

TEST REPORT

Product Name Model Number	 Bluetooth Mono Wireless LED Color Changing Speaker with Rechargeable Battery iBT780, iBT780B, iBT780X (X could be 1 or 2 digits by any alphabets denote different cabinet color) 	
FCC ID	: EMOIBT780A	
Prepared for : Address :	SDI Technologies Inc. 1299, Main Street, Rahway, NJ 07065, U.S.A.	
Prepared by : Address :	EMTEK (DONGGUAN) CO., LTD. -1&2/F.,Building 2, Zone A, Zhongda Marine Biotechnology Reserch and Development Base, No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China TEL: +86-0769-22807078 FAX: +86-0769-22807079	
Report Number : Date(s) of Tests : Date of issue :	ES200103045E January 03, 2020 to January 14, 2020 January 14, 2020	

VERIFICATION OF COMPLIANCE

Applicant:	SDI Technologies Inc 1299, Main Street, Rahway, NJ 07065, U.S.A.	
Manufacturer:	SDI Technologies Inc 1299, Main Street, Rahway, NJ 07065, U.S.A.	
Factory:	Harmonic Technology Co., Ltd. Building B, No. 8, Tianxin Street, Chung Kou Village, Shijie Town, Dongguan City, Guangdong Province, China	
Product Description:	Bluetooth Mono Wireless LED Color Changing Speaker with Rechargeable Battery	
Trade Mark:	iHome	
Model Number:	iBT780, iBT780B, iBT780X (X could be 1 or 2 digits by any alphabets denote different cabinet color) (note: The models are the same except color of appearance and model number, here we prepare iBT780 for the all test)	

We hereby certify that:

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247(2018).

Date of Test : _	January 03, 2020 to January 14, 2020
Prepared by : _	Loren Luo Loren Luo /Editor
Reviewer : _	Tim Dong /Supervisor
Approved & Authorized Signer : _	Lisa Wang /Manager ESTING

Modified Information

Version	Summary	Revision Date	Report No.
Ver.1.0	Original Report	/	ES200103045E

余葉南信濃料技有限公司

 ・地址:广东省东莞市松山湖高斯技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公核负一层、第二层 网址:Http://www.emtek.com.cn

 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co...td

 Add: -18.2/F ...Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songahanhu High-technology Industrial Development Zone,
 Dongguan, Guangdong,China Http://www.emtek.com.cn

Table of Contents

1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION	6
1.2 Test Methodology	
1.3 TEST FACILITY	
2. SYSTEM TEST CONFIGURATION	9
2.1 EUT CONFIGURATION	9
2.2 EUT EXERCISE	
2.3 Test Procedure	
2.4 CONFIGURATION OF TESTED SYSTEM	
3. SUMMARY OF TEST RESULTS	
4. DESCRIPTION OF TEST MODES	
5. TEST SYSTEM UNCERTAINTY	
6. CONDUCTED EMISSIONS TEST	14
6.1 MEASUREMENT PROCEDURE:	14
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
6.3 MEASUREMENT EQUIPMENT USED:	
6.4 MEASUREMENT RESULT:	
6.5 CONDUCTED MEASUREMENT PHOTOS:	18
7. RADIATED EMISSION TEST	
7.1 Measurement Procedure	19
7.1 MEASUREMENT PROCEDURE 7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	19 21
7.1 MEASUREMENT PROCEDURE 7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 7.3 MEASUREMENT EQUIPMENT USED:	
 7.1 MEASUREMENT PROCEDURE	
 7.1 MEASUREMENT PROCEDURE 7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 7.3 MEASUREMENT EQUIPMENT USED: 7.4 RADIATED EMISSION LIMIT. 7.5 MEASUREMENT RESULT 	
 7.1 MEASUREMENT PROCEDURE	
7.1 MEASUREMENT PROCEDURE 7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 7.3 MEASUREMENT EQUIPMENT USED: 7.4 RADIATED EMISSION LIMIT. 7.5 MEASUREMENT RESULT 7.5 RADIATED MEASUREMENT PHOTOS: 8. CHANNEL SEPARATION TEST 8.1 MEASUREMENT PROCEDURE 8.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 8.3 MEASUREMENT RESULTS: 9. 20DB BANDWIDTH TEST 9.1 MEASUREMENT PROCEDURE 9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
 7.1 MEASUREMENT PROCEDURE	

