

# **REGULATORY TEST REPORT**

**TITLE:** 53ESS FCC/IC Test Report **AUTHOR:** Drew Rosenberg

| REV | CCO    | DESCRIPTION OF CHANGE | DATE | APPROVALS   |  |  |
|-----|--------|-----------------------|------|-------------|--|--|
|     |        |                       |      | Engineering |  |  |
|     | INTTAL |                       |      | Engineering |  |  |

#### **REVISION HISTORY**

|                                   |  |  |  | Engineering |  |
|-----------------------------------|--|--|--|-------------|--|
|                                   |  |  |  | Engineering |  |
|                                   |  |  |  | Engineering |  |
| NOTICE OF PROPRIETARY INFORMATION |  |  |  |             |  |

Information contained herein is proprietary and is property of **ITRON, Inc.** where furnished with a proposal, the recipient shall use it solely to evaluate the proposal. Where furnished to a customer it shall be used solely for the purposes of inspection, installation or maintenance. Where furnished to a supplier, it shall be used solely in the performance of work contracted for this company. The information shall not be used or disclosed by the recipient for any other purpose, whatsoever.



#### Summary

Test Data Summary

## FCC Part 15.249 / IC RSS-210 Sec. 6.2.2(m2) Field strength of low power Transmitters 902-928MHz Band

FCC ID: EO9-53ESS IC ID: 864D-53ESS

### **Device Model:**

53ESS

# Model Numbers: 53ESS

# Serial Numbers: 2028

| Rule                         | Description                                   | Max.        | Pass/Fail   |
|------------------------------|-----------------------------------------------|-------------|-------------|
|                              |                                               | Reading     |             |
| 15.31(e)                     | Variation of Supply Voltage                   | No change   | Pass        |
| 15.207/RSS-210 Sec. 6.6(a)   | Powerline conducted emissions                 | N/A         | N/A         |
| 15.249(d)/RSS-210 sec.       | Out of band non-harmonic radiated emissions   | Noise Floor | Pass        |
| 6.6.2(m2)(3)                 |                                               |             |             |
| 15.35(b)/RSS-210 sec. 6.5    | duty cycle corrections                        | 13dBm       | N/A         |
| 15.249(a)/RSS-210 Sec. 6.2.2 | Radiated emissions of transmitter fundamental | 0.5dB below | Pass        |
| (m2)(1)                      | and harmonics                                 | limit       |             |
| 15.31(m)                     | Relative field intensities at high and low    | N/A         | N/A         |
|                              | frequencies of transmitter                    |             |             |
| 15.249(d)                    | Band Edge                                     | Noise Floor | Pass        |
| RSP-100 Appendix II          | 99% Bandwidth                                 | 420kHz      | Information |
|                              |                                               |             | Only        |

| Cognizant Personnel |                     |  |  |  |  |  |
|---------------------|---------------------|--|--|--|--|--|
|                     |                     |  |  |  |  |  |
| Drew Rosenberg      | Regulatory Engineer |  |  |  |  |  |
| Name                | Title               |  |  |  |  |  |
| Mark Krommo         | Sonier Technician   |  |  |  |  |  |
| Mark Kvamme         | Senior Technician   |  |  |  |  |  |
| Name                | litle               |  |  |  |  |  |
| Nick Wagner         | Test Engineer       |  |  |  |  |  |
| Name                | Title               |  |  |  |  |  |
|                     |                     |  |  |  |  |  |
|                     |                     |  |  |  |  |  |



## TCB Submittal Checklist

Item list for TCB evaluation

| Item                                              | Completed | Confidential |
|---------------------------------------------------|-----------|--------------|
| Test Report                                       | Yes       | No           |
| Test Setup Photos – Powerline Conducted Emissions | N/A       | No           |
| Test Setup Photos – Radiated Emissions            | Yes       | No           |
| Internal Pictures                                 | Yes       | Yes          |
| External Pictures                                 | N/A       | No           |
| Schematics                                        | Yes       | Yes          |
| Block Diagram                                     | Yes       | Yes          |
| Operational Description                           | Yes       | Yes          |
| Users Manual                                      | Yes       | No           |
| Label Drawings                                    | Yes       | No           |
| Request for Confidentiality                       | Yes       | No           |
| Industry Canada RSP-100 Appendices I and II       | Yes       | No           |

