Itron, Inc.

TEST REPORT FOR

> SRR+RV50WWAN+WIFI+GPSRx Models: CCU100B, CCU100B Repeater, CCU100RB \& CCU100RB Repeater

Tested to The Following Standards:

FCC Part 15 Subpart C, Section: 15.247
(FHSS 902-928 MHz)

Report No.: 98384-15

Date of issue: May 25, 2016

Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 7
FCC Part 15 Subpart C 8
15.247(d) Radiated Emissions \& Band Edge 8
Supplemental Information 43
Measurement Uncertainty 43
Emissions Test Details 43

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Iron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jay Holcomb
Customer Reference Number: 96653

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Dianne Dudley
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 98384

May 11, 2016
May 11-13, 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .02

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Bothell	USO081	SL2-IN-E-1145R	$3082 \mathrm{C}-1$	318736	A-0148

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	NP
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(2)$	Output Power	NA	NP
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	Pass
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	NA
15.207	AC Conducted Emissions	NA	NP

NA = Not applicable.
NP = Not performed because CKC was not contracted to perform the required testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

The following model was tested by CKC Laboratories: CCU100RB

During previous testing it was found that the two devices with a cellular modem had a much worse emissions profile than without a cellular modem in the device. The difference between the repeater versions of these devices and the non-repeater versions is that the repeater versions do not have a cellular modem in them. Therefore, the manufacturer claims that any difference between the following devices without modem in them do not affect their EMC characteristics, and therefore meet the level of testing equivalent to the tested models: CCU100B, CCU100B Repeater and CCU100RB Repeater

For the CCU family, these have the same ISM transmitter as what was tested, except they have a Tx/Rx switch with more loss. So the CCUB tested would be worse case, less attenuation to the antenna. For the CCUA family, these have the identical ISM transmitter as what was tested. Therefore, the manufacturer claims that any difference between the following devices do not affect their EMC characteristics, and therefore meet the level of testing equivalent to the tested models:

```
CCU100, CCU100R, CCU100 Repeater, CCU100R Repeater, CCU100A, CCU100AR, CCU100A Repeater and
CCU100AR Repeater
```

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
SRR+RV50WWAN+WIFI+GPSRx	Itron, Inc.	CCU100RB	NA

Support Equipment:

Device	Manufacturer	Model \#	S/N
High Gain V-Pol Omni	PC Tel	BOA9028	NA
External WWAN Antenna	Taoglas	OMB.6912.03F21	NA
GPS Antenna	Trimble	$57861-00$	213100611
Attenuator	Pasternack	$7000-2$	NA
Lightning Protector	iPolyPhaser	DSXL-ME	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	Proprietary FHSS
Operating Frequency Range:	$903-926.8 \mathrm{MHz}$
Number of Hopping Channels:	120
Modulation Type(s):	$16 \mathrm{Kbit} / \mathrm{sec}$ AM (OOK), 12.5 Kbit/sec FM (2GFSK), $37.5 \mathrm{Kbit} / \mathrm{sec}$ FM (2GFSK)
Maximum Duty Cycle:	23.5\%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Monopole, 6.15 dBi (8.15dBi with 2 dB attenuation) Note: The Manufacturer declares that a minimum of 2.0 dB attenuation is always required when these units are using the 8.15 dBi High Gain V-Pol Omni antenna.
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	100-250VAC, $50-60 \mathrm{~Hz}$
Firmware / Software used for Test:	10.02-06

FCC Part 15 Subpart C

15.247(d) Radiated Emissions \& Band Edge

Test Setup/Conditions				
Test Location:	Bothell Lab C3	Test Engineer:	M. Atkinson	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$5 / 11 / 16$ to $5 / 13 / 16$	
Configuration:	2			

Environmental Conditions			
Temperature (으)	$21-25$	Relative Humidity (\%):	$30-35$

See data sheets for test setup and test equipment.

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021•1-800-500-4EMC

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Itron, Inc.

15.247(d) / 15.209 Radiated Spurious Emissions

98384 Date: 5/13/2016
Maximized Emissions
Michael Atkinson
EMITest 5.03.02

Time: 12:38:56
Sequence\#: 21

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

Temperature: $25^{\circ} \mathrm{C}$
Humidity: 31%
Pressure: 102.1 kPa

Frequency tested: $9 \mathrm{kHz}-13 \mathrm{GHz}$
Firmware power setting: Max Power
EUT Firmware: 10.02-06
Modulation: AM
Antenna type: Monopole
Antenna Gain: 6.15 dBi (8.15 dBi with 2 dB attenuator)
Duty Cycle: Measured with 100% (end use limited to 23.5% duty)
Test Method: ANSI C63.10 (2013)
Setup: The EUT is a 900 MHz range radio. EUT is transmitting continuously modulated. 900 MHz antenna is connected using approximately 2.5 m of $1 / 2$ inch Andrews Heliax FS14-50B cable, along with 2 dB attenuator and lightning protector. The EUT antenna height set to stay within test volume boundaries. Both antenna polarities investigated, only worst case reported. The Power output validated to be within manufacturer tolerances.

Wifi transmitter on EUT marked as ambient, this is the fundamental from the integrated certified module in the EUT which is to be excluded from the measurement limits. All average data points marked Low, Mid, High have duty cycle correction applied ($23.87 \%,-12.44 \mathrm{~dB}$).

Itron, Inc WO\#: 98384 Sequence\#: 21 Date: 5/13/2016 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters $\mathrm{H}+\mathrm{V}$

[^0]O Peak Readings

* Average Readings

Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 18 / 2015$	$11 / 18 / 2017$
T2	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T3	ANP05305	Cable	ETSI-50T	$2 / 15 / 2016$	$2 / 15 / 2018$
T4	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
T5	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	$8 / 12 / 2015$	$8 / 12 / 2017$
		Cable			
T6	ANP06935		$32026-29801-$	$3 / 11 / 2016$	$3 / 11 / 2018$
T7	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T8	AN02307	Preamp	$8447 D$	$2 / 15 / 2016$	$2 / 15 / 2018$
T9	ANP05360	Cable	RG214	$12 / 1 / 2014$	$12 / 1 / 2016$
T10	ANP05963	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T11	AN01994	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T12	ANP05505	Attenuator	NAT-6	$3 / 31 / 2016$	$3 / 31 / 2018$
T13	ANP06219	Attenuator	$768-10$	$4 / 12 / 2016$	$4 / 12 / 2018$
T14	AN00052	Loop Antenna	6502	$4 / 8 / 2016$	$4 / 8 / 2018$
T15	ANDCCF	Test Data		$5 / 13 / 2016$	$5 / 13 / 2018$
		Adjustment			