Access	to	the	World

10.1 Measurement Procedure	44
10.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	44
10.3Measurement Equipment Used:	
10.4 Measurement Results:	44
11. TIME OF OCCUPANCY (DWELL TIME) TEST	
11.1 TEST DESCRIPTION	45
11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	45
11.3 MEASUREMENT EQUIPMENT USED:	45
11.4 TEST REQUIREMENTS / LIMITS	45
11.5 TEST RESULT	46
12. MAXIMUM PEAK OUTPUT POWER TEST	
12.1 Measurement Procedure	48
12.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	48
12.3 MEASUREMENT EQUIPMENT USED:	
12.4Measurement Results:	49
13. BAND EDGE TEST	
13.1Measurement Procedure	55
13.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	56
13.3 MEASUREMENT EQUIPMENT USED:	56
13.4 MEASUREMENT RESULTS:	57
14. ANTENNA APPLICATION	
14.1 ANTENNA REQUIREMENT	73
14.2 RESULT	73
15. PHOTOS OF EUT	

京業市信濃料技有限公司 地址:广东省东莞市松山湖高斯技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 m部:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co...td
 Add: -18.2/F ...Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
 Dongguan, Guangdong,China Http://www.emtek.com.cn

 Http://www.emtek.com.cn

1. GENERAL INFORMATION

1.1 Product Description

Characteristics	Description	
Product Name	Bluetooth Mono Wireless LED Color Changing Speaker with Rechargeable Battery	
Model number	iBT780, iBT780B, iBT780X (X could be 1 or 2 digits by any alphabets denote different cabinet color)	
Power Supply	AC 120V/60Hz for adapter, DC 3.7V Battery	
Kind of Device	Bluetooth Ver.5.0	
Modulation	GFSK, π/4-DQPSK, 8DPSK	
Operating Frequency Range	2402-2480MHz	
Number of Channels	79	
Transmit Power Max(PK)	-0.36dBm(0.00092 W)	
Antenna Type	Internal PCB antenna	
Antenna Gain	0dBi	

 新業商信濃料技有陽公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 MTEK (Dongguan) Co.: td

 Add: -182/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9. Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
 Dongguan, Guangdong.China Http://www.emtek.com.cn

1.2Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10-2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

1.3Test Facility

Site Description	
EMC Lab. :	Accredited by CNAS, 2016.10.24 The certificate is valid until 2022.10.28 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L2291.
	Accredited by TUV Rheinland Shenzhen 2016.5.19 The Laboratory has been assessed according to the requirements ISO/IEC 17025.
	Accredited by FCC, August 03, 2017 Designation Number: CN1204 Test Firm Registration Number: 882943
	Accredited by Industry Canada, November 24, 2015 The Certificate Registration Number is 4480A.
	Accredited by A2LA, July 31, 2017 The Certificate Number is 4321.01.
Name of Firm :	EMTEK(SHENZHEN) CO., LTD.
Site Location :	Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China.

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The Tx frequency was fixed which was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

2.3.2 Radiated Emissions

Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of EUT was fixed in a particular direction according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013.

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Item	Equipment	Trademar k	Model No.	FCC ID	Note
1.	Bluetooth Mono Wireless LED Color Changing Speaker with Rechargeable Battery	iHome	iBT780	EMOIBT780A	EUT
2	Adapter		Model:ASSA44A-050230 Input:100-240V 50/60Hz 0.5A Max Output:5V	N/A	Support Equipment

Note:

(1) Unless otherwise denoted as EUT in [Remark] column , device(s) used in tested system is a support equipment.

FCC Rules	Description Of Test	Result
§15.207	AC Power Conducted Emission	Compliant
§15.247(d),§15.209	Radiated Emission	Compliant
§15.247(a)(1)	Channel Separation test	Compliant
§15.247(a)(1)	20dB Bandwidth	Compliant
§15.247(a)(1)(iii)	Quantity of Hopping Channel	Compliant
§15.247(a)(1)(iii)	Time of Occupancy(Dwell Time)	Compliant
§15.247(b)	Max Peak output Power test	Compliant
§15.247(d)	Band edge test	Compliant
§15.203	Antenna Requirement Compliant	

3. Summary of Test Results

4. Description of test modes

The EUT has been tested under its typical operating condition and fully-charged battery for EUT tested alone. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

The EUT has been tested under TX operating condition.

This EUT is a FHSS system, were conducted to determine the final configuration from all possible combinations. We use software control the EUT, Let EUT hopping on and transmit with highest power, all the modes GFSK, $\Pi/4$ -DQPSK, 8DPSK have been tested. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test.