| Itron                                                                                                                                                                                                                                                           | 53ESS FCC/IC Test Report                                      |                 | PRT-1171-001              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------|---------------------------|--|
| Test 1: 15.31(e) F0                                                                                                                                                                                                                                             | CC: EO9-53ESS / IC: 864D-53ESS                                | Va              | riation of Supply Voltage |  |
| Test 1: 15.31(e)<br>Variation of Supply Voltage                                                                                                                                                                                                                 | Equipment Used                                                | Asset<br>Number |                           |  |
| Vary the supply voltage from 85% to 115% of<br>nominal voltage. If the power level of the<br>fundamental signal varies with supply voltage<br>the voltage level at which the fundamental sig<br>its highest and use that voltage level for all fun-<br>testing. | The Date Temp/Humidity<br>, record of f / %<br>nal is at ther | Tested by       |                           |  |

The nominal voltage is 7.5V DC. This device uses a voltage regulator that keeps the circuit power at 5 Volts as long as the input voltage level does not dip below 5.5 Volts. There is no change to the fundamental signal level as long as the input voltage remains above 5.5 Volts.



#### Test 2: 15.207 / RSS-210 Sec. 6.6(a)

Powerline Conducted Emissions

Measure the AC powerline conducted emissions from 150kHz to 30 MHz using a  $50\mu$ H/50 $\Omega$  line impedance stabilization network (LISN) according to the procedure specified in ANSI C63.4. Verify that no emissions exceed the following limits:

| Frequency<br>(MHz) | Quasi-Peak<br>(dBµV) | Average<br>(dBµV) |
|--------------------|----------------------|-------------------|
| 0.15-0.5           | 66 to 56             | 56 to 46          |
| 0.5-5              | 56                   | 46                |
| 5-30               | 60                   | 50                |

\*Decreases with the logarithm of frequency

| Eq   | uipment Used            | Asset<br>Number |
|------|-------------------------|-----------------|
| Date | Temp/Humidity<br>°F / % | Tested by       |

This device is a powered by DC voltage. No AC powerline emissions are required.



#### Test 3: 15.209 / RSS-210 sec. 6.2(m2)(3)

Out of band non-harmonic emissions

Measure the field strength of all spurious emissions that are not harmonics according to the procedure in Appendix A. The maximum field strength shall not exceed:

|           | Field           |                 |
|-----------|-----------------|-----------------|
| Frequency | Strength        | Distance        |
| (MHz)     | (μV/m)          | (meters)        |
| 1.705-30  | 30 <sup>*</sup> | 30 <sup>*</sup> |
| 30-88     | 100             | 3               |
| 88-216    | 150             | 3               |
| 216-960   | 200             | 3               |
| >960      | 500             | 3               |

\* Adjust 40dB/decade when measuring at different distances than specified.

For emissions measurements below 30MHz, rotate the loop antenna about its horizontal and vertical positions to maximize emissions.

| Equipment | Serial     | Cal      | Cal      |
|-----------|------------|----------|----------|
| Used      | Number     | Date     | Due      |
| EMCO      | 9509-2970  | 10/22/04 | 10/22/06 |
| 6502 Loop |            |          |          |
| Agilent   | US40240538 | 4/21/05  | 4/21/07  |
| E4408B    |            |          |          |
| EMCO      | 9901-1044  | 10/19/04 | 10/19/05 |
| 3148      |            |          |          |
| Log       |            |          |          |
| Periodic  |            |          |          |
| EMCO      | 9807-3129  | 1/23/04  | 1/23/06  |
| 3110B     |            |          |          |
| Biconical |            |          |          |
| Antenna   |            |          |          |
|           |            |          |          |

| Date    | Temp/Humidity<br>°F / % | Tested by                       |
|---------|-------------------------|---------------------------------|
| 6/30/05 | 82/33                   | Mark Kvamme &<br>Drew Rosenberg |

Radiated emissions were measured from 9.0304MHz, which is the lowest frequency oscillator on the board.

