

15.247(b)(3) Peak Conducted Power

Test Conditions / Setup

Comments

The EUT was setup on the bench and connected to a spectrum analyzer via an RF cable and 6 dB attenuator. The EUT was cycled though the different channels and modes by test software on a support laptop, connected to the EUT by an Ethernet cable. For this requirement, only one model was tested; CCU100B (SRR+WWAN+WIFI+GPS RX Internal WWAN & GPS Antenna). The manufacturer declares that, with regards to this particular test, all models are electrically identical and therefore meet the level of testing equivalent to the tested model.

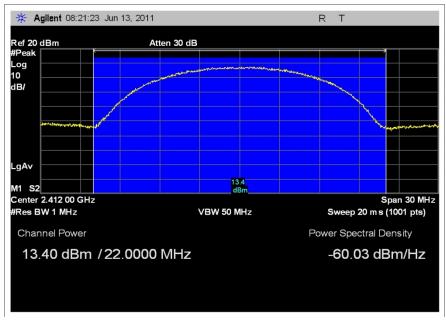
Requirement: The maximum peak conducted output power of the intentional radiator shall not exceed the following: 1 Watt

	Test Equipment										
Asset/Serial # Description Model Manufacturer Cal Date Cal Duc											
02872	Spectrum Analyzer	E4440A Agilent		08/25/2009	08/25/2011						
P05513	Attenuator	BW-S6W2	Mini-Circuits	10/12/2009	10/12/2011						
03122	Cable	32026-2-29801-36	Astrolab	12/23/2010	12/23/2012						

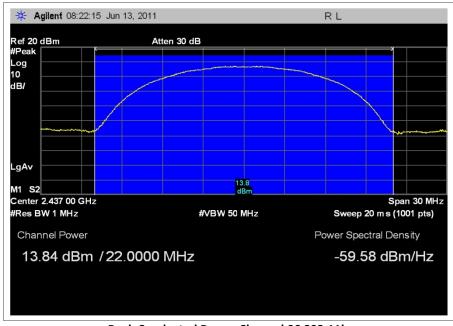
Test Data

Engineer: A. del Angel

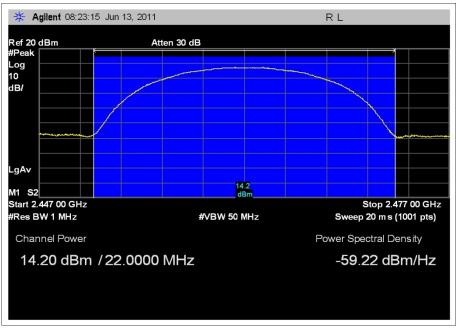
	Results Table								
	6 dB BW Spec 802.11b								
2412 MHz	2412 MHz 2437 MHz 2462 MHz								
dBm/22MHz	dBm/22MHz dBm/22MHz dBm/22MHz								
20.20	20.60	21.00	Pass						


	Results Table								
	6 dB BW Spec 802.11g								
2412 MHz	2412 MHz 2437 MHz 2462 MHz								
dBm/22MHz	dBm/22MHz	dBm/22MHz							
16.30	16.60	17.10	Pass						

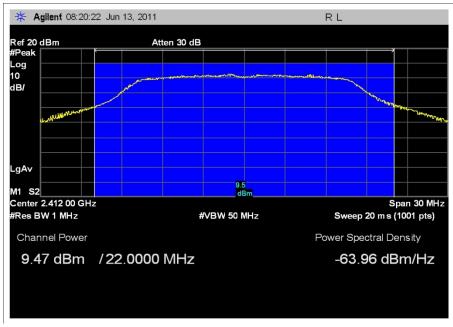
Note: Plots shown on next page are raw measurements. Data above includes correction factors for attenuator and cable.


Page 45 of 86 Report No.: 92051-8A

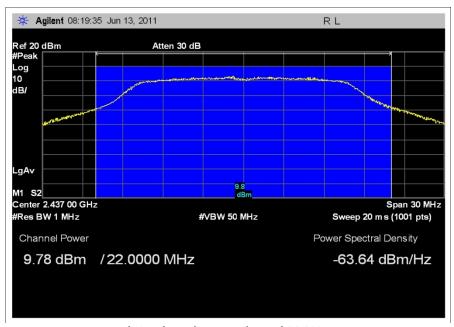
Test Data



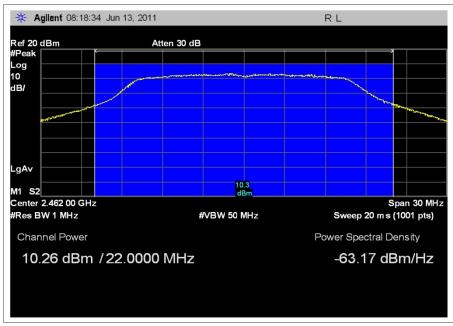
Peak Conducted Power Channel 01 802.11b



Peak Conducted Power Channel 06 802.11b



Peak Conducted Power Channel 11 802.11b



Peak Conducted Power Channel 01 802.11g

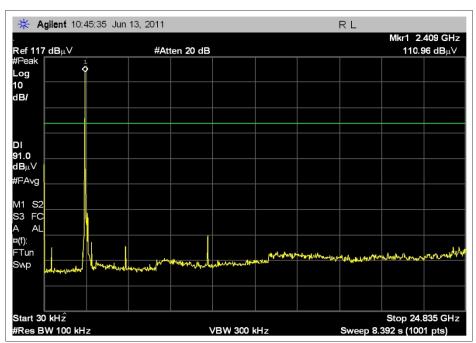
Peak Conducted Power Channel 06 802.11g

Peak Conducted Power Channel 11 802.11g

Test Setup Photos

15.247(d) Spurious Emissions – Antenna Conducted

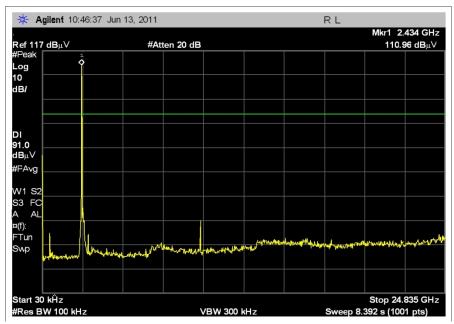
Summary

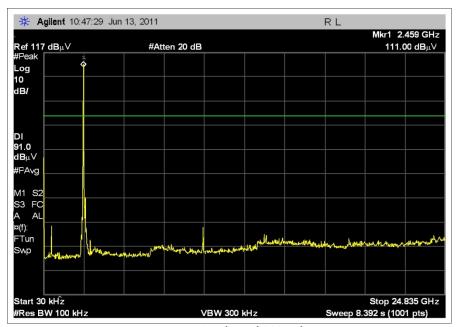

Comments

The EUT was setup on the bench and connected to a spectrum analyzer via an RF cable. The EUT was cycled though the different channels and modes by test software on a support laptop, connected to the EUT by an Ethernet cable. For this testing, all models (CCU100B, CCU100B-Repeater, CCU100RB, and CCU100RB-Repeater) are identical.

