REGULATORY COMPLIANCE REPORT

TITLE: FCC & IC Test Report for 15.247 & RSS-210 Digital Transmission Device AUTHOR: Jeff Gilbert

REV	CCO	DESCRIPTION OF CHANGE	DATE	APPRO	OVALS
Δ		INITIAL RELEASE		Engineering	Jeff Gilbert
~				Engineering	Dan Bomsta

REVISION HISTORY

		Engineering	
		Engineering	
		Engineering	

Test Data Summary

FCC 15.247 / IC RSS-210 Digital Transmission Device, 2.405 - 2.475 GHz FCC ID: EO924GZ / IC: 864D-24GZ Model Number: 2.4GZ OATS Registration Number: FCC 90716, IC 5615

Rule	Description	Max. Reading	Pass/Fail
Part 15.207 / RSS-Gen 7.2.2	AC Powerline Conducted Emissions	N/A (battery device)	N/A
Part 15.247(b)(3) / RSS-210 A8.4(4)	Peak RF Power Output – Conducted	20.94 mW	Pass
Part 15.247(a)(2) / RSS-210 A8.2(a)	6 dB Bandwidth - Conducted	1.621 MHz	Pass
Part 15.247(e) / RSS-210 A8.2(b)	Peak Power Spectral Density – Conducted	-0.843 dBm/3 kHz	Pass
Part 15.247(d) / RSS-210 A8.5	Spurious Emissions – Conducted	-43.4 dBc	Pass
Parts 15.205 & 15.209 / RSS-210 2.2, 2.6 Tables 1 & 2	Restricted Bands / Spurious Emissions – Radiated	51.83 dBµV/m @ 3m (4960 MHz)	Pass
RSS-Gen 7.2.3	Receiver Spurious Emissions – Conducted	47.4 dBuV/m @ 3m (4876 MHz)	Pass

Rule versions: FCC Part 1 (10-2006), FCC Part 2 (10-2006), FCC Part 15 (05-04-2007), RSS-Gen Issue 2 (06-2007), RSS-210 Issue 7 (06-2007).

Reference docs: ANSI C63.4-2003, FCC KDB Publication, 558074, March 23, 2005, New Guidance on Measurement for Digital Transmission Systems in Section 15.247.

	Cognizant	Personnel
-	Name	Title
_	Mark Kvamme	Test Technician
	Nome	
	Jeff Gilbert	Regulatory Engineer
-		

<u>15.31 (e)</u>

This is a battery powered device. Nominal battery voltage is 3.0 Vdc. In order to perform conducted testing of the device, the battery was removed and a DC supply was used in its place. The DC supply was varied between 2.55 Vdc and 3.45 Vdc. The maximum peak RF power was found with the DC supply at 3.45 Vdc. All conducted testing was performed at 3.45 Vdc. All radiated testing was performed using a new battery.

15.247(b) (3) / RSS-210 A8.4 (4)

RF Power Output

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

This is an RF conducted test. Use a direct connection between the antenna port of the transmitter and the spectrum analyzer, through suitable attenuation.

RBW > 6 dB bandwidth of the emission $VBW \ge RBW$ Span = > 6 dB bandwidth of the emission Sweep = autoDetector function = peak Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Equipment Used	Model Number	Serial Number	Cal Date	Due	Date	Tested by
Spectrum Analyzer	Agilent E7405A	MY45113415	Aug/07	Aug/08	8-27-07	Mark Kvamme
RF Test Cable	SUCOFLEX 104	220057 002	03/07	03/08	0 21 01	

Cable loss of 0.21 dB was added to the spectrum analyzer as a correction. The marker value in the plots is the true corrected value.

🔆 🔆 Aç	jilent	03	:53:17 (Aug 28, 2	007		RT						
Ref 10	10 mW			At	ten 30 di	3				Mkr	1 2.4046 2	6750 0.94	GHz mW
Peak Log 10						1 \$							
dB/													
M1 S2 S3 EC													
AA													
c .			1										
Center #Res B	2.405 3W 3 M⊦	GF IZ	12			VBW 3 MF	lz			Swee	Spa p5ms(4	n 5 M 101 p	MHŻ ts)
C:PIC	C:PICTURE.GIF file saved												