Radiated emissions below 30MHz were not detectable at distances greater than approximately 1 foot. The loop antenna was rotated about its horizontal and vertical positions to maximize emissions. The *noise floor of the test equipment used* is demonstrated below:

|         |      |       |   |       | Ant.   | Cable | Distance   | Corrected |        |        |
|---------|------|-------|---|-------|--------|-------|------------|-----------|--------|--------|
| Freq.   | Ant. | Level |   | Level | Factor | Loss  | Adjustment | Level     | Limit  | Margin |
| MHz     | Pos. | dBm   |   | dBuV  | dB     | dB    |            | dBuV/m    | dBuV/m | dB     |
|         |      |       |   |       |        |       |            |           |        |        |
| 9.8304  | Н    | -78.0 | Ρ | 29.0  | 10.8   | 0.1   | 40.0       | -0.1      | 29.5   | 29.6   |
| 15.0000 | Н    | -77.6 | Ρ | 29.4  | 10.8   | 0.1   | 40.0       | 0.3       | 29.5   | 29.2   |
| 19.6608 | Н    | -75.5 | Ρ | 31.5  | 9.6    | 0.2   | 40.0       | 1.3       | 29.5   | 28.3   |
| 25.0000 | Н    | -78.5 | Ρ | 28.5  | 9.6    | 0.2   | 40.0       | -1.7      | 29.5   | 31.3   |
| 30.0000 | Н    | -78.3 | Ρ | 28.7  | 8.1    | 0.2   | 40.0       | -3.0      | 29.5   | 32.5   |
|         |      |       |   |       |        |       |            |           |        |        |

Note: These are noise floor measurements, not device emissions.

Non-harmonic radiated emissions were first scanned in a GTEM. None of these signals could be detected at the open are test site due to their low signal level. For reference, a list of the signals found during the prescan is provided below. The measured level of the fundamental is also provided for reference:

| Frequency | level  |
|-----------|--------|
| (Mhz)     | (dBm)  |
| 59.15     | -68    |
| 78.8      | -68    |
| 226.25    | -70    |
| 294.95    | -69    |
| 447.45    | -66    |
| 437.5     | -67    |
| 452.19    | -65.19 |
| 915       | -1.88  |



# Test 4: 15.35(b) / RSS-210 sec. 6.5<br/> Pulsed OperationCalculate the maximum duty cycle of the<br/>transmitter that will occur in any 100ms. Perform the<br/>following calculation:Date Temp/Humidity<br/> $^{\circ}F / \%$ Tested byDuty Cycle<sub>dB</sub> = |20\*log(Duty Cycle %)|If the calculated result is less than 20dB, use that<br/>number as the relaxation factor for test 4 of this<br/>report. Otherwise, use 20dB.If the calculated result is less than 20dB, use that<br/>number as the relaxation factor for test 4 of this<br/>report. Otherwise, use 20dB.

The Unit Transmits Manchester Encoded Messages separated by a two to six second period of time. Each of the messages is 92 bytes (736 bits) long. Each message is broadcast on a different frequency within the Transmit Band.

Zooming in on a message length:

| 92 - 8 bit byte<br>⇒⇒⇒⇒ $1$ ⇒ $1$ 111                                                                                                                                                               | s<br>>⇒⇒îtîtîtî⇒⇒ît                                                                    |                      | 92 - 8 bit bytes  |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|-------------------|----|
| $ \Rightarrow \Rightarrow \Rightarrow \uparrow \Rightarrow \uparrow \uparrow \uparrow \uparrow \uparrow \Rightarrow \Rightarrow \Rightarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow $ | ⇒⇒↑<br>                                                                                | —                    | 44.92 msec        |    |
|                                                                                                                                                                                                     | $ 4 \pm 2$ Seconds $$                                                                  |                      |                   |    |
| Bit rate is:<br>Message Period is:                                                                                                                                                                  | 16.384 Kbits/Second.<br>736/16.384 Kbits / sec = 44.92                                 | msec                 |                   |    |
| During the transmission                                                                                                                                                                             | on of messages, the Transmit D                                                         | uty Cycle can be c   | omputed.          |    |
| % Duty Cycle                                                                                                                                                                                        | Transmit = $(736 \text{ bits}) (1/16.38)$                                              | 34 Kbits/Sec) (.5) ( | (100%) / (100 mse | c) |
| % Duty Cycle                                                                                                                                                                                        | Transmit =22.46 %                                                                      |                      |                   |    |
| Note: The .5 factor is                                                                                                                                                                              | a result of Manchester Encoded                                                         | Data.                |                   |    |
| Expressing the correct                                                                                                                                                                              | tion factor for Duty Cycle in dB                                                       | 3:                   |                   |    |
| dB Duty Cycle<br>dB Duty Cycle<br>dB Duty Cycle                                                                                                                                                     | e Transmit = 20 Log (Duty Cyc<br>e Transmit = 20 Log (.2246)<br>e Transmit = -12.97 dB | cle)                 |                   |    |



