Itron, Inc.

ADDENDUM TO TEST REPORT 92785-9

AMR Transceiver Device for Endpoint Installation Model: 900 BCR

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.249
(Partial Testing, Radiated Emissions only)

Report No.: 92785-9A

Date of issue: August 22, 2013

Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions4
Site Registration \& Accreditation Information4
Summary of Results 5
Conditions During Testing 5
Equipment Under Test 6
Peripheral Devices 6
FCC Part 15 Subpart C 7
15.249(d) Radiated Spurious Emissions 7
Supplemental Information 24
Measurement Uncertainty 24
Emissions Test Details 24

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Itron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

REPRESENTATIVE: Jay Holcomb
Customer Reference Number: 52031

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Joyce Walker
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 92785

June 4, 2013
June 4, 2013

Revision History

Original: Partial testing of the AMR Transceiver Device for Endpoint Installation, 900 BCR to FCC Part 15 Subpart C Sections 15.249.
Addendum A: The testing conditions were said to be in accordance with DA00-705 when in fact they were in accordance with ANSI C63.4.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00 .14
Immunity	5.00 .07

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Bothell	USO081	SL2-IN-E-1145R	$3082 \mathrm{C}-1$	318736	A-0148

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.249

Description	Test Procedure/Method	Results
Radiated Spurious Emissions	FCC Part 15 Subpart C Section 15.249(d) / ANSI C63.4	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

AMR Transceiver Device for Endpoint Installation
Manuf: Itron, Inc.
Model: 900 BCR
Serial: 37400023

3dB Glass Mount Antenna
Manuf: Tessco
Model: MM3-925SMA
Serial: NA

5dB Magnetic Mount

Manuf: PCTel
Model: Z3182
Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

BCR Charging/USB Connection Station

Manuf: Itron, Inc.
Model: NA
Serial: NA

Laptop
Manuf: Dell
Model: Latitude E6410
Serial: JBDPWN1

USB 2.0 Kit

Manuf: S.I. Tech
Model: 2172
Serial: NA

LABORATORIES, INC.

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.249(d) Radiated Spurious Emissions

3dB Glass Mount Antenna Test Data Sheet

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.
Specification: 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

Work Order \#:
92785
Test Type:
Equipment:
Maximized Emissions
AMR Transceiver Device for Endpoint installation
Manufacturer: Itron, Inc.
Model: 900 BCR
S/N: 37400023

Date: 6/4/2013
Time: 15:27:57
Sequence\#: 1

Tested By: Rodney MacInnes

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03227	Cable	32026-29080-	$3 / 29 / 2013$	$3 / 29 / 2015$
T2	ANP05360	Cable	RG214	$12 / 3 / 2012$	$12 / 3 / 2014$
T3	ANP05366	Cable	RG-214	$10 / 14 / 2011$	$10 / 14 / 2013$
T4	AN02872	Spectrum Analyzer	E4440A	$7 / 23 / 2011$	$7 / 23 / 2013$
T5	AN01996	Biconilog Antenna	CBL6111C	$3 / 2 / 2012$	$3 / 2 / 2014$
T6	AN02308	Preamp	8447 D	$4 / 3 / 2012$	$4 / 3 / 2014$
T7	AN03209	Preamp	83051 A	$3 / 5 / 2013$	$3 / 5 / 2015$
T8	AN01467	Horn Antenna-ANSI	3115	$10 / 19 / 2011$	$10 / 19 / 2013$
		C63.5 Calibration			
T9	AN03123	Cable	$32026-2-29801-$	$10 / 14 / 2011$	$10 / 14 / 2013$
			12	$8 / 26 / 2011$	$8 / 26 / 2013$
T10	ANP05965	Cable	Various	$9 / 6 / 2013$	
T11	AN03170	High Pass Filter	HM1155-11SS	$9 / 6 / 2011$	$5 / 16 / 2014$
	AN00052	Loop Antenna	6502	$5 / 16 / 2012$	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
3dB glass mount antenna	Tessco	MM3-925SMA	NA
AMR transceiver device for endpoint installation*	Itron, Inc.	900 BCR	37400023

Support Devices:

Function	Manufacturer	Model \#	S/N
BCR Charging/USB connection Station	Itron, Inc.	NA	NA
Laptop	Dell	Latitude E6410	JBDPWN1

Test Conditions / Notes:

The EUT is placed in the center of the turntable on a Styrofoam table 80 cm above the ground plane, EUT is installed in device cradle attached to computer through USB to fiber adaptor.
Tested Freq: $9 \mathrm{kHz}-10 \mathrm{GHz}$
Fundamental Freq: $908 \mathrm{MHz}, 915.85 \mathrm{MHz}, 923.8 \mathrm{MHz}$

ISM FM Modulation

Firmware setting $=8,8,8$
Emission profile evaluated with Tessco MM3-925SMA 3dB glass mount antenna

Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kH}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz} ; 150 \mathrm{kHz}-30 \mathrm{MHz} ; R B W=9 \mathrm{kHz}, \mathrm{VBW}=9 \mathrm{kHz} ; 30 \mathrm{MHz}-1000$ $\mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}, 1000 \mathrm{MHz}-10,000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
15.31(e) compliance: a freshly charged battery is installed

Test method in accordance with ANSI C63.4

Temperature: $22^{\circ} \mathrm{C}$
Pressure: 101.5 kPa
Humidity: 35\%

Software: MC3SuperRaptorTest
Version: 4.0.1.5
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

