7	+0.0	. 20.1	.00	.2.0	.0.0	(2.0	£4.0	.00	TT.
^	4634.360M	48.7	-33.6	+32.1	+9.8	+3.8	+0.0	62.9	54.0	+8.9	Horz
			+0.9	+0.6	+0.6	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	7414 225M	245	+0.0	+27.1	+0.0	15.2	+0.0	42.2	540	11.0	Понт
)	7414.235M	34.5	-34.6 +1.5	+37.1 +0.4	+9.9 +0.6	+5.3 +12.5	+0.0	42.2	54.0	-11.8	Horz
	Ave		+0.0	+0.4	+0.0	+12.3					
			+0.0 +0.0	+0.0	+0.0	+0.0					
	7414.235M	45.1	-34.6	+37.1	+9.9	+5.3	+0.0	65.3	54.0	+11.3	Horz
	7414.2331VI	43.1	+1.5	+0.4	+0.6	+0.0	+0.0	05.5	34.0	⊤11.3	11012
			+0.0	+0.0	+0.0	+0.0					
			+0.0	10.0	10.0	10.0					
7	3659.660M	41.0	-33.7	+30.5	+9.8	+3.4	+0.0	40.4	54.0	-13.6	Horz
	Ave		+0.9	+0.5	+0.5	+12.5	. 0.0		C	10.0	11012
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
٨	3659.660M	47.5	-33.7	+30.5	+9.8	+3.4	+0.0	59.4	54.0	+5.4	Horz
			+0.9	+0.5	+0.5	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
9	3707.635M	37.6	-33.7	+30.6	+9.8	+3.5	+0.0	37.2	54.0	-16.8	Horz
	Ave		+0.9	+0.5	+0.5	+12.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	3707.635M	47.0	-33.7	+30.6	+9.8	+3.5	+0.0	59.1	54.0	+5.1	Horz
			+0.9	+0.5	+0.5	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
11	5418.345M	33.6	-33.7	+33.4	+9.9	+4.3	+0.0	36.8	54.0	-17.2	Horz
	Ave		+1.0	+0.4	+0.4	+12.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 40 of 109 Report No.: 103220-2

^ 5418.3451	M 43.6	-33.7	+33.4	+9.9	+4.3	+0.0	59.3	54.0	+5.3	Horz
		+1.0	+0.4	+0.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
10 5000 5500		+0.0	2.50			0.0	265	7 40	15.0	**
13 7320.5701	M 29.6	-34.6	+36.8	+9.9	+5.2	+0.0	36.7	54.0	-17.3	Horz
Ave		+1.3	+0.4	+0.6	+12.5					
		+0.0	+0.0	+0.0	+0.0					
^ 7320.5701	M 40.5	+0.0	+36.8	+9.9	+5.2	+0.0	60.1	540	+6.1	Помя
7520.5701	VI 40.3	-54.6 +1.3	+30.8	+9.9 +0.6	+3.2	+0.0	00.1	54.0	+0.1	Horz
		+0.0	+0.4	+0.0 +0.0	+0.0					
		+0.0	10.0	10.0	10.0					
15 4574.9551	M 33.6	-33.7	+31.9	+9.8	+3.8	+0.0	35.1	54.0	-18.9	Horz
Ave	11 33.0	+0.9	+0.7	+0.6	+12.5	10.0	33.1	31.0	10.7	HOIZ
11,0		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 4574.9551	M 42.4	-33.7	+31.9	+9.8	+3.8	+0.0	56.4	54.0	+2.4	Horz
		+0.9	+0.7	+0.6	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
17 9150.8901	M 25.8	-34.2	+37.5	+9.9	+5.8	+0.0	34.7	54.0	-19.3	Horz
Ave		+1.5	+0.4	+0.5	+12.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 9150.8901	M 39.2	-34.2	+37.5	+9.9	+5.8	+0.0	60.6	54.0	+6.6	Horz
		+1.5	+0.4	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
10 4514 0051	22.0	+0.0	. 21.0	.0.0	. 2.7	. 0. 0	24.2	540	10.7	**
19 4514.8851	M 33.0	-33.7	+31.8	+9.8	+3.7	+0.0	34.3	54.0	-19.7	Horz
Ave		+0.9	+0.7	+0.6	+12.5					
		$+0.0 \\ +0.0$	+0.0	+0.0	+0.0					
^ 4514.8851	M 42.7	-33.7	+31.8	+9.8	+3.7	+0.0	56.5	54.0	+2.5	Horz
4314.0031	VI 42.7	+0.9	+0.7	+9.6	+0.0	+0.0	30.3	34.0	+2.3	11012
		+0.9	+0.7	+0.0	+0.0					
		+0.0	10.0	10.0	10.0					
21 8235.8901	M 25.6	-35.0	+37.0	+9.8	+5.3	+0.0	33.3	54.0	-20.7	Horz
Ave	25.0	+1.7	+0.5	+0.9	+12.5	. 0.0	55.5	21.0	20.7	11012
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 8235.8901	M 40.9	-35.0	+37.0	+9.8	+5.3	+0.0	61.1	54.0	+7.1	Horz
		+1.7	+0.5	+0.9	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
23 3611.5751	M 33.6	-33.8	+30.3	+9.8	+3.4	+0.0	32.7	54.0	-21.3	Horz
Ave		+0.8	+0.6	+0.5	+12.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 3611.5751	M 43.7	-33.8	+30.3	+9.8	+3.4	+0.0	55.3	54.0	+1.3	Horz
		+0.8	+0.6	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

Page 41 of 109 Report No.: 103220-2

25 9030.255M	23.3	-34.2	+37.5	+10.0	+5.9	+0.0	32.2	54.0	-21.8	Horz
Ave		+1.4	+0.3	+0.5	+12.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 9030.255M	36.5	-34.2	+37.5	+10.0	+5.9	+0.0	57.9	54.0	+3.9	Horz
		+1.4	+0.3	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
27 8127.255M	23.9	-35.0	+37.0	+9.8	+5.3	+0.0	31.2	54.0	-22.8	Horz
Ave		+1.4	+0.5	+0.8	+12.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 8127.255M	36.9	-35.0	+37.0	+9.8	+5.3	+0.0	56.7	54.0	+2.7	Horz
		+1.4	+0.5	+0.8	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
29 8341.200M	23.3	-34.9	+37.0	+9.8	+5.3	+0.0	31.0	54.0	-23.0	Horz
Ave		+1.7	+0.5	+0.8	+12.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 8341.200M	35.5	-34.9	+37.0	+9.8	+5.3	+0.0	55.7	54.0	+1.7	Horz
		+1.7	+0.5	+0.8	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
31 2744.965M	32.2	-34.1	+28.4	+10.0	+2.9	+0.0	28.2	54.0	-25.8	Horz
Ave		+0.7	+0.2	+0.4	+12.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2744.965M	44.5	-34.1	+28.4	+10.0	+2.9	+0.0	53.0	54.0	-1.0	Horz
		+0.7	+0.2	+0.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
33 2709.265M	27.5	-34.1	+28.3	+10.0	+2.9	+0.0	23.4	54.0	-30.6	Horz
Ave		+0.7	+0.2	+0.4	+12.5					
		+0.0	+0.0	+0.0	+0.0					
	,	+0.0								
^ 2709.265M	43.0	-34.1	+28.3	+10.0	+2.9	+0.0	51.4	54.0	-2.6	Horz
		+0.7	+0.2	+0.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
25 20 5003	212	+0.0				0.0	10.1	111.0	60.2	**
35 39.700M	24.3	+0.0	+0.0	+0.0	+0.0	+0.0	43.1	111.3	-68.2	Horz
		+0.1	+0.0	+0.0	+0.0					
		+0.0	+12.3	+5.8	+0.3					
06 6000 10535	07.	+0.3	21.5	100		0.0	10.7	111.0		**
36 6320.105M	37.6	-34.1	+34.6	+10.0	+5.1	+0.0	42.7	111.3	-68.6	Horz
Ave		+1.0	+0.5	+0.5	+12.5					
		+0.0	+0.0	+0.0	+0.0					
A (000 1053 5	#0.2	+0.0	21.5	100		0.0	<i>(</i> 5 0	111.0	42.4	**
^ 6320.105M	50.3	-34.1	+34.6	+10.0	+5.1	+0.0	67.9	111.3	-43.4	Horz
		+1.0	+0.5	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

Page 42 of 109 Report No.: 103220-2

38	6487.955M	35.7	-34.2	+34.5	+10.0	+5.4	+0.0	41.2	111.3	-70.1	Horz
	Ave		+1.2	+0.6	+0.5	+12.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	6487.955M	45.4	-34.2	+34.5	+10.0	+5.4	+0.0	63.4	111.3	-47.9	Horz
			+1.2	+0.6	+0.5	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
40	6404.770M	34.8	-34.2	+34.6	+10.0	+5.3	+0.0	40.2	111.3	-71.1	Horz
	Ave		+1.1	+0.6	+0.5	+12.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	6404.770M	43.4	-34.2	+34.6	+10.0	+5.3	+0.0	61.3	111.3	-50.0	Horz
			+1.1	+0.6	+0.5	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
42	5489.630M	35.2	-33.7	+33.5	+9.8	+4.4	+0.0	38.5	111.3	-72.8	Horz
	Ave		+1.0	+0.4	+0.4	+12.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	5489.630M	43.6	-33.7	+33.5	+9.8	+4.4	+0.0	59.4	111.3	-51.9	Horz
			+1.0	+0.4	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
44	146.400M	20.7	+0.0	+0.0	+0.0	+0.0	+0.0	36.8	111.3	-74.5	Horz
			+0.2	+0.0	+0.0	+0.0					
			+0.0	+8.8	+5.8	+0.6					
			+0.7								
45	69.800M	21.5	+0.0	+0.0	+0.0	+0.0	+0.0	35.7	111.3	-75.6	Horz
			+0.1	+0.0	+0.0	+0.0					
			+0.0	+7.4	+5.8	+0.4					
			+0.5								
	5560.650M	30.0	-33.7	+33.7	+9.8	+4.4	+0.0	33.5	111.3	-77.8	Horz
	Ave		+1.0	+0.4	+0.4	+12.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
٨	5560.650M	42.7	-33.7	+33.7	+9.8	+4.4	+0.0	58.7	111.3	-52.6	Horz
			+1.0	+0.4	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
4.0	00.00.000.5	20.1	+0.0	27.5			0.0	22.0	111.0	70.0	**
	9268.000M	23.1	-34.1	+37.6	+9.8	+5.7	+0.0	32.0	111.3	-79.3	Horz
	Ave		+1.5	+0.4	+0.5	+12.5					
			+0.0	+0.0	+0.0	+0.0					
	00.00.0003.5	27.2	+0.0	.07.1	0.0		.0.0	50.5	1112	50 5	**
^	9268.000M	37.3	-34.1	+37.6	+9.8	+5.7	+0.0	58.7	111.3	-52.6	Horz
			+1.5	+0.4	+0.5	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	7004 0553 5	24.1	+0.0	.0.5.5	0.0		.0.0	20	1112	00.5	**
	7224.255M	24.1	-34.5	+36.5	+9.9	+5.1	+0.0	30.6	111.3	-80.7	Horz
	Ave		+1.1	+0.5	+0.4	+12.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 43 of 109 Report No.: 103220-2

<u>r</u>										
^ 7224.255M	39.7	-34.5	+36.5	+9.9	+5.1	+0.0	58.7	111.3	-52.6	Horz
		+1.1	+0.5	+0.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
52 1806.265M	30.1	-34.8	+26.1	+10.0	+2.3	+0.0	22.4	111.3	-88.9	Horz
Ave		+0.5	+0.2	+0.5	+12.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 1806.265M	44.0	-34.8	+26.1	+10.0	+2.3	+0.0	48.8	111.3	-62.5	Horz
		+0.5	+0.2	+0.5	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
54 1853.470M	28.8	-34.7	+26.5	+10.0	+2.4	+0.0	21.6	111.3	-89.7	Horz
Ave		+0.5	+0.2	+0.4	+12.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 1853.470M	44.1	-34.7	+26.5	+10.0	+2.4	+0.0	49.4	111.3	-61.9	Horz
		+0.5	+0.2	+0.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
56 1830.250M	29.0	-34.8	+26.3	+10.0	+2.4	+0.0	21.5	111.3	-89.8	Horz
Ave		+0.5	+0.2	+0.4	+12.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 1830.250M	42.7	-34.8	+26.3	+10.0	+2.4	+0.0	47.7	111.3	-63.6	Horz
		+0.5	+0.2	+0.4	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
58 14.776M	22.8	+0.0	+0.0	+0.0	+0.2	-40.0	-7.6	111.3	-118.9	Horz
		+0.1	+0.0	+0.0	+0.0					
		+9.3	+0.0	+0.0	+0.0					
		+0.0								
59 79.218k	36.1	+0.0	+0.0	+0.0	+0.0	-80.0	-34.3	111.3	-145.6	Horz
		+0.0	+0.0	+0.0	+0.0					
		+9.6	+0.0	+0.0	+0.0					
		+0.0								

Page 44 of 109 Report No.: 103220-2

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 103220 Date: 10/10/2020
Test Type: Radiated Scan Time: 10:39:38
Tested By: Matthew Harrison Sequence#: 1

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2, 4 and 5			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2, 4 and 5				

Test Conditions / Notes:

Temperature: 22-23° C Humidity: 39-41%

Pressure: 101.1-103.3 kPa

Frequency Range: 9kHz-10GHz Frequency tested: Low, Mid High Firmware power setting: Max

Modulation: FSK 12.5, FSK 37.5, and AM investigated, overall worst case reported. Worst case spur for each

modulation type noted in table.