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

$\begin{aligned} & 5 \quad 116.837 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	38.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +9.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +1.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.8 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ -27.6 \\ +6.1 \end{array}$	+0.0	39.3	43.5	-4.2	$\mathrm{H}+\mathrm{V}$
$\wedge 116.800 \mathrm{M}$	41.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	41.9	43.5	-1.6	H+V
$\begin{aligned} & 77320.070 \mathrm{M} \\ & \text { Ave } \end{aligned}$	53.5	$\begin{array}{r} +0.0 \\ +36.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +4.7 \\ +0.0 \\ +0.0 \\ -12.4 \end{gathered}$	$\begin{array}{r} \hline-34.6 \\ +0.0 \\ +0.0 \end{array}$		49.1	$\begin{aligned} & \quad 54.0 \\ & \text { MID } \end{aligned}$	-4.9	$\mathrm{H}+\mathrm{V}$
$\wedge 7320.070 \mathrm{M}$	61.5	$\begin{array}{r} +0.0 \\ +36.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.6 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	69.5	$\begin{aligned} & \quad 54.0 \\ & \text { MID } \end{aligned}$	+15.5	H+V
$\begin{aligned} & 97414.231 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.2	$\begin{array}{r} +0.0 \\ +36.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+4.8 \\ +0.0 \\ +0.0 \\ -12.4 \\ \hline \end{array}$	$\begin{array}{r} \hline-34.7 \\ +0.0 \\ +0.0 \end{array}$	+0.0	47.3	$\begin{gathered} 54.0 \\ \text { HIGH } \end{gathered}$	-6.7	H+V
$\wedge 7414.231 \mathrm{M}$	61.2	$\begin{array}{r} +0.0 \\ +36.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.7 \\ +0.0 \\ +0.0 \end{array}$	+0.0	69.7	$\begin{aligned} & \hline 54.0 \\ & \text { HIGH } \end{aligned}$	+15.7	H+V
$\begin{aligned} & 112440.000 \mathrm{M} \\ & \text { Ambient } \end{aligned}$	96.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	99.6	110.7	-11.1	H+V
$\begin{aligned} & 125417.932 \mathrm{M} \\ & \text { Ave } \end{aligned}$	49.4	$\begin{array}{r} +0.0 \\ +33.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +4.5 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	42.0	$\begin{aligned} & \text { 54.0 } \\ & \text { LOW } \end{aligned}$	-12.0	H+V
$\wedge 5417.910 \mathrm{M}$	56.4	$\begin{array}{r} +0.0 \\ +33.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -34.2 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	61.4	$\begin{aligned} & 54.0 \\ & \text { LOW } \end{aligned}$	+7.4	H+V
$\begin{aligned} & 148235.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	45.0	$\begin{array}{r} +0.0 \\ +36.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +5.3 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$		41.5	$\begin{aligned} & \text { 54.0 } \\ & \text { MID } \end{aligned}$	-12.5	H+V
$\wedge 8235.000 \mathrm{M}$	53.7	$\begin{array}{r} +0.0 \\ +36.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0		$\begin{aligned} & \quad 54.0 \\ & \text { MID } \end{aligned}$	+8.6	H+V
$\begin{aligned} & 164515.020 \mathrm{M} \\ & \text { Ave } \end{aligned}$	48.9	$\begin{array}{r} +0.0 \\ +32.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.9 \\ & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +4.2 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	40.5	$\begin{aligned} & 54.0 \\ & \text { LOW } \end{aligned}$	-13.5	H+V
^ 4515.020 M	55.8	$\begin{array}{r} +0.0 \\ +32.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	59.8	$\begin{aligned} & 54.0 \\ & \text { LOW } \end{aligned}$	+5.8	H+V

Page 12 of 44

$\begin{aligned} & 18 \text { 8126.980M } \\ & \text { Ave } \end{aligned}$	43.5	$\begin{array}{r} +0.0 \\ +36.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +5.3 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	40.0	$\begin{aligned} & \text { 54.0 } \\ & \text { LOW } \end{aligned}$	-14.0	$\mathrm{H}+\mathrm{V}$
^ 8126.980M	49.6	$\begin{array}{r} +0.0 \\ +36.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.3 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	58.5	$\begin{aligned} & 54.0 \\ & \text { LOW } \end{aligned}$	+4.5	H+V
$\begin{aligned} & 208341.179 \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.0	$\begin{array}{r} +0.0 \\ +36.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +5.4 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-35.0 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	39.7	$\begin{gathered} \hline 54.0 \\ \text { HIGH } \end{gathered}$	-14.3	$\mathrm{H}+\mathrm{V}$
^ 8341.180M	50.5	$\begin{array}{r} +0.0 \\ +36.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -35.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	59.6	$$	+5.6	H+V
$22 \quad 1189.000 \mathrm{M}$	47.9	$\begin{array}{r} +0.0 \\ +24.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.0 \\ & +1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-36.6 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	39.4	54.0	-14.6	H+V
$\begin{aligned} & 23 \text { 3659.970M } \\ & \text { Ave } \end{aligned}$	49.8	$\begin{array}{r} +0.0 \\ +29.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.7 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	38.0	$\begin{aligned} & \text { 54.0 } \\ & \text { MID } \end{aligned}$	-16.0	$\mathrm{H}+\mathrm{V}$
$\begin{aligned} & 242780.222 \mathrm{M} \\ & \text { Ave } \end{aligned}$	50.9	$\begin{array}{r} +0.0 \\ +28.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +3.0 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	37.0	$\begin{gathered} 54.0 \\ \text { HIGH } \end{gathered}$	-17.0	$\mathrm{H}+\mathrm{V}$
^ 2780.222M	57.6	$\begin{array}{r} +0.0 \\ +28.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	56.1	$\begin{gathered} \hline 54.0 \\ \text { HIGH } \end{gathered}$	+2.1	H+V
$\begin{gathered} 263707.290 \mathrm{M} \\ \text { Ave } \end{gathered}$	48.3	$\begin{array}{r} +0.0 \\ +30.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.8 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	36.9	$\begin{gathered} \hline 54.0 \\ \text { HIGH } \end{gathered}$	-17.1	H+V
^ 3707.200M	55.6	$\begin{array}{r} +0.0 \\ +30.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	56.6	$\begin{gathered} \hline 54.0 \\ \text { HIGH } \end{gathered}$	+2.6	H+V
$\begin{aligned} & 28 \text { 9150.050M } \\ & \text { Ave } \end{aligned}$	36.0	$\begin{array}{r} +0.0 \\ +37.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +1.4 \\ & +0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +6.1 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.7 \\ +0.0 \\ +0.0 \end{array}$	+0.0	34.8	$\begin{aligned} & \quad 54.0 \\ & \text { MID } \end{aligned}$	-19.2	H+V
^ 9150.050M	44.6	$\begin{array}{r} +0.0 \\ +37.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.7 \\ +0.0 \\ +0.0 \end{array}$	+0.0	55.8	$\begin{aligned} & \text { 54.0 } \\ & \text { MID } \end{aligned}$	+1.8	H+V