🔆 🔆 Agiler	nt 03	3:54:46	Aug 28, 2	007				RT		
Ref 100 n	nW		At	ten 30 di	3			Mkr	1 2.4396 1	6500 GHz 7.54 mW
Peak Log					1 \$					
10 dB/										
M1 \$2										
S3 FC										
Center 2. #Res BW 3	44 GH: 3 MHz	Z			VBW 3 <u>M</u> F	lz		Swee	Spa p 5 ms_(4	an 5 MHz 101 pt <u>s)</u>
C:PICTU	C:PICTURE.GIF file saved									

🔆 🔆 Agile	ent 03	:55:55	Aug 28, 2	.007		RT						
Ref 100	mЫ		At	ten 30 d	В			Mkr	1 2.4755 1	5750 GHz .8.08 mW		
Peak Log							\$					
10 dB/												
M1_62												
S3 FC												
L Center 2	2.475 GI	lz							Sp;	an 5 MHz		
#Res BW	3 MHz				VBW 3 MH	lz		Swee	⊧p 5 ms (4	401 pts)		
CIPICI	OKE.GI	tile sr	aved									

Part 15.247(a) (2) / RSS-210 A8.2 (a)

6 dB Bandwidth

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Use the following spectrum analyzer settings:

RBW = 100 kHz $VBW \ge RBW$ Span = 5 MHz Sweep = auto Detector function = PeakTrace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the mission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

Equipment Used	Model Number	Serial Number	Cal Date	Due	Date	Tested by
Spectrum Analyzer	Agilent E7405A	MY45113415	Aug/07	Aug/08	0/07/0007	Mark Kyamma
RF Test Cable	SUCOFLEX 104	220057 002	03/07	03/08	8/27/2007	Mark Kvamme

🔆 🔆 Aç	jilent 04	4:13:21 f	Aug 28, 2	007				RT			
Ref 20	∣dBm		At	ten 30 di	3			Mkr 1	1 2.4402 N dB 1.4	2500 GHz 608 MHz	
Peak Log											
10 dB/				,,	~~~~	~~~	~~~				
							`	~			
	N/dB	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/						\frown	~~	
	/ 6.00	dB								<u> </u>	
	N dB	1.60	8 MHz								
M1 S2 S3 FC											
ÂÂ											
Center #Res B	2.44 GH 3W 100 k⊦	z z		#	VBW 300	kHz		Swee	Spa p 5 ms (4	an 5 MHz 401 pts)	
C-DTC	C.DICTUDE GIE file equed										

Part 15.247(e) / RSS-210 A8.2 (b)

Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Use the following spectrum analyzer settings:

RBW = 3 kHz VBW ≥ RBW Span = > 3 dB bandwidth Sweep = SPAN/3 kHz (e.g., for a span of 1.5 MHz, the sweep would be $1.5 \times 10^6 \div 3 \times 10^3 = 500$ seconds.) Detector function = peak Trace = max hold

Locate and zoom in on the emission peak within the passband. The peak level measured must be no greater than + 8 dBm.

Equipment Used	Model Number	Serial Number	Cal Date	Due	Date	Tested by
Spectrum	Agilent E7405A	MY45113415	Aua/07	Aua/08		
Analyzer					8/27/2007	Mark Kvamme
RF Test Cable	SUCOFLEX 104	220057 002	03/07	03/08		•

Cable loss of 0.21 dB was added to the spectrum analyzer as a correction. The marker value in the plots is the true corrected value.

一张	Ag	jilent 🛛 🤅)4:51:42 f	Aug 28, 2	007				RT		
Ref	20	dBm		At	ten 30 di	3			Mkr1	2.44042 -1.9	2900 GHz 326 dBm
Pea Log	k										
10 dB7	/									1	
		m	1 minut		mm	my	form	hann	s	my,	ma mi
			\mathbb{N}			V					
			¥							Y	
M1 S3	S2 FS										
	ÂĂ										
Cer #Re	iter s B	2.44 GH W 3 kHz	łz		+	•VBW 10 k	:Hz		#Sweep 4	Span 433.3 s (4	1.3 MHz 401 pts)
100											

15.247 (d) / RSS-210 A8.5

Spurious RF Conducted Emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power,

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. RBW = 100 kHz VBW > RBW Sweep = auto Detector function = peak Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified.

Equipment Used	Model Number	Serial Number	Cal Date	Due	Date	Tested by
Spectrum Analyzer	Agilent E7405A	MY45113415	Aug/07	Aug/08	Date	Tested by
RF Test Cable	SUCOFLEX 104	220057 002	03/07	03/08	8-27-07	Mark Kvamme

Frequency range investigated was 30 kHz to 26 GHz. TX @ 2.405, 2.440, & 2.475 GHz.