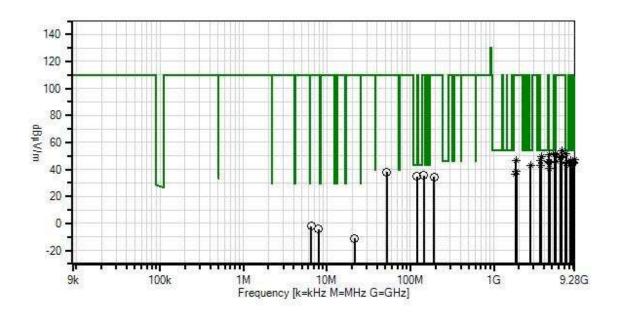
Antenna type: Omnidirectional Antenna Gain: 8.15 dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2013

Test Mode: Transmitting

Test Setup: EUT is setup in a tabletop configuration on a Styrofoam table.


Below 1GHz set 80cm high. Above 1GHz set 1.5m high

Modification #1 was in place during testing.

Page 45 of 109 Report No.: 103220-2

Itron, Inc. WO#: 103220 Sequence#: 1 Date: 10/10/2020 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horz + Vert

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.19

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	5/13/2019	5/13/2021
T2	AN01467	Horn Antenna-ANSI	3115	7/5/2019	7/5/2021
		C63.5 Calibration			
T3	ANP06243	Attenuator	54A-10	1/27/2020	1/27/2022
T4	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T5	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T6	ANP07504	Cable	CLU40-KMKM-	1/17/2019	1/17/2021
			02.00F		
T7	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021
Т8	AN03170	High Pass Filter	HM1155-11SS	10/23/2019	10/23/2021
Т9	ANDCCF	Duty Cycle Correction	Multiple	10/1/2019	10/1/2021
		Factor			
T10	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T11	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T12	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T13	ANP05360	Cable	RG214	2/3/2020	2/3/2022
	AN02871	Spectrum Analyzer	E4440A	3/12/2020	3/12/2022
T14	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022

Page 46 of 109 Report No.: 103220-2

Measurement Data:	R	eading lis		_				e: 3 Meters		
# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7	T8					
		T9	T10	T11	T12					
		T13	T14							
MHz	dΒμV	dB	dB	dB	dB		dBμV/m	•	dB	Ant
1 5418.180M	36.1	-33.7	+33.4	+9.9	+4.3	+0.0	51.8	54.0	-2.2	Horz
Ave		+1.0	+0.4	+0.0	+0.4					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
^ 5418.180M	44.6	-33.7	+33.4	+9.9	+4.3	+0.0	60.3	54.0	+6.3	Horz
		+1.0	+0.4	+0.0	+0.4					
		+0.0	+0.0	+0.0	+0.0					
2 5222 4053 6	22.2	+0.0	+0.0	0.0		0.0	71. 0	7.1.0	2.2	**
3 7320.405M	32.2	-34.6	+36.8	+9.9	+5.2	+0.0	51.8	54.0	-2.2	Horz
Ave		+1.3	+0.4	+0.0	+0.6					
		+0.0	+0.0	+0.0	+0.0					
	20.1	+0.0	+0.0			0.0	70.0	7 40	7 0	**
^ 7320.397M	39.4	-34.6	+36.8	+9.9	+5.2	+0.0	59.0	54.0	+5.0	Horz
		+1.3	+0.4	+0.0	+0.6					
		+0.0	+0.0	+0.0	+0.0					
5 4574 045 3 4	27.0	+0.0	+0.0	. 0. 0	. 2.0	. 0. 0	51.0	540	2.0	**
5 4574.945M	37.2	-33.7	+31.9	+9.8	+3.8	+0.0	51.2	54.0	-2.8	Horz
Ave		+0.9	+0.7	+0.0	+0.6					
		+0.0	+0.0	+0.0	+0.0					
A 4574 04534	45.5	+0.0	+0.0	. 0. 0	. 2.0	. 0. 0	50.5	540		**
^ 4574.945M	45.5	-33.7	+31.9	+9.8	+3.8	+0.0	59.5	54.0	+5.5	Horz
		+0.9	+0.7	+0.0	+0.6					
		+0.0 +0.0	$^{+0.0}_{+0.0}$	+0.0	+0.0					
7 3707.230M	37.7			.0.0	.2.5	.00	49.8	54.0	-4.2	Horz
	31.1	-33.7 +0.9	+30.6 +0.5	+9.8 +0.0	+3.5 +0.5	+0.0	49.8	34.0	-4.2	HOLZ
Ave		+0.9	+0.5	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
A 2707 220M	16.2	-33.7		10.8	+3.5	+0.0	5 0 1	540	+4.4	Home
^ 3707.230M	46.3	-33.7 +0.9	+30.6 +0.5	+9.8 +0.0	+3.5	+0.0	58.4	54.0	+4.4	Horz
		+0.9	+0.5	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
9 3612.325M	35.1	-33.8	+30.3	+9.8	+3.4	+0.0	46.7	54.0	-7.3	Horz
9 3012.323WI Ave	33.1	+0.8	+30.5	+9.8	+0.5	+0.0	40.7	54.0	-1.5	11012
AVC		+0.8	+0.0	+0.0	+0.0					
		+0.0	+0.0	10.0	10.0					
^ 3612.325M	44.3	-33.8	+30.3	+9.8	+3.4	+0.0	55.9	54.0	+1.9	Horz
3012.323111	TT.J	+0.8	+30.5	+0.0	+0.5	10.0	33.3	J T. U	11.7	11012
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	10.0	10.0					
11 8341.935M	26.4	-34.9	+37.0	+9.8	+5.3	+0.0	46.6	54.0	-7.4	Horz
Ave	20.4	+1.7	+0.5	+0.0	+0.8	10.0	70.0	J-T.U	7.7	11012
1110		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	10.0	10.0					
		±0.0	+0.0							

Page 47 of 109 Report No.: 103220-2

^ 8341.935M	39.0	-34.9	+37.0	+9.8	+5.3	+0.0	59.2	54.0	+5.2	Horz
		+1.7	+0.5	+0.0	+0.8					
		+0.0	+0.0	+0.0	+0.0					
12 4602 06035	44.4	+0.0	+0.0	.0.0	. 2. 0	.0.0	4 < 1	540	7.0	**
13 4633.960M	44.4	-33.6	+32.1	+9.8	+3.8	+0.0	46.1	54.0	-7.9	Horz
Ave		+0.9	+0.6	+0.0	+0.6			FM 37.5K		
		+12.5	+0.0	+0.0	+0.0					
14 8233.505M	25.0	+0.0	+0.0	.0.0	. 5 2	. 0. 0	460	540	9.0	II
	25.8	-35.0	+37.0	+9.8 +0.0	+5.3 +0.9	+0.0	46.0	54.0	-8.0	Horz
Ave		$+1.7 \\ +0.0$	+0.5 +0.0	+0.0 +0.0	+0.9					
		+0.0	+0.0	+0.0	+0.0					
^ 8233.505M	38.1	-35.0	+37.0	+9.8	+5.3	+0.0	58.3	54.0	+4.3	Horz
6233.303WI	30.1	+1.7	+0.5	+0.0	+0.9	+0.0	36.3	34.0	⊤ 4. J	11012
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	10.0	10.0					
16 4514.650M	32.0	-33.7	+31.8	+9.8	+3.7	+0.0	45.8	54.0	-8.2	Horz
Ave	22.0	+0.9	+0.7	+0.0	+0.6	. 0.0	.5.0	2	3.2	
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
^ 4514.650M	42.2	-33.7	+31.8	+9.8	+3.7	+0.0	56.0	54.0	+2.0	Horz
		+0.9	+0.7	+0.0	+0.6					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
18 119.800M	19.9	+0.0	+0.0	+0.0	+0.0	+0.0	34.9	43.5	-8.6	Horz
		+0.1	+0.0	+0.0	+0.0					
		+0.0	+8.0	+5.8	+0.5					
		+0.6	+0.0							
19 4633.960M	43.6	-33.6	+32.1	+9.8	+3.8	+0.0	45.3	54.0	-8.7	Horz
Ave		+0.9	+0.6	+0.0	+0.6			FM 12.5K		
		+12.5	+0.0	+0.0	+0.0					
		+0.0	+0.0							
20 9147.570M	23.6	-34.2	+37.5	+9.9	+5.8	+0.0	45.0	54.0	-9.0	Horz
Ave		+1.5	+0.4	+0.0	+0.5					
		+0.0	+0.0	+0.0	+0.0					
A 0147.570N	20.4	+0.0	+0.0	100	, F O	ι Ο Ο	50.0	540	, F O	II.
^ 9147.570M	38.4	-34.2	+37.5	+9.9	+5.8	+0.0	59.8	54.0	+5.8	Horz
		+1.5 +0.0	$+0.4 \\ +0.0$	$+0.0 \\ +0.0$	+0.5 +0.0					
		+0.0	+0.0 +0.0	+0.0	+0.0					
22 7414.418M	37.2	-34.6	+37.1	+9.9	+5.3	+0.0	44.9	54.0	-9.1	Horz
Ave	21.2	+1.5	+0.4	+0.0	+0.6	10.0	¬¬. ,∕	54.0	7.1	11012
1110		+12.5	+0.0	+0.0	+0.0					
		+0.0	+0.0	. 0.0	. 0.0					
^ 7414.481M	45.0	-34.6	+37.1	+9.9	+5.3	+0.0	65.2	54.0	+11.2	Horz
		+1.5	+0.4	+0.0	+0.6					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
24 9030.535M	23.4	-34.2	+37.5	+10.0	+5.9	+0.0	44.8	54.0	-9.2	Horz
Ave		+1.4	+0.3	+0.0	+0.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
L										