$\#$	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
			T5	T6	T7	T8						
			T9	T10	T11							
		MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
1	1847.500 M	52.6	+1.3	+0.0	+0.0	+0.0	+0.0	53.9	54.0	-0.1	Vert	
			+0.0	+0.0	+0.0	+0.0	360				157	
			+0.0	+0.0	+0.0							
2	1815.904 M	56.1	+1.3	+0.0	+0.0	+0.0	+0.0	53.9	54.0	-0.1	Vert	
	Ave		+0.0	+0.0	-30.6	+24.8	12				112	
			+0.3	+1.6	+0.4							

$\wedge 1815.904 \mathrm{M}$	56.6	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.6 \\ +0.4 \end{array}$	$\begin{array}{r} +0.0 \\ +24.8 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	54.4	54.0	+0.4	$\begin{gathered} \hline \text { Vert } \\ 111 \end{gathered}$
4 1847.500M	54.0	+1.3	+0.0	+0.0	+0.0	+0.0	52.1	54.0	-1.9	$\begin{gathered} \text { Horiz } \\ 185 \end{gathered}$
		+0.0	+0.0	-30.6	+25.1	53				
		+0.3	+1.6	+0.4						
$\begin{aligned} & 5 \quad 908.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	90.6	+0.9	+2.0	+2.3	+0.0	+0.0	91.0	94.0	-3.0	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
		+22.6	-27.4	+0.0	+0.0	198				
		+0.0	+0.0	+0.0						
$\wedge 908.075 \mathrm{M}$	91.2	+0.9	+2.0	+2.3	+0.0	$+0.0$	91.6	94.0	-2.4	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
		+22.6	-27.4	+0.0	+0.0	360				
		+0.0	+0.0	+0.0						
$\begin{aligned} & 7 \text { 1815.919M } \\ & \text { Ave } \end{aligned}$	52.9	+1.3	+0.0	+0.0	+0.0	+0.0	50.7	54.0	-3.3	Horiz 100
		+0.0	+0.0	-30.6	+24.8	58				
		+0.3	+1.6	+0.4						
$\wedge 1815.994 \mathrm{M}$	55.2	+1.3	+0.0	+0.0	+0.0	$+0.0$	53.0	54.0	-1.0	Horiz 100
		+0.0	+0.0	-30.6	+24.8	360				
		+0.3	+1.6	+0.4						
9 1831.908M	52.2	+1.3	+0.0	+0.0	+0.0	+0.0	50.1	54.0	-3.9	$\begin{array}{r} \hline \text { Vert } \\ 125 \end{array}$
		+0.0	+0.0	-30.6	+24.9					
		+0.3	+1.6	+0.4						
$\begin{gathered} 10 \quad 923.725 \mathrm{M} \\ \text { Ave } \end{gathered}$	88.8	+0.9	+2.1	+2.3	+0.0	+0.0	89.6	94.0	-4.4	$\begin{array}{r} \hline \text { Vert } \\ 103 \end{array}$
		+22.9	-27.4	+0.0	+0.0	360				
		+0.0	+0.0	+0.0						
$\wedge 923.725 \mathrm{M}$	90.5	+0.9	+2.1	+2.3	+0.0	+0.0	91.3	94.0	-2.7	$\begin{array}{r} \hline \text { Vert } \\ 103 \end{array}$
		+22.9	-27.4	+0.0	+0.0	360				
		+0.0	+0.0	+0.0						
12 915.948M	88.6	+0.9	+2.1	+2.3	+0.0	+0.0	89.2	94.0	-4.8	$\begin{array}{r} \hline \text { Vert } \\ 189 \end{array}$
		+22.7	-27.4	+0.0	+0.0	360				
		+0.0	+0.0	+0.0						
13 915.948M	88.0	+0.9	+2.1	+2.3	+0.0	$+0.0$	88.6	94.0	-5.4	$\begin{gathered} \text { Horiz } \\ 131 \end{gathered}$
		+22.7	-27.4	+0.0	+0.0					
		+0.0	+0.0	+0.0						
14 1831.908M	50.5	+1.3	+0.0	+0.0	+0.0	+0.0	48.4	54.0	-5.6	Horiz 128
		+0.0	+0.0	-30.6	+24.9	360				
		+0.3	+1.6	+0.4						
15 923.725M	87.2	+0.9	+2.1	+2.3	+0.0	+0.0	88.0	94.0	-6.0	$\begin{gathered} \text { Horiz } \\ 217 \end{gathered}$
		+22.9	-27.4	+0.0	+0.0	96				
		+0.0	+0.0	+0.0						
$16 \quad 907.942 \mathrm{M}$	87.3	+0.9	+2.0	+2.3	+0.0	$+0.0$	87.7	94.0	-6.3	$\begin{gathered} \text { Horiz } \\ 144 \end{gathered}$
		+22.6	-27.4	+0.0	+0.0	360				
		+0.0	+0.0	+0.0						
17 47.840M	50.7	+0.2	+0.4	+0.3	+0.0	+0.0	32.7	40.0	-7.3	$\begin{array}{r} \hline \text { Vert } \\ 144 \end{array}$
QP		+9.1	-28.0	+0.0	+0.0	360				
		+0.0	+0.0	+0.0						
$\wedge 47.840 \mathrm{M}$	65.9	+0.2	+0.4	+0.3	+0.0	+0.0	47.9	40.0	+7.9	$\begin{array}{r} \hline \text { Vert } \\ 144 \end{array}$
		+9.1	-28.0	+0.0	+0.0	360				
		+0.0	+0.0	+0.0						
19 9079.496M	23.5	+4.6	+0.0	+0.0	+0.0	+0.0	42.1	54.0	-11.9	Horiz 120
		+0.0	+0.0	-27.6	+36.7	360				
		+0.8	+3.9	+0.2						