#### Test 5: 15.249(a)/RSS-210 sec. 6.2(m2)(1)

Transmitter Fundamental and Harmonics

Measure the field strength of the transmitter fundamental and harmonic emissions at three meters according to the procedure in Appendix A. Record emissions levels with the transmitter near its lowest, middle, and highest frequencies. The maximum field strength of emissions may not exceed:

| Fundamental | Harmonics   |
|-------------|-------------|
| (µV/m)      | $(\mu V/m)$ |
| 50,000      | 500         |

For harmonics, adjust for the proper duty cycle correction of up to 20dB in accordance with the results from test 3.

| Equipment         | Serial     | Cal      | Cal      |
|-------------------|------------|----------|----------|
| Used              | Number     | Date     | Due      |
| Roberts<br>Dipole | 4106       | 09/13/04 | 09/13/06 |
| EMCO 3115<br>Horn | 9205-3878  | 04/13/04 | 04/13/06 |
| Agilent<br>E4408B | US40240538 | 4/21/05  | 4/21/07  |

| Date    | Temp/Humidity<br>°F / % | Tested by                       |
|---------|-------------------------|---------------------------------|
| 6/17/05 | 82/33                   | Drew Rosenberg<br>& Nick Wagner |
| 6/20/05 | 83/52                   | Mark Kvamme                     |
| 6/24/05 | 82/52                   | Mark Kvamme                     |
| 6/27/05 | 82/64                   | Mark Kvamme                     |
| 6/28    | 75/89                   | Mark Kvamme                     |
| 6/29    | 82/58                   | Mark Kvamme                     |
| 7/11    | 82/59                   | Mark Kvamme                     |

#### **Fundamental Emissions**

The Fundamental emissions were measured in three orthogonal planes. Receiver Bandwidths were: RBW = 120kHz. VBW = 300kHz.

This device transmits in a frequency hopping pattern. To take vertical and horizontal measurements, the receiver was set to a max hold with the span set to include the full bandwidth of emissions on the screen. After a full transmit pattern was displayed on the screen, the peak was recorded. Afterward, low, middle, and high frequency data was recorded for the normal and sideways configurations.