Page 48 of 109 Report No.: 103220-2

^ 9030.535M	35.4	-34.2	+37.5	+10.0	+5.9	+0.0	56.8	54.0	+2.8	Horz
		+1.4	+0.3	+0.0	+0.5					
		+0.0	+0.0	+0.0	+0.0					
06 0107 50515	22.5	+0.0	+0.0	.0.0		.00	40.0	740	10.7	7.7
26 8127.535M	23.5	-35.0	+37.0	+9.8	+5.3	+0.0	43.3	54.0	-10.7	Horz
Ave		+1.4	+0.5	+0.0	+0.8					
		+0.0	+0.0	+0.0	+0.0					
A 0127 525M	20.5	+0.0	+0.0	.0.0	.5.2	. 0. 0	50.2	540	.5.2	II
^ 8127.535M	39.5	-35.0	+37.0	+9.8 +0.0	+5.3 +0.8	+0.0	59.3	54.0	+5.3	Horz
		+1.4 +0.0	$+0.5 \\ +0.0$	+0.0 +0.0	+0.8					
		+0.0	+0.0	+0.0	+0.0					
28 3659.855M	43.6	-33.7	+30.5	+9.8	+3.4	+0.0	43.0	54.0	-11.0	Horz
Ave	43.0	+0.9	+30.5	+9.8	+0.5	+0.0	43.0	34.0	-11.0	11012
Avc		+12.5	+0.0	+0.0	+0.0					
		+0.0	+0.0	10.0	10.0					
^ 3659.855M	48.9	-33.7	+30.5	+9.8	+3.4	+0.0	60.8	54.0	+6.8	Horz
2027.022111	10.7	+0.9	+0.5	+0.0	+0.5	. 0.0	55.6	2 1.0	. 0.0	11012
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
30 2744.930M	34.3	-34.1	+28.4	+10.0	+2.9	+0.0	42.8	54.0	-11.2	Horz
Ave		+0.7	+0.2	+0.0	+0.4					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
^ 2744.930M	45.9	-34.1	+28.4	+10.0	+2.9	+0.0	54.4	54.0	+0.4	Horz
		+0.7	+0.2	+0.0	+0.4					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
32 4633.960M	39.1	-33.6	+32.1	+9.8	+3.8	+0.0	40.8	54.0	-13.2	Horz
Ave		+0.9	+0.6	+0.0	+0.6			AM		
		+12.5	+0.0	+0.0	+0.0					
		+0.0	+0.0							
^ 4633.960M	48.7	-33.6	+32.1	+9.8	+3.8	+0.0	62.9	54.0	+8.9	Horz
		+0.9	+0.6	+0.0	+0.6			AM		
		+0.0	+0.0	+0.0	+0.0					
A 4600 0 603 5	40.5	+0.0	+0.0		2.0	0.0	62.0	# 4 O		**
^ 4633.960M	48.7	-33.6	+32.1	+9.8	+3.8	+0.0	62.9	54.0	+8.9	Horz
		+0.9	+0.6	+0.0	+0.6			FM 12.5K		
		+0.0	+0.0	+0.0	+0.0					
^ 4633.960M	48.6	+0.0	+0.0	+9.8	+3.8	+0.0	62.8	54.0	+8.8	Horz
4033.70UM	40.0	-33.6 +0.9	+32.1	+9.8 +0.0	+3.8 +0.6	+0.0	02.8	54.0 FM 37.5K	+0.0	11012
		+0.9	+0.0	+0.0	+0.0			1 W 3/.JK		
		+0.0 +0.0	+0.0	10.0	10.0					
36 6487.841M	35.6	-34.2	+34.5	+10.0	+5.4	+0.0	53.6	109.9	-56.3	Horz
Ave	23.0	+1.2	+0.6	+0.0	+0.5	10.0	23.0	107.7	20.2	11012
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	. 0.0						
^ 6487.930M	43.3	-34.2	+34.5	+10.0	+5.4	+0.0	61.3	109.9	-48.6	Horz
		+1.2	+0.6	+0.0	+0.5					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0							
		10.0	10.0							

Page 49 of 109 Report No.: 103220-2

	5489.867M	34.9	-33.7	+33.5	+9.8	+4.4	+0.0	50.7	109.9	-59.2	Horz
	Ave		+1.0	+0.4	+0.0	+0.4					
			+0.0	+0.0	+0.0	+0.0					
	7.100 0 CT 7.	44.0	+0.0	+0.0					100.0	40.0	**
٨	5489.867M	44.8	-33.7	+33.5	+9.8	+4.4	+0.0	60.6	109.9	-49.3	Horz
			+1.0	+0.4	+0.0	+0.4					
			+0.0	+0.0	+0.0	+0.0					
10	6404.0604	21.0	+0.0	+0.0	10.0		0.0	40.0	100.0	60.1	**
40	6404.966M	31.9	-34.2	+34.6	+10.0	+5.3	+0.0	49.8	109.9	-60.1	Horz
	Ave		+1.1	+0.6	+0.0	+0.5					
			+0.0	+0.0	+0.0	+0.0					
^	C404.0CCM	44.2	+0.0	+0.0	+10.0	. 5. 2	. 0. 0	(2.1	100.0	47.0	II
^	6404.966M	44.2	-34.2	+34.6	+10.0	+5.3	+0.0	62.1	109.9	-47.8	Horz
			$+1.1 \\ +0.0$	+0.6 +0.0	+0.0	+0.5 +0.0					
			+0.0 +0.0	+0.0	+0.0	+0.0					
12	6321.345M	31.1			+10.0	+5.1	+0.0	48.7	109.9	-61.2	Horz
	0321.345M Ave	31.1	-34.1 +1.0	+34.6 +0.5	+10.0	+0.5	+0.0	40./	109.9	-01.2	HOLZ
	Ave		+0.0	+0.5	+0.0	+0.5					
			+0.0	+0.0	+0.0	+0.0					
٨	6321.345M	41.9	-34.1	+34.6	+10.0	+5.1	+0.0	59.5	109.9	-50.4	Horz
	0321.343101	41.7	+1.0	+0.5	+10.0	+0.5	+0.0	37.3	107.7	-30.4	11012
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	10.0	10.0					
11	9267.065M	25.8	-34.1	+37.6	+9.8	+5.7	+0.0	47.2	109.9	-62.7	Horz
	Ave	23.0	+1.5	+0.4	+0.0	+0.5	10.0	77.2	107.7	-02.7	11012
	7110		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	10.0	10.0					
٨	9267.065M	38.0	-34.1	+37.6	+9.8	+5.7	+0.0	59.4	109.9	-50.5	Horz
	,20,1000111	20.0	+1.5	+0.4	+0.0	+0.5			107.7	00.0	11012
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
46	1829.835M	41.9	-34.8	+26.3	+10.0	+2.4	+0.0	46.9	109.9	-63.0	Horz
	Ave		+0.5	+0.2	+0.0	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
٨	1829.835M	45.3	-34.8	+26.3	+10.0	+2.4	+0.0	50.3	109.9	-59.6	Horz
			+0.5	+0.2	+0.0	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
48	5560.905M	29.6	-33.7	+33.7	+9.8	+4.4	+0.0	45.6	109.9	-64.3	Horz
	Ave		+1.0	+0.4	+0.0	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
^	5560.905M	43.2	-33.7	+33.7	+9.8	+4.4	+0.0	59.2	109.9	-50.7	Horz
			+1.0	+0.4	+0.0	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
	7224.535M	25.7	-34.5	+36.5	+9.9	+5.1	+0.0	44.7	109.9	-65.2	Horz
	Ave		+1.1	+0.5	+0.0	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							

Page 50 of 109 Report No.: 103220-2

٨	7224.535M	39.9	-34.5	+36.5	+9.9	+5.1	+0.0	58.9	109.9	-51.0	Horz
			+1.1	+0.5	+0.0	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
52	1853.595M	33.4	-34.7	+26.5	+10.0	+2.4	+0.0	38.7	109.9	-71.2	Horz
	Ave		+0.5	+0.2	+0.0	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
^	1853.595M	44.5	-34.7	+26.5	+10.0	+2.4	+0.0	49.8	109.9	-60.1	Horz
			+0.5	+0.2	+0.0	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
54	51.800M	24.1	+0.0	+0.0	+0.0	+0.0	+0.0	38.2	109.9	-71.7	Horz
			+0.1	+0.0	+0.0	+0.0					
			+0.0	+7.4	+5.8	+0.4					
			+0.4	+0.0							
55	1806.005M	31.6	-34.8	+26.1	+10.0	+2.3	+0.0	36.4	109.9	-73.5	Horz
	Ave		+0.5	+0.2	+0.0	+0.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
56	144.200M	19.7	+0.0	+0.0	+0.0	+0.0	+0.0	35.5	109.9	-74.4	Horz
			+0.1	+0.0	+0.0	+0.0					
			+0.0	+8.7	+5.8	+0.5					
			+0.7	+0.0							
57	192.200M	17.3	+0.0	+0.0	+0.0	+0.0	+0.0	34.7	109.9	-75.2	Horz
			+0.2	+0.0	+0.0	+0.0					
			+0.0	+9.9	+5.8	+0.7					
			+0.8	+0.0							
58	6.508M	28.7	+0.0	+0.0	+0.0	+0.1	-40.0	-1.9	109.9	-111.8	Horz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.3							
59	7.971M	26.5	+0.0	+0.0	+0.0	+0.1	-40.0	-4.2	109.9	-114.1	Horz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.2							
60	21.552M	21.8	+0.0	+0.0	+0.0	+0.2	-40.0	-10.9	109.9	-120.8	Horz
			+0.1	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+7.0							
61	72.450k	39.6	+0.0	+0.0	+0.0	+0.0	-80.0	-30.7	109.9	-140.6	Horz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.7							

Page 51 of 109 Report No.: 103220-2

Band Edge

Band Edge Summary

Configuration 1

Operating Mode: Single Channel (Low and High)

Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
614	FM 12.5kbit	Omnidirectional	38.3	<46	Pass
902	FM 12.5kbit	Omnidirectional	88.1	<111.3	Pass
928	FM 12.5kbit	Omnidirectional	72.9	<111.3	Pass
960	FM 12.5kbit	Omnidirectional	45.7	<54	Pass
614	FM 37.5kbit	Omnidirectional	38.3	<46	Pass
902	FM 37.5kbit	Omnidirectional	88.2	<111.3	Pass
928	FM 37.5kbit	Omnidirectional	74.7	<111.3	Pass
960	FM 37.5kbit	Omnidirectional	45.2	<54	Pass
614	AM	Omnidirectional	38.3	<46	Pass
902	AM	Omnidirectional	75.8	<111.3	Pass
928	AM	Omnidirectional	72.3	<111.3	Pass
960	AM	Omnidirectional	46.6	<54	Pass

Band Edge Summary

Configuration 1

Operating Mode: Hopping

Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
614	FM 12.5kbit	Omnidirectional	38.2	<46	Pass
902	FM 12.5kbit	Omnidirectional	89	<111.3	Pass
928	FM 12.5kbit	Omnidirectional	73.2	<111.3	Pass
960	FM 12.5kbit	Omnidirectional	47.3	<54	Pass
614	FM 37.5kbit	Omnidirectional	38.3	<46	Pass
902	FM 37.5kbit	Omnidirectional	87.2	<111.3	Pass
928	FM 37.5kbit	Omnidirectional	73.5	<111.3	Pass
960	FM 37.5kbit	Omnidirectional	47.1	<54	Pass
614	AM	Omnidirectional	38.2	<46	Pass
902	AM	Omnidirectional	74.2	<111.3	Pass
928	AM	Omnidirectional	72.5	<111.3	Pass
960	AM	Omnidirectional	47	<54	Pass

Page 52 of 109 Report No.: 103220-2

Band Edge Summary

Configuration 2

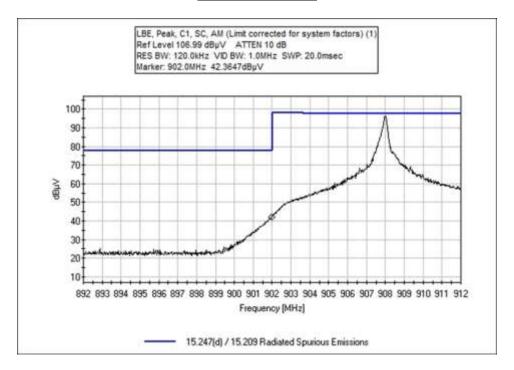
Operating Mode: Single Channel (Low and High)

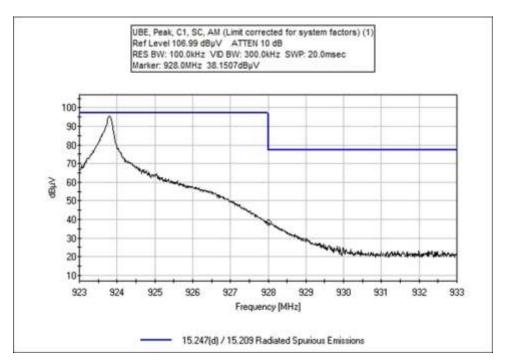
		1 0 /			
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
614	FM 12.5kbit	Omnidirectional	40.9	<46	Pass
902	FM 12.5kbit	Omnidirectional	87.1	<109.9	Pass
928	FM 12.5kbit	Omnidirectional	74.4	<109.9	Pass
960	FM 12.5kbit	Omnidirectional	45.2	<54	Pass
614	FM 37.5kbit	Omnidirectional	38.5	<46	Pass
902	FM 37.5kbit	Omnidirectional	85.6	<109.9	Pass
928	FM 37.5kbit	Omnidirectional	74.1	<109.9	Pass
960	FM 37.5kbit	Omnidirectional	46.9	<54	Pass
614	AM	Omnidirectional	41.9	<46	Pass
902	AM	Omnidirectional	74.3	<109.9	Pass
928	AM	Omnidirectional	73.6	<109.9	Pass
960	AM	Omnidirectional	46.3	<54	Pass