🔆 🔆 🕂	gilent 0	5:21:16 ƙ	Aug 28, 2	007				R	Т				
Ref 20	dBm		At	ten 30 di	3					Mkr1	∆ 4 -	.810 43.4	GHz dB
Peak													
со <u>9</u> 10										L		<u> </u>	
đ₿∕										ļ		<u> </u>	
			1										
		m l										L	~~~~
								~~~~					
Start 3	10 kHz										Stop	26	GHz
#Res E	3W 100 kH	lz		#	VBW 300	kHz		Sw	eep	2.694	s (4	401 p	ots)
Mark 1 D	er Tra	ice Tr	ype rog	X f	Axis Ar cu-		Amplitu 7 704 /	iqe					
10	(1	) F	req	4.81	10 GHz		-43.4	dB					
CIPIC	TURF GI	F file sa	ved										

	05:15:03	Aug 28, 2	007		R	Т		
Dat 20 dBm		0.	LAN 20 dB			М	lkr1 ∆ 4	.940 GHz
Peak	18							
Log	- <b>\$</b>							
		1						
		1_mil	~~~~	·····		~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~
Start 30 kHz #Res BW 100	kНz		#VBW 300	kHz	Sv	veep 2	top 4.694 s	026 GHZ 101 pts)
Marker 1	irace	Type	X Axis		Amplitude			.01 p.co/
1R 16	(1) (1)	Freq Freq	2.470 GHz 4.940 GHz		8.024 dBm -45.71 dB			
C:PICTURE.	GIF file s	aved						
🔆 Agilent	05:17:03	Aug 28, 2	007		R	Т		
Ref 20 dBm		<u></u> ۵+	ten 30 dB			М	4 1 kr1 _4	.875 GHz 6.11 dB
Peak								0.47 0.0
	1.R							
	1R \$							
Log 10 dB/	1R							
Log 10 dB/	1 R							
Log 10 dB/								
Log 10 dB/	1R							
Log 10 dB/								
Log 10 dB/								
Cog 10 dB/								26 GHz
Log 10 dB/ Start 30 kHz #Res BW 100	1R		#VBW 300	kHz		чеер 2	Stop .694 s (4	
Log 10 dB/ Start 30 kHz #Res BW 100 Marker 10	1R ◆ kHz race		#VBW 300 X Axis 2 478 GH=	kHz	SI Amplitude	чеер 2	Stop .694 s (4	26 GHz 101 pts)
Log 10 dB/ Start 30 kHz #Res BW 100 Marker 1R 10	1R kHz race (1) (1)	Type Freq Freq	#VBW 300 X Axis 2.470 GHz 4.875 GHz	kHz	St Amplitude 7.422 dBm -46.11 dB	чеер 2	Stop .694 s (4	) 26 GHz 101 pts)
Log 10 dB/ Start 30 kHz #Res BW 100 Marker 1R 10	1R ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Type Freq Freq	#VBW 300 X Axis 2.470 GHz 4.875 GHz	kHz	SI Amplitude 7.422 dBm -46.11 dB	veep 2	Stop .694 s (4	26 GHz 101 pts)
Log 10 dB/ Start 30 kHz #Res BW 100 Marker 1R 10	1R kHz (1) (1)	Type Freq Freq	#VBW 300 X Axis 2.470 GHz 4.875 GHz	kHz	St Amplitude 7.422 dBm -46.11 dB	veep 2	Stop .694 s (4	26 GHz
Log 10 dB/ Start 30 kHz #Res BW 100 Marker 1R 10	1R ◆ kHz race (1) (1)	Type Freq Freq	#VBW 300 X Axis 2.470 GHz 4.875 GHz	kHz	Si Amplitude 7.422 dBm -46.11 dB	veep 2	Stop .694 s (4	26 GHz 101 pts)

C:PICTURE.GIF file saved

### 15.205, 15.209 / RSS-210 2.2, 2.6

#### **Restricted Bands & Spurious Emissions**

Only spurious emissions are permitted in any of the frequency bands listed below. The limits stated in 15.209 shall apply. Spurious emissions outside these bands shall also comply with the 15.209 limits. This test is required for any spurious emission or modulation product that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for  $f \ge 1$  GHz, 100 kHz for f < 1 GHz (120 kHz if QP detector is used)

VBW = peak measurements: 1 MHz for f  $\geq$  1 GHz. Average measurements: 10 Hz for f  $\geq$  1 GHz. Auto for f < 1 GHz

Sweep = auto

Detector function = peak for  $f \ge 1$  GHz, peak or QP as required for f < 1 GHz

Trace = max hold

Follow the guidelines in ANSI C63.4-2003 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified.