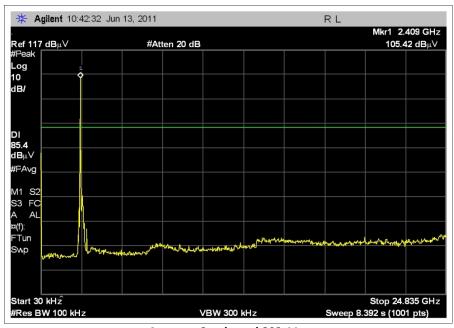
Test Equipment									
Asset/Serial # Description Model Manufacturer Cal Date Cal Due									
02872	Spectrum Analyzer	E4440A	Agilent	08/25/2009	08/25/2011				
03122	Cable	32026-2-29801-36	Astrolab	12/23/2010	12/23/2012				

Engineer: A. del Angel

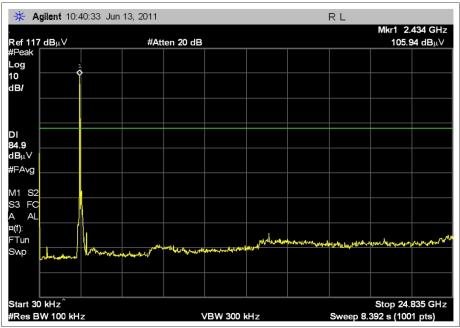

Test Data


Antenna Conducted 802.11b

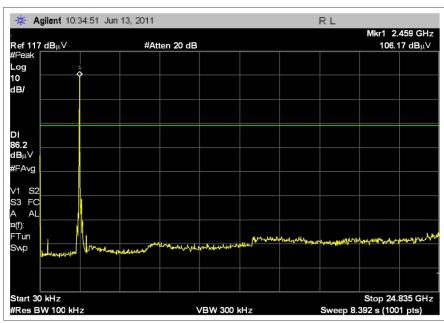
Page 50 of 86 Report No.: 92051-8A



Antenna Conducted 802.11b



Antenna Conducted 802.11b



Antenna Conducted 802.11g

Antenna Conducted 802.11g

Antenna Conducted 802.11g

Test Setup Photos

15.247(d) Spurious Emissions – Radiated

Test Data Sheets

Model: CCU100B

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 92051
 Date: 6/15/2011

 Test Type:
 Radiated Scan
 Time: 8:17:19 AM

Equipment: SRR+WWAN+WIFI+GPS RX Sequence#: 43

(internal WWAN & GPS antenna)

Manufacturer: Itron, Inc. Tested By: Armando del Angel

Model: CCU100B S/N: 7404FCC5

Test Equipment:

I csi Lqu	ipmem.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03227	Cable	32026-29080-	5/2/2011	5/2/2013
			29080-84		
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T2	ANP05360	Cable	RG214	11/8/2010	11/8/2012
T3	ANP05547	Cable	Heliax	5/18/2010	5/18/2012
T4	AN00052	Loop Antenna	6502	6/8/2010	6/8/2012
T5	AN01717	High Pass Filter	F3440-P005	5/27/2010	5/27/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
SRR+WWAN+WIFI+GPS RX	Itron, Inc.	CCU100B	7404FCC5
(internal WWAN & GPS antenna)*			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Dell	E6400	H4CSTK1

Test Conditions / Notes:

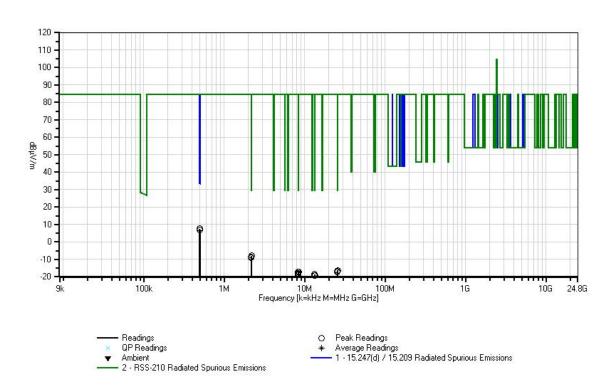
Temp: 23°C Humidity: 43% Pressure: 102.0kPa Frequency: 0.03-30MHz

All three frequencies investigated, 2412M, 2437M, 2462M.

Two modulations investigated 802.11b and 802.11g.

Testing per KDB558074. Worst case results reported.

Page 55 of 86 Report No.: 92051-8A



Ext Attn: 0 dB

Measur	rement Data:	Re	eading list	ted by ma	argin.		Te	est Distance	e: 3 Meters	;	
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	495.600k	38.1	+0.0 +0.1	+0.0	+0.0	+9.4	-40.0	7.6	33.7	-26.1	Perpe 131
2	498.300k	37.5	+0.0 +0.1	+0.0	+0.0	+9.4	-40.0 360	7.0	33.6	-26.6	Perpe 131
3	496.950k	37.5	+0.0 +0.1	+0.0	+0.0	+9.4	-40.0	7.0	33.7	-26.7	Paral 131
4	2.185M	22.3	+0.0 +0.0	+0.0	+0.1	+9.7	-40.0	-7.9	29.5	-37.4	Paral 131
5	2.176M	21.6	+0.0 +0.0	+0.0	+0.1	+9.7	-40.0	-8.6	29.5	-38.1	Perpe 131
6	2.176M	21.1	+0.0	+0.0	+0.1	+9.7	-40.0 360	-9.1	29.5	-38.6	Perpe 131
7	25.662M	16.8	+0.1 +0.1	+0.2	+0.3	+6.3	-40.0 360	-16.2	29.5	-45.7	Perpe 131
8	25.662M	16.6	+0.1 +0.1	+0.2	+0.3	+6.3	-40.0	-16.4	29.5	-45.9	Perpe 131
9	25.572M	16.1	+0.1 +0.1	+0.2	+0.3	+6.3	-40.0	-16.9	29.5	-46.4	Perpe 131
10	8.293M	12.9	+0.1 +0.1	+0.1	+0.2	+9.5	-40.0 360	-17.1	29.5	-46.6	Perpe 131
11	8.383M	12.9	+0.1 +0.1	+0.1	+0.2	+9.5	-40.0	-17.1	29.5	-46.6	Paral 131
12	25.572M	15.8	+0.1 +0.1	+0.2	+0.3	+6.3	-40.0 360	-17.2	29.5	-46.7	Perpe 131
13	8.365M	12.2	+0.1 +0.1	+0.1	+0.2	+9.5	-40.0 360	-17.8	29.5	-47.3	Perpe 131
14	8.365M	12.0	+0.1 +0.1	+0.1	+0.2	+9.5	-40.0	-18.0	29.5	-47.5	Perpe 131
15	8.293M	11.8	+0.1 +0.1	+0.1	+0.2	+9.5	-40.0	-18.2	29.5	-47.7	Perpe 131
16	8.293M	11.7	+0.1 +0.1	+0.1	+0.2	+9.5	-40.0	-18.3	29.5	-47.8	Paral 131
17	13.365M	11.8	+0.1 +0.1	+0.1	+0.2	+9.3	-40.0 360	-18.4	29.5	-47.9	Perpe 131
18	8.365M	11.2	+0.1 +0.1	+0.1	+0.2	+9.5		-18.8	29.5	-48.3	Paral 131
19	13.383M	11.2	+0.1 +0.1	+0.1	+0.2	+9.3	-40.0	-19.0	29.5	-48.5	Paral 131
20	13.365M	11.2	+0.1 +0.1	+0.1	+0.2	+9.3	-40.0	-19.0	29.5	-48.5	Perpe 131