Band Edge Summary

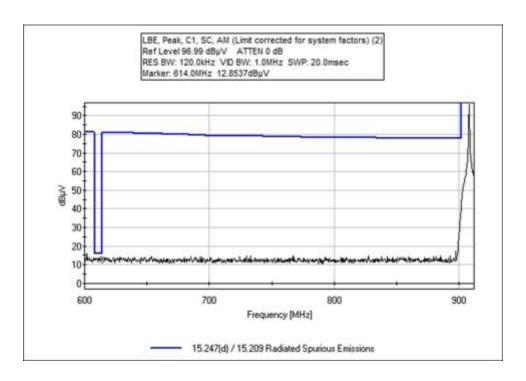
Configuration 2

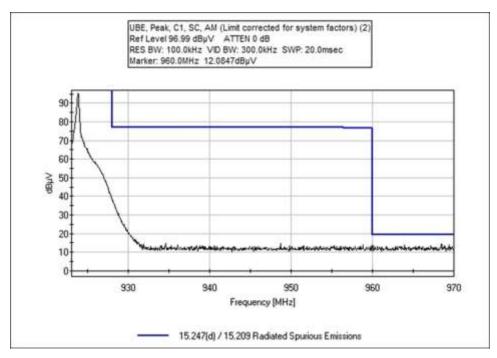
Operating Mode: Hopping


Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
614	FM 12.5kbit	Omnidirectional	42	<46	Pass
902	FM 12.5kbit	Omnidirectional	83.1	<109.9	Pass
928	FM 12.5kbit	Omnidirectional	75.2	<109.9	Pass
960	FM 12.5kbit	Omnidirectional	47.3	<54	Pass
614	FM 37.5kbit	Omnidirectional	42	<46	Pass
902	FM 37.5kbit	Omnidirectional	84.6	<109.9	Pass
928	FM 37.5kbit	Omnidirectional	74	<109.9	Pass
960	FM 37.5kbit	Omnidirectional	47.2	<54	Pass
614	AM	Omnidirectional	38.5	<46	Pass
902	AM	Omnidirectional	73.1	<109.9	Pass
928	AM	Omnidirectional	72.2	<109.9	Pass
960	AM	Omnidirectional	45.8	<54	Pass