20	9079.496M	23.5	$\begin{aligned} & \hline+4.6 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +3.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -27.6 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +36.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	42.1	54.0	-11.9	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
21	8171.546M	25.0	+4.0	+0.0	+0.0	+0.0	$+0.0$	41.6	54.0	-12.4	Horiz 120
			+0.0	+0.0	-28.1	+36.0	360				
			+0.8	+3.7	+0.2						
22	8171.546M	25.0	+4.0	+0.0	+0.0	+0.0	$+0.0$	41.6	54.0	-12.4	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
			+0.0	+0.0	-28.1	+36.0	360				
			+0.8	+3.7	+0.2						
23	9159.400M	23.4	+4.6	+0.0	+0.0	+0.0	+0.0	41.6	54.0	-12.4	$\begin{gathered} \text { Horiz } \\ 113 \end{gathered}$
			+0.0	+0.0	-27.6	+36.3	360				
			+0.8	+3.9	+0.2						
24	2770.800M	39.5	+1.6	+0.0	+0.0	+0.0	$+0.0$	41.2	54.0	-12.8	Horiz122
			+0.0	+0.0	-30.2	+27.4	360				
			+0.5	+2.1	+0.3						
25	8243.460M	24.1	+4.0	+0.0	+0.0	+0.0	+0.0	41.0	54.0	-13.0	$\begin{gathered} \hline \text { Vert } \\ 113 \end{gathered}$
			+0.0	+0.0	-28.0	+36.2	360				
			+0.8	+3.7	+0.2						
26	9159.400M	22.6	+4.6	+0.0	+0.0	+0.0	+0.0	40.8	54.0	-13.2	$\begin{gathered} \hline \text { Vert } \\ 113 \end{gathered}$
			+0.0	+0.0	-27.6	+36.3	360				
			+0.8	+3.9	+0.2						
27	7263.596M	25.6	+3.2	+0.0	+0.0	+0.0	+0.0	40.7	54.0	-13.3	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
			+0.0	+0.0	-28.2	+35.7	360				
			+0.5	+3.6	+0.3						
28	2747.848M	39.0	+1.6	+0.0	+0.0	+0.0	$+0.0$	40.6	54.0	-13.4	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
			+0.0	+0.0	-30.2	+27.3					
			+0.5	+2.1	+0.3						
29	9237.495M	22.8	+4.5	+0.0	+0.0	+0.0	+0.0	40.4	54.0	-13.6	$\begin{gathered} \hline \text { Vert } \\ 122 \end{gathered}$
			+0.0	+0.0	-27.7	+35.9	360				
			+0.9	+3.9	+0.1						
30	7327.520M	25.1	+3.2	+0.0	+0.0	+0.0	$+0.0$	40.3	54.0	-13.7	Horiz 113
			+0.0	+0.0	-28.2	+35.9	360				
			+0.5	+3.6	+0.2						
31	8313.745M	22.8	+4.1	+0.0	+0.0	+0.0	$+0.0$	40.1	54.0	-13.9	$\begin{gathered} \text { Horiz } \\ 122 \end{gathered}$
			+0.0	+0.0	-28.0	+36.3	360				
			+0.9	+3.8	+0.2						
32	8243.460M	23.2	+4.0	+0.0	+0.0	+0.0	$+0.0$	40.1	54.0	-13.9	$\begin{gathered} \text { Horiz } \\ 113 \end{gathered}$
			+0.0	+0.0	-28.0	+36.2	360				
			+0.8	+3.7	+0.2						
33	8313.745M	22.8	+4.1	+0.0	+0.0	+0.0	+0.0	40.1	54.0	-13.9	$\begin{array}{r} \hline \text { Vert } \\ 122 \end{array}$
			+0.0	+0.0	-28.0	+36.3	360				
			+0.9	+3.8	+0.2						
34	9237.495M	22.2	+4.5	+0.0	+0.0	+0.0	$+0.0$	39.8	54.0	-14.2	$\begin{gathered} \hline \text { Horiz } \\ 122 \end{gathered}$
			+0.0	+0.0	-27.7	+35.9	360				
			+0.9	+3.9	+0.1						
35	599.800M	36.0	+0.7	+1.6	+1.7	+0.0	+0.0	31.7	46.0	-14.3	$\begin{gathered} \text { Horiz } \\ 169 \end{gathered}$
			+20.0	-28.3	+0.0	+0.0					
			+0.0	+0.0	+0.0						
36	3663.784M	36.3	+1.9	+0.0	+0.0	+0.0	+0.0	39.5	54.0	-14.5	Vert
			+0.0	+0.0	-30.9	+29.4					125
			+0.4	+2.1	+0.3						