$\begin{gathered} 303611.915 \mathrm{M} \\ \text { Ave } \end{gathered}$		45.8	+0.0	+0.8	+3.6	-34.2	${ }^{+0.0}$	33.8	54.0	-20.2	H+V	
		+29.8	+0.4	+0.0	$+0.0$			LOW				
		+0.0	+0.0	+0.0	+0.0							
		$+0.0$	+0.0	-12.4								
\wedge	3611.915M		52.6	+0.0	+0.8	+3.6	-34.2	+0.0	53.0	54.0	-1.0	H+V
				+29.8	+0.4	+0.0	$+0.0$			LOW		
				+0.0	+0.0	+0.0	$+0.0$					
			+0.0	+0.0	+0.0							
32	3659.430M	43.1	+0.0	+0.7	+3.7	-34.2	$+0.0$	31.3	${ }^{54.0}$	-22.7	$\mathrm{H}+\mathrm{V}$	
	Ave		+29.9	+0.5	$+0.0$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$						
			+0.0	+0.0	+0.0							
			+0.0	+0.0	-12.4							
\wedge	3659.430M	57.3	+0.0	+0.7	+3.7	-34.2	${ }^{+0.0}$	57.9	$\begin{aligned} & \hline 54.0 \\ & \text { MID } \end{aligned}$	+3.9	H+V	
			+29.9	+0.5	+0.0	$\begin{array}{r} +0.0 \\ +0.0 \end{array}$						
			+0.0	+0.0	+0.0							
			+0.0	+0.0	+0.0							
$\begin{aligned} & 34 \text { 9029.894M } \\ & \text { Ave } \end{aligned}$		32.4	+0.0	+1.3	+6.0	-34.6	+0.0	31.2	$\begin{aligned} & 54.0 \\ & \text { LOW } \end{aligned}$	-22.8	H+V	
		+37.8	+0.7	$+0.0$	+0.0							
		+0.0	+0.0	+0.0	$+0.0$							
		+0.0	+0.0	-12.4								
	^ 9029.894M		42.0	+0.0	+1.3	+6.0	-34.6	+0.0	53.2	$\begin{aligned} & 54.0 \\ & \text { LOW } \end{aligned}$	-0.8	H+V
				+37.8	+0.7	+0.0	+0.0					
				+0.0	+0.0	+0.0	$+0.0$					
		+0.0		+0.0	+0.0							
36	$\begin{aligned} & 36 \text { 4870.000M } \\ & \text { Ave } \end{aligned}$	25.9	+0.0	+0.9	+4.3	$\begin{gathered} -34.2 \\ +0.0 \\ +0.0 \end{gathered}$	${ }^{+0.0}$	30.6	54.0	-23.4	H+V	
			+32.7	+0.5	+0.5							
			+0.0	+0.0	$+0.0$							
			+0.0	+0.0	+0.0							
	4870.000M	49.9	+0.0	+0.9	+4.3	$\begin{aligned} & \hline-34.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	54.1	54.0	+0.1	H+V	
\wedge			+32.7	+0.5	+0.0							
			+0.0	+0.0	+0.0							
			+0.0	+0.0	+0.0							
$\begin{aligned} & 382745.090 \mathrm{M} \\ & \text { Ave } \end{aligned}$		44.3	+0.0	+0.7	+3.0	-34.5	+0.0	30.3	$\begin{aligned} & \quad 54.0 \\ & \text { MID } \end{aligned}$	-23.7	H+V	
		+28.8	+0.4	+0.0	+0.0							
		+0.0	+0.0	$+0.0$	$+0.0$							
		+0.0	+0.0	-12.4								
\wedge	2745.090M		52.3	+0.0	+0.7	+3.0	$\begin{gathered} -34.5 \\ +0.0 \\ +0.0 \end{gathered}$	+0.0	50.7	$\begin{aligned} & \quad 54.0 \\ & \text { MID } \end{aligned}$	-3.3	H+V
				+28.8	+0.4	$+0.0$						
				+0.0	+0.0	+0.0						
		+0.0		+0.0	+0.0							
$\begin{aligned} & 40 \quad 2709.020 \mathrm{M} \\ & \text { Ave } \end{aligned}$		41.9	+0.0	+0.7	+3.0	-34.5	+0.0	27.7	$\begin{aligned} & \hline 54.0 \\ & \text { LOW } \end{aligned}$	-26.3	H+V	
		+28.6	+0.4	+0.0	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$							
		+0.0	+0.0	$+0.0$								
		+0.0	+0.0	-12.4								
	^ 2709.020M		54.0	+0.0	+0.7	+3.0	-34.5	$+0.0$	52.2	$\begin{aligned} & 54.0 \\ & \text { LOW } \end{aligned}$	-1.8	H+V
				+28.6	+0.4	+0.0	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$					
				+0.0	+0.0	+0.0						
		+0.0		+0.0	$+0.0$							

426490.000 M	58.9	$\begin{array}{r} +0.0 \\ +34.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	65.5	$\begin{aligned} & 110.7 \\ & \text { HIGH } \end{aligned}$	-45.2	$\mathrm{H}+\mathrm{V}$
$43 \quad 5563.000 \mathrm{M}$	52.2	$\begin{array}{r} +0.0 \\ +33.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	57.6	$\begin{aligned} & 110.7 \\ & \text { HIGH } \end{aligned}$	-53.1	H+V
$\begin{aligned} & 44 \text { 6404.804M } \\ & \text { Ave } \end{aligned}$	60.3	$\begin{array}{r} +0.0 \\ +34.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +4.7 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	54.8	$\begin{aligned} & 110.7 \\ & \text { MID } \end{aligned}$	-55.9	H+V
\wedge 6404.804M	67.9	$\begin{array}{r} +0.0 \\ +34.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	74.8	$\begin{aligned} & 110.7 \\ & \text { MID } \end{aligned}$	-35.9	H+V
$46 \quad 1855.000 \mathrm{M}$	54.8	$\begin{array}{r} +0.0 \\ +27.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	50.0	$\begin{gathered} 110.7 \\ \text { HIGH } \end{gathered}$	-60.7	H+V
47 1829.846M	53.8	$\begin{array}{r} +0.0 \\ +26.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	48.9	$\begin{aligned} & 110.7 \\ & \text { MID } \end{aligned}$	-61.8	H+V
$\begin{aligned} & 48 \text { 6320.950M } \\ & \text { Ave } \end{aligned}$	54.1	$\begin{array}{r} +0.0 \\ +34.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +4.7 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	48.9	$\begin{aligned} & 110.7 \\ & \text { LOW } \end{aligned}$	-61.8	H+V
$\wedge 6320.950 \mathrm{M}$	61.7	$\begin{array}{r} +0.0 \\ +34.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	68.9	$\begin{aligned} & 110.7 \\ & \text { LOW } \end{aligned}$	-41.8	H+V
$\begin{aligned} & 50 \text { 6487.358M } \\ & \text { Ave } \end{aligned}$	51.5	$\begin{array}{r} +0.0 \\ +34.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +4.6 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} -34.2 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	45.7	$\begin{aligned} & 110.7 \\ & \text { HIGH } \end{aligned}$	-65.0	H+V
$\begin{aligned} & 51 \text { 7223.950M } \\ & \text { Ave } \end{aligned}$	49.5	$\begin{array}{r} +0.0 \\ +35.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +4.6 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	44.8	$\begin{aligned} & 110.7 \\ & \text { LOW } \end{aligned}$	-65.9	H+V
$\wedge 7223.950 \mathrm{M}$	57.1	$\begin{array}{r} +0.0 \\ +35.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	64.8	$\begin{aligned} & 110.7 \\ & \text { LOW } \end{aligned}$	-45.9	H+V
$53 \quad 75.600 \mathrm{M}$	45.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +9.1 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +7.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -27.8 \\ +6.1 \end{array}$	+0.0	41.5	110.7	-69.2	H+V