CKC Laboratories, Inc. Date: 6/15/2011 Time: 8:17:19 AM Itron, Inc. WO# 92051 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perpendicular Sequence#: 43 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 92051
 Date: 6/15/2011

 Test Type:
 Radiated Scan
 Time: 7:13:55 AM

Equipment: SRR+WWAN+WIFI+GPS RX Sequence#: 37

(internal WWAN & GPS antenna)

Manufacturer: Itron, Inc. Tested By: Armando del Angel

Model: CCU100B S/N: 7404FCC5

Test Equipment:

1 cst Equ	pinent.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03227	Cable	32026-29080-	5/2/2011	5/2/2013
			29080-84		
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T2	AN01316	Preamp	8447D	5/21/2010	5/21/2012
T3	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T4	ANP05360	Cable	RG214	11/8/2010	11/8/2012
T5	ANP05547	Cable	Heliax	5/18/2010	5/18/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
SRR+WWAN+WIFI+GPS RX	Itron, Inc.	CCU100B	7404FCC5	
(internal WWAN & GPS antenna)*				

Support Devices:

WIFF CIT = CITTER				
Function	Manufacturer	Model #	S/N	
Laptop	Dell	E6400	H4CSTK1	

Test Conditions / Notes:

Temp: 23°C Humidity: 43% Pressure: 102.0kPa Frequency: 30-1000MHz

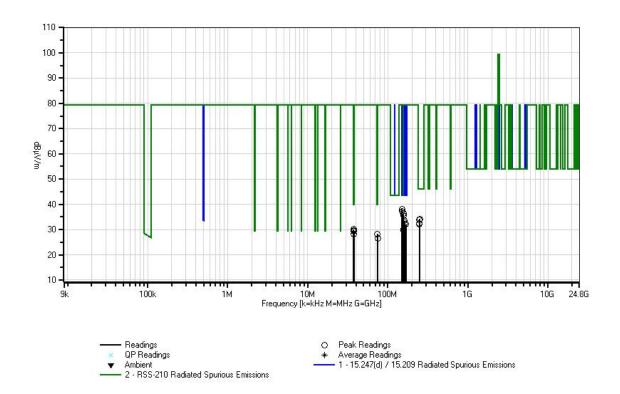
All three frequencies investigated, 2412M, 2437M, 2462M.

Two modulations investigated 802.11b and 802.11g.

Testing per KDB558074. Worst case results reported.

Ext Attn: 0 dB

Measur	rement Data:	Re	eading list	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	150.002M	53.4	+0.4	-29.1	+12.1	+0.7	+0.0	38.1	43.5	-5.4	Verti
			+0.6				360				130
2	150.002M	52.5	+0.4	-29.1	+12.1	+0.7	+0.0	37.2	43.5	-6.3	Verti
			+0.6								131
3	156.729M	52.0	+0.4	-29.0	+11.6	+0.7	+0.0	36.3	43.5	-7.2	Verti
			+0.6								131
4	156.849M	51.1	+0.4	-29.0	+11.6	+0.7	+0.0	35.4	43.5	-8.1	Verti
			+0.6				360				130


Page 58 of 86 Report No.: 92051-8A

5	37.520M	46.3	+0.2	-29.4	+12.4	+0.3	+0.0	30.1	40.0	-9.9	Verti
			+0.3				360				130
6	162.255M	49.6	+0.4	-29.0	+11.2	+0.7	+0.0	33.5	43.5	-10.0	Verti
			+0.6								131
7	37.520M	45.7	+0.2	-29.4	+12.4	+0.3	+0.0	29.5	40.0	-10.5	Verti
			+0.3								131
8	164.056M	49.1	+0.4	-29.0	+11.0	+0.7	+0.0	32.8	43.5	-10.7	Verti
			+0.6				360				130
9	37.786M	45.6	+0.2	-29.4	+12.3	+0.3	+0.0	29.3	40.0	-10.7	Verti
			+0.3				360				130
10	167.900M	48.8	+0.4	-29.0	+10.5	+0.7	+0.0	32.0	43.5	-11.5	Verti
			+0.6				360				130
11	167.780M	48.7	+0.4	-29.0	+10.6	+0.7	+0.0	32.0	43.5	-11.5	Verti
			+0.6								131
12	37.786M	44.6	+0.2	-29.4	+12.3	+0.3	+0.0	28.3	40.0	-11.7	Verti
			+0.3								131
13	74.588M	48.7	+0.3	-29.3	+7.7	+0.4	+0.0	28.2	40.0	-11.8	Verti
			+0.4				360				130
14	250.062M	47.8	+0.5	-28.5	+12.7	+0.9	+0.0	34.2	46.0	-11.8	Verti
			+0.8								131
15	249.942M	47.4	+0.5	-28.5	+12.7	+0.9	+0.0	33.8	46.0	-12.2	Verti
			+0.8				360				130
16	156.729M	45.8	+0.4	-29.0	+11.6	+0.7	+0.0	30.1	43.5	-13.4	Horiz
			+0.6								130
17	249.942M	46.0	+0.5	-28.5	+12.7	+0.9	+0.0	32.4	46.0	-13.6	Horiz
			+0.8								130
18	75.120M	46.8	+0.3	-29.3	+7.8	+0.4	+0.0	26.4	40.0	-13.6	Verti
			+0.4				360				130
19	249.942M	45.8	+0.5	-28.5	+12.7	+0.9	+0.0	32.2	46.0	-13.8	Horiz
			+0.8				360				130
20	156.729M	45.3	+0.4	-29.0	+11.6	+0.7	+0.0	29.6	43.5	-13.9	Horiz
			+0.6				360				130