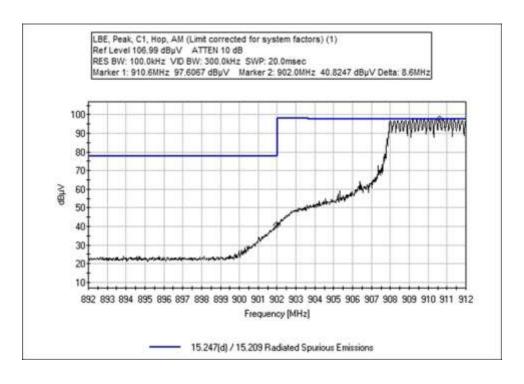

Page 53 of 109 Report No.: 103220-2

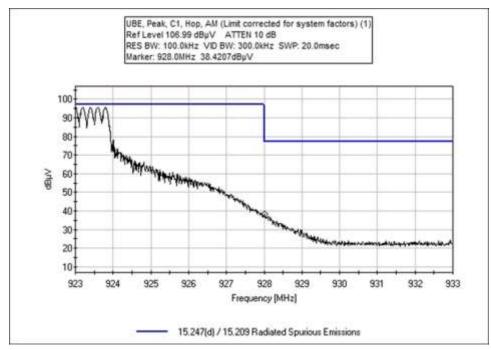
Band Edge Plots

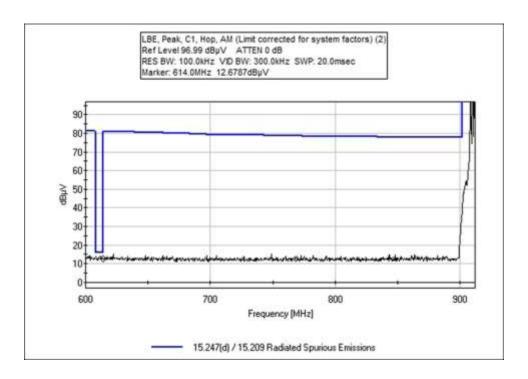

Configuration 1 AM

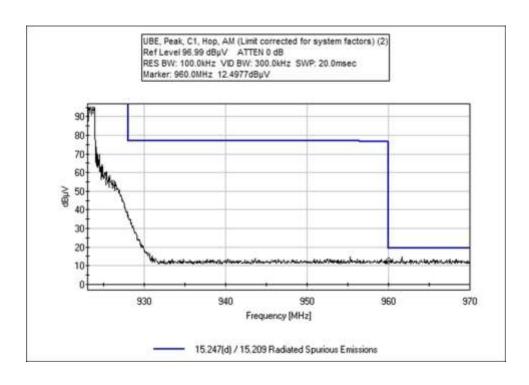


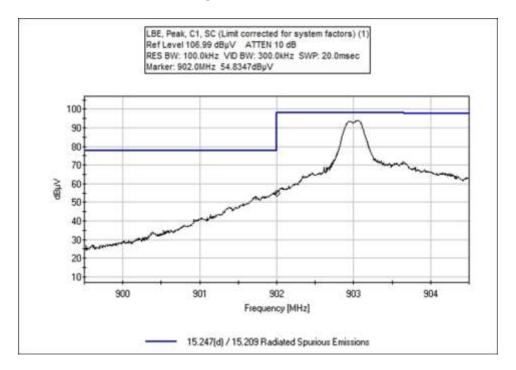
Page 54 of 109 Report No.: 103220-2

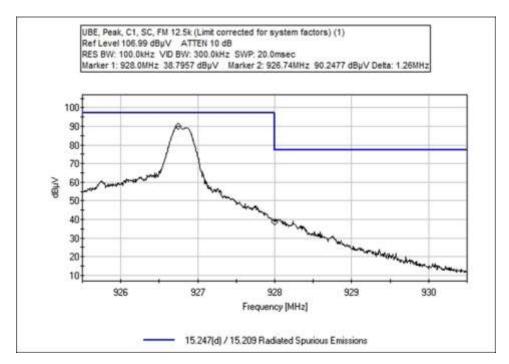


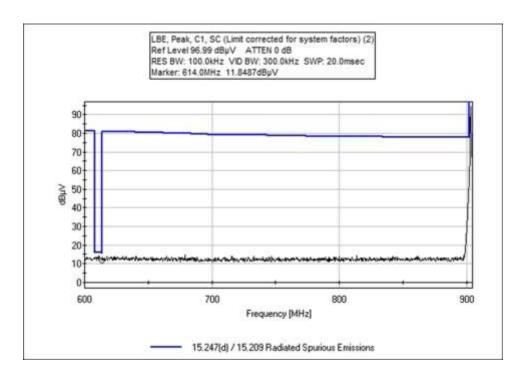


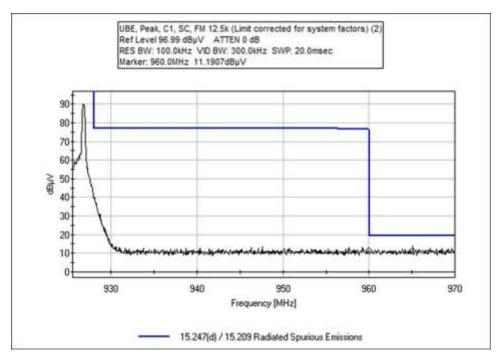

Page 55 of 109 Report No.: 103220-2

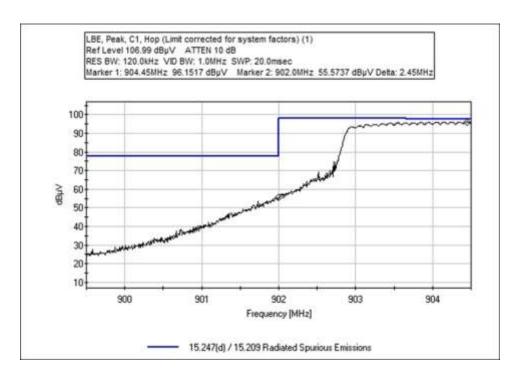


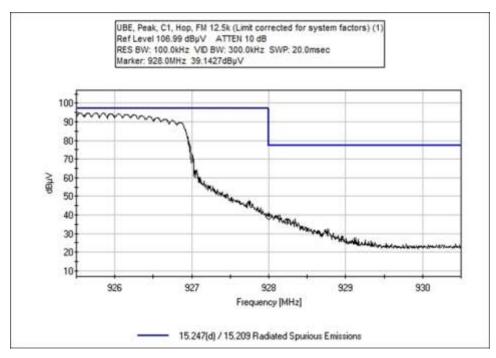


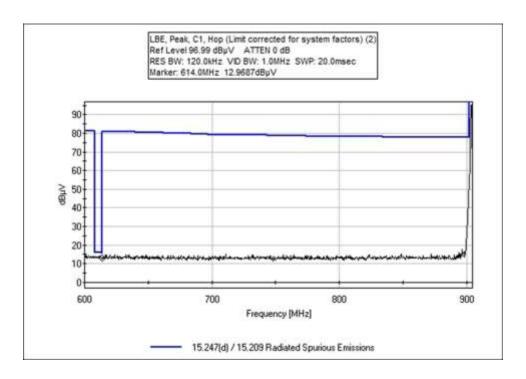


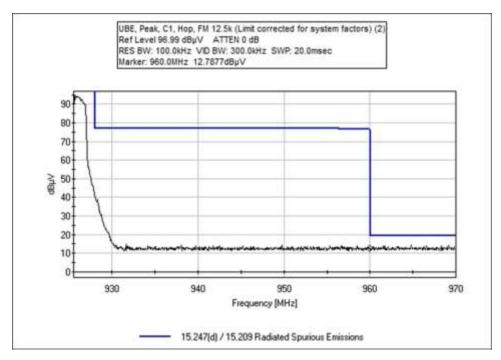

Configuration 1 FM 12.5kbit

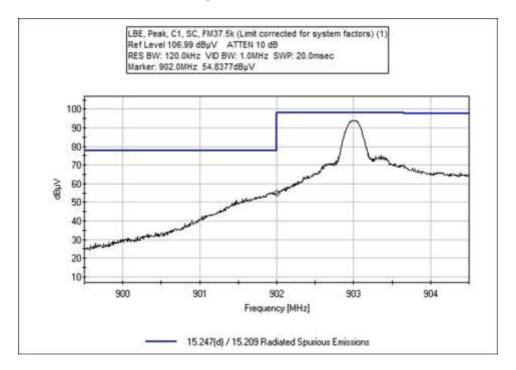


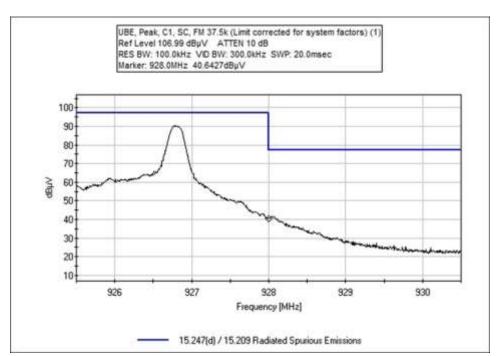

Page 58 of 109 Report No.: 103220-2

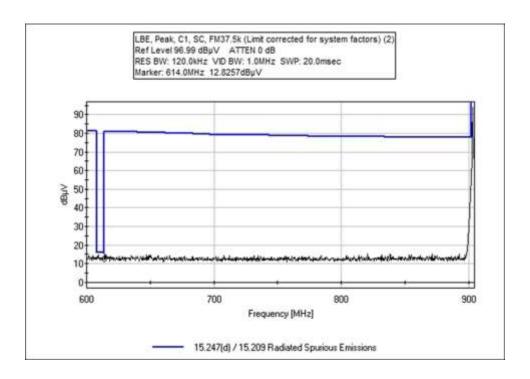


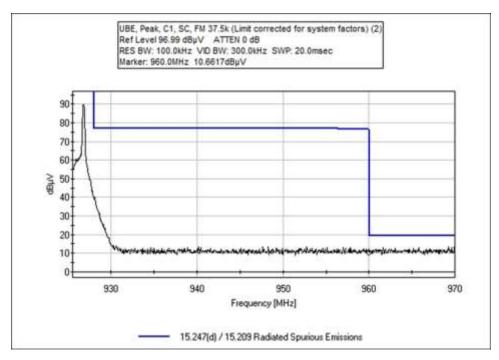


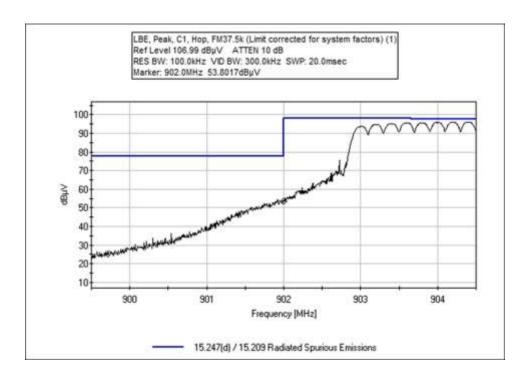


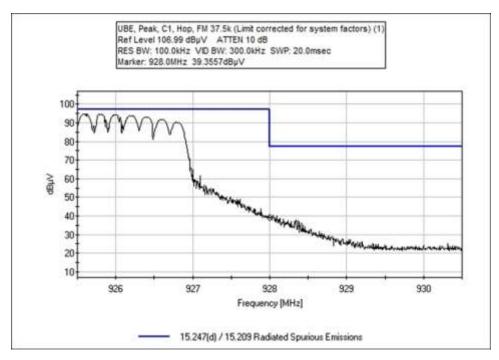


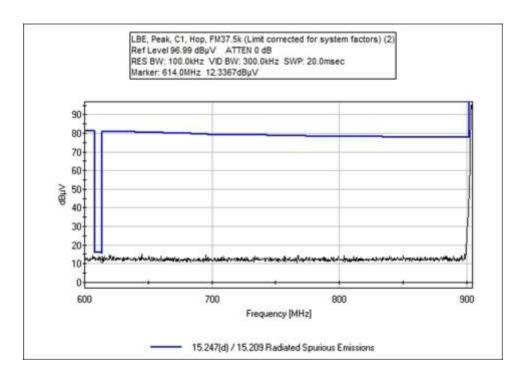


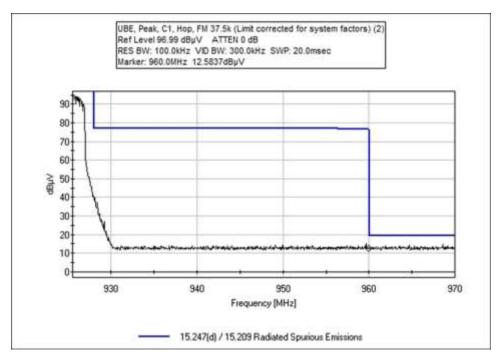

Configuration 1 FM 37.5kbit

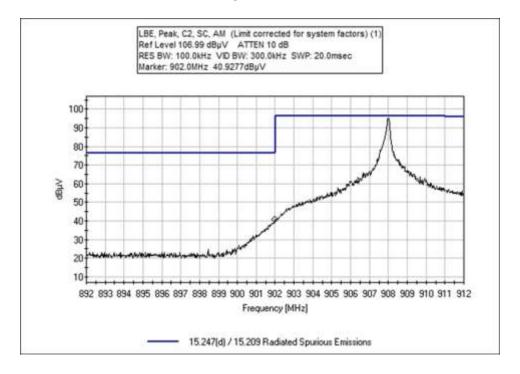



Page 62 of 109 Report No.: 103220-2

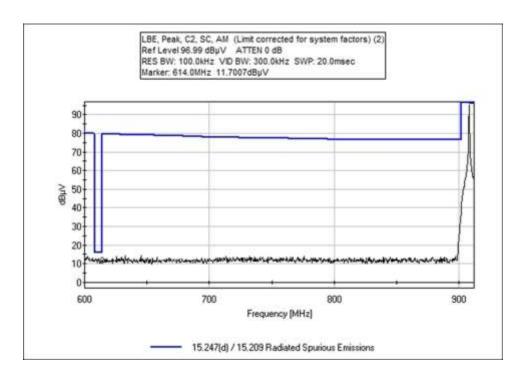


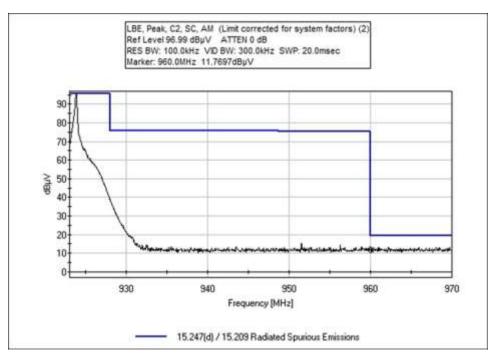


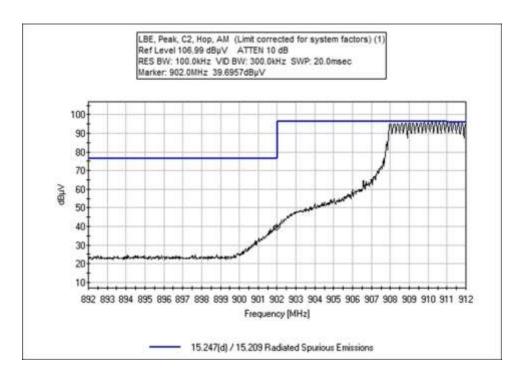


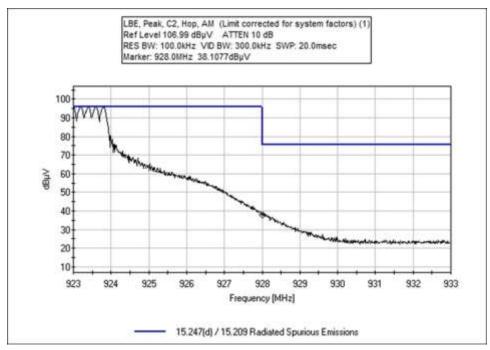


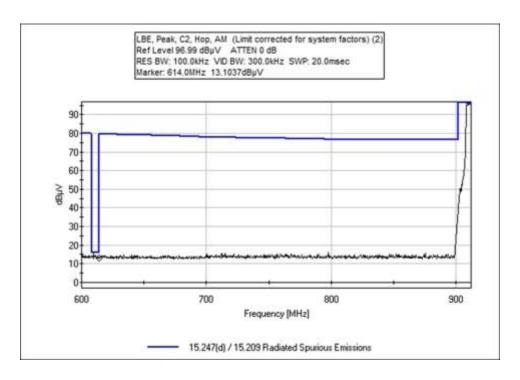


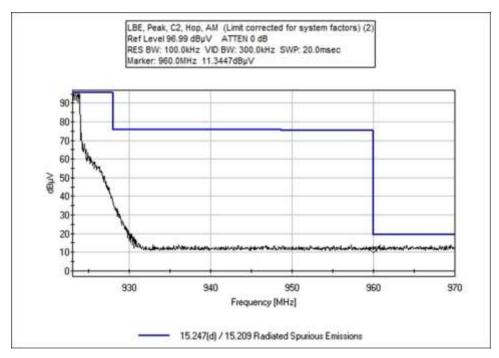

Configuration 2 AM

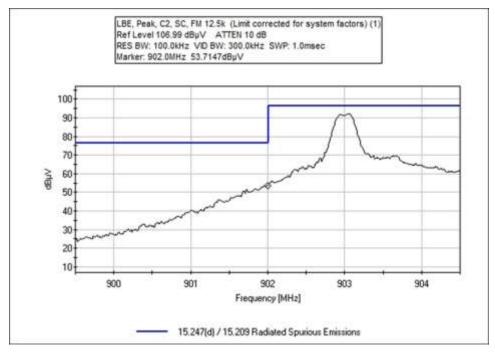


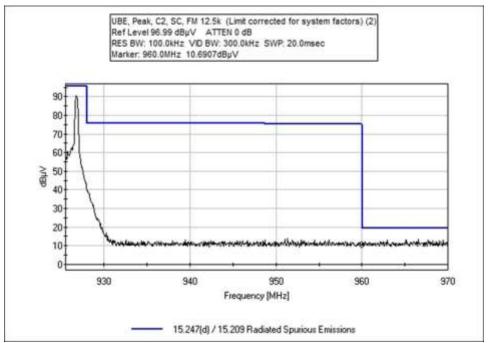

Page 66 of 109 Report No.: 103220-2

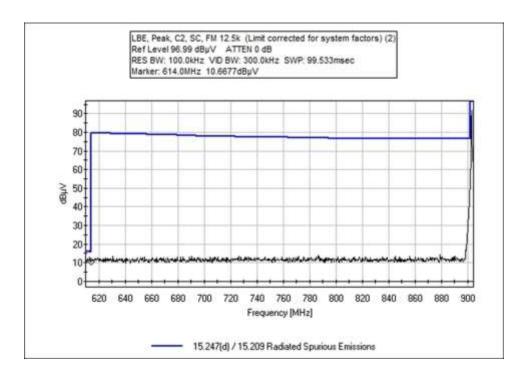


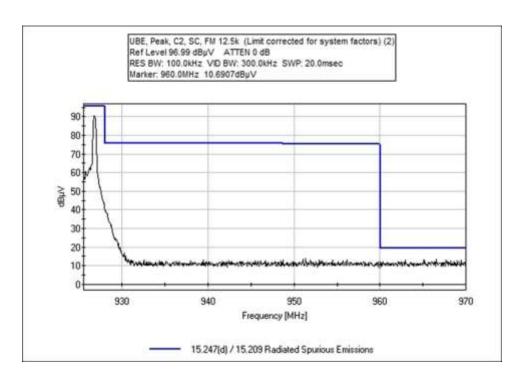


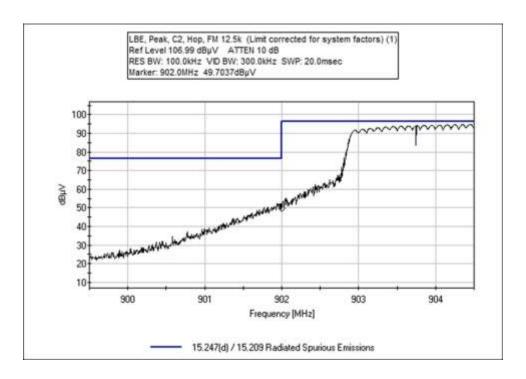


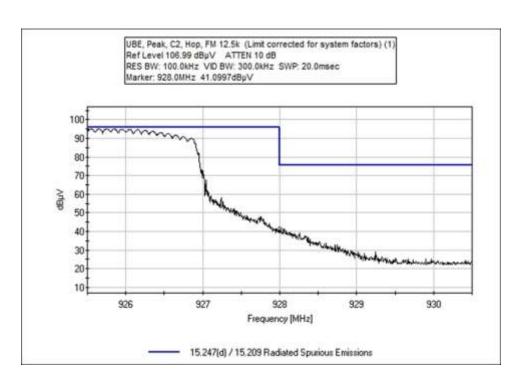


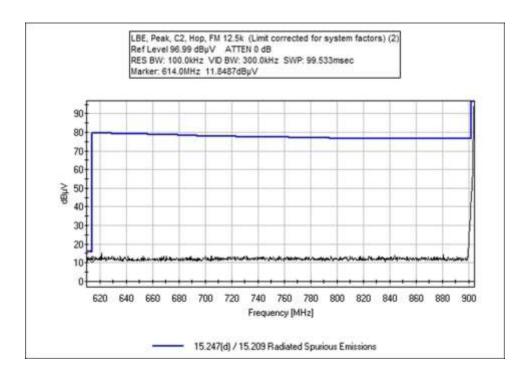


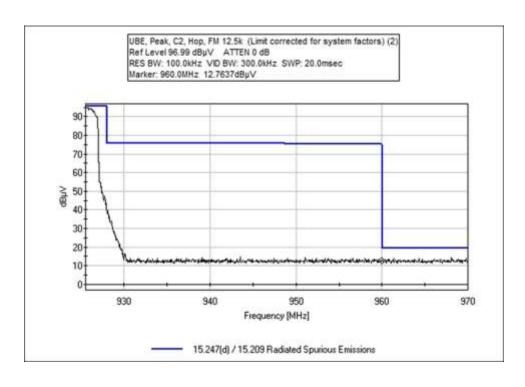

Configuration 2 FM 12.5kbit

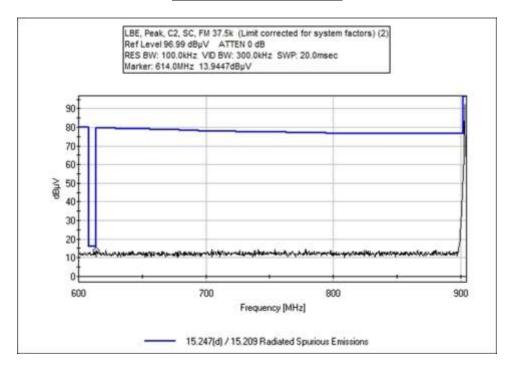


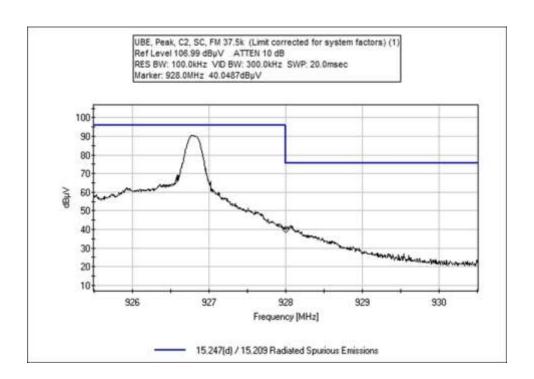

Page 70 of 109 Report No.: 103220-2



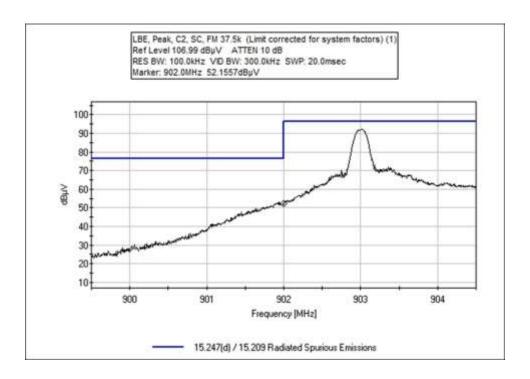


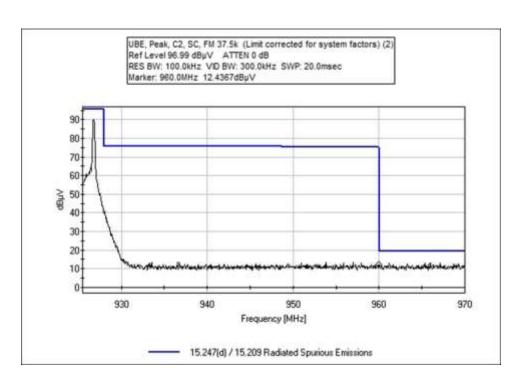




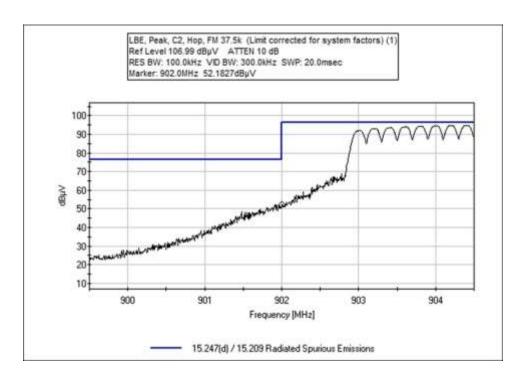


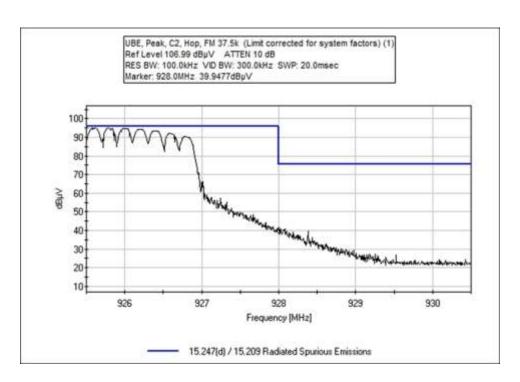
Page 73 of 109 Report No.: 103220-2


Configuration 2 FM 37.5kbit

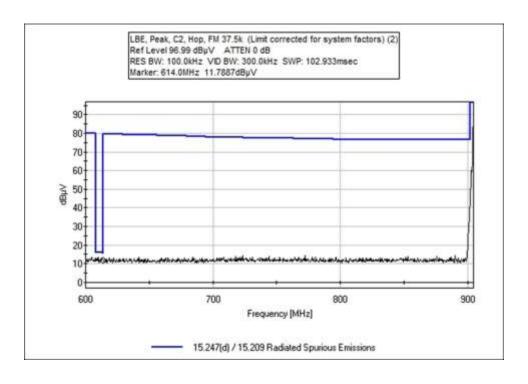


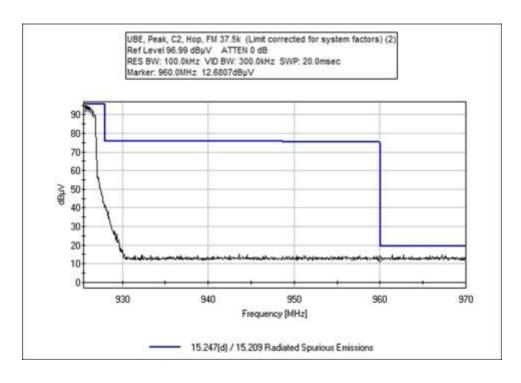
Page 74 of 109 Report No.: 103220-2





Page 75 of 109 Report No.: 103220-2





Page 76 of 109 Report No.: 103220-2

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 103220 Date: 10/7/2020
Test Type: Radiated Scan Time: 15:55:32
Tested By: Matthew Harrison Sequence#: 4

Software: EMITest 5.03.19

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 23° C Humidity: 39% Pressure: 101.1 kPa

Frequency Range: 600-970MHz Frequency tested: 903.0-926.8 MHz Firmware power setting: Max

Antenna type: Omnidirectional

Antenna Gain: 5.5 dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2015

Test Mode: Transmitting

Test Setup: EUT is setup in a tabletop configuration 80cm high on a Styrofoam table.

Modifications #1 was in place during testing.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T2	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T3	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T4	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T5	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T6	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021

Page 78 of 109 Report No.: 103220-2

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	910.600M	97.6	+23.9	+5.8	+1.5	+2.1	+0.0	131.3	131.3	+0.0	Vert
			+0.4	+0.0					Hop		
2	907.980M	96.6	+23.9	+5.8	+1.4	+2.1	+0.0	130.1	131.3	-1.2	Vert
			+0.3	+0.0					Hop		
3	960.000M	12.5	+24.6	+5.8	+1.5	+2.2	+0.0	47.0	54.0	-7.0	Vert
			+0.4	+0.0					Hop		