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505 1	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

#### Frequency range investigated was 30 kHz to 25 GHz. Worst case results are reported.

	Model Number	Serial Number	Cal Date	Due
Spectrum Analyzer	HP8593E	3543A02032	Oct/06	Oct/07
JCA technology JCA010-				
415 (0.1 to 10Ghz)	JCA010-415	103	May/07	May/08
JCA technology JCA618-80				
(8 to 18 GHz)	JCA618-801	106	May/07	May/08
Huber&Suhner 40 foot				
cable	Sucoflex 100	220297 001	Apr/07	May/08
Double ridge wave guide	EMCO 3115	9508-4550	Mar/06	Mar/08
Dipole antenna	3121	78573	9/16/2006	9/16/2007
Loop antenna	EMCO 6502	2129	10/24/06	10/24/08

		Antenna height	Table angle (Degrees)	reading RBW @1Mhz,					antenna		field	
		(cm.) for	for	VBW		Relative	coaxial	amplifier	correction	field	strength	
Frequency	Antenna	54dbuV/m	54dbuV/m	@10hz	Temp.	Humidity	loss	gain	factor	strength	limit	margin
(MHz)	polarity	reading	reading	(dBm)	(F)	%	(db)	(dB)	(/m)	(dBuV/m)	(dBuV/m)	(db)
4810	Vertical	122	150	-52.6	79	49	6.52	45	33.1	49.02	54	4.98
4880	Vertical	102	120	-54.85	68	81	6.52	45	33.1	46.77	54	7.23
4960	Vertical	120	150	-52.78	79	49	6.52	45	33.1	48.84	54	5.16
4810	Horizontal	100	125	-54.94	79	49	6.52	45	33.2	46.78	54	7.22
4880	Horizontal	101	295	-50.29	68	81	6.52	45	33.2	51.43	54	2.57
4960	Horizontal	101	35	-49.89	79	49	6.52	45	33.2	51.83	54	2.17
4810	Vertical	122	155	-45.16	79	49	6.52	45	33.1	56.46	74	17.54
4880	Vertical	142	270	-47.13	68	81	6.52	45	33.1	54.49	74	19.51
4960	Vertical	100	295	-41.31	79	49	6.52	45	33.1	60.31	74	13.69
4810	Horizontal	101	115	-46.95	79	49	6.52	45	33.2	54.77	74	19.23
4880	Horizontal	101	130	-46.71	68	81	6.52	45	33.2	55.01	74	18.99
4960	Horizontal	101	40	-40.65	79	49	6.52	45	33.2	61.07	74	12.93
7215	Vertical	134	95	-61.28	79	49	8.5	43.8	36.1	46.52	54	7.48
7320	Vertical	106	15	-60.39	68	81	8.5	43.8	36.1	47.41	54	6.59
7440	Vertical	101	150	-61.23	80	47	8.5	43.8	36.1	46.57	54	7.43
7215	Horizontal	128	65	-62.65	79	49	8.5	43.8	36.1	45.15	54	8.85
7320	Horizontal	116	150	-60.01	68	81	8.5	43.8	36.1	47.79	54	6.21
7440	Horizontal	126	60	-60.49	80	47	8.5	43.8	36.1	47.31	54	6.69
7215	Vertical	100	160	-50.09	79	49	8.5	43.8	36.1	57.71	74	16.29
7320	Vertical	100	155	-49.94	68	81	8.5	43.8	36.1	57.86	74	16.14
7440	Vertical	130	95	-50.05	80	47	8.5	43.8	36.1	57.75	74	16.25
7215	Horizontal	101	10	-49.48	79	49	8.5	43.8	36.1	58.32	74	15.68
7320	Horizontal	101	45	-51.01	68	81	8.5	43.8	36.1	56.79	74	17.21
7440	Horizontal	101	70	-49.12	80	47	8.5	43.8	36.1	58.68	74	15.32
9620	Vertical	110	30	-64.7	70	79	9.6	45	38.1	45	54	9
9760	Vertical	110	30	-64.7	70	79	9.6	45	38.1	45	54	9
9920	Vertical	110	30	-64.7	70	79	9.6	45	38.1	45	54	9
9620	Horizontal	106	75	-64.95	70	79	9.6	45	38.1	44.75	54	9.25
9760	Horizontal	106	75	-64.95	70	79	9.6	45	38.1	44.75	54	9.25