Page 10 of 25

37	2723.854M	37.6	$\begin{aligned} & \hline+1.6 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.2 \\ +0.3 \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	39.1	54.0	-14.9	$\begin{gathered} \hline \text { Horiz } \\ 106 \end{gathered}$
38	3631.790M	35.9	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.9 \\ +0.3 \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	39.0	54.0	-15.0	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
39	7263.596M	23.8	$\begin{aligned} & +3.2 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -28.2 \\ +0.3 \end{array}$	$\begin{array}{r} +0.0 \\ +35.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.9	54.0	-15.1	Horiz 120
40	6355.646M	26.4	$\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -29.0 \\ +0.4 \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.9	54.0	-15.1	Horiz 120
41	7327.520M	23.6	$\begin{aligned} & +3.2 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -28.2 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +35.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.8	54.0	-15.2	$\begin{array}{r} \hline \text { Vert } \\ 113 \end{array}$
42	7389.995M	23.0	$\begin{aligned} & +3.3 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -28.2 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.5	54.0	-15.5	$\begin{array}{r} \hline \text { Vert } \\ 122 \end{array}$
43	7389.995M	23.0	$\begin{aligned} & +3.3 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -28.2 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.5	54.0	-15.5	$\begin{gathered} \text { Horiz } \\ 122 \end{gathered}$
44	2747.848M	36.8	$\begin{aligned} & \hline+1.6 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.2 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.4	54.0	-15.6	$\begin{array}{r} \hline \text { Vert } \\ 157 \end{array}$
45	3631.794M	35.1	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.9 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	+0.0	38.2	54.0	-15.8	Horiz 99
46	5447.696M	29.2	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +2.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -30.2 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.1	54.0	-15.9	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
47	6355.646M	25.5	$\begin{aligned} & +2.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +3.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -29.0 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.0	54.0	-16.0	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
48	3663.794M	34.6	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.9 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	37.8	54.0	-16.2	Horiz 136
49	6466.245M	25.0	$\begin{aligned} & +2.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -28.9 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	37.5	54.0	-16.5	$\begin{array}{r} \hline \text { Vert } \\ 122 \end{array}$
50	6466.245M	25.0	$\begin{aligned} & +2.8 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -28.9 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	37.5	54.0	-16.5	Horiz 122
51	5447.696M	28.2	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.2 \\ +0.3 \end{array}$	$\begin{array}{r} +0.0 \\ +33.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	37.1	54.0	-16.9	Horiz 120
52	6411.580M	24.2	$\begin{aligned} & \hline+2.8 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.3 \end{aligned}$	$\begin{gathered} +0.0 \\ -28.9 \\ +0.4 \end{gathered}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	36.7	54.0	-17.3	$\begin{array}{r} \hline \text { Vert } \\ 113 \end{array}$
53	359.700 M	37.8	$\begin{array}{r} +0.6 \\ +15.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +1.2 \\ -27.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0	28.5	46.0	-17.5	Horiz 169

Page 11 of 25

54	2723.854M	34.8	$\begin{aligned} & +1.6 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.2 \\ +0.3 \end{array}$	$\begin{array}{r} +0.0 \\ +27.2 \end{array}$	+0.0	36.3	54.0	-17.7	$\begin{array}{r} \hline \text { Vert } \\ 159 \end{array}$
55	5542.495M	26.7	+2.4	+0.0	+0.0	+0.0	+0.0	36.0	54.0	-18.0	Vert
			+0.0	+0.0	-30.1	+33.4	360				122
			+0.4	+2.9	+0.3						
56	2771.250M	34.2	+1.6	+0.0	+0.0	+0.0	+0.0	35.9	54.0	-18.1	Vert
			+0.0	+0.0	-30.2	+27.4					155
			+0.5	+2.1	+0.3						
57	6411.580 M	22.7	+2.8	+0.0	+0.0	+0.0	+0.0	35.2	54.0	-18.8	Horiz
			+0.0	+0.0	-28.9	+34.4	360				113
			+0.5	+3.3	+0.4						
58	3694.995M	31.2	+1.9	+0.0	+0.0	+0.0	+0.0	34.4	54.0	-19.6	Vert
			+0.0	+0.0	-31.0	+29.5	360				122
			+0.4	+2.1	+0.3						
59	5495.640M	25.2	+2.4	+0.0	+0.0	+0.0	+0.0	34.4	54.0	-19.6	Horiz
			+0.0	+0.0	-30.1	+33.3	360				
			+0.4	+2.9	+0.3						
60	5495.640M	25.0	+2.4	+0.0	+0.0	+0.0	+0.0	34.2	54.0	-19.8	Vert
			+0.0	+0.0	-30.1	+33.3	360				113
			+0.4	+2.9	+0.3						
61	4579.700M	28.1	+2.1	+0.0	+0.0	+0.0	+0.0	33.6	54.0	-20.4	Horiz
			+0.0	+0.0	-31.0	+31.4	360				
			+0.1	+2.6	+0.3						
62	4579.700M	28.1	+2.1	+0.0	+0.0	+0.0	+0.0	33.6	54.0	-20.4	Vert
			+0.0	+0.0	-31.0	+31.4	360				136
			+0.1	+2.6	+0.3						
63	5542.495M	24.2	+2.4	+0.0	+0.0	+0.0	+0.0	33.5	54.0	-20.5	Horiz
			+0.0	+0.0	-30.1	+33.4	360				122
			+0.4	+2.9	+0.3						
64	239.700M	38.2	+0.5	+1.0	+1.0	+0.0	+0.0	25.4	46.0	-20.6	Horiz
			+11.8	-27.1	+0.0	+0.0					169
			+0.0	+0.0	+0.0						
65	4539.746M	27.4	+2.1	+0.0	+0.0	+0.0	+0.0	32.9	54.0	-21.1	
			+0.0	+0.0	-31.0	+31.3	360				120
			+0.2	+2.6	+0.3						
66	4539.746M	26.3	+2.1	+0.0	+0.0	+0.0	+0.0	31.8	54.0	-22.2	Vert
			+0.0	+0.0	-31.0	+31.3	360				120
			+0.2	+2.6	+0.3						
67	4618.745M	25.9	+2.1	+0.0	+0.0	+0.0	+0.0	31.5	54.0	-22.5	
			+0.0	+0.0	-31.0	+31.5	360				122
			+0.1	+2.6	+0.3						
68	4618.745M	25.0	+2.1	+0.0	+0.0	+0.0	+0.0	30.6	54.0	-23.4	Vert
			+0.0	+0.0	-31.0	+31.5	360				122
			+0.1	+2.6	+0.3						
69	3694.995M	27.1	+1.9	+0.0	+0.0	+0.0	+0.0	30.3	54.0	-23.7	Horiz
			+0.0	+0.0	-31.0	+29.5	360				122
			+0.4	+2.1	+0.3						