|           |            |          |       |       | Ant.   | Cable | Corrected |        |        |
|-----------|------------|----------|-------|-------|--------|-------|-----------|--------|--------|
| Freq.     | Ant.       | Level    |       | Level | Factor | Loss  | Level     | Limit  | Margin |
| MHz       | Pos.       | dBm      |       | dBuV  | dB     | dB    | dBuV/m    | dBuV/m | dB     |
| Sideways  | Configur   | ration   |       |       |        |       |           |        |        |
| 915       | Н          | -44.2    | Р     | 62.8  | 29.1   | 1.6   | 93.5      | 94     | 0.5    |
| 915       | V          | -51.3    | Р     | 55.7  | 29.1   | 1.6   | 86.4      | 94     | 7.6    |
| 915.90    | V          | -44.3    | Ρ     | 62.7  | 29.1   | 1.6   | 93.4      | 94     | 0.6    |
| 914.50    | V          | -44.5    | Р     | 62.5  | 29.1   | 1.6   | 93.2      | 94     | 0.8    |
| 913.36    | V          | -44.8    | Р     | 62.2  | 29.1   | 1.6   | 92.9      | 94     | 1.1    |
|           |            |          |       |       |        |       |           |        |        |
| Normal C  | onfigurati | on       |       |       |        |       |           |        |        |
| 915       | V          | -45.0    | Р     | 62.0  | 29.1   | 1.6   | 92.7      | 94     | 1.3    |
| 915       | Н          | -47.5    | Р     | 59.5  | 29.1   | 1.6   | 90.2      | 94     | 3.8    |
| 915.90    | Н          | -45.7    | Ρ     | 61.3  | 29.1   | 1.6   | 92.0      | 94     | 2.0    |
| 914.78    | Н          | -45.7    | Р     | 61.3  | 29.1   | 1.6   | 92.0      | 94     | 2.0    |
| 913.35    | Н          | -46.0    | Р     | 61.0  | 29.1   | 1.6   | 91.7      | 94     | 2.3    |
|           |            |          |       |       |        |       |           |        |        |
| laying on | it's back  | Configui | ratio | n     |        |       |           |        |        |
| 915       | Н          | -46.7    | Ρ     | 60.3  | 29.1   | 1.6   | 91.0      | 94     | 3.0    |
| 915       | V          | -52.0    | Ρ     | 55.1  | 29.1   | 1.6   | 85.8      | 94     | 8.2    |
|           |            |          |       |       |        |       |           |        |        |



Test 5: 15.249(a)/RSS-210 sec. 6.2(m2)(1)

#### **Harmonic Emissions**

Harmonic emissions were initially measured in three orthogonal planes, but only maximized in two of them, since the emissions of the unit laying on its back were significantly lower than the others.

Receiver Bandwidths were: RBW = 1MHz, VBW=3MHz. Emissions above the fourth harmonic were below the noise floor of the measurement equipment.

|          |         |          |   |       | Ant.   | Cable | Duty Cycle | Corrected |        |        |
|----------|---------|----------|---|-------|--------|-------|------------|-----------|--------|--------|
| Freq.    | Ant.    | Level    |   | Level | Factor | Loss  | Factor     | Level     | Limit  | Margin |
| MHz      | Pos.    | dBm      |   | dBuV  | dB     | dB    | dB         | dBuV/m    | dBuV/m | dB     |
| Normal C | Configu | iration  |   |       |        |       |            |           |        |        |
| 1830     | V       | -77.8    | Ρ | 29.2  | 26.8   | 2.4   | 13         | 45.4      | 54     | 8.6    |
|          | Н       | -74.0    | Ρ | 33.0  | 26.8   | 2.4   | 13         | 49.2      | 54     | 4.8    |
| 2745     | V       | -86.7    | Ρ | 20.3  | 29.4   | 2.4   | 13         | 39.1      | 54     | 14.9   |
|          | Н       | -88.3    | Ρ | 18.7  | 29.4   | 2.4   | 13         | 37.5      | 54     | 16.5   |
| 3660     | V       | -91.7    | Ρ | 15.3  | 31.7   | 3.7   | 13         | 37.7      | 54     | 16.3   |
|          | Н       | -88.7    | Ρ | 18.3  | 31.8   | 3.7   | 13         | 40.8      | 54     | 13.2   |
|          |         |          |   |       |        |       |            |           |        |        |
| Sideway  | s Confi | iguratio | n |       |        |       |            |           |        |        |
| 1830     | V       | -73.6    | Ρ | 33.4  | 26.8   | 2.4   | 13         | 49.6      | 54     | 4.4    |
|          | Н       | -81.5    | Ρ | 25.5  | 26.8   | 2.4   | 13         | 41.7      | 54     | 12.3   |
| 2745     | V       | -91.9    | Ρ | 15.1  | 29.4   | 2.4   | 13         | 33.9      | 54     | 20.1   |
|          | Н       | -85.4    | Ρ | 21.6  | 29.4   | 2.4   | 13         | 40.4      | 54     | 13.6   |
| 3660     | V       | -93.4    | Ρ | 13.6  | 31.7   | 3.7   | 13         | 36.0      | 54     | 18.0   |
|          | Н       | -92.8    | Ρ | 14.2  | 31.8   | 3.7   | 13         | 36.7      | 54     | 17.3   |
|          |         |          |   |       |        |       |            |           |        |        |