FCC & IC T	est Report for 15	5.247 & RSS-2	210 Digital	Transmissio	n Device	FC	C-0019-001					
9920	Horizontal	106	75	-64.95	70	79	9.6	45	38.1	44.75	54	9.25
9620	Vertical	100	255	-52.28	70	79	9.6	45	38.1	57.42	74	16.58
9760	Vertical	100	255	-52.28	70	79	9.6	45	38.1	57.42	74	16.58
9920	Vertical	100	255	-52.28	70	79	9.6	45	38.1	57.42	74	16.58
9620	Horizontal	101	165	-52.32	70	79	9.6	45	38.1	57.38	74	16.62
9760	Horizontal	101	165	-52.32	70	79	9.6	45	38.1	57.38	74	16.62
9920	Horizontal	101	165	-52.32	70	79	9.6	45	38.1	57.38	74	16.62
12025	Vertical	241	55	-67.42	73	75	10.6	43.9	38.6	44.88	54	9.12
12200	Vertical	241	55	-67.42	73	75	10.6	43.9	38.6	44.88	54	9.12
12400	Vertical	241	55	-67.42	73	75	10.6	43.9	38.6	44.88	54	9.12
12025	Horizontal	147	255	-67.4	75	73	10.6	43.9	38.6	44.9	54	9.1
12200	Horizontal	147	255	-67.4	75	73	10.6	43.9	38.6	44.9	54	9.1
12400	Horizontal	147	255	-67.4	75	73	10.6	43.9	38.6	44.9	54	9.1
12025	Vertical	138	305	-54.58	73	75	10.6	43.9	38.6	57.72	74	16.28
12200	Vertical	138	305	-54.58	73	75	10.6	43.9	38.6	57.72	74	16.28
12400	Vertical	138	305	-54.58	73	75	10.6	43.9	38.6	57.72	74	16.28
12025	Horizontal	132	5	-54.79	75	73	10.6	43.9	38.6	57.51	74	16.49
12200	Horizontal	132	5	-54.79	75	73	10.6	43.9	38.6	57.51	74	16.49
12400	Horizontal	132	5	-54.79	75	73	10.6	43.9	38.6	57.51	74	16.49
14430	Vertical	100	245	-65.9	76	71	11.7	44.8	40.9	48.9	54	5.1
14640	Vertical	100	245	-65.9	76	71	11.7	44.8	40.9	48.9	54	5.1
14880	Vertical	100	245	-65.9	76	71	11.7	44.8	40.9	48.9	54	5.1
14430	Horizontal	101	315	-65.95	77	69	11.7	44.8	40.9	48.85	54	5.15
14640	Horizontal	101	315	-65.95	77	69	11.7	44.8	40.9	48.85	54	5.15
14880	Horizontal	101	315	-65.95	77	69	11.7	44.8	40.9	48.85	54	5.15
14430	Vertical	101	45	-53.31	76	71	11.7	44.8	40.9	61.49	74	12.51
14640	Vertical	101	45	-53.31	76	71	11.7	44.8	40.9	61.49	74	12.51
14880	Vertical	101	45	-53.31	76	71	11.7	44.8	40.9	61.49	74	12.51
14430	Horizontal	101	145	-52.98	77	69	11.7	44.8	40.9	61.82	74	12.18
14640	Horizontal	101	145	-52.98	77	69	11.7	44.8	40.9	61.82	74	12.18

#### **Band-Edge Measurement Plots**

2310 - 2390 MHz & 2483.5 - 2500 MHz



т







Т

## **RSS-Gen 7.2.3 Receiver Spurious Emission Limits**

#### **Receiver Spurious Emissions**

The receiver shall be operated in the normal receive mode near the mid-point of the band over which the receiver is designed to operate. Unless otherwise specified in the applicable RSS, the radiated emission measurement is the standard measurement method (with the device's antenna in place) to measure receiver spurious emissions. Radiated emission measurements are to be performed using a calibrated open-area test site. As an alternative, the conducted measurement method may be used when the antenna is detachable. In such a case, the receiver spurious signal may be measured at the antenna port. If the receiver is super-regenerative, stabilize it by coupling to it an unmodulated carrier on the receiver frequency (antenna conducted measurement) or by transmitting an unmodulated carrier on the receiver frequency from an antenna in the proximity of the receiver (radiated measurement). Taking care not to overload the receiver, vary the amplitude and frequency of the stabilizing signal to obtain the highest level of the spurious emissions from the receiver. For either method, the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz. For emissions below 1 GHz, measurements shall be performed using a CISPR guasi-peak detector and the related measurement bandwidth. As an alternative to CISPR guasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector with the same measurement bandwidth as that for CISPR quasi-peak measurements. Above 1 GHz, measurements shall be performed using an average detector and a resolution bandwidth of 300 kHz to 1 MHz.