CKC Laboratories, Inc. Date: 6/15/2011 Time: 7:13:55 AM Itron, Inc. WO#. 92051 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#. 37 Ext ATTN: 0 dB

Model: CCU100RB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 92051
 Date: 6/14/2011

 Test Type:
 Radiated Scan
 Time: 11:33:44 AM

Equipment: SRR+WWAN+WIFI+GPS RX Sequence#: 23

(external WWAN & GPS antenna)

Manufacturer: Itron, Inc. Tested By: Armando del Angel

Model: CCU100RB S/N: 7404FCC3

Test Equipment:

	Pintentt				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03227	Cable	32026-29080-	5/2/2011	5/2/2013
			29080-84		
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T2	ANP05360	Cable	RG214	11/8/2010	11/8/2012
T3	ANP05547	Cable	Heliax	5/18/2010	5/18/2012
T4	AN00052	Loop Antenna	6502	6/8/2010	6/8/2012
T5	AN01717	High Pass Filter	F3440-P005	5/27/2010	5/27/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
SRR+WWAN+WIFI+GPS RX	Itron, Inc.	CCU100RB	7404FCC3
(external WWAN & GPS antenna)*			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Dell	E6400	H4CSTK1

Test Conditions / Notes:

Temp: 23°C Humidity: 43% Pressure: 102.0kPa Frequency: 0.03-30MHz

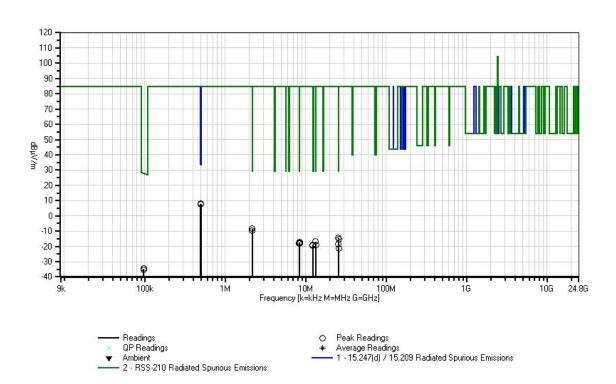
All three frequencies investigated, 2412M, 2437M, 2462M.

Two modulations investigated 802.11b and 802.11g.

Testing per KDB558074. Worst case results reported.

Ext Attn: 0 dB

1	Measur	rement Data:	Re	eading list	ted by ma	ırgin.	Test Distance: 3 Meters					
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5								
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	502.350k	38.4	+0.0	+0.0	+0.0	+9.4	-40.0	7.9	33.6	-25.7	Paral
				+0.1								150


Page 61 of 86 Report No.: 92051-8A

-											
2 4	495.600k	38.3	+0.0	+0.0	+0.0	+9.4	-40.0	7.8	33.7	-25.9	Perpe
			+0.1								150
3	2.176M	21.9	+0.0	+0.0	+0.1	+9.7	-40.0	-8.3	29.5	-37.8	Perpe
			+0.0								150
4	2.176M	20.6	+0.0	+0.0	+0.1	+9.7	-40.0	-9.6	29.5	-39.1	Paral
			+0.0								150
5	25.572M	18.7	+0.1	+0.2	+0.3	+6.3	-40.0	-14.3	29.5	-43.8	Perpe
			+0.1								150
6	25.662M	17.7	+0.1	+0.2	+0.3	+6.3	-40.0	-15.3	29.5	-44.8	Perpe
			+0.1								150
7	13.365M	13.5	+0.1	+0.1	+0.2	+9.3	-40.0	-16.7	29.5	-46.2	Perpe
			+0.1								150
8	8.383M	12.7	+0.1	+0.1	+0.2	+9.5	-40.0	-17.3	29.5	-46.8	Perpe
			+0.1								150
9	8.293M	12.5	+0.1	+0.1	+0.2	+9.5	-40.0	-17.5	29.5	-47.0	Perpe
			+0.1								150
10	8.365M	12.5	+0.1	+0.1	+0.2	+9.5	-40.0	-17.5	29.5	-47.0	Perpe
			+0.1								150
11	8.293M	12.5	+0.1	+0.1	+0.2	+9.5	-40.0	-17.5	29.5	-47.0	Paral
			+0.1								150
12	8.383M	12.1	+0.1	+0.1	+0.2	+9.5	-40.0	-17.9	29.5	-47.4	Paral
			+0.1								150
13	8.365M	12.0	+0.1	+0.1	+0.2	+9.5	-40.0	-18.0	29.5	-47.5	Paral
			+0.1								150
14	25.509M	14.4	+0.1	+0.2	+0.3	+6.3	-40.0	-18.6	29.5	-48.1	Perpe
			+0.1								150
15	13.374M	11.4	+0.1	+0.1	+0.2	+9.3	-40.0	-18.8	29.5	-48.3	Paral
			+0.1								150
16	12.293M	11.4	+0.1	+0.1	+0.2	+9.3	-40.0	-18.8	29.5	-48.3	Perpe
			+0.1								150
17	12.293M	10.5	+0.1	+0.1	+0.2	+9.3	-40.0	-19.7	29.5	-49.2	Paral
			+0.1								150
18	25.653M	11.5	+0.1	+0.2	+0.3	+6.3	-40.0	-21.5	29.5	-51.0	Paral
			+0.1								150
19	96.720k	35.6	+0.0	+0.0	+0.0	+9.7	-80.0	-34.6	27.9	-62.5	Perpe
			+0.1								150
20	97.200k	35.0	+0.0	+0.0	+0.0	+9.7	-80.0	-35.2	27.8	-63.0	Paral
20	71.200K	33.0	10.0	10.0	10.0	1 7.1	00.0	33.2	27.0	05.0	1 arai

CKC Laboratories, Inc. Date: 6/14/2011 Time: 11:33:44 AM Itron, Inc. WO#: 92051 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Perpendicular Sequence#: 23 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 92051
 Date: 6/14/2011

 Test Type:
 Radiated Scan
 Time: 10:28:41 AM

Equipment: SRR+WWAN+WIFI+GPS RX Sequence#: 18

(external WWAN & GPS antenna)

Manufacturer: Itron, Inc. Tested By: Armando del Angel

Model: CCU100RB S/N: 7404FCC3

Test Equipment:

I csi Lyu	ipineni.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03227	Cable	32026-29080-	5/2/2011	5/2/2013
			29080-84		
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T2	AN01316	Preamp	8447D	5/21/2010	5/21/2012
Т3	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T4	ANP05360	Cable	RG214	11/8/2010	11/8/2012
T5	ANP05547	Cable	Heliax	5/18/2010	5/18/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
SRR+WWAN+WIFI+GPS RX	Itron, Inc.	CCU100RB	7404FCC3	
(external WWAN & GPS antenna)*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Dell	E6400	H4CSTK1

Test Conditions / Notes:

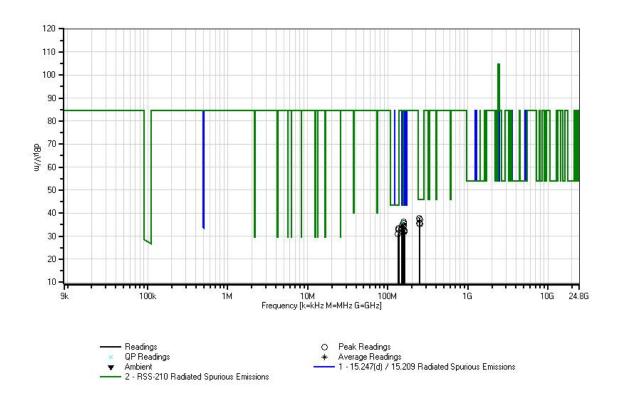
Temp: 23°C Humidity: 43% Pressure: 102.0kPa Frequency: 30-1000MHz

All three frequencies investigated, 2412M, 2437M, 2462M. Two modulations investigated 802.11b and 802.11g.

Testing per KDB558074. Worst case results reported.

Ext Attn: 0 dB

Mea	surement Data:	Re	Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
	1 156.729M	51.9	+0.4	-29.0	+11.6	+0.7	+0.0	36.2	43.5	-7.3	Verti
			+0.6				360				130
	2 150.002M	51.3	+0.4	-29.1	+12.1	+0.7	+0.0	36.0	43.5	-7.5	Verti
	QP		+0.6				280				250
	^ 150.002M	53.7	+0.4	-29.1	+12.1	+0.7	+0.0	38.4	43.5	-5.1	Verti
			+0.6				280				250
	^ 150.002M	52.9	+0.4	-29.1	+12.1	+0.7	+0.0	37.6	43.5	-5.9	Verti
			+0.6				360				130


Page 64 of 86 Report No.: 92051-8A

5	156.729M	51.4	+0.4	-29.0	+11.6	+0.7	+0.0	35.7	43.5	-7.8	Horiz
			+0.6				360				130
6	249.942M	51.4	+0.5	-28.5	+12.7	+0.9	+0.0	37.8	46.0	-8.2	Horiz
			+0.8				360				130
7	156.849M	50.4	+0.4	-29.0	+11.6	+0.7	+0.0	34.7	43.5	-8.8	Verti
			+0.6								130
8	150.048M	49.9	+0.4	-29.1	+12.1	+0.7	+0.0	34.6	43.5	-8.9	Horiz
			+0.6								150
9	249.985M	50.6	+0.5	-28.5	+12.7	+0.9	+0.0	37.0	46.0	-9.0	Horiz
			+0.8								150
10	156.824M	50.2	+0.4	-29.0	+11.6	+0.7	+0.0	34.5	43.5	-9.0	Horiz
			+0.6								150
11	150.002M	48.8	+0.4	-29.1	+12.1	+0.7	+0.0	33.5	43.5	-10.0	Horiz
			+0.6				360				130
12	137.750M	49.0	+0.3	-29.1	+12.1	+0.6	+0.0	33.5	43.5	-10.0	Verti
			+0.6				360				130
13	249.942M	49.1	+0.5	-28.5	+12.7	+0.9	+0.0	35.5	46.0	-10.5	Verti
			+0.8				360				130
14	136.909M	48.4	+0.3	-29.2	+12.1	+0.6	+0.0	32.7	43.5	-10.8	Verti
			+0.5								130
15	250.062M	48.8	+0.5	-28.5	+12.7	+0.9	+0.0	35.2	46.0	-10.8	Verti
			+0.8								130
16	162.255M	48.7	+0.4	-29.0	+11.2	+0.7	+0.0	32.6	43.5	-10.9	Horiz
			+0.6				360				130
17	162.134M	48.5	+0.4	-29.0	+11.2	+0.7	+0.0	32.4	43.5	-11.1	Verti
			+0.6				360				130
18	162.385M	48.3	+0.4	-29.0	+11.1	+0.7	+0.0	32.1	43.5	-11.4	Horiz
			+0.6								150
19	162.375M	48.0	+0.4	-29.0	+11.1	+0.7	+0.0	31.8	43.5	-11.7	Verti
			+0.6								130
20	135.107M	46.7	+0.3	-29.2	+12.1	+0.6	+0.0	31.0	43.5	-12.5	Verti
			+0.5								130

CKC Laboratories, Inc. Date: 6/14/2011 Time: 10:28:41 AM Itron, Inc. WO#. 92051 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#. 18 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 92051 Date: 9/12/2011
Test Type: Radiated Scan Time: 16:10:15
Equipment: SRR+WWAN+WIFI+GPS RX Sequence#: 51

(internal WWAN & GPS antenna)

Manufacturer: Itron, Inc. Tested By: Randy Clark

Model: CCU100B S/N: 7404FCC5

Test Equipment:

2000 20 9000					
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	7/23/2011	7/23/2013
T2	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T3	AN01467	Horn Antenna-ANSI	3115	5/7/2010	5/7/2012
		C63.5 Calibration			
	AN02742	Active Horn	AMFW-5F-	11/10/2010	11/10/2012
		Antenna-ANSI	18002650-20-10P		
		C63.5 Antenna			
		Factors (dB)			
T4	AN03123	Cable	32026-2-29801-	10/23/2009	10/23/2011
			12		
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03227	Cable	32026-29080-	5/2/2011	5/2/2013
			29080-84		
T7	AN03116	High Pass Filter	11SH10-00313	1/26/2011	1/26/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
SRR+WWAN+WIFI+GPS	Itron, Inc.	CCU100B	7404FCC5
RX (internal WWAN &			
GPS antenna)*			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Dell	E6400	H4CSTK1

Test Conditions / Notes:

Temp: 25°C Humidity: 44% Pressure: 102.4kPa Frequency: 1-26GHz

Laptop used for configuration of the radio and is located outside the test area.

All three frequencies investigated, 2412M, 2437M, 2462M.

