REGULATORY COMPLIANCE REPORT

TITLE: FCC & IC Test Report for 15.249 & RSS-210 Low Power Transmitter, 100GDLD AUTHOR: Mark Kvamme

REV	CCO	DESCRIPTION OF CHANGE	DATE	APPROVALS	
004		INUTIAL DELEACE	05may09	Engineering	
001		INITIAL RELEASE		Engineering	

REVISION HISTORY

001a	answer non-conforms of 12may	Engineering	
		Engineering	
		Engineering	

NOTICE OF PROPRIETARY INFORMATION

Information contained herein is proprietary and is property of **ITRON, Inc.** where furnished with a proposal, the recipient shall use it solely to evaluate the proposal. Where furnished to a customer it shall be used solely for the purposes of inspection, installation or maintenance. Where furnished to a supplier, it shall be used solely in the performance of work contracted for this company. The information shall not be used or disclosed by the recipient for any other purpose, whatsoever.

fcc-5002-004a_249 Rev. 001a

Test Data Summary

FCC Part 15.249 / IC RSS-210 Sec. 6.2.2(m2)

Field strength of Low Power Transmitters, 908 MHz

FCC ID: EO9100GDLD IC ID: 864D-100GDLD **Device Model:** Model 3 and Model 4 **Item Numbers:** ERG-5002-005 -006 **Serial Number:** 5018(radiated), 9020(conducted)

OATS Registration Number: FCC 90716, IC 5615

Rule	Description	Max. Reading	Pass/Fail
15.31(e)	Variation of Supply Voltage	N/A battery	N/A
15.207/RSS-210 Sec.	Power line conducted emissions	N/A battery	N/A
6.6(a)		-	
15.249(d)/RSS-210 sec.	Out of band non-harmonic radiated	No Emissions	Pass
6.6.2(m2)(3)	emissions		
15.35(b)/RSS-210 sec. 6.5	duty cycle corrections	100%	N/A
15.249(a)/RSS-210 Sec.	Radiated emissions of transmitter	93.64dbuV/m @908 MHz and	Pass
6.2.2 (m2)(1)	fundamental and harmonics	Peak 53.66dbuV/m @ 1816 MHz	
15.249(d)	Band Edge	120.9 uV/m quasi peak @902 MHz -	Pass
		55.94dbc @ 902 MHz and	
		66.42dbc @ 928 MHz	
RSP-100 Appendix II	99% Bandwidth	136Khz @ 908 MHz	Pass

Rule versions: FCC Part 1 (01-2006), FCC Part 2 (01-2006), FCC Part 15 (02-01-2006), RSS-102 Issue 2 (11-2005), RSS-210 Issue 7 (June 2007), RSS-Gen Issue 1 (09-2005).
Reference docs: ANSI C63.4-2003, DA 00-705 (03-30-2000), OET65 (08-1997), OET65C (06-2001), IEEE C95.3-2002.

Cognizant Personnel					
Mark Kvamme	Test Technician				
Name	Title				
Jon Mueller	R&D Manager				
Name	Title				
Jay Holcomb	R&D Regulatory Manager				
Name	Title				

Rev. 001 fcc-5002-004a_249

Test 1: 15.31(e)

Variation of Supply Voltage

Vary the supply voltage from 85% to 115% of the nominal voltage. If the power level of the fundamental signal varies with supply voltage, record the voltage level at which the fundamental signal is at its highest and use that voltage level for all further testing.

DEVICE IS BATTERY OPERATED NOT CONNECTED TO THE POWER LINE. BATTER IS NOT RECHARGABLE. THERFORE THIS TEST IS N/A.

Test 2: 15.207 / RSS-210 Sec. 6.6(a)

Power line Conducted Emissions

Measure the AC power line conducted emissions from 150kHz to 30 MHz using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN) according to the procedure specified in ANSI C63.4. Verify that no emissions exceed the following limits:

Frequency (MHz)	Quasi-Peak (dBμV)	Average (dBμV)
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of frequency

DEVICE IS BATTERY OPERATED NOT CONNECTED TO THE POWER LINE. BATTER IS NOT RECHARGABLE. THERFORE THIS TEST IS N/A.

Test 3: 15.209 / RSS-210 sec. 6.2(m2)(3)

Out of band non-harmonic emissions

Measure the field strength of all spurious emissions that are not harmonics according to the procedure in Appendix A. The maximum field strength shall not exceed:

Frequency (MHz)	Field Strength (μV/m)	in dBuV/m	Distance (meters)
1.705-30	30 [*]	29.5	30 [*]
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
>960	500	54	3

2— Adjust 40dB/decade when measuring at different distances than specified.