4	960.000M	12.1	+24.6	+5.8	+1.5	+2.2	+0.0	46.6	54.0	-7.4	Vert
			+0.4	+0.0					SC		
5	614.000M	8.1	+21.2	+5.8	+1.2	+1.7	+0.0	38.3	46.0	-7.7	Vert
	QP		+0.3	+0.0					SC		
6	614.000M	8.0	+21.2	+5.8	+1.2	+1.7	+0.0	38.2	46.0	-7.8	Vert
	QP		+0.3	+0.0					Hop		
٨	614.000M	12.9	+21.2	+5.8	+1.2	+1.7	+0.0	43.1	46.0	-2.9	Vert
			+0.3	+0.0					SC		
٨	614.000M	12.7	+21.2	+5.8	+1.2	+1.7	+0.0	42.9	46.0	-3.1	Vert
			+0.3	+0.0					Нор		
9	902.000M	42.4	+23.8	+5.8	+1.4	+2.1	+0.0	75.8	111.3	-35.5	Vert
			+0.3	+0.0					SC		
10	902.000M	40.8	+23.8	+5.8	+1.4	+2.1	+0.0	74.2	111.3	-37.1	Vert
			+0.3	+0.0					Hop		
11	928.000M	38.4	+24.2	+5.8	+1.5	+2.2	+0.0	72.5	111.3	-38.8	Vert
			+0.4	+0.0					Нор		
12	928.000M	38.2	+24.2	+5.8	+1.5	+2.2	+0.0	72.3	111.3	-39.0	Vert
			+0.4	+0.0					SC		

Page 79 of 109 Report No.: 103220-2

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 103220 Date: 10/7/2020
Test Type: Radiated Scan Time: 15:17:56
Tested By: Matthew Harrison Sequence#: 2

Software: EMITest 5.03.19

Equipment Tested:

Equipment resteur				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 23° C Humidity: 39% Pressure: 101.1 kPa

Frequency Range: 600-970MHz Frequency tested: 903.0-926.8 MHz Firmware power setting: Max

Antenna type: Omnidirectional

Antenna Gain: 5.5 dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2015

Test Mode: Transmitting

Test Setup: EUT is setup in a tabletop configuration 80cm high on a Styrofoam table.

Modifications #1 was in place during testing.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T2	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T3	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T4	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T5	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T6	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021

Page 80 of 109 Report No.: 103220-2

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	904.450M	96.2	+23.9	+5.8	+1.4	+2.1	+0.0	129.7	131.3	-1.6	Vert
			+0.3	+0.0					Hop		
2	903.055M	94.0	+23.8	+5.8	+1.4	+2.1	+0.0	127.4	131.3	-3.9	Vert
			+0.3	+0.0					SC		
3	902.960M	93.5	+23.8	+5.8	+1.4	+2.1	+0.0	126.9	131.3	-4.4	Vert
			+0.3	+0.0					Hop		
4	960.000M	12.8	+24.6	+5.8	+1.5	+2.2	+0.0	47.3	54.0	-6.7	Vert
			+0.4	+0.0					Hop		
5	926.740M	90.2	+24.2	+5.8	+1.5	+2.2	+0.0	124.3	131.3	-7.0	Vert
			+0.4	+0.0					SC		
6	614.000M	8.1	+21.2	+5.8	+1.2	+1.7	+0.0	38.3	46.0	-7.7	Vert
	QP		+0.3	+0.0					SC		
7	614.000M	8.0	+21.2	+5.8	+1.2	+1.7	+0.0	38.2	46.0	-7.8	Vert
	QP		+0.3	+0.0					Hop		
٨	614.000M	13.0	+21.2	+5.8	+1.2	+1.7	+0.0	43.2	46.0	-2.8	Vert
			+0.3	+0.0					Hop		
٨	614.000M	10.5	+21.2	+5.8	+1.2	+1.7	+0.0	40.7	46.0	-5.3	Vert
			+0.3	+0.0					SC		
10	960.000M	11.2	+24.6	+5.8	+1.5	+2.2	+0.0	45.7	54.0	-8.3	Vert
			+0.4	+0.0					SC		
11	902.000M	55.6	+23.8	+5.8	+1.4	+2.1	+0.0	89.0	111.3	-22.3	Vert
			+0.3	+0.0					Hop		
12	902.000M	54.7	+23.8	+5.8	+1.4	+2.1	+0.0	88.1	111.3	-23.2	Vert
			+0.3	+0.0					SC		
13	928.000M	39.1	+24.2	+5.8	+1.5	+2.2	+0.0	73.2	111.3	-38.1	Vert
			+0.4	+0.0					Hop		
14	928.000M	38.8	+24.2	+5.8	+1.5	+2.2	+0.0	72.9	111.3	-38.4	Vert
			+0.4	+0.0					SC		

Page 81 of 109 Report No.: 103220-2

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 103220 Date: 10/7/2020
Test Type: Radiated Scan Time: 15:37:19
Tested By: Matthew Harrison Sequence#: 3

Software: EMITest 5.03.19

Equipment Tested:

Equipment resteur				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 23° C Humidity: 39% Pressure: 101.1 kPa

Frequency Range: 600-970MHz Frequency tested: 903.0-926.8 MHz Firmware power setting: Max

Antenna type: Omnidirectional

Antenna Gain: 5.5 dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2015

Test Mode: Transmitting

Test Setup: EUT is setup in a tabletop configuration 80cm high on a Styrofoam table.