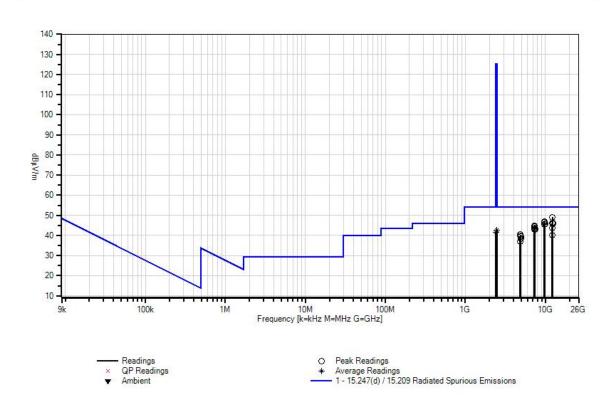
Testing per KDB558074.

Worst case results reported: 802.11b mode.

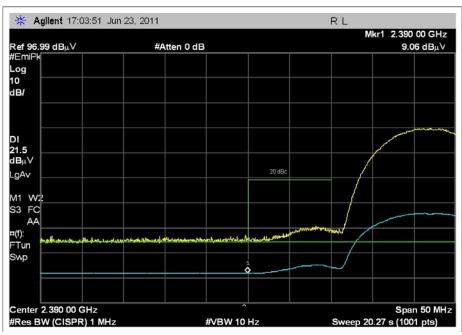
Data represents compliance for both CCU100B and CCU100RB configurations.

Page 67 of 86 Report No.: 92051-8A

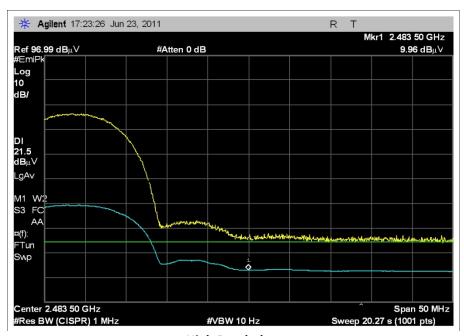
Ext Attn: 0 dB


	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr		Margin	Polar
	2104	110115	T5	T6	T7		2150	0011	Spee		1 0141
	MHz	dΒμV	dB	dB	dB	dB	Table	dBuV/m	$dB\mu V/m$	dB	Ant
1	12206.327	34.0	+0.0	-35.0	+38.8	+0.6	+0.0	49.1	54.0	-4.9	Vert
	M		+6.8	+3.5	+0.4						
									Mid Channe	el	99
2	12206.327	34.0	+0.0	-35.0	+38.8	+0.6	+0.0	49.1	54.0	-4.9	Vert
	M		+6.8	+3.5	+0.4						
							288		Mid Channe		99
3	9648.000M	32.4	+0.0	-34.0	+36.5	+0.3	+0.0	47.0	54.0	-7.0	Vert
			+5.8	+4.4	+1.6		167		Low Chann	el	112
4	9764.327M	31.5	+0.0	-33.9	+36.8	+0.3	+0.0	46.5	54.0	-7.5	Vert
			+5.8	+4.4	+1.6		288		Mid Channe		99
5	9764.327M	31.4	+0.0	-33.9	+36.8	+0.3	+0.0	46.4	54.0	-7.6	Horiz
			+5.8	+4.4	+1.6		128		Mid Channe		101
6	12313.350	31.1	+0.0	-35.0	+38.8	+0.6	+0.0	46.2	54.0	-7.8	Vert
	M		+6.9	+3.5	+0.3						
							156		High Chann		111
7	12060.000	31.2	+0.0	-35.0	+38.7	+0.6	+0.0	46.1	54.0	-7.9	Vert
	M		+6.7	+3.5	+0.4						
							167		Low Chann		112
8	9850.500M	30.7	+0.0	-33.9	+36.9	+0.3	+0.0	45.8	54.0	-8.2	Vert
			+5.8	+4.4	+1.6		156		High Chann		111
9	9851.400M	30.6	+0.0	-33.9	+36.9	+0.3	+0.0	45.7	54.0	-8.3	Horiz
			+5.8	+4.4	+1.6		230		High Chann		126
10	12314.250	30.6	+0.0	-35.0	+38.8	+0.6	+0.0	45.7	54.0	-8.3	Horiz
	M		+6.9	+3.5	+0.3		220		*** 1 61		10.
11	0.640,0003.6	20.0	0.0	24.0	265	0.2	230	45.5	High Chann		126
11	9648.000M	30.9	+0.0	-34.0	+36.5	+0.3	+0.0	45.5	54.0	-8.5	Horiz
10	7222 227 <i>f</i>	22.4	+5.8	+4.4	+1.6	0.5	316	44.7	Low Chann		142
12	7322.327M	33.4	+0.0	-34.6	+36.1	+0.5	+0.0	44.7	54.0	-9.3	Vert
12	7226 00014	22.1	+5.2	+3.2	+0.9	.0.5	288	44.5	Mid Channe		99
13	7236.000M	33.1	+0.0	-34.6	+36.1	+0.5	+0.0	44.5	54.0	-9.5	Vert
1 /	7222 22714	22.5	+5.2	+3.2	+1.0	LO 5	167	12.0	Low Chann		112
14	7322.327M	32.5	+0.0	-34.6	+36.1	+0.5	+0.0	43.8	54.0 Mid Channe	-10.2	Horiz
1.5	12060 000	20.0	+5.2	+3.2	+0.9	106	279	43.7	Mid Channe		101 Horiz
13	12060.000 M	28.8	+0.0 +6.7	-33.0 +3.5	+38.7 +0.4	+0.0	+0.0	43.7	54.0	-10.3	HOHZ
	1 v1		+0.7	+3.3	±0. 4		316		Low Chann	el	142
16	7388.550M	32.0	+0.0	-34.6	+36.1	+0.5	+0.0	43.5	54.0	-10.5	Horiz
10	, 500.550141	32.0	+5.3	+3.3	+0.9	10.5	230	ਜ ਹ.ਹ	High Chann		126
17	7236.000M	31.7	+0.0	-34.6	+36.1	+0.5	+0.0	43.1	54.0	-10.9	Horiz
1 1	. 220.0001/1	21.,	+5.2	+3.2	+1.0	. 0.3	316		Low Chann		142
18	7387.650M	31.6	+0.0	-34.6	+36.1	+0.5	+0.0	43.1	54.0	-10.9	Vert
	. 2 3 7 . 0 2 0 1 7 1	21.0	+5.3	+3.3	+0.9	. 0.3	156		High Chann		111
19	2483.500M	10.0	+0.0	+0.0	+27.9	+0.2	+0.0	42.5	54.0	-11.5	Vert
	Ave	20.0	+2.8	+1.6	+0.0	. 0.2	273	.2.0	High Bande		119
	2483.500M	22.1	+0.0	+0.0	+27.9	+0.2	+0.0	54.6	54.0	+0.6	Vert
			+2.8	+1.6	+0.0	. 0.2	273		High Bande		119
					. 0.0					- 0 -	/