Page 12 of 25

CKC Laboratories, Inc. Date: 6/4/2013 Time: 15:27:57 Itron, Inc. WO\#: 92785 Test Distance: 3 Meters Sequence\#: 1 Horiz
Itron, Inc. AMR transceiver device for endpoint installation P/N: 900 BCR

3dBi Glass Mount Antenna

Bandedge

5dB Magnetic Mount Test Data Sheet

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Itron, Inc.
Specification:
15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

Work Order \#:
Test Type:
Equipment:
92785
Radiated Scan
AMR transceiver device for endpoint installation
Manufacturer: Itron, Inc.
Model:
900 BCR
S/N: 37400023

Date: 6/4/2013
Time: 15:53:21
Sequence\#: 4
Tested By: Rodney MacInnes

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03209	Preamp	83051 A	$3 / 5 / 2013$	$3 / 5 / 2015$
T2	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	$10 / 19 / 2011$	$10 / 19 / 2013$
		Cable	$32026-2-29801-$ 12	$10 / 14 / 2011$	$10 / 14 / 2013$
T3	AN03123		$32026-29080-$ $29080-84 ~$	$3 / 29 / 2013$	$3 / 29 / 2015$
T4	AN03227	Cable	Various	$8 / 26 / 2011$	$8 / 26 / 2013$
T5	ANP05965	Cable	Spectrum Analyzer	E4440A	$7 / 23 / 2011$
T6	AN02872	High Pass Filter	HM1155-11SS	$9 / 6 / 2011$	$7 / 23 / 2013$
T7	AN03170	Preamp	$8447 D$	$4 / 3 / 2012$	$9 / 6 / 2013$
T8	AN02308	Biconilog Antenna	CBL6111C	$3 / 2 / 2012$	$3 / 2 / 2014$
T9	AN01996	Cable	RG214	$12 / 3 / 2012$	$12 / 3 / 2014$
T10	ANP05360	Cable	RG-214	$10 / 14 / 2011$	$10 / 14 / 2013$
T11	ANP05366	Attenuator	PE7015-10	$10 / 5 / 2012$	$10 / 5 / 2014$
T12	ANP05435	Loop Antenna	6502	$5 / 16 / 2012$	$5 / 16 / 2014$
	AN00052	LN			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
5 dB magnetic mount	PCTel	Z3182	NA
AMR transceiver device for endpoint installation*	Itron, Inc.	900 BCR	37400023

Support Devices:

Function BCR Charging/USB connection Station Manufacturer Itron, Inc.	Model \#	SA N	
USB 2.0 Kit	S.I. Tech	NA	
Laptop	Dell	Latitude E6410	NB

Test Conditions / Notes:
The EUT is placed in the center of the turntable on a Styrofoam table 80 cm above the ground plane, EUT is installed in device cradle attached to computer through USB to fiber adaptor.
Freq Tested: $9 \mathrm{kHz}-10 \mathrm{GHz}$
Freq: $908 \mathrm{MHz}, 915.85 \mathrm{MHz}, 923.8 \mathrm{MHz}$
ISM FM Modulation
Firmware setting $=8,8,8$
Emission profile evaluated with PCTel Z3182 5dB magnetic mount
Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kH}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz} ; 150 \mathrm{kHz}-30 \mathrm{MHz} ; \mathrm{RBW}=9 \mathrm{kHz}, \mathrm{VBW}=9 \mathrm{kHz} ; 30 \mathrm{MHz}-1000$ $\mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}, 1000 \mathrm{MHz}-10,000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
15.31(e) compliance:a freshly charged battery is installed

Emission profile of the EUT rotated along three orthogonal axis was investigated. Recorded data represent worse case emission.

Test method in accordance with ANSI C63.4

Temperature: $212^{\circ} \mathrm{C}$
Pressure: 101.5 kPa
Humidity: 35\%
Software: MC3SuperRaptorTest
Version: 4.0.1.5
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