Channel	Frequency(MHz)
1	2402
40	2441
79	2480

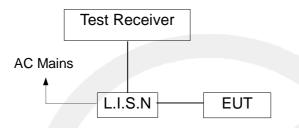
京葉市信濃科技有陽公司地址:广东省东莞市松山湖高斯技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层,第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn
EMTEK (Dongguan) Co. Ltd.
Add: -1&2/F ...,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
Dongguan, Guangdong,China Http://www.emtek.com.cn

5. TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%



6. Conducted Emissions Test

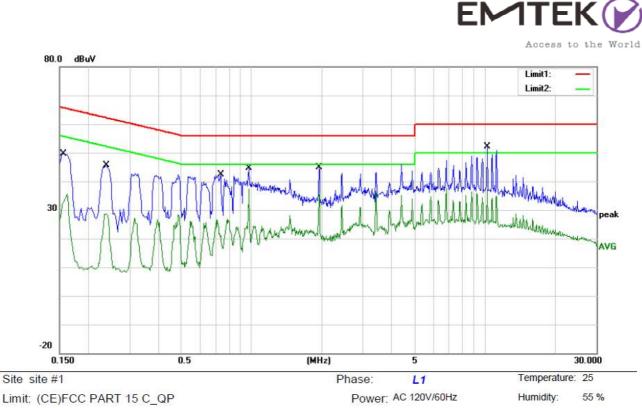
6.1 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Equipment Used:

	Conducted Emission Test Site								
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Characteristics	Last Cal.	Due date			
Test Receiver	Rohde & Schwarz	ESCS30	100018	9kHz~3GHz	05/23/2019	05/22/2020			
L.I.S.N	Rohde & Schwarz	ENV216	100017	9KHz-300MHz	05/23/2019	05/22/2020			
RF Switching Unit	CDS	RSU-M2	38401	9KHz-300MHz	05/23/2019	05/22/2020			
Coaxial Cable	CDS	79254	46107086	9kHz~3GHz	05/23/2019	05/22/2020			


6.4 Measurement Result:

Operation Mode:	ТХ	Test Date :	January 10, 2020
Frequency Range:	0.15MHz~30MHz	Temperature :	28 ℃
Test Result:	PASS	Humidity :	65 %
Test By:	Loren		

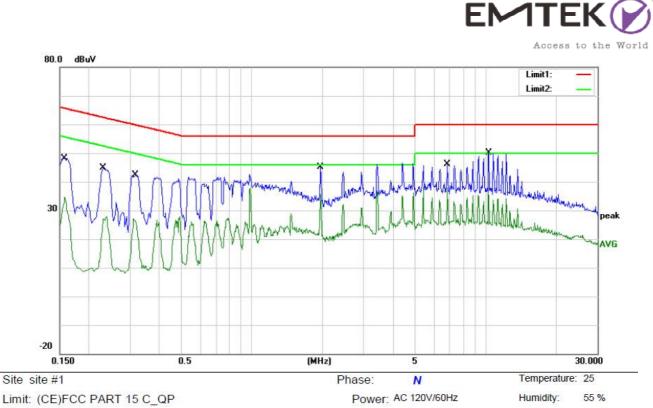
Pass.

Conducted emission at both 120V & 240V, and emission at 120V represents the worst case. All the modulation modes were tested the data of the worst mode (GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.

Please refer to the following data.

Mode: BT TX2402

Note:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1580	39.55	10.01	49.56	65.57	-16.01	QP	
2		0.1580	25.52	10.01	35.53	55.57	-20.04	AVG	
3		0.2380	35.58	10.05	45.63	62.17	-16.54	QP	
4		0.2380	18.61	10.05	28.66	52.17	-23.51	AVG	
5		0.7380	32.12	10.18	42.30	56.00	-13.70	QP	
6		0.7380	16.6 <mark>1</mark>	10.18	26.79	46.00	-19.21	AVG	
7		0.9740	34.53	10.18	44.71	56.00	- <mark>11</mark> .29	QP	
8		0.9740	27.11	10.18	37.29	46.00	-8.71	AVG	
9		1.9460	34.74	10.18	44.92	56.00	-11.08	QP	
10		1.9460	25.70	10.18	35.88	46.00	-10.12	AVG	
11	*	10.2460	42.01	10.21	52.22	60.00	-7.78	QP	
12		10.2460	26.86	10.21	37.07	50.00	-12.93	AVG	

*:Maximum data

x:Over limit I:over margin

Comment: Factor build in receiver.