$5^{54} \mathrm{QP}^{75.431 \mathrm{M}}$	43.7	$+0.0$	+0.1	$+0.0$	+0.0	+0.0	39.9	110.7	-70.8	H+V
		+0.0	+0.0	+0.0	$\begin{array}{r} -27.8 \\ +6.1 \end{array}$					
		+0.5	+0.8	+7.4						
		+9.1	+0.0	+0.0						
55 5490.020MAve	46.7	+0.0	+1.0	+4.5	-34.1	+0.0	39.4	$\begin{aligned} & \quad 110.7 \\ & \text { MID } \end{aligned}$	-71.3	H+V
		+33.1	+0.6	$+0.0$	$+0.0$					
		+0.0	+0.0	$+0.0$	$+0.0$					
		+0.0	+0.0	-12.4						
^ 5490.020M	52.6	+0.0	+1.0	+4.5	$\begin{array}{r} -34.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	57.7	$\begin{aligned} & \quad 110.7 \\ & \text { MID } \end{aligned}$	-53.0	H+V
		+33.1	+0.6	+0.0						
		+0.0	+0.0	+0.0						
		+0.0	+0.0	+0.0						
57 199.800M	38.5	+0.0	+0.2	$+0.0$	+0.0	$+0.0$	38.7	110.7	-72.0	H+V
		$+0.0$	+0.0	$+0.0$	-27.2					
		+0.8	+1.4	+9.7	+6.2					
		+9.1	+0.0	+0.0						
58 5560.902M	45.6	+0.0	+1.0	+4.5	-34.1	${ }^{+0.0}$	38.6	$\begin{aligned} & 110.7 \\ & \text { HIGH } \end{aligned}$	-72.1	H+V
Ave		+33.4	+0.6	+0.0	$+0.0$					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	-12.4						
59 75.420M	41.8	+0.0	+0.1	$+0.0$	+0.0	$+0.0$	38.0	110.7	-72.7	H+V
QP		$+0.0$	+0.0	$+0.0$	-27.8					
		+0.5	+0.8	+7.4	+6.1					
		+9.1	+0.0	+0.0						
$60 \quad 75.600 \mathrm{M}$	41.5	$+0.0$	+0.1	$+0.0$	+0.0	$+0.0$	37.7	110.7	-73.0	H+V
		+0.0	+0.0	+0.0	-27.8					
		+0.5	+0.8	+7.4	+6.1					
		+9.1	+0.0	+0.0						
$61 \quad 69.800 \mathrm{M}$	40.0	$+0.0$	+0.1	$+0.0$	+0.0	$+0.0$	36.4	110.7	-74.3	$\mathrm{H}+\mathrm{V}$
QP		$+0.0$	+0.0	$+0.0$	-27.8					
		+0.4	+0.7	+7.8	+6.1					
		+9.1	+0.0	+0.0						
$\wedge 69.800 \mathrm{M}$	46.0	$+0.0$	+0.1	$+0.0$	+0.0	$+0.0$	42.4	110.7	-68.3	H+V
		+0.0	+0.0	+0.0	-27.8					
		+0.4	+0.7	+7.8	+6.1					
		+9.1	+0.0	+0.0						
63 592.600M	23.3	$+0.0$	+0.3	$+0.0$	$\begin{array}{r} +0.0 \\ -28.1 \\ +6.2 \end{array}$	$+0.0$	35.0	110.7	-75.7	$\mathrm{H}+\mathrm{V}$
QP		$+0.0$	$+0.0$	$+0.0$						
		+1.6	+2.1	+20.5						
		+9.1	+0.0	+0.0						
$\wedge 592.600 \mathrm{M}$	36.4	$+0.0$	+0.3	$+0.0$	+0.0	+0.0	48.1	110.7	-62.6	H+V
		+0.0	+0.0	$+0.0$	$\begin{array}{r} -28.1 \\ +6.2 \end{array}$					
		+1.6	+2.1	+20.5						
		+9.1	$+0.0$	+0.0						

Page 16 of 44

$\begin{aligned} & 65 \text { 9268.036M } \\ & \text { Ave } \end{aligned}$	35.6	$\begin{array}{r} +0.0 \\ +37.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +6.2 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} -34.8 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	34.3	$\begin{aligned} & 110.7 \\ & \text { HIGH } \end{aligned}$	-76.4	H+V
^ 9268.036M	46.4	$\begin{array}{r} +0.0 \\ +37.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -34.8 \\ +0.0 \\ +0.0 \end{array}$	+0.0	57.5	$\begin{aligned} & 110.7 \\ & \text { HIGH } \end{aligned}$	-53.2	H+V
$\begin{gathered} 67 \quad 200.016 \mathrm{M} \\ \mathrm{QP} \end{gathered}$		$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +9.1 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +1.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -27.2 \\ +6.2 \end{array}$	+0.0	33.3	110.7	-77.4	H+V
$\begin{gathered} 68 \text { 1805.820M } \\ \text { Ave } \end{gathered}$	50.5	$\begin{array}{r} +0.0 \\ +26.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +2.5 \\ +0.0 \\ +0.0 \\ -12.4 \\ \hline \end{array}$	$\begin{array}{r} -35.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	33.1	$\begin{aligned} & 110.7 \\ & \text { LOW } \end{aligned}$	-77.6	H+V
$\wedge 1805.820 \mathrm{M}$	58.1	$\begin{array}{r} +0.0 \\ +26.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	53.1	$\begin{aligned} & 110.7 \\ & \text { LOW } \end{aligned}$	-57.6	H+V
$\begin{gathered} 70 \quad 98.900 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	32.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +9.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +10.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ -27.7 \\ +6.1 \end{array}$	+0.0	31.7	110.7	-79.0	H+V
$\wedge \quad 98.900 \mathrm{M}$	41.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +9.1 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +10.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ -27.7 \\ +6.1 \end{array}$	+0.0	41.1	110.7	-69.6	H+V
$\begin{aligned} & 72 \quad 1853.587 \mathrm{M} \\ & \text { Ave } \end{aligned}$		$\begin{array}{r} +0.0 \\ +27.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.5 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	31.5	$\begin{aligned} & 110.7 \\ & \text { MID } \end{aligned}$	-79.2	H+V
$\begin{aligned} & 73 \quad 295.800 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	25.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +9.1 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +1.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +14.2 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ -27.1 \\ +6.2 \end{array}$	+0.0	30.5	110.7	-80.2	H+V
^ 295.800M	30.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +9.1 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +1.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +14.2 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ -27.1 \\ +6.2 \end{array}$	$+0.0$	35.2	110.7	-75.5	$\mathrm{H}+\mathrm{V}$
$\begin{aligned} & 75 \text { 1853.636M } \\ & \text { Ave } \end{aligned}$	43.5	$\begin{array}{r} +0.0 \\ +27.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.5 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+2.5 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	26.3	$\begin{aligned} & 110.7 \\ & \text { HIGH } \end{aligned}$	-84.4	$\mathrm{H}+\mathrm{V}$
$76 \quad 12.395 \mathrm{M}$	18.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +8.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-12.0	110.7	-122.7	H+V
$77 \quad 27.751 \mathrm{M}$	18.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +6.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-15.1	110.7	-125.8	H+V