For emissions measurements below 30MHz, rotate the loop antenna about its horizontal and vertical positions to maximize emissions.

FS (dBuV/m) = 20 * log (FS(uV/m))

Equipment Used	Serial Number	Cal Date	Due
Agilent E7405A Spectrum Analyzer	MY45113415	7-Aug-07	7-Aug-09
Huber&Suhner 18 inch. Sma to Sma	220060 002	3-Dec-07	3-Dec-09
Huber&Suhner 40 foot cable	220297 001	3-Dec-07	3-Dec-09
AH systems preamplifer model number PAM 0126	146	3/13/2009	3/13/2010
Emco 6502 Loop (9kHz to 30MHz)	9509-2970	01oct08	01oct09
Emco 3110B Biconical (30MHz-to 300MHz)	9807-3129	04oct07	04oct09
Emco 3146 Log Periodic (200MHz to 1GHz)	9203-3358	03oct07	03oct09
Emco 3115 waveguide (1Ghz – 18GHz)	9205-3878	17mar08	17mar10
Date	Tested by	Temp/Humidity, °F / %	
3/27/2009	Mark Kvamme	55F	/30%

Frequency range investigated was 9 kHz to 9.08GHz.

No emissions were found

Test 4: 15.35(b) / RSS-210 sec. 6.5

Pulsed Operation

Calculate the maximum duty cycle of the transmitter that will occur in any 100ms. Perform the following calculation: Duty Cycle $_{dB} = |20 * log(Duty Cycle %)|$

Duty Cycle $_{dB} = 100 \%$

Test 5: 15.249(a)/RSS-210 sec. 6.2(m2)(1)

Transmitter Fundamental and Harmonics

- (a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following: (table below)
- (c) Field strength limits are specified at a distance of 3 meters.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Measure the field strength of the transmitter fundamental and harmonic emissions at three meters according to the procedure in Appendix A. Record emissions levels with the transmitter near its lowest, middle, and highest frequencies. The maximum field strength of emissions may not exceed:

Fundamental	in	Harmonics	in
$(\mu V/m)$	(dBuV/m)	$(\mu V/m)$	(dBuV/m)
50,000	94	500	54

FS (dBuV/m) = 20 * log (FS(uV/m))

Equipment Used	Serial Number	Cal Date	Due
Agilent E7405A Spectrum Analyzer	MY45113415	8/7/07	8/7/09
AH systems preamplifer model number PAM 0126	146	3/13/2009	3/13/2010
H/S Sucoflex 40ft cable	220297001	12/3/07	12/3/09
Huber&Suhner 18 inch. Sma to Sma	220060 002	3-Dec-09	3-Dec-11
Emco 3115 wave guide (1GHz-18GHz)	9205-3878	3/17/08	3/17/10
Lindgren DB-4 Dipole (400Mhz-1GHz)	78573	9/18/2008	9/18/2010
Date	Tested by	Temperature/humidity	
3/27/2009	Mark Kvamme	55F/27%	

EUT Configuration: A new battery was used to power the device. The EUT is configured to transmit (special code set) on the low channel (908 MHz). The EUT is also configured to transmit every 4 seconds. This enables measurement of peak energy to be made at each location.

For harmonics, adjust for the proper duty cycle correction of up to 20dB in accordance with the results from test 4.

Freq		Peak Reading	Peak				Coax		Amp
(Mhz)	Polarity	dbm	dbuV/m	Ant #	ACF	Coax #	corr.	Amp #	corr.
908	Vertical	-43.9	93.64	36982077	27.93	220297001	2.61	Not Selected	Λ
300	Vertical	- 0.5	73.04	30302011	21.33	220231001	2.01	Not Selected	