Modifications #1 was in place during testing.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T2	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T3	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T4	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T5	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T6	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021

Page 82 of 109 Report No.: 103220-2

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	904.415M	96.1	+23.9	+5.8	+1.4	+2.1	+0.0	129.6	131.3	-1.7	Vert
			+0.3	+0.0					Hop		
2	903.015M	93.8	+23.8	+5.8	+1.4	+2.1	+0.0	127.2	131.3	-4.1	Vert
			+0.3	+0.0					Hop		
3	960.000M	12.6	+24.6	+5.8	+1.5	+2.2	+0.0	47.1	54.0	-6.9	Vert
			+0.4	+0.0					Hop		
4	614.000M	8.1	+21.2	+5.8	+1.2	+1.7	+0.0	38.3	46.0	-7.7	Vert
	QP		+0.3	+0.0					Hop		
5	614.000M	8.1	+21.2	+5.8	+1.2	+1.7	+0.0	38.3	46.0	-7.7	Vert
	QP		+0.3	+0.0					SC		
^	614.000M	12.8	+21.2	+5.8	+1.2	+1.7	+0.0	43.0	46.0	-3.0	Vert
			+0.3	+0.0					SC		
^	614.000M	12.3	+21.2	+5.8	+1.2	+1.7	+0.0	42.5	46.0	-3.5	Vert
			+0.3	+0.0					Hop		
8	960.000M	10.7	+24.6	+5.8	+1.5	+2.2	+0.0	45.2	54.0	-8.8	Vert
			+0.4	+0.0					SC		
9	902.000M	54.8	+23.8	+5.8	+1.4	+2.1	+0.0	88.2	111.3	-23.1	Vert
			+0.3	+0.0					SC		
10	902.000M	53.8	+23.8	+5.8	+1.4	+2.1	+0.0	87.2	111.3	-24.1	Vert
			+0.3	+0.0					Hop		
11	928.000M	40.6	+24.2	+5.8	+1.5	+2.2	+0.0	74.7	111.3	-36.6	Vert
			+0.4	+0.0					SC		
12	928.000M	39.4	+24.2	+5.8	+1.5	+2.2	+0.0	73.5	111.3	-37.8	Vert
			+0.4	+0.0					Hop		

Page 83 of 109 Report No.: 103220-2

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 103220 Date: 10/10/2020
Test Type: Radiated Scan Time: 09:12:15
Tested By: Matthew Harrison Sequence#: 4

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Temperature: 23° C Humidity: 39% Pressure: 101.1 kPa

Frequency Range: 600-970MHz Frequency tested: 903.0-926.8 MHz Firmware power setting: Max

Antenna type: Omnidirectional Antenna Gain: 8.15 dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2015

Test Mode: Transmitting

Test Setup: EUT is setup in a tabletop configuration 80cm high on a Styrofoam table.

Modifications #1 was in place during testing.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T2	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T3	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T4	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T5	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
Т6	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021

Page 84 of 109 Report No.: 103220-2

Measu	rement Data:	Reading listed by margin.				Τe	est Distanc	e: 3 Meters			
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	923.200M	95.9	+24.1	+5.8	+1.5	+2.2	+0.0	129.9	129.9	+0.0	Vert
			+0.4	+0.0					Hop		
2	923.800M	95.7	+24.1	+5.8	+1.5	+2.2	+0.0	129.7	129.9	-0.2	Vert
			+0.4	+0.0					SC		
3	910.200M	95.9	+23.9	+5.8	+1.5	+2.1	+0.0	129.6	129.9	-0.3	Vert
			+0.4	+0.0					Hop		
4	614.000M	8.3	+21.2	+5.8	+1.2	+1.7	+0.0	38.5	46.0	-7.5	Vert
	QP		+0.3	+0.0					Hop		
^	614.000M	13.1	+21.2	+5.8	+1.2	+1.7	+0.0	43.3	46.0	-2.7	Vert
			+0.3	+0.0					Нор		
^	614.000M	11.7	+21.2	+5.8	+1.2	+1.7	+0.0	41.9	46.0	-4.1	Vert
			+0.3	+0.0					SC		
7	960.000M	11.8	+24.6	+5.8	+1.5	+2.2	+0.0	46.3	54.0	-7.7	Vert
			+0.4	+0.0					SC		
8	960.000M	11.3	+24.6	+5.8	+1.5	+2.2	+0.0	45.8	54.0	-8.2	Vert
			+0.4	+0.0					Нор		
9	902.000M	40.9	+23.8	+5.8	+1.4	+2.1	+0.0	74.3	109.9	-35.6	Vert
			+0.3	+0.0					SC		
10	928.000M	39.5	+24.2	+5.8	+1.5	+2.2	+0.0	73.6	109.9	-36.3	Vert
			+0.4	+0.0					SC		
11	902.000M	39.7	+23.8	+5.8	+1.4	+2.1	+0.0	73.1	109.9	-36.8	Vert
			+0.3	+0.0					Нор		
12	928.000M	38.1	+24.2	+5.8	+1.5	+2.2	+0.0	72.2	109.9	-37.7	Vert
			+0.4	+0.0					Hop		

Page 85 of 109 Report No.: 103220-2

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 103220 Date: 10/10/2020
Test Type: Radiated Scan Time: 10:10:19
Tested By: Matthew Harrison Sequence#: 2

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Temperature: 23° C Humidity: 39% Pressure: 101.1 kPa

Frequency Range: 600-970MHz Frequency tested: 903.0-926.8 MHz Firmware power setting: Max

Antenna type: Omnidirectional Antenna Gain: 8.15 dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2015

Test Mode: Transmitting

Test Setup: EUT is setup in a tabletop configuration 80cm high on a Styrofoam table.

Modifications #1 was in place during testing.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T2	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T3	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T4	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T5	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
Т6	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021

Page 86 of 109 Report No.: 103220-2

Measur	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	904.450M	94.7	+23.9	+5.8	+1.4	+2.1	+0.0	128.2	129.9	-1.7	Vert
			+0.3	+0.0					Hop		
2	614.000M	11.8	+21.2	+5.8	+1.2	+1.7	+0.0	42.0	46.0	-4.0	Vert
			+0.3	+0.0					Hop		
3	903.050M	92.2	+23.8	+5.8	+1.4	+2.1	+0.0	125.6	129.9	-4.3	Vert
			+0.3	+0.0					SC		
4	614.000M	10.7	+21.2	+5.8	+1.2	+1.7	+0.0	40.9	46.0	-5.1	Vert
			+0.3	+0.0					SC		
5	960.000M	12.8	+24.6	+5.8	+1.5	+2.2	+0.0	47.3	54.0	-6.7	Vert
			+0.4	+0.0					Hop		
6	960.000M	10.7	+24.6	+5.8	+1.5	+2.2	+0.0	45.2	54.0	-8.8	Vert
			+0.4	+0.0					SC		
7	902.000M	53.7	+23.8	+5.8	+1.4	+2.1	+0.0	87.1	109.9	-22.8	Vert
			+0.3	+0.0					SC		
8	902.000M	49.7	+23.8	+5.8	+1.4	+2.1	+0.0	83.1	109.9	-26.8	Vert
			+0.3	+0.0					Hop		
9	928.000M	41.1	+24.2	+5.8	+1.5	+2.2	+0.0	75.2	109.9	-34.7	Vert
			+0.4	+0.0					Hop		
10	928.000M	40.3	+24.2	+5.8	+1.5	+2.2	+0.0	74.4	109.9	-35.5	Vert
			+0.4	+0.0					SC		

Page 87 of 109 Report No.: 103220-2

Test Location: CKC Laboratories, Inc. • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362

Customer: **Itron, Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 103220 Date: 10/10/2020
Test Type: Radiated Scan Time: 09:52:58
Tested By: Matthew Harrison Sequence#: 3

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Temperature: 23° C Humidity: 39% Pressure: 101.1 kPa

Frequency Range: 600-970MHz Frequency tested: 903.0-926.8 MHz Firmware power setting: Max

Antenna type: Omnidirectional Antenna Gain: 8.15 dBi.

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2015

Test Mode: Transmitting

Test Setup: EUT is setup in a tabletop configuration 80cm high on a Styrofoam table.

Modifications #1 was in place during testing.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T2	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T3	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T4	ANP05360	Cable	RG214	2/3/2020	2/3/2022
T5	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T6	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021

Page 88 of 109 Report No.: 103220-2

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	904.415M	94.8	+23.9	+5.8	+1.4	+2.1	+0.0	128.3	129.9	-1.6	Vert
			+0.3	+0.0					Hop		
2	960.000M	12.7	+24.6	+5.8	+1.5	+2.2	+0.0	47.2	54.0	-6.8	Vert
			+0.4	+0.0					Hop		
3	960.000M	12.4	+24.6	+5.8	+1.5	+2.2	+0.0	46.9	54.0	-7.1	Vert
			+0.4	+0.0					SC		
4	614.000M	8.3	+21.2	+5.8	+1.2	+1.7	+0.0	38.5	46.0	-7.5	Vert
	QP		+0.3	+0.0					SC		
٨	614.000M	13.9	+21.2	+5.8	+1.2	+1.7	+0.0	44.1	46.0	-1.9	Vert
			+0.3	+0.0					SC		
^	614.000M	11.8	+21.2	+5.8	+1.2	+1.7	+0.0	42.0	46.0	-4.0	Vert
			+0.3	+0.0					Hop		
7	902.000M	52.2	+23.8	+5.8	+1.4	+2.1	+0.0	85.6	109.9	-24.3	Vert
			+0.3	+0.0					SC		
8	902.000M	51.2	+23.8	+5.8	+1.4	+2.1	+0.0	84.6	109.9	-25.3	Vert
			+0.3	+0.0					Нор		
9	928.000M	40.0	+24.2	+5.8	+1.5	+2.2	+0.0	74.1	109.9	-35.8	Vert
			+0.4	+0.0					SC		
10	928.000M	39.9	+24.2	+5.8	+1.5	+2.2	+0.0	74.0	109.9	-35.9	Vert
			+0.4	+0.0					Hop		

Page 89 of 109 Report No.: 103220-2

Test Setup Photo(s)

Configuration 1, Below 1GHz

Configuration 1, Below 1GHz

Page 90 of 109 Report No.: 103220-2

Configuration 1, Above 1GHz

Configuration 1, Above 1GHz

Page 91 of 109 Report No.: 103220-2

Configuration 2, Below 1GHz

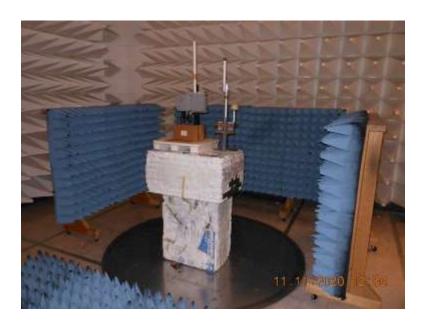
Configuration 2, Below 1GHz

Page 92 of 109 Report No.: 103220-2

Configuration 2, Above 1GHz

Configuration 2, Above 1GHz

Page 93 of 109 Report No.: 103220-2



Configuration 4, Below 1GHz

Configuration 4, Below 1GHz

Configuration 4, Above 1GHz

Configuration 4, Above 1GHz

Page 95 of 109 Report No.: 103220-2

Configuration 5, Below 1GHz

Configuration 5, Below 1GHz

Page 96 of 109 Report No.: 103220-2

Configuration 5, Above 1GHz

Configuration 5, Above 1GHZ

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: **Itron, Inc.**

Specification: 15.207 AC Mains - Average

Work Order #: 103220 Date: 10/7/2020
Test Type: Conducted Emissions Time: 13:21:58
Tested By: Matthew Harrison Sequence#: 13

Software: EMITest 5.03.19 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 3

Support Equipment:

Device Manufacturer Model # S/N
Configuration 3

Test Conditions / Notes:

Temperature: 23° C Humidity: 41% Pressure: 103.3 kPa

Frequency Range: 150kHz-30MHz

Firmware power setting: Max

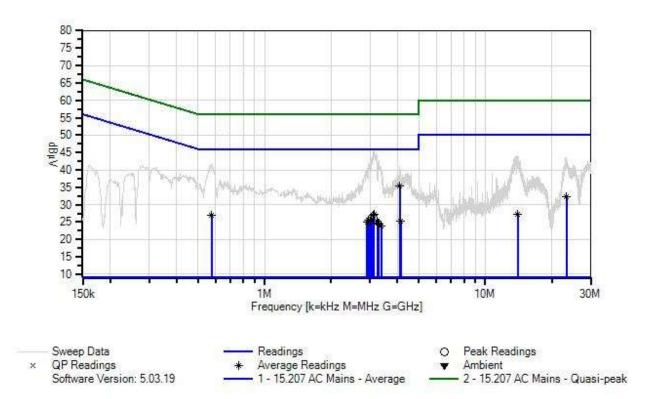
Modulation: FSK 12.5kbit, FSK 37.5kbit, and AM investigated, overall worst case reported.