Page 17 of 44

78	19.233 M	15.0	+0.0	+0.0	+0.3	+0.0	-40.0	-16.4	110.7	-127.1	$\mathrm{H}+\mathrm{V}$
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
79	16.294 k	42.8	+0.0	+0.0	+0.0	+0.0	-80.0	-22.3	110.7	-133.0	$\mathrm{H}+\mathrm{V}$
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+14.9	+0.0						

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA. 98021•1-800-500-4EMC
Customer:
Specification:
Work Order \#:
Test Type:
Tested By: Itron, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

Software: EMITest 5.03.02

98384
Maximized Emissions
Michael Atkinson

Date: 5/13/2016
Time: 12:32:16
Sequence\#: 22

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

Temperature: $25^{\circ} \mathrm{C}$
Humidity: 31\%
Pressure: 102.1 kPa

Frequency tested: $9 \mathrm{kHz}-13 \mathrm{GHz}$
Firmware power setting: Max Power
EUT Firmware: 10.02-06
Modulation: FM
Antenna type: Monopole
Antenna Gain: $\quad 6.15 \mathrm{dBi}$ (8.15 dBi with 2 dB attenuator
Duty Cycle: Measured with 100% (end use limited to 23.5% duty)
Test Method: ANSI C63.10 (2013)
Setup: EUT is a 900 MHz range radio. EUT is transmitting continuously modulated. 900 MHz antenna is connected using approximately 2.5 m of $1 / 2$ inch Andrews Heliax FS14-50B cable, along with 2 dB attenuator and lightning protector. EUT antenna height set to stay within test volume boundaries. Both antenna polarities investigated, as well as both FM12.7k and FM37.5k modulations investigated, only worst case reported. Power output validated to be within manufacturer tolerances.

Wifi transmitter on EUT marked as ambient, this is the fundamental from the integrated certified module in the EUT which is to be excluded from the measurement limits. All average data points marked Low, Mid, High have duty cycle correction applied ($23.87 \%,-12.44 \mathrm{~dB}$).

Itron, Inc WO\#: 98384 Sequence\#: 22 Date: 5/13/2016 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters H+V

[^1]O Peak Readings

* Average Readings

Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 18 / 2015$	$11 / 18 / 2017$
T2	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T3	ANP05305	Cable	ETSI-50T	$2 / 15 / 2016$	$2 / 15 / 2018$
T4	AN03540	Preamp	83017 A	$4 / 30 / 2015$	$4 / 30 / 2017$
T5	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	$8 / 12 / 2015$	$8 / 12 / 2017$
		Cable			
T6	ANP06935		$32026-29801-$	$3 / 11 / 2016$	$3 / 11 / 2018$
T7	AN03170	High Pass Filter	HM1155-11SS	$12 / 17 / 2015$	$12 / 17 / 2017$
T8	ANP05963	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T9	ANP05360	Cable	RG214	$12 / 1 / 2014$	$12 / 1 / 2016$
T10	AN02307	Preamp	$8447 D$	$2 / 15 / 2016$	$2 / 15 / 2018$
T11	AN01994	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T12	ANP05505	Attenuator	NAT-6	$3 / 31 / 2016$	$3 / 31 / 2018$
T13	ANP06219	Attenuator	$768-10$	$4 / 12 / 2016$	$4 / 12 / 2018$
T14	AN00052	Loop Antenna	6502	$4 / 8 / 2016$	$4 / 8 / 2018$
T15	ANDCCF	Test Data		$5 / 13 / 2016$	$5 / 13 / 2018$
		Adjustment			

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{\#} \& \multirow[t]{5}{*}{Freq

MHz} \& \multirow[t]{4}{*}{Rdng} \& T1 \& T2 \& T3 \& T4 \& Dist \& Corr \& Spec \& Margin \& \multirow[t]{4}{*}{Polar}

\hline \& \& \& T5 \& T6 \& T7 \& T8 \& \& \& \& \&

\hline \& \& \& T9 \& T10 \& T11 \& T12 \& \& \& \& \&

\hline \& \& \& T13 \& T14 \& $$
\mathrm{T} 15
$$ \& \& \& \& \& \&

\hline \& \& $\mathrm{dB} \mu \mathrm{V}$ \& \& \& \& dB \& Table \& $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ \& $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ \& dB \& Ant

\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{$$
\begin{aligned}
& 17320.189 \mathrm{M} \\
& \text { Ave }
\end{aligned}
$$}} \& \multirow[t]{4}{*}{54.7} \& +0.0 \& +1.2 \& +4.7 \& -34.6 \& \multirow[t]{4}{*}{+0.0} \& \multirow[t]{4}{*}{50.3} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 54.0 \\
& \text { Mid }
\end{aligned}
$$
\]} \& \multirow[t]{4}{*}{-3.7} \& \multirow[t]{4}{*}{H+V}

\hline \& \& \& +36.1 \& +0.6 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& +0.0 \& +0.0 \& -12.4 \& \& \& \& \& \&

\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{^ 7320.189M}} \& \multirow[t]{4}{*}{58.4} \& +0.0 \& +1.2 \& +4.7 \& -34.6 \& \multirow[t]{4}{*}{+0.0} \& \multirow[t]{4}{*}{66.4} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& \quad 54.0 \\
& \text { Mid }
\end{aligned}
$$} \& \multirow[t]{4}{*}{+12.4} \& \multirow[t]{4}{*}{$\mathrm{H}+\mathrm{V}$}

\hline \& \& \& +36.1 \& +0.6 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{$$
\begin{aligned}
& 34634.005 \mathrm{M} \\
& \text { Ave }
\end{aligned}
$$}} \& \multirow[t]{4}{*}{58.3} \& +0.0 \& +0.9 \& +4.3 \& -34.1 \& \multirow[t]{4}{*}{+0.0} \& \multirow[t]{4}{*}{50.1} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 54.0 \\
& \text { High }
\end{aligned}
$$
\]} \& \multirow[t]{4}{*}{-3.9} \& \multirow[t]{4}{*}{H+V}

\hline \& \& \& +32.6 \& +0.5 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& +0.0 \& +0.0 \& -12.4 \& \& \& \& \& \&

\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{$\wedge 4634.005 \mathrm{M}$}} \& \multirow[t]{4}{*}{62.1} \& +0.0 \& +0.9 \& +4.3 \& -34.1 \& \multirow[t]{4}{*}{+0.0} \& \multirow[t]{4}{*}{66.3} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& 54.0 \\
& \text { High }
\end{aligned}
$$} \& \multirow[t]{4}{*}{+12.3} \& \multirow[t]{4}{*}{H+V}