#### **Receiver Spurious Emission Standard**

The following receiver spurious emission limits shall be complied with:

- (a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz, and 1.0 MHz for measurements above 1.0 GHz.
- (b) If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2 nanowatts per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

Spurious Frequency (MHz)	Field Strength (microvolt/m at 3 meters)	Equipment Used	Model Number	Serial Number	Cal Date	Due
30-88	100	Spectrum Analyzer	Agilent E7405A	MY45113415	Aug/07	Aug/08
88-216	150	JCA				
216-960	200	technology JCA010-415				
Above 960	500	(0.1 to	JCA010-			
		10Ghz)	415	103	May/07	May/08
Date Tested b	ру	JCA				
		technology				
8/28/2007 Mark Kvan	nme	JCA618-80	JCA618-			
II		(8 to 18 GHz)	801	106	May/07	May/08
Frequency range inve	estigated was 30 MHz to	Huber&Suhn				
15 GHz. Worst case	results are shown.	er 40 foot	Sucoflex			
		cable	100	220297 001	Apr/07	May/08
		EMCO 3115				
		double ridge	EMCO			
	wave guide	3115	9508-4550	Mar/06	Mar/08	
		Dipole	3121	78573	9/16/2006	9/16/2007

#### Table 1 – Radiated Spurious Emission Limits for Receivers

🔆 🔆 🔆	gilent	02:43	3:26	Aug 29, 2	2007				RT		
Ref 70	) dBµV			At	ten 20 di	B Ext PG	45 dB		Mki	r1 4.8759 51	9125 GHz 47 dBµV
Peak Log											
10 dB/					L to helper	1 •		minute			
		~~~~	~~~~								- M. Mar
				<u> </u>							
				<u> </u>							
M1 S2 S3 FC											
A AA											
Center #Res E	∙4.876 3W1 M⊦	GHz Iz				VBW 1 Mł	łz		Swee	Spa ∋p5ms(4	an 5 MHz 401 pts)
CODIC	THDE	215 6	ilo es	hod							

🔆 🔆 Ag	jilent	02	2:58:17	Aug	1 29, 2	2007			R	Т		
Ref 70	dBµV				f	Atten 5 d	В			Mkr	1 4.8760 47	0000 GHz .4 dBµV
Peak Log												
10 dB/								Ļ				
									 <u> </u>			
M1 S2 S3 FC												
A AA												
Center #Res B	4.876 W 1 MH	Gł Iz	łz				#VBW 30	Hz	Swe	ep 53	Spa // 3.4 ms	an 5 MHz 401 pts)
C:PIC	TURE.	GI	file s	ave	d							

<u>ANNEX A</u>

Field Strength Measurement Procedure

This test measures the field strength of radiated emissions using a spectrum analyzer and a receiving antenna in accordance with ANSI C63.4-2003. During the test, the EUT is to be placed on a non-conducting support at 80 cm above the horizontal ground plane of the OATS. The horizontal distance between the antenna and the EUT is to be exactly 3 meters. Levels below 1 GHz are to be measured with the spectrum analyzer resolution bandwidth at 120 kHz and levels at or above 1 GHz are to be measured with the spectrum analyzer resolution bandwidth at 1 MHz.

1) Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.

2) If appropriate, manipulate the system cables to produce the highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.

3) Rotate the EUT 360° to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat step 2). Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.

4) Move the antenna over its fully allowed range of travel to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to step 2) with the antenna fixed at this height. Otherwise, move the antenna to the height that repeats the highest amplitude observation and proceed.

5) Change the polarity of the antenna and repeat step 2), step 3), and step 4). Compare the resulting suspected highest amplitude signal with that found for the other polarity. Select and note the higher of the two signals.

6) The transmitter shall be replaced by a substitution antenna.

The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter. The substitution antenna shall be connected to a calibrated signal generator. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

7) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.

8) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.

9) The input level to the substitution antenna shall be recorded as power level, corrected for any change of input attenuator setting of the measuring receiver.

10) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

11) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.