6	60.000M	50.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{gathered} +0.3 \\ -28.0 \\ +9.2 \end{gathered}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.6	40.0	-1.4	$\begin{gathered} \hline \text { Horiz } \\ 169 \end{gathered}$
7	120.035M	47.0	+0.0	+0.0	+0.0	+0.4	+0.0	41.8	43.5	-1.7	Vert
	QP		+0.0	+0.0	+0.0	-27.8	161				148
			+11.6	+0.7	+0.6	+9.3					
\wedge	120.035M	53.2	+0.0	+0.0	+0.0	+0.4	+0.0	48.0	43.5	+4.5	Vert
			+0.0	+0.0	+0.0	-27.8	161				148
			+11.6	+0.7	+0.6	+9.3					
9	9080.000 M	34.3	-27.6	+36.7	+0.8	+3.5	+0.0	51.8	54.0	-2.2	Horiz
			+3.9	+0.0	+0.2	+0.0					130
			+0.0	+0.0	+0.0	+0.0					
10	$\begin{aligned} & 108.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	47.4	+0.0	+0.0	+0.0	+0.3	+0.0	40.8	43.5	-2.7	Vert
			+0.0	+0.0	+0.0	-27.9					120
			+10.5	+0.6	+0.6	+9.3					
11	9238.000 M	34.5	-27.7	+35.9	+0.9	+3.4	+0.0	51.0	54.0	-3.0	Horiz
			+3.9	+0.0	+0.1	+0.0					114
			+0.0	+0.0	+0.0	+0.0					
12	7390.400M	34.9	-28.2	+36.0	+0.6	+3.1	+0.0	50.2	54.0	-3.8	Vert
			+3.6	+0.0	+0.2	+0.0	109				114
			+0.0	+0.0	+0.0	+0.0					
13	$\begin{aligned} & 108.000 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	46.3	+0.0	+0.0	+0.0	+0.3	+0.0	39.7	43.5	-3.8	Horiz
			+0.0	+0.0	+0.0	-27.9	360				169
			+10.5	+0.6	+0.6	+9.3					
14	923.748 M	79.4	+0.0	+0.0	+0.0	+1.0	+0.0	89.9	94.0	-4.1	Vert
			+0.0	+0.0	+0.0	-27.4	360				120
			+22.9	+2.1	+2.3	+9.6					
15	7390.400M	34.5	-28.2	+36.0	+0.6	+3.1	+0.0	49.8	54.0	-4.2	Horiz
			+3.6	+0.0	+0.2	+0.0					114
			+0.0	+0.0	+0.0	+0.0					
16	8314.200M	33.1	-28.0	+36.3	+0.9	+3.5	+0.0	49.8	54.0	-4.2	Vert
			+3.8	+0.0	+0.2	+0.0	22				114
			+0.0	+0.0	+0.0	+0.0					
17	599.800 M	36.0	+0.0	+0.0	+0.0	+0.8	+0.0	41.5	46.0	-4.5	Horiz
			+0.0	+0.0	+0.0	-28.3	46				169
			+20.0	+1.6	+1.7	+9.7					
18	9238.000M	32.3	-27.7	+35.9	+0.9	+3.4	+0.0	48.8	54.0	-5.2	Vert
			+3.9	+0.0	+0.1	+0.0					114
			+0.0	+0.0	+0.0	+0.0					
19	7264.000M	33.7	-28.2	+35.7	+0.5	+3.1	+0.0	48.7	54.0	-5.3	Horiz
			+3.6	+0.0	+0.3	+0.0					130
			+0.0	+0.0	+0.0	+0.0					
20	8314.200M	31.5	-28.0	+36.3	+0.9	+3.5	$+0.0$	48.2	54.0	-5.8	Horiz
			+3.8	+0.0	+0.2	+0.0					114
			+0.0	+0.0	+0.0	+0.0					
21	8172.000M	30.4	-28.1	+36.1	+0.8	+3.4	$+0.0$	46.5	54.0	-7.5	Horiz
			+3.7	+0.0	+0.2	+0.0					130
			+0.0	+0.0	+0.0	+0.0					
22	6356.000M	33.4	-29.0	+34.5	+0.5	+3.0	+0.0	46.1	54.0	-7.9	Horiz
			+3.3	+0.0	+0.4	+0.0					130
			+0.0	+0.0	+0.0	+0.0					