\hline \& \& \& +32.6 \& +0.5 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline
\end{tabular}

Page 22 of 44

$\begin{gathered} 16 \text { 8344.000M } \\ \text { Ave } \end{gathered}$	49.1	$\begin{array}{r} +0.0 \\ +36.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +5.4 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} -35.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	45.9	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-8.1	H+V
^ 8344.000M	52.3	$\begin{array}{r} +0.0 \\ +36.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.0 \\ +0.0 \\ +0.0 \end{array}$	+0.0	61.5	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	+7.5	H+V
$\begin{aligned} & 185417.998 \mathrm{M} \\ & \text { Ave } \end{aligned}$	53.2	$\begin{array}{r} +0.0 \\ +33.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +4.5 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	45.8	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-8.2	$\mathrm{H}+\mathrm{V}$
^ 5417.998M	58.3	$\begin{array}{r} +0.0 \\ +33.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	63.3	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	+9.3	H+V
$\begin{aligned} & 202780.287 \mathrm{M} \\ & \text { Ave } \end{aligned}$	58.4	$\begin{array}{r} +0.0 \\ +28.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +3.0 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} -34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	44.5	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-9.5	H+V
$\wedge 2780.280 \mathrm{M}$	59.8	$\begin{array}{r} +0.0 \\ +28.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	+4.3	$\mathrm{H}+\mathrm{V}$
221072.000 M	45.4	$\begin{array}{r} +0.0 \\ +24.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.9 \\ & +8.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -37.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	43.8	54.0	-10.2	H+V
$\begin{aligned} & 233659.962 \mathrm{M} \\ & \text { Ave } \end{aligned}$	55.4	$\begin{array}{r} +0.0 \\ +29.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.7 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	43.6	$\begin{aligned} & 54.0 \\ & \text { Mid } \end{aligned}$	-10.4	H+V
^ 3659.962M	56.0	$\begin{array}{r} +0.0 \\ +29.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.7 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-34.2 \\ +0.0 \\ +0.0 \end{array}$	+0.0	56.6	$\begin{aligned} & 54.0 \\ & \text { Mid } \end{aligned}$	+2.6	H+V
$\begin{gathered} 253707.290 \mathrm{M} \\ \text { Ave } \end{gathered}$	54.7	$\begin{array}{r} +0.0 \\ +30.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.7 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.8 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	43.3	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-10.7	H+V
$\wedge 3707.290 \mathrm{M}$	56.3	$\begin{array}{r} +0.0 \\ +30.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	57.3	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	+3.3	H+V

$\begin{aligned} & 27 \begin{array}{c} 2458.000 \mathrm{M} \\ \text { Ambient } \end{array} \\ & \hline \end{aligned}$		101.3	$+0.0$	+0.6	+2.9	-34.5	$+0.0$	98.8	110.7	-11.9	H+V
			+27.7	+0.4	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
28	1189.000M	49.9	+0.0	+0.4	+2.0	-36.6	+0.0	41.4	54.0	-12.6	$\mathrm{H}+\mathrm{V}$
			+24.2	+0.3	+1.2	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
29	8235.033M	44.3	+0.0	+1.3	+5.3	-35.1	+0.0	40.8	54.0	-13.2	H+V
	Ave		+36.7	+0.7	+0.0	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					
			$+0.0$	+0.0	-12.4						
	8235.033M	46.4	+0.0	+1.3	+5.3	-35.1	${ }^{+0.0}$	55.3	54.0	+1.3	H+V
			+36.7	+0.7	+0.0	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	$+0.0$						
31	1378.000M	47.6	+0.0	+0.5	+2.2	-36.0	+0.0	40.1	54.0	-13.9	H+V
			+24.8	+0.3	+0.7	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
32	$\begin{aligned} & 3611.987 \mathrm{M} \\ & \text { Ave } \end{aligned}$	52.0	+0.0	+0.8	+3.6	-34.2	${ }^{+0.0}$	40.0	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-14.0	H+V
			+29.8	+0.4	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	-12.4						
\wedge	3611.987M	54.6	+0.0	$+0.8$	+3.6	-34.2	+0.0	55.0	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	+1.0	H+V
			+29.8	+0.4	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
34	$\begin{aligned} & 9029.919 \mathrm{M} \\ & \text { Ave } \end{aligned}$	38.6	+0.0	+1.3	+6.0	-34.6	+0.0	37.4	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-16.6	H+V
			+37.8	+0.7	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	-12.4						
\wedge	9029.919M	45.6	+0.0	+1.3	+6.0	-34.6	+0.0	56.8	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	+2.8	H+V
			+37.8	+0.7	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
36	$\begin{aligned} & \text { 2708.960M } \\ & \text { Ave } \end{aligned}$	50.6	+0.0	+0.7	+3.0	-34.5	+0.0	36.4	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-17.6	H+V
			+28.6	+0.4	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	-12.4						
\wedge	2708.960M	52.5	+0.0	+0.7	+3.0	-34.5	+0.0	50.7	54.0	-3.3	H+V
			+28.6	+0.4	+0.0	+0.0			Low		
			+0.0	$+0.0$	+0.0	$+0.0$					
			+0.0	+0.0	+0.0						
$\begin{gathered} 38 \text { 2744.937M } \\ \text { Ave } \end{gathered}$		47.9	+0.0	+0.7	+3.0	-34.5	+0.0	33.9	Mid ${ }^{54.0}$	-20.1	H+V
		+28.8	+0.4	+0.0	+0.0						
		+0.0	+0.0	+0.0	+0.0						
		+0.0	+0.0	-12.4							