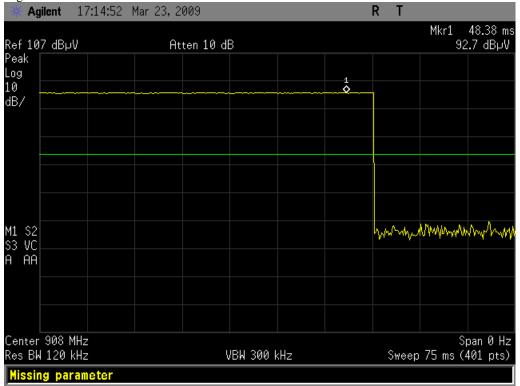
Freq		Peak Reading	Peak				Coax		Amp
(Mhz)	Polarity	dbm	dbuV/m	Ant #	ACF	Coax #	corr.	Amp #	corr.
1816	Vertical	-50.01	53.66	16256	26.52	220297001HPF1	4.44	146	-34.29
1816	Horizontal	-52.71	50.96	16256	26.52	220297001HPF1	4.44	146	-34.29
2724	Vertical	-57.51	49.41	16256	29.36	220297001HPF1	5.22	146	-34.66
2724	Horizontal	-56.49	50.43	16256	29.36	220297001HPF1	5.22	146	-34.66
3632	Vertical	-62.08	48.62	16256	31.54	220297001HPF1	6.14	146	-33.98
3632	Horizontal	-62.56	48.14	16256	31.54	220297001HPF1	6.14	146	-33.98
4540	Vertical	-54.26	46.83	16256	32.27	220297001HPF3	7.09	103	-45.27
4540	Horizontal	-48.67	52.42	16256	32.27	220297001HPF3	7.09	103	-45.27
5448	Vertical	-57.52	46.72	16256	34.09	220297001HPF3	7.46	103	-44.31
5448	Horizontal	-58.65	45.59	16256	34.09	220297001HPF3	7.46	103	-44.31

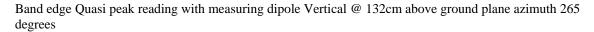
dbuV/m = 107 + reading + ACF + coax + Amp. Corr.

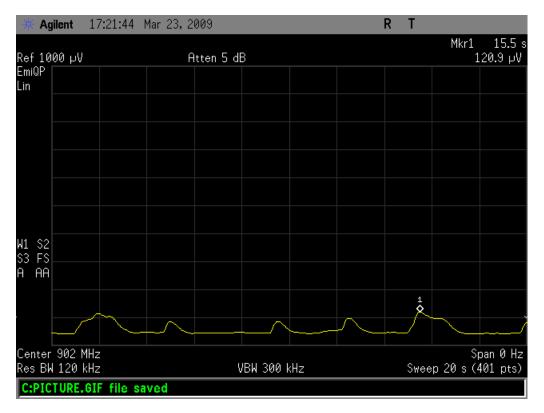
All peak measurement were below the average spec limits, therefore average not reported. All frequencies above the sixth harmonic are below the noise floor

Test 7: FCC Part 15.249(d)

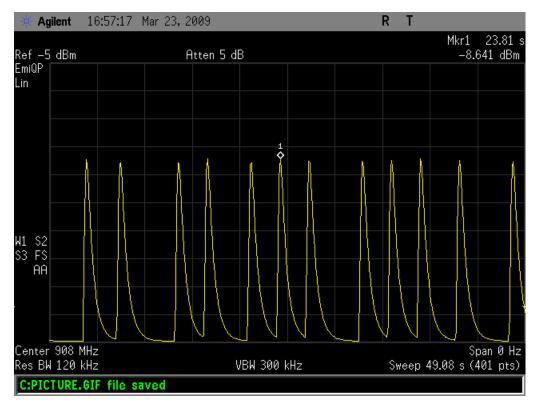
Band Edge

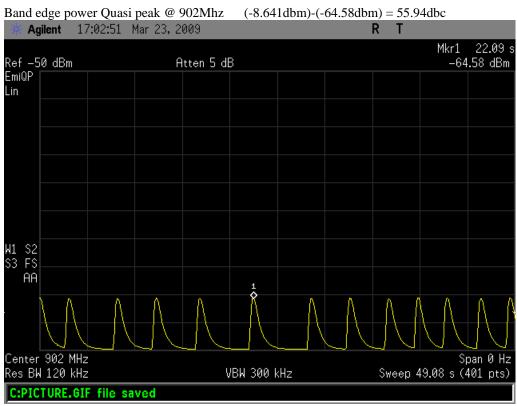

Demonstrate that the transmitter's emissions at the 902-928MHz band edge are at least 50dB below the carrier or less than 200uV/m at 3 meters, whichever is the lesser attenuation.