Page 17 of 25

23	116.120 M	40.1	+0.0	+0.0			${ }^{+0.0}$	34.6	43.5	-8.9	$\begin{gathered} \hline \text { Horiz } \\ 169 \end{gathered}$	
	QP		+0.0	+0.0	+0.0	-27.8	360					
			+11.3	+0.7	+0.6	+9.3						
24	6466.600M	31.6	-28.9	+34.4	+0.5	+3.0	+0.0	44.3	54.0	-9.7	$\begin{gathered} \hline \text { Vert } \\ 114 \end{gathered}$	
			+3.4	+0.0	+0.3	+0.0	266					
			+0.0	+0.0	+0.0	+0.0						
25	6466.600M	30.9	-28.9	+34.4	+0.5	+3.0	+0.0	43.6	54.0	-10.4	Horiz 114	
			+3.4	+0.0	+0.3	+0.0						
			+0.0	+0.0	+0.0	+0.0						
26	1815.950M	45.6	-30.6	+24.8	+0.3	+1.4	+0.0	43.5	54.0	-10.5	$\begin{gathered} \hline \text { Horiz } \\ 114 \end{gathered}$	
			+1.6	+0.0	+0.4	+0.0						
			+0.0	+0.0	+0.0	+0.0						
27	5448.000M	33.3	-30.2	+33.2	+0.4	+3.1	+0.0	43.0	54.0	-11.0	$\begin{gathered} \text { Horiz } \\ 130 \end{gathered}$	
			+2.9	+0.0	+0.3	+0.0						
			+0.0	+0.0	+0.0	+0.0						
$\begin{gathered} 28 \underset{\mathrm{QP}}{210.100 \mathrm{M}} \\ \hline \end{gathered}$		37.7	+0.0	+0.0	+0.0	+0.5	+0.0	32.1	43.5	-11.4	$\begin{gathered} \hline \text { Horiz } \\ 169 \end{gathered}$	
		+0.0	+0.0	+0.0	-27.3	360						
		+9.8	+0.9	+0.9	+9.6							
\wedge	210.100M		46.3	+0.0	+0.0	+0.0	+0.5	+0.0	40.7	43.5	-2.8	$\begin{gathered} \text { Horiz } \\ 169 \end{gathered}$
				+0.0	+0.0	+0.0	-27.3	360				
		+9.8		+0.9	+0.9	+9.6						
30	1847.600M	44.2	-30.6	+25.1	+0.3	+1.5	+0.0	42.5	54.0	-11.5	$\begin{gathered} \text { Horiz } \\ 110 \end{gathered}$	
			+1.6	+0.0	+0.4	+0.0	360					
			+0.0	+0.0	+0.0	+0.0						
31	9079.475M	24.6	-27.6	+36.7	+0.8	+3.5	+0.0	42.1	54.0	-11.9	$\begin{gathered} \hline \text { Vert } \\ 104 \end{gathered}$	
			+3.9	+0.0	+0.2	+0.0	360					
			+0.0	+0.0	+0.0	+0.0						
32	5542.800M	31.7	-30.1	+33.4	+0.4	+3.0	+0.0	41.6	54.0	-12.4	$\begin{gathered} \hline \text { Horiz } \\ 114 \end{gathered}$	
			+2.9	+0.0	+0.3	+0.0	93					
			+0.0	+0.0	+0.0	+0.0						
33	9159.585M	23.9	-27.7	+36.3	+0.8	+3.4	+0.0	40.8	54.0	-13.2	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$	
			+3.9	+0.0	+0.2	+0.0						
			+0.0	+0.0	+0.0	+0.0						
34	5542.800M	30.8	-30.1	+33.4	+0.4	+3.0	+0.0	40.7	54.0	-13.3	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$	
			+2.9	+0.0	+0.3	+0.0	360					
			+0.0	+0.0	+0.0	+0.0						
35	7327.665M	25.3	-28.2	+35.9	+0.5	+3.1	+0.0	40.4	54.0	-13.6	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$	
			+3.6	+0.0	+0.2	+0.0						
			+0.0	+0.0	+0.0	+0.0						
36	7327.665M	25.1	-28.2	+35.9	+0.5	+3.1	+0.0	40.2	54.0	-13.8	$\begin{gathered} \hline \text { Horiz } \\ 99 \end{gathered}$	
			+3.6	+0.0	+0.2	+0.0						
			+0.0	+0.0	+0.0	+0.0						
37	359.700M	31.8	+0.0	+0.0	+0.0	+0.6	+0.0	32.2	46.0	-13.8	$\begin{gathered} \hline \text { Horiz } \\ 169 \end{gathered}$	
			+0.0	+0.0	+0.0	-27.5	360					
			+15.1	+1.2	+1.3	+9.7						
38	9159.585M	22.9	-27.7	+36.3	+0.8	+3.4	+0.0	39.8	54.0	-14.2	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$	
			+3.9	+0.0	+0.2	+0.0						
			+0.0	+0.0	+0.0	+0.0						
39	8171.540M	23.6	-28.1	+36.0	+0.8	+3.4	+0.0	39.6	54.0	-14.4	$\begin{gathered} \text { Vert } \\ 104 \end{gathered}$	
			+3.7	+0.0	+0.2	+0.0						
			+0.0	+0.0	+0.0	+0.0						

Page 18 of 25

40	8243.625M	22.9	$\begin{array}{r} -28.0 \\ +3.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +36.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	39.2	54.0	-14.8	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
41	4540.000M	33.0	-31.0	+31.3	+0.2	+2.7	+0.0	39.1	54.0	-14.9	$\begin{gathered} \text { Horiz } \\ 130 \end{gathered}$
			+2.6	+0.0	+0.3	+0.0	82				
			+0.0	+0.0	+0.0	+0.0					
42	3631.900M	35.1	-30.9	+29.3	+0.4	+2.3	$\begin{aligned} & \hline+0.0 \\ & 324 \end{aligned}$	38.6	54.0	-15.4	$\begin{gathered} \text { Horiz } \\ 130 \end{gathered}$
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
43	907.948M	78.1	+0.0	+0.0	+0.0	+1.0	$+0.0$	78.6	94.0	-15.4	Horiz 175
			+0.0	+0.0	+0.0	-27.4					
			+22.6	+2.0	+2.3	+0.0					
44	3695.200M	34.8	-31.0	+29.6	+0.4	+2.4	$\begin{aligned} & +0.0 \\ & 357 \end{aligned}$	38.6	54.0	-15.4	Horiz 114
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
45	4619.000M	32.1	-31.0	+31.5	+0.1	+2.8	$\begin{aligned} & \hline+0.0 \\ & 210 \end{aligned}$	38.4	54.0	-15.6	Horiz 114
			+2.6	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
46	2771.400M	36.3	-30.2	+27.4	+0.5	+1.9	+0.0	38.3	54.0	-15.7	Horiz175
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
47	7263.605M	23.3	-28.2	+35.7	+0.5	+3.1	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	38.3	54.0	-15.7	$\begin{gathered} \hline \text { Vert } \\ 104 \end{gathered}$
			+3.6	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
48	3695.200M	34.4	-31.0	+29.6	+0.4	+2.4	$\begin{aligned} & \hline+0.0 \\ & 154 \end{aligned}$	38.2	54.0	-15.8	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
49	4619.000M	31.7	-31.0	+31.5	+0.1	+2.8	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	38.0	54.0	-16.0	$\begin{gathered} \hline \text { Vert } \\ 114 \end{gathered}$
			+2.6	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
50	4540.000M	31.9	-31.0	+31.3	+0.2	+2.7	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	38.0	54.0	-16.0	$\begin{gathered} \hline \text { Vert } \\ 130 \end{gathered}$
			+2.6	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
51	8243.625M	21.3	-28.0	+36.2	+0.8	+3.4	+0.0	37.6	54.0	-16.4	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
			+3.7	+0.0	+0.2	+0.0					
			+0.0	+0.0	+0.0	+0.0					
52	2771.400M	34.6	-30.2	+27.4	+0.5	+1.9	$\begin{aligned} & \hline+0.0 \\ & 41 \end{aligned}$	36.6	54.0	-17.4	$\begin{array}{r} \hline \text { Vert } \\ 104 \end{array}$
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
53	915.944M	66.0	+0.0	+0.0	+0.0	+1.0	+0.0	76.3	94.0	-17.7	$\begin{gathered} \text { Horiz } \\ 203 \end{gathered}$
			+0.0	+0.0	+0.0	-27.4					
			+22.7	+2.1	+2.3	+9.6					
54	2747.840M	34.3	-30.2	+27.3	+0.5	+1.9	+0.0	36.2	54.0	-17.8	$\begin{array}{r} \hline \text { Horiz } \\ 132 \end{array}$
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
55	5447.735M	26.1	-30.2	+33.2	+0.4	+3.1	$\begin{aligned} & \hline+0.0 \\ & 250 \end{aligned}$	35.8	54.0	-18.2	Vert 111
			+2.9	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
56	2723.335M	33.9	-30.2	+27.2	+0.5	+1.9	360	35.7	54.0	-18.3	$\begin{gathered} \text { Horiz } \\ 130 \end{gathered}$
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					