Page 68 of 86 Report No.: 92051-8A



21 2390.000M	9.1	+0.0	+0.0	+28.0	+0.3	+0.0	41.6	54.0	-12.4	Vert
Ave		+2.7	+1.5	+0.0				Low Bande	edge	101
^ 2390.000M	22.2	+0.0	+0.0	+28.0	+0.3	+0.0	54.7	54.0	+0.7	Vert
		+2.7	+1.5	+0.0				Low Bande	edge	101
23 4874.398M	33.5	+0.0	-33.7	+33.0	+0.4	+0.0	40.4	54.0	-13.6	Vert
		+4.2	+2.2	+0.8		288		Mid Chann	el	99
24 12206.327	25.2	+0.0	-35.0	+38.8	+0.6	+0.0	40.3	54.0	-13.7	Horiz
M		+6.8	+3.5	+0.4						
						230		Mid Chann	el	101
25 4824.000M	33.1	+0.0	-33.8	+32.9	+0.4	+0.0	39.8	54.0	-14.2	Vert
		+4.2	+2.2	+0.8		167		Low Chann	nel	112
26 4824.000M	33.1	+0.0	-33.8	+32.9	+0.4	+0.0	39.8	54.0	-14.2	Horiz
		+4.2	+2.2	+0.8		316		Low Chann	nel	142
27 4925.700M	32.6	+0.0	-33.7	+33.1	+0.4	+0.0	39.6	54.0	-14.4	Horiz
		+4.2	+2.2	+0.8		230		High Chan	nel	126
28 4924.800M	31.3	+0.0	-33.7	+33.1	+0.4	+0.0	38.3	54.0	-15.7	Vert
		+4.2	+2.2	+0.8		156		High Chann	nel	111
29 4880.327M	30.1	+0.0	-33.7	+33.0	+0.4	+0.0	37.0	54.0	-17.0	Horiz
		+4.2	+2.2	+0.8		86		Mid Chann	el	101

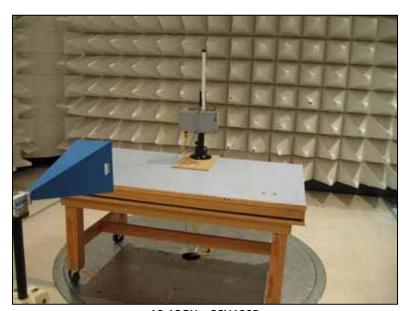

CKC Laboratories, Inc. Date: 9/12/2011 Time: 16:10:15 Itron, Inc. WO#: 92051 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert Sequence#: 51 Ext ATTN: 0 dB

Low Bandege

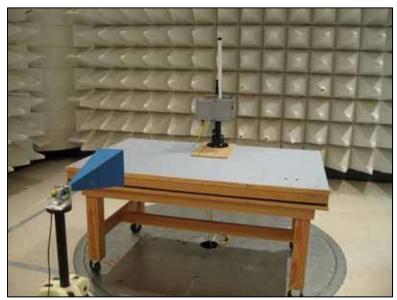
High Bandedge

Test Setup Photos

30kHz-30MHz CCU100B

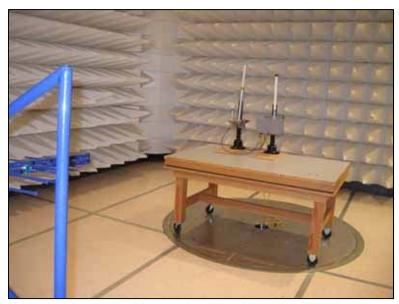


30MHz-1GHz CCU100B

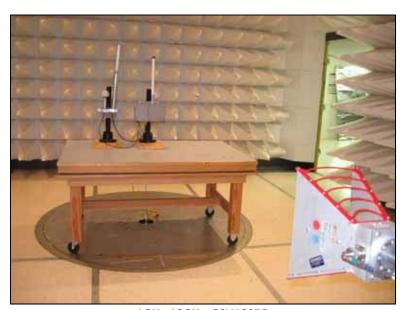


1-10GHz CCU100B

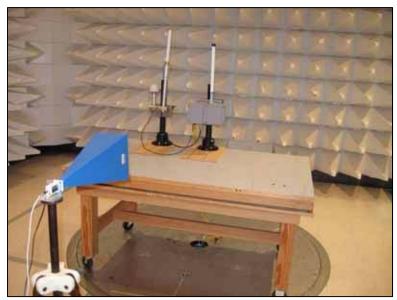
10-18GHz CCU100B



18-25GHz CCU100B



30kHz-30MHz CCU100RB



30MHz-1GHz CCU100RB

1GHz-10GHz CCU100RB

10GHz-18GHz CCU100RB

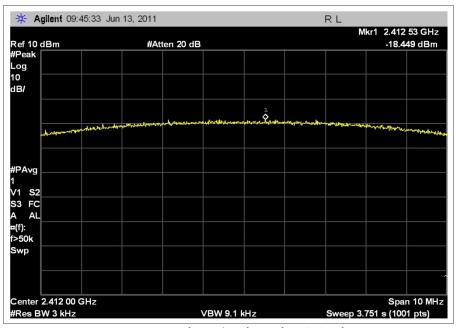
18GHz-25GHz CCU100RB

15.247(e) Power Spectral Density

Test Conditions / Setup

Comments

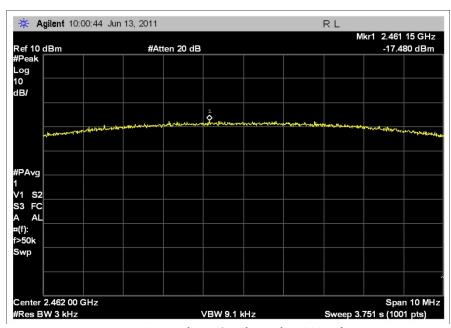
The EUT was setup on the bench and connected to a spectrum analyzer via an RF cable and 6 dB attenuator. The EUT was cycled though the different channels and modes by test software on a support laptop, connected to the EUT by an Ethernet cable. For this testing, all models (CCU100B, CCU100B-Repeater, CCU100RB, and CCU100RB-Repeater) are identical.