51 1810.000M	57.5	$\begin{array}{r} +0.0 \\ +26.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	52.5	$\begin{aligned} & 110.7 \\ & \text { Low } \end{aligned}$	-58.2	$\mathrm{H}+\mathrm{V}$
$\begin{aligned} & 527223.965 \mathrm{M} \\ & \text { Ave } \end{aligned}$	54.0	$\begin{array}{r} +0.0 \\ +35.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+4.6 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$	+0.0	49.3	$\begin{aligned} & 110.7 \\ & \text { Low } \end{aligned}$	-61.4	H+V
$\wedge 7223.965 \mathrm{M}$	57.8	$\begin{array}{r} +0.0 \\ +35.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.5 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	65.5	$\begin{aligned} & 110.7 \\ & \text { Low } \end{aligned}$	-45.2	$\mathrm{H}+\mathrm{V}$
54 1855.000M	52.0	$\begin{array}{r} +0.0 \\ +27.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	47.2	$\begin{aligned} & 110.7 \\ & \text { High } \end{aligned}$	-63.5	H+V
551828.000 M	50.8	$\begin{array}{r} +0.0 \\ +26.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-35.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$		$\begin{aligned} & 110.7 \\ & \text { Mid } \end{aligned}$	-64.8	H+V
$\begin{aligned} & 56 \begin{array}{c} 5490.006 \mathrm{M} \\ \text { Ave } \end{array} \end{aligned}$	52.0	$\begin{array}{r} +0.0 \\ +33.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +4.5 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	+0.0	44.7	$\begin{aligned} & 110.7 \\ & \text { Mid } \end{aligned}$	-66.0	H+V
$\wedge 5490.006 \mathrm{M}$	53.8	$\begin{array}{r} +0.0 \\ +33.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	58.9	$\begin{aligned} & 110.7 \\ & \text { Mid } \end{aligned}$	-51.8	H+V
$\begin{aligned} & 58 \text { 5560.716M } \\ & \text { Ave } \end{aligned}$	51.0	$\begin{array}{r} +0.0 \\ +33.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +4.5 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	44.0	$\begin{aligned} & 110.7 \\ & \text { High } \end{aligned}$	-66.7	H+V
$\wedge 5560.716 \mathrm{M}$	53.3	$\begin{array}{r} +0.0 \\ +33.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	58.7	$\begin{aligned} & 110.7 \\ & \text { High } \end{aligned}$	-52.0	H+V
$\begin{aligned} & 60 \quad 9267.892 \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.2	$\begin{array}{r} +0.0 \\ +37.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +6.2 \\ +0.0 \\ +0.0 \\ -12.4 \end{array}$	$\begin{array}{r} \hline-34.8 \\ +0.0 \\ +0.0 \end{array}$	+0.0	41.9	$\begin{aligned} & 110.7 \\ & \text { High } \end{aligned}$	-68.8	H+V
^ 9267.892M	48.0	$\begin{array}{r} +0.0 \\ +37.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.2 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-34.8 \\ +0.0 \\ +0.0 \end{array}$	+0.0	59.1	$\begin{aligned} & 110.7 \\ & \text { High } \end{aligned}$	-51.6	H+V

62	75.426M	44.1	$+0.0$	+0.1	+0.0	+0.0	$+0.0$	40.3	110.7	-70.4	H+V	
QP			+0.0	+0.0	+0.0	$\begin{aligned} & +0.8 \\ & +6.1 \end{aligned}$						
			+0.5	-27.8	+7.4							
			+9.1	+0.0	+0.0							
63	75.600M	43.9	+0.0	+0.1	+0.0	+0.0	$+0.0$	40.1	110.7	-70.6	H+V	
			+0.0	+0.0	+0.0	$\begin{aligned} & +0.8 \\ & +6.1 \end{aligned}$						
			+0.5	-27.8	+7.4							
			+9.1	+0.0	+0.0							
$\begin{aligned} & 64 \text { 1806.041M } \\ & \text { Ave } \end{aligned}$		56.0	+0.0	+0.5	+2.5	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	38.6	$\begin{aligned} & 110.7 \\ & \text { Low } \end{aligned}$	-72.1	H+V	
		+26.8	+0.3	+0.0								
		+0.0	+0.0	+0.0								
		+0.0	+0.0	-12.4								
$\begin{aligned} & 65141.500 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$			34.9	+0.0	+0.1	+0.0	+0.0	$+0.0$	36.6	110.7	-74.1	$\mathrm{H}+\mathrm{V}$
		+0.0		+0.0	+0.0	+1.3						
		+0.7		-27.5	+11.9	+6.1						
		+9.1		+0.0	+0.0							
\wedge	141.500M		37.3	+0.0	+0.1	+0.0	$+0.0$	+0.0	39.0	110.7	-71.7	H+V
				+0.0	+0.0	+0.0	+1.3					
			+0.7	-27.5	+11.9	+6.1						
			+9.1	+0.0	+0.0							
	$\begin{aligned} & 1853.683 \mathrm{M} \\ & \text { Ave } \end{aligned}$	51.6	+0.0	+0.5	+2.5	$\begin{array}{r} \hline-35.1 \\ +0.0 \\ +0.0 \end{array}$	$+0.0$	34.4	110.7 High	-76.3	H+V	
			+27.0	+0.3	+0.0							
			+0.0	+0.0	+0.0							
			+0.0	+0.0	-12.4							
$\begin{gathered} 68 \quad 203.600 \mathrm{M} \\ \mathrm{QP} \end{gathered}$		33.0	+0.0	+0.2	+0.0	$\begin{aligned} & +0.0 \\ & +1.4 \\ & +6.2 \end{aligned}$	+0.0	33.5	110.7	-77.2	$\mathrm{H}+\mathrm{V}$	
		+0.0	+0.0	+0.0								
		+0.8	-27.2	+10.0								
		+9.1	+0.0	+0.0								
\wedge	203.600M		35.8	+0.0	+0.2	+0.0	+0.0	$+0.0$	36.3	110.7	-74.4	H+V
				+0.0	+0.0	$+0.0$	+1.4					
				+0.8	-27.2	+10.0	+6.2					
		+9.1		+0.0	+0.0							
70	96.900 M	34.2	+0.0	+0.1	+0.0	$\begin{aligned} & \hline+0.0 \\ & +1.1 \\ & +6.1 \end{aligned}$	+0.0	33.3	110.7	-77.4	$\mathrm{H}+\mathrm{V}$	
QP			+0.0	+0.0	+0.0							
		+0.6	-27.7	+9.8	$+6.1$							
		+9.1	+0.0	+0.0								
\wedge	96.900M		40.3	+0.0	+0.1	+0.0	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +6.1 \end{aligned}$	$+0.0$	39.4	110.7	-71.3	$\mathrm{H}+\mathrm{V}$
				+0.0	+0.0	+0.0						
		+0.6		-27.7	+9.8							
		+9.1		+0.0	+0.0							
$\begin{aligned} & 721829.991 \mathrm{M} \\ & \text { Ave } \end{aligned}$		49.7	+0.0	+0.5	+2.5	-35.1	$+0.0$	32.4	$\begin{aligned} & 110.7 \\ & \text { Mid } \end{aligned}$	-78.3	H+V	
		+26.9	+0.3	+0.0	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$							
		+0.0	+0.0	+0.0								
		+0.0	+0.0	-12.4								

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A•Bothell, WA. 98021•1-800-500-4EMC
Customer:
Specification:
Work Order \#:
Test Type:
Tested By: Itron, Inc
15.247(d) / 15.209 Radiated Spurious Emissions

98384 Date: 5/16/2016
Maximized Emissions
Time: 11:14:46
Michael Atkinson
Sequence\#: 24
Software:
EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

Temperature: $25^{\circ} \mathrm{C}$
Humidity: 31\%
Pressure: 102.1 kPa
Frequency Range: Low (903MHz), High (926.8MHz)
Firmware power setting: Max Power
EUT Firmware: 10.02-06
Modulation: AM, FM37.5k, FM12.5k

Antenna type: Monopole
Antenna Gain: $\quad 6.15 \mathrm{dBi}$ (8.15 dBi with 2 dB attenuator)
Duty Cycle: Measured with 100% (end use limited to 23.5% duty)

Test Method: ANSI C63.10 (2013)
Setup: The EUT is a 900 MHz range radio. The EUT is transmitting continuously modulated. 900 MHz antenna is connected using approximately 2.5 m of $1 / 2$ inch Andrews Heliax FS14-50B cable, along with 2 dB attenuator and lightning protector. The EUT antenna height set to stay within test volume boundaries. Both antenna polarities investigated, only worst case reported. Power output validated to be within manufacturer tolerances.