Antenna type: Omnidirectional Antenna Gain: 5.5 dBi. (Worst-Case)

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2013

Test Mode: Transmitting


Test Setup: EUT is setup in a tabletop configuration on an 80cm Styrofoam table.

Modifications #1 was in place during testing.

Page 98 of 109 Report No.: 103220-2

Itron, Inc. WO#: 103220 Sequence#: 13 Date: 10/7/2020 15.207 AC Mains - Average Test Lead: 115V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T3	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T4	AN01492	50uH LISN-Line (L1)	3816/2NM	10/14/2019	10/14/2021
	AN01492	50uH LISN-Neutral (L2)	3816/2NM	10/14/2019	10/14/2021
	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021
T5	AN02611	High Pass Filter	HE9615-150K-	1/10/2020	1/10/2022
			50-720B		

Page 99 of 109 Report No.: 103220-2

Measur	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	4DV	T5 dB	dB	dB	dB	Table	ADW	4DV	4D	Ant
1	4.088M	dBμV 25.6	+9.1	+0.1	+0.0	+0.5	Table +0.0	dBμV 35.4	dBμV 46.0	-10.6	Ant Line
-	Ave	23.0	+0.1	+0.1	+0.0	+0.5	+0.0	33.4	40.0	-10.0	Line
۸	4.088M	31.2	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	41.0	46.0	-5.0	Line
3	23.333M Ave	22.1	+9.1 +0.2	+0.2	+0.1	+0.6	+0.0	32.3	50.0	-17.7	Line
۸	23.333M	33.5	+9.1 +0.2	+0.2	+0.1	+0.6	+0.0	43.7	50.0	-6.3	Line
5	3.127M Ave	17.4	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	27.2	46.0	-18.8	Line
۸	3.127M	35.6	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	45.4	46.0	-0.6	Line
7	3.114M Ave	17.3	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	27.1	46.0	-18.9	Line
^	3.114M	35.6	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	45.4	46.0	-0.6	Line
9	576.870k Ave	17.2	+9.1 +0.3	+0.0	+0.0	+0.5	+0.0	27.1	46.0	-18.9	Line
۸	576.869k	31.7	+9.1 +0.3	+0.0	+0.0	+0.5	+0.0	41.6	46.0	-4.4	Line
11	3.046M Ave	16.1	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	25.9	46.0	-20.1	Line
^	3.046M	33.4	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	43.2	46.0	-2.8	Line
13	2.944M Ave	15.6	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	25.4	46.0	-20.6	Line
۸	2.944M	32.2	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	42.0	46.0	-4.0	Line
15	3.246M Ave	15.6	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	25.3	46.0	-20.7	Line
۸	3.246M	34.0	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	43.7	46.0	-2.3	Line
17	4.131M Ave	15.5	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	25.3	46.0	-20.7	Line
^	4.131M	30.4	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	40.2	46.0	-5.8	Line
19	3.012M Ave	15.5	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	25.2	46.0	-20.8	Line
۸	3.012M	33.3	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	43.0	46.0	-3.0	Line
21	2.919M Ave	15.3	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	25.1	46.0	-20.9	Line
٨	2.919M	30.6	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	40.4	46.0	-5.6	Line
23	3.267M Ave	15.1	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	24.8	46.0	-21.2	Line
^	3.267M	32.5	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	42.2	46.0	-3.8	Line

Page 100 of 109 Report No.: 103220-2

25	3.293M	14.8	+9.1	+0.1	+0.0	+0.4	+0.0	24.5	46.0	-21.5	Line
Α	ve		+0.1								
٨	3.293M	33.0	+9.1	+0.1	+0.0	+0.4	+0.0	42.7	46.0	-3.3	Line
			+0.1								
27	3.382M	14.3	+9.1	+0.1	+0.0	+0.4	+0.0	24.0	46.0	-22.0	Line
A	ve		+0.1								
٨	3.382M	30.5	+9.1	+0.1	+0.0	+0.4	+0.0	40.2	46.0	-5.8	Line
			+0.1								
29	14.058M	17.1	+9.1	+0.2	+0.0	+0.6	+0.0	27.2	50.0	-22.8	Line
Α	ve		+0.2								
٨	14.058M	34.1	+9.1	+0.2	+0.0	+0.6	+0.0	44.2	50.0	-5.8	Line
			+0.2								

Page 101 of 109 Report No.: 103220-2

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Itron, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 103220 Date: 10/7/2020
Test Type: Conducted Emissions Time: 13:42:16
Tested By: Matthew Harrison Sequence#: 14

Software: EMITest 5.03.19 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 3

Support Equipment:

Device Manufacturer Model # S/N
Configuration 3

Test Conditions / Notes:

Temperature: 23° C Humidity: 41% Pressure: 103.3 kPa

Frequency Range: 150kHz-30MHz

Firmware power setting: Max

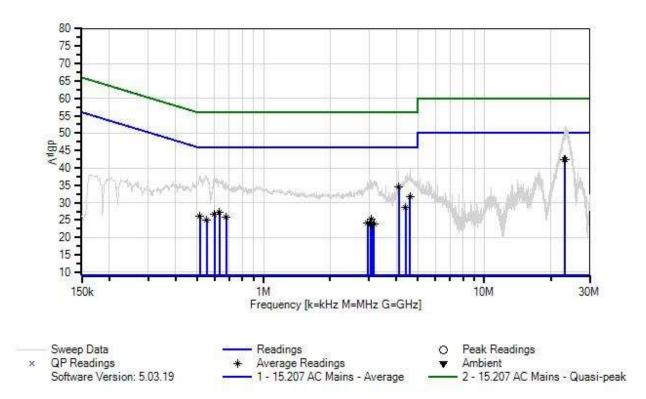
Modulation: FSK 12.5kbit, FSK 37.5kbit, and AM investigated, overall worst case reported.

Antenna type: Omnidirectional Antenna Gain: 5.5 dBi. (Worst-Case)

Duty Cycle: 100% Modulated

Test Method: ANSI C63.10: 2013

Test Mode: Transmitting


Test Setup: EUT is setup in a tabletop configuration on an 80cm Styrofoam table.

Modifications #1 was in place during testing.

Page 102 of 109 Report No.: 103220-2

Itron, Inc. WO#: 103220 Sequence#: 14 Date: 10/7/2020 15.207 AC Mains - Average Test Lead: 115V 60Hz Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T2	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T3	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
	AN01492	50uH LISN-Line (L1)	3816/2NM	10/14/2019	10/14/2021
T4	AN01492	50uH LISN-Neutral (L2)	3816/2NM	10/14/2019	10/14/2021
	AN02872	Spectrum Analyzer	E4440A	11/18/2019	11/18/2021
T5	AN02611	High Pass Filter	HE9615-150K-	1/10/2020	1/10/2022
			50-720B		

Page 103 of 109 Report No.: 103220-2

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	23.210M Ave	31.8	+9.1 +0.2	+0.2	+0.1	+1.1	+0.0	42.5	50.0	-7.5	Neutr
٨	23.210M	41.2	+9.1 +0.2	+0.2	+0.1	+1.1	+0.0	51.9	50.0	+1.9	Neutr
3	23.094M Ave	31.6	+9.1 +0.2	+0.2	+0.1	+1.1	+0.0	42.3	50.0	-7.7	Neutr
٨	23.094M	39.9	+9.1 +0.2	+0.2	+0.1	+1.1	+0.0	50.6	50.0	+0.6	Neutr
5	4.092M Ave	24.8	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	34.6	46.0	-11.4	Neutr
٨	4.092M	29.6	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	39.4	46.0	-6.6	Neutr
7	4.607M Ave	21.8	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	31.6	46.0	-14.4	Neutr
٨	4.607M	30.1	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	39.9	46.0	-6.1	Neutr
9	4.411M Ave	18.9	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	28.6	46.0	-17.4	Neutr
٨	4.411M	28.1	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	37.8	46.0	-8.2	Neutr
11	631.410k Ave	17.4	+9.1 +0.3	+0.0	+0.0	+0.5	+0.0	27.3	46.0	-18.7	Neutr
٨	631.410k	26.6	+9.1 +0.3	+0.0	+0.0	+0.5	+0.0	36.5	46.0	-9.5	Neutr
13	598.686k Ave	16.9	+9.1 +0.3	+0.0	+0.0	+0.5	+0.0	26.8	46.0	-19.2	Neutr
٨	598.686k	27.5	+9.1 +0.3	+0.0	+0.0	+0.5	+0.0	37.4	46.0	-8.6	Neutr
15	515.057k Ave	16.3	+9.1 +0.2	+0.0	+0.0	+0.5	+0.0	26.1	46.0	-19.9	Neutr
٨	515.057k	28.0	+9.1 +0.2	+0.0	+0.0	+0.5	+0.0	37.8	46.0	-8.2	Neutr
17	676.497k Ave	15.8	+9.1 +0.3	+0.0	+0.0	+0.5	+0.0	25.7	46.0	-20.3	Neutr
	676.497k	26.2	+9.1 +0.3	+0.0	+0.0	+0.5	+0.0	36.1	46.0	-9.9	Neutr
	3.072M Ave	15.5	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	25.2	46.0	-20.8	Neutr
20	551.418k Ave	15.1	+9.1 +0.3	+0.0	+0.0	+0.5	+0.0	25.0	46.0	-21.0	Neutr
	551.417k	27.9	+9.1 +0.3	+0.0	+0.0	+0.5	+0.0	37.8	46.0	-8.2	Neutr
	2.953M Ave	14.3	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	24.1	46.0	-21.9	Neutr
	2.953M	26.2	+9.1 +0.1	+0.1	+0.0	+0.5	+0.0	36.0	46.0	-10.0	Neutr
	3.059M Ave	14.2	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	23.9	46.0	-22.1	Neutr
	1110		10.1								

Page 104 of 109 Report No.: 103220-2

٨	3.059M	27.0	+9.1	+0.1	+0.0	+0.4	+0.0	36.7	46.0	-9.3	Neutr
			+0.1								
26	3.169M	14.2	+9.1	+0.1	+0.0	+0.4	+0.0	23.9	46.0	-22.1	Neutr
A	ve		+0.1								
٨	3.169M	26.5	+9.1	+0.1	+0.0	+0.4	+0.0	36.2	46.0	-9.8	Neutr
			+0.1								
28	3.080M	14.1	+9.1	+0.1	+0.0	+0.4	+0.0	23.8	46.0	-22.2	Neutr
A	ve		+0.1								
٨	3.080M	26.6	+9.1	+0.1	+0.0	+0.4	+0.0	36.3	46.0	-9.7	Neutr
			+0.1								
٨	3.072M	26.6	+9.1	+0.1	+0.0	+0.4	+0.0	36.3	46.0	-9.7	Neutr
			+0.1								

Test Setup Photo(s)

Page 105 of 109 Report No.: 103220-2

Appendix A: Modifications Photos

Modification 1

Page 106 of 109 Report No.: 103220-2

Appendix B: Manufacturer Declaration

The following models have been tested by CKC Laboratories: CCU100B and CCU100RB

The manufacturer declares that the following additional models are identical electrically or any differences between them do not affect their EMC characteristics, and therefore meets the level of testing equivalent to the tested models.

CCU100B Repeater
CCU100RB Repeater

The manufacturer declares these permissive changes do not change any modulations, channels or protocol and therefore Time of Occupancy remains compliant.

Page 107 of 109 Report No.: 103220-2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS								
	Meter reading (dBμV)							
+	Antenna Factor	(dB/m)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBμV/m)						

Page 108 of 109 Report No.: 103220-2

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz					
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 109 of 109 Report No.: 103220-2