<u>Requirement:</u> The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

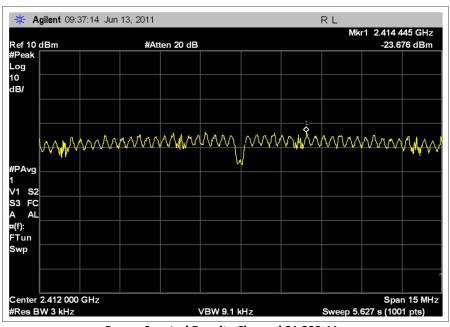
Test Equipment						
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due	
02872	Spectrum Analyzer	E4440A	Agilent	08/25/2009	08/25/2011	
P05513	Attenuator	BW-S6W2	Mini-Circuits	10/12/2009	10/12/2011	
03122	Cable	32026-2-29801-36	Astrolab	12/23/2010	12/23/2012	

	Test Results							
Freq in MHz	Meter dBm	Factors dB	Corr dBm	Spec dBm	Margin dBm	Result	Notes	
2412.530	-18.45	6.8	-11.6	8	19.6	Pass	802.11b	
2438.780	-17.90	6.8	-11.1	8	19.1	Pass	802.11b	
2462.810	-17.48	6.8	-10.7	8	18.7	Pass	802.11b	
2414.445	-23.68	6.8	-16.9	8	24.9	Pass	802.11g	
2435.680	-23.31	6.8	-16.5	8	24.5	Pass	802.11g	
2460.680	-22.91	6.8	-16.1	8	24.1	Pass	802.11g	

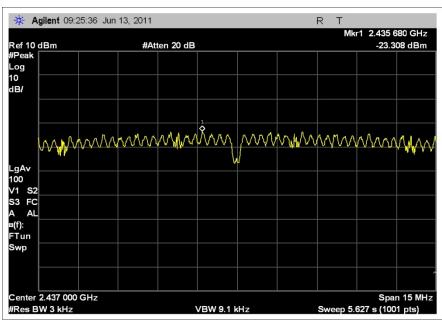
Page 76 of 86 Report No.: 92051-8A



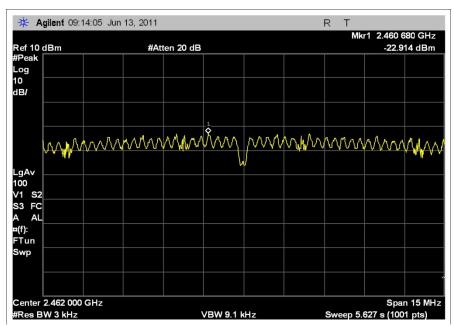
Power Spectral Density Channel 01 802.11b



Power Spectral Density Channel 06 802.11b



Power Spectral Density Channel 11 802.11b



Power Spectral Density Channel 01 802.11g

Power Spectral Density Channel 06 802.11g

Power Spectral Density Channel 11 802.11g

RSS-210

99% Bandwidth

Test Conditions / Setup

Comments

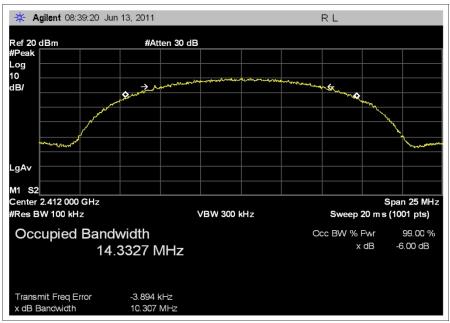
The EUT was setup on the bench and connected to a spectrum analyzer via an RF cable and 6 dB attenuator. The EUT was cycled though the different channels and modes by test software on a support laptop, connected to the EUT by an Ethernet cable. For this testing, all models (CCU100B, CCU100B-Repeater, CCU100RB, and CCU100RB-Repeater) are identical.

Requirement: The transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Test Equipment						
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due	
02872	Spectrum Analyzer	E4440A	Agilent	08/25/2009	08/25/2011	
P05513	Attenuator	BW-S6W2	Mini-Circuits	10/12/2009	10/12/2011	
03122	Cable	32026-2-29801-36	Astrolab	12/23/2010	12/23/2012	

Test Data

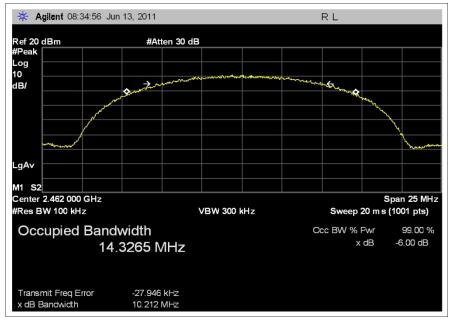
Engineer Name: A. del Angel


Results Table					
802.11b					
2412 MHz	2437 MHz	2462 MHz			
14.33MHz	14.32MHz	14.32MHz			

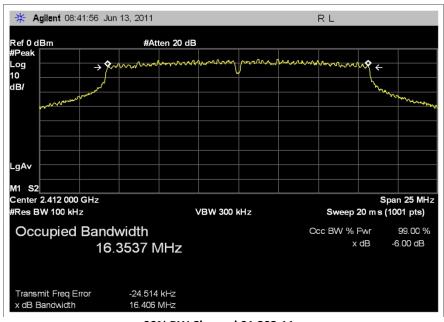
Results Table				
802.11g				
2412 MHz	2437 MHz	2462 MHz		
16.35MHz	16.35MHz	16.34MHz		


Page 80 of 86 Report No.: 92051-8A

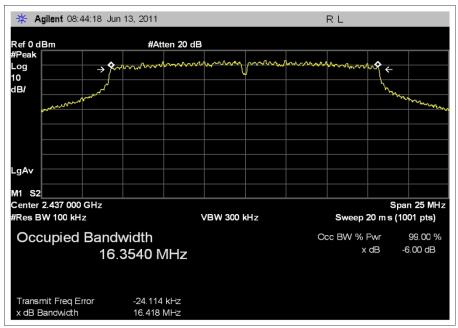
Test Data



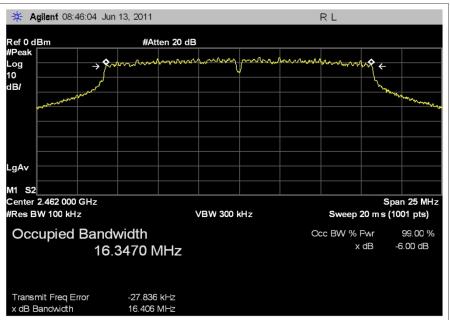
99% BW Channel 01 802.11b



99% BW Channel 06 802.11b



99% BW Channel 11 802.11b



99% BW Channel 01 802.11g

99% BW Channel 06 802.11g

99% BW Channel 11 802.11g

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 85 of 86 Report No.: 92051-8A

SAMPLE CALCULATIONS						
	Meter reading (dBμV)					
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBμV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST BEGINNING FREQUENCY ENDING FREQUENCY BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz		
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz		

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 86 of 86 Report No.: 92051-8A