Test 6: FCC Part 15.31(m)

Relative Field Intensities over frequency

Use the max hold feature of the analyzer to capture the full bandwidth of transmissions. Place markers near the highest and lowest transmission frequencies to demonstrate the relative field strengths of each.

| Equipment | Serial     | Cal      | Cal      |
|-----------|------------|----------|----------|
| Used      | Number     | Date     | Due      |
| HP 8591E  | 3229A00239 | 04/05/04 | 04/05/06 |

| Date     | Tested by   |
|----------|-------------|
| 7/5/2005 | Mark Kvamme |

The unit was placed inside a GTEM® and measured to show the relative field intensities over the transmitter's hopping frequency range:



Т



#### Test 7: FCC Part 15.249(d)

Band Edge

Demonstrate that the transmitter's emissions at the 902-928MHz band edge are at least 50dB below the carrier or less than 200uV/m at 3 meters, whichever is the lesser attenuation.

| Equipment<br>Used | Serial<br>Number | Cal<br>Date | Cal<br>Due |
|-------------------|------------------|-------------|------------|
| Roberts<br>Dipole | 4106             | 09/13/04    | 09/13/06   |
| Agilent<br>E4408B | US40240538       | 4/21/05     | 4/21/07    |

| Date     | Temp/Humidity<br>°F / % | Tested by   |
|----------|-------------------------|-------------|
| 07/11/05 | 82/59                   | Mark Kvamme |

The transmitter does not leave the 910-920MHz range. There are no measurable emissions at the 902MHz and 928MHz band edges. Radiated emissions were measured at the FCC site to show the *noise floor of the measurement equipment* at 902MHz and 928MHz.

|       |      |        |   |       | Ant.   | Cable | Corrected |        |        |
|-------|------|--------|---|-------|--------|-------|-----------|--------|--------|
| Freq. | Ant. | Level  |   | Level | Factor | Loss  | Level     | Limit  | Margin |
| MHz   | Pos. | dBm    |   | dBuV  | dB     | dB    | dBuV/m    | dBuV/m | dB     |
|       |      |        |   |       |        |       |           |        |        |
| 915   | Н    | -100.0 | Р | 7.0   | 29.1   | 1.6   | 37.7      | 54     | 16.3   |
| 915   | V    | -100.8 | Ρ | 6.2   | 29.1   | 1.6   | 36.9      | 54     | 17.1   |
|       |      |        |   |       |        |       |           |        |        |



PRT-1171-001 99% Bandwidth

Т

#### Test 8: RSP-100 Appendix II

99% Bandwidth

Capture a plot of the 99% bandwidth of a single transmission.

| Equipment         | Serial     | Cal     | Cal     |
|-------------------|------------|---------|---------|
| Used              | Number     | Date    | Due     |
| Agilent<br>E4408B | US40240538 | 4/21/05 | 4/21/07 |

| Date     | Temp/Humidity<br>°F / % | Tested by   |
|----------|-------------------------|-------------|
| 07/11/05 | 82/59                   | Mark Kvamme |





#### Appendix A

Field Strength Measurement Procedure

This test measures the field strength of radiated emissions using a spectrum analyzer and a receiving antenna in accordance with ANSI C63.4-2003. During the test, the EUT is to be placed on a non-conducting support at 80 cm above the horizontal ground plane of the OATS. The horizontal distance between the antenna and the DUT is to be exactly 3 meters. Levels below 1 GHz are to be measured with the spectrum analyzer resolution bandwidth at 120 kHz and levels at or above 1 GHz are to be measured with the spectrum analyzer resolution bandwidth at 1 MHz.

Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.
 If appropriate, manipulate the system cables to produce the highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
 Rotate the EUT 360° to maximize the suspected highest amplitude signal. If the signal or

another at a different frequency is observed to exceed the previously noted highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat step b). Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.

4) Move the antenna over its fully allowed range of travel to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to step b) with the antenna fixed at this height. Otherwise, move the antenna to the height that repeats the highest amplitude observation and proceed.

5) Change the polarity of the antenna and repeat step b), step c), and step d). Compare the resulting suspected highest amplitude signal with that found for the other polarity. Select and note the higher of the two signals. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.