Page 19 of 25

57	6355.670M	22.9	-29.0	+34.5	+0.5	+3.0	+0.0	35.6	54.0	-18.4	$\begin{array}{r} \hline \text { Vert } \\ 104 \end{array}$
			+3.3	+0.0	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
58	1847.600M	36.7	-30.6	+25.1	+0.3	+1.5	+0.0	35.0	54.0	-19.0	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
			+1.6	+0.0	+0.4	+0.0	359				
			+0.0	+0.0	+0.0	+0.0					
59	3663.800M	31.2	-30.9	+29.4	+0.4	+2.4	$\begin{aligned} & \hline+0.0 \\ & 174 \end{aligned}$	34.9	54.0	-19.1	$\begin{gathered} \text { Horiz } \\ 112 \end{gathered}$
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
60	1815.900M	36.8	-30.6	+24.8	+0.3	+1.4	+0.0	34.7	54.0	-19.3	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
			+1.6	+0.0	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
61	6411.705M	21.6	-28.9	+34.4	+0.5	+3.0	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	34.3	54.0	-19.7	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$
			+3.3	+0.0	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
62	5495.645M	24.4	-30.1	+33.3	+0.4	+3.0	$\begin{aligned} & \hline+0.0 \\ & 273 \end{aligned}$	34.2	54.0	-19.8	$\begin{gathered} \hline \text { Horiz } \\ 128 \end{gathered}$
			+2.9	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
63	6411.605M	20.4	-28.9	+34.4	+0.5	+3.0	$\begin{aligned} & \hline+0.0 \\ & 80 \end{aligned}$	33.1	54.0	-20.9	$\begin{gathered} \hline \text { Horiz } \\ 99 \end{gathered}$
			+3.3	+0.0	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
64	5495.745M	21.2	-30.1	+33.3	+0.4	+3.0	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	31.0	54.0	-23.0	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$
			+2.9	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
65	1831.905M	31.7	-30.6	+24.9	+0.3	+1.5	$+0.0$	29.8	54.0	-24.2	$\begin{gathered} \hline \text { Vert } \\ 126 \end{gathered}$
			+1.6	+0.0	+0.4	+0.0					
			+0.0	+0.0	+0.0	+0.0					
66	3663.825M	25.3	-30.9	+29.4	+0.4	+2.4	$+0.0$	29.0	54.0	-25.0	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
67	3631.770M	25.0	-30.9	+29.3	+0.4	+2.3	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	28.5	54.0	-25.5	$\begin{array}{r} \hline \text { Vert } \\ 122 \end{array}$
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
68	4579.785M	22.3	-31.0	+31.4	+0.1	+2.8	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	28.5	54.0	-25.5	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$
			+2.6	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
69	2723.835M	26.4	-30.2	+27.2	+0.5	+1.9	+0.0	28.2	54.0	-25.8	$\begin{array}{r} \hline \text { Vert } \\ 144 \end{array}$
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
70	1831.880M	30.1	-30.6	+24.9	+0.3	+1.5	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	28.2	54.0	-25.8	Horiz 147
			+1.6	+0.0	+0.4	$+0.0$					
			+0.0	+0.0	+0.0	+0.0					
71	4579.685M	21.6	-31.0	+31.4	+0.1	+2.8	$\begin{aligned} & \hline+0.0 \\ & 165 \end{aligned}$	27.8	54.0	-26.2	$\begin{gathered} \hline \text { Horiz } \\ 128 \end{gathered}$
			+2.6	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
72	2747.865M	25.6	-30.2	+27.3	+0.5	+1.9	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	27.5	54.0	-26.5	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$
			+2.1	+0.0	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
73	923.479M	19.0	+0.0	+0.0	+0.0	+1.0	+0.0	29.5	94.0	-64.5	$\begin{gathered} \hline \text { Horiz } \\ 203 \end{gathered}$
			+0.0	+0.0	+0.0	-27.4					
			+22.9	+2.1	+2.3	+9.6					

Page 20 of 25

CKC Laboratories, Inc. Date: 6/4/2013 Time: 15:53:21 Itron, Inc. WO\#: 92785 Test Distance: 3 Meters Sequence\#: 4 Vert Itron, Inc. AMR transceiver device for endpoint installation P/N: 900 BCR

5dB Magnetic Mount Bandedge

Test Setup Photos

3dBi Glass Mount Antenna, Test Setup

5dB Magnetic Mount, Test Setup

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

LABORATORIES, INC.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 25 of 25