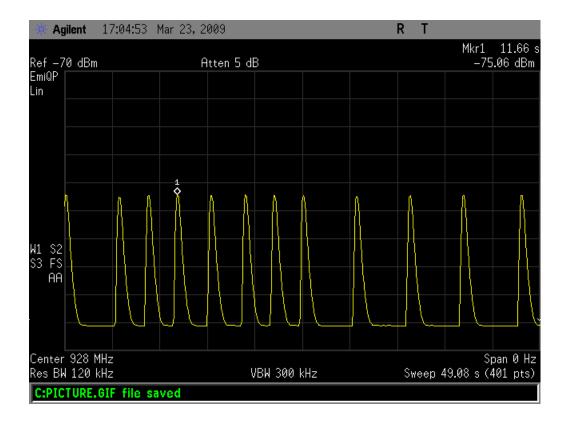

Equipment Used	Serial Number	Cal Date	Cal Due
Agilent E7405A Spectrum Analyzer	MY45113415	8/7/07	8/7/09
AH systems preamplifer model number PAM 0126	146	3/13/2009	3/13/2010
H/S Sucoflex 40ft cable	220297001	12/3/07	12/3/09
Huber&Suhner 18 inch. Sma to Sma	220060 002	3-Dec-09	3-Dec-11
Lindgren DB-4 Dipole (400Mhz-1GHz)	78573	9/18/2008	9/18/2010
Hewlett Packard HP8596E Spectrum Analyzer	3528U00340	04apr08	04apr10


Date	Tested by	Temperature/humidity
3/23/2009	Mark Kvamme	50F/25%

EUT Configuration: A new battery was used to power the device. The EUT is configured to transmit (special code set) on the low channel (908 MHz. The EUT is also configured to transmit every 4 seconds. This enables measurement of peak energy to be made.

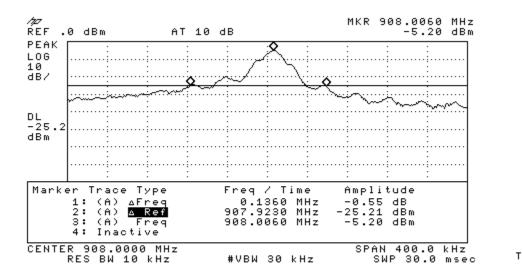

Fundamental peak reading with measuring dipole Vertical @ 132cm above ground plane azimuth 265 degrees





Fundamental power Quasi peak @ 908Mhz

Band edge power Quasi peak @ 928Mhz (-8.641dbm)-(-75.06dbm) = 66.42dbc

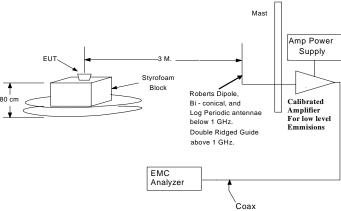

Test 8: RSP-100 Appendix II

99% Bandwidth

Equipment Used	Serial Number	Cal Date	Cal Due
H/S Sucoflex 40ft cable	220297001	12/3/07	12/3/09
Agilent E7405A Spectrum Analyzer	MY45113415	8/7/07	8/7/09
Lindgren DB-4 Dipole (400Mhz-1GHz)	78573	9/18/2008	9/18/2010
AH systems preamplifer model number PAM 0126	146	3/13/2009	3/13/2010

Date	Temp/Humidity °F / %	Tested by
4/5/2009	65F/32%	Mark Kvamme

EUT Configuration: A new battery was used to power the device. The EUT is configured to transmit (special code set) on the low channel (908 MHz) every 4 seconds. This enables measurement of peak energy to be made.



Appendix A

Field Strength Measurement Procedure

This test measures the field strength of radiated emissions using a spectrum analyzer and a receiving antenna in accordance with ANSI C63.4-2003. During the test, the EUT is to be placed on a non-conducting support at 80 cm above the horizontal ground plane of the OATS. The horizontal distance between the antenna and the EUT is to be exactly 3 meters. The bandwidths used shall be per ANSI C63.4-2003; 200 Hz from 9 kHz to 150 kHz, 9 kHz from 150 kHz to 30 MHz, 100 kHz from 30 MHz to 1000 MHz, and 1 MHz from 1 GHz to 40 GHz, with the detector set to peak hold for peak measurements. Alternatively average measurements may be used for frequencies above 1GHz and Quasi peak measurements may be used for frequencies below 1 GHz.

- 1) The antenna correction factor, preamplifier gain (if the preamplifier is installed), and cable loss are stored in tables in the EMC analyzer and the level at the analyzer is the corrected level in dbuV/m.
- 2) Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.
- 3) If appropriate, manipulate the system cables to produce the highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- 4) Rotate the EUT 360° to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat step 3). Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.
- 5) Move the antenna over its fully allowed range of travel to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to step 3) with the antenna fixed at this height. Otherwise, move the antenna to the height that repeats the highest amplitude observation and proceed
- 6) Change the polarity of the antenna and repeat step 3), step 4), and step 5). Compare the resulting suspected highest amplitude signal with that found for the other polarity. Select and note the higher of the two signals.
- 7) The final maximized level displayed on the EMC analyzer is the field strength.