Itron, Inc WOO: 98384 Sequence\#: 24 Date: 5/16/2016
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

—— Readings
$\times \quad$ Peak Readings
Software Version: 5.03.02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 18 / 2015$	$11 / 18 / 2017$
	ANP05747	Attenuator	PE7004-20	$1 / 29 / 2016$	$1 / 29 / 2018$
T2	ANP06540	Cable	Heliax	$10 / 29 / 2015$	$10 / 29 / 2017$
T3	ANP05963	Cable	RG-214	$2 / 15 / 2016$	$2 / 15 / 2018$
T4	ANP05360	Cable	RG214	$12 / 1 / 2014$	$12 / 1 / 2016$
T5	AN02307	Preamp	$8447 D$	$2 / 15 / 2016$	$2 / 15 / 2018$
T6	AN01994	Biconilog Antenna	CBL6111C	$3 / 11 / 2016$	$3 / 11 / 2018$
T7	ANP05505	Attenuator	NAT-6	$3 / 31 / 2016$	$3 / 31 / 2018$
T8	ANP06219	Attenuator	$768-10$	$4 / 12 / 2016$	$4 / 12 / 2018$

Measurement Data: Reading listed by order taken. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \text { T6 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~T} 7 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	614.000 M	29.5	+0.0	+0.3	+2.1	+1.6	+0.0	41.5	46.0	-4.5	H+V
			-28.1	+20.8	+6.2	+9.1	AM				
2	902.000 M	78.5	+0.0	+0.3	+2.4	+2.0	+0.0	95.2	110.7	-15.5	H+V
			-27.4	+24.1	+6.2	+9.1	AM				
3	902.000 M	72.4	+0.0	+0.3	+2.4	+2.0	+0.0	89.1	110.7	-21.6	H+V
			-27.4	+24.1	+6.2	+9.1	FM 37.5k				
4	614.000M	29.1	+0.0	+0.3	+2.1	+1.6	$+0.0$	41.1	46.0	-4.9	H+V
			-28.1	+20.8	+6.2	+9.1	FM 37.5k				
5	902.000 M	72.5	+0.0	+0.3	+2.4	+2.0	+0.0	89.2	110.7	-21.5	$\mathrm{H}+\mathrm{V}$
			-27.4	+24.1	+6.2	+9.1	FM 12.5 k				
6	614.000 M	30.3	+0.0	+0.3	+2.1	+1.6	+0.0	42.3	46.0	-3.7	H+V
			-28.1	+20.8	+6.2	+9.1	FM 12.5k				
7	928.000M	80.0	+0.0	+0.4	+2.4	+2.1	$+0.0$	97.4	110.7	-13.3	H+V
			-27.3	+24.4	+6.2	+9.2	AM				
8	960.000 M	28.3	+0.0	+0.4	+2.5	+2.1	$+0.0$	46.5	54.0	-7.5	$\mathrm{H}+\mathrm{V}$
			-27.1	+24.8	+6.3	+9.2	AM				
9	928.000 M	59.3	+0.0	+0.4	+2.4	+2.1	+0.0	76.7	110.7	-34.0	$\mathrm{H}+\mathrm{V}$
			-27.3	+24.4	+6.2	+9.2	FM 37.5k				
10	960.000 M	28.7	+0.0	+0.4	+2.5	+2.1	+0.0	46.9	54.0	-7.1	H+V
			-27.1	+24.8	+6.3	+9.2	FM 37.5k				
11	928.000 M	59.5	+0.0	+0.4	+2.4	+2.1	+0.0	76.9	110.7	-33.8	H+V
			-27.3	+24.4	+6.2	+9.2	FM 12.5k				
12	960.000 M	28.6	+0.0	+0.4	+2.5	+2.1	+0.0	46.8	54.0	-7.2	H+V
			-27.1	+24.8	+6.3	+9.2			FM 12.5k		

LABORATORIES, INC.

Band Edge Summary					
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	$\begin{gathered} \text { Limit } \\ \text { (dBuV/m@3m) } \end{gathered}$	Results
614	AM	External Monopole	41.5	<46.0	Pass
902	AM	External Monopole	95.2	<110.7	Pass
928	AM	External Monopole	97.4	<110.7	Pass
960	AM	External Monopole	46.5	<54	Pass
614	FM12.5k	External Monopole	42.3	<46.0	Pass
902	FM12.5k	External Monopole	89.2	<110.7	Pass
928	FM12.5k	External Monopole	76.9	<110.7	Pass
960	FM12.5k	External Monopole	46.8	<54	Pass
614	FM37.5k	External Monopole	41.1	<46.0	Pass
902	FM37.5k	External Monopole	89.2	<110.7	Pass
928	FM37.5k	External Monopole	76.7	<110.7	Pass
960	FM37.5k	External Monopole	46.9	<54	Pass

Band Edge Plots

Band Edge Low AM Zoom
Ref Level $114.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 20 dB
RES BW: 120.0 kHz VID BW: 360.0 kHz SWP: 20.0 msec
Marker: $902.0 \mathrm{MHz} 78.4857 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}$

15.247(d) / 15.209 Radiated Spurious Emissions

LABORATORIES, INC.

LABORATORIES, INC.

15.35(c) Duty Cycle Correction Factor

Test Data Summary			
Antenna Port	Operational Mode	Measured On Time $(\mathrm{mS} /$ Pobs	Calculated DCCF (dB)
1	FM 37.5k (worst case)	0.2387	-12.44

Observation Period, $\mathrm{P}_{\text {obs }}$ is the duration of the pulse train or maximum 100 mS

Measured results are calculated as follows:

$$
\text { On Time }=\left.\left(\sum_{\text {Bursts }} R F \text { Burst On Time }+\sum_{\text {Control }} \text { Control Signal On time }\right)\right|_{P_{o b s}(\max 100 \mathrm{~ms})}
$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100 mS
Number of RF Bursts / Pobs::	1
On time of RF Burst:	23.87 mS
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	23.87 mS

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$
D C C F=20 \cdot \log \left(\frac{\text { On Time }}{P_{o b s}}\right)
$$

Duty Cycle Correction Factor Test Data

Test Setup Photo(s)

$9 \mathrm{kHz}-1 \mathrm{GHz}$

Note: Photo below shows setup for preliminary measurements; final measurements were taken with cables $>40 \mathrm{~cm}$ off ground plane.

$1-13 \mathrm{GHz}$

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95\% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on the limit value subtracting the corrected measured value; a negative margin represents a measurement less than the limit while a positive margin represents a measurement exceeding the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" \wedge ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: - Readings
 \times QP Readings
 - Ambient

[^1]: - Readings
 \times QP Readings
 - Ambient