Operator: Lian

Mode: BT TX2402 Note:

No. <mark>M</mark> k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1580	38.22	10.01	48.23	65.57	-17.34	QP	
2	0.1580	24.71	10.01	34.72	55.57	-20.85	AVG	
3	0.2300	34.88	10.05	44.93	62.45	-17.52	QP	
4	0.2300	17.95	10.05	28.00	<mark>52.4</mark> 5	-2 <mark>4.4</mark> 5	AVG	
5	0.3180	32.36	10.09	42.45	59.76	-17.31	QP	
6	0.3180	17.04	10.09	27.13	49.76	-22.63	AVG	
7	1.9660	35.00	10.18	45.18	56.00	-10.82	QP	
8	1.9660	25.57	10.18	35.75	46.00	-10.25	AVG	
9	6.8620	36.00	10.19	46.19	60.00	-13.81	QP	
10	6.8620	27.69	10.19	37.88	50.00	-12.12	AVG	
11 *	10.2940	39.97	10.21	50.18	60.00	-9.82	QP	
12	10.2940	26.10	10.21	36.31	50.00	-13.69	AVG	

*:Maximum data

x:Over limit I:over margin

Comment: Factor build in receiver.

Operator: Lian

6.5 Conducted Measurement Photos:

7. Radiated Emission Test

7.1 Measurement Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
 - 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
 - 2) Change the antenna polarization and repeat 1) with vertical polarization.
 - 3) Make a hardcopy of the spectrum.
 - 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
 - 5) Change the analyser mode to Clear/Write and found the cone of emission.
 - 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
 - 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
 - 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

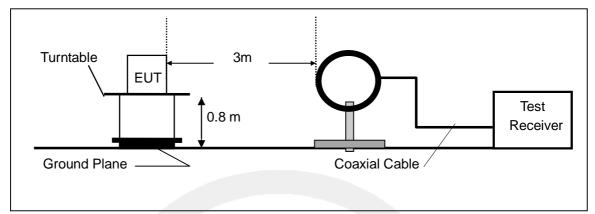
Use the following spectrum analyzer settings:

When spectrum scanned from 30MHz to 1GHz setting resolution bandwidth 120KHz and video bandwidth 300KHz:

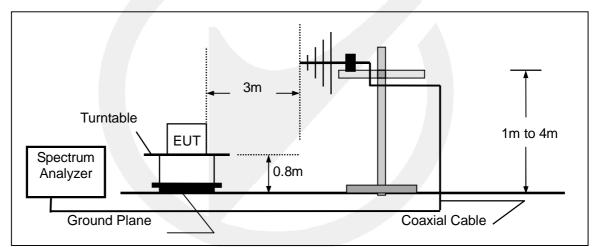
EMI Test Receiver	Setting
Attenuation	Auto
RB	120KHz
VB	300KHz
Detector	QP
Trace	Max hold

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

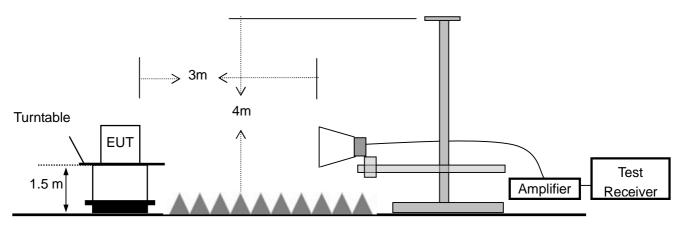
EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max hold


When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 10Hz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	10Hz
Detector	Average
Trace	Max hold



7.2 Test SET-UP (Block Diagram of Configuration)


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.3 Measurement Equipment Used:

ltem	Equipment	Manufacturer	Model No.	Serial No.	Characteristics	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	1166.5950.0 3	9KHz-3GHz	05/23/2019	1 Year
2.	Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	05/23/2019	1 Year
3.	Bilog Antenna	Schwarzbeck	VULB9163	000141	25MHz-2GHz	05/23/2019	1 Year
4.	Power Amplifier	CDS	RSU-M352	818	1MHz-1GHz	05/23/2019	1 Year
5.	Power Amplifier	HP	8447F	OPT H64	1GHz-26.5GHz	05/23/2019	1 Year
6.	Color Monitor	SUNSPO	SP-140A	N/A		05/23/2019	1 Year
7.	Single Line Filter	JIANLI	XL-3	N/A		05/23/2019	1 Year
8.	Single Phase Power Line Filter	JIANLI	DL-2X100B	N/A		05/23/2019	1 Year
9.	3 Phase Power Line Filter	JIANLI	DL-4X100B	N/A		05/23/2019	1 Year
10.	DC Power Filter	JIANLI	DL-2X50B	N/A		05/23/2019	1 Year
11.	Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	05/23/2019	1 Year
12.	Cable	Rosenberger	CIL02	A0783566	9KHz-3GHz	05/23/2019	1 Year
13.	Cable	Rosenberger	RG 233/U	525178	9KHz-3GHz	05/23/2019	1 Year
14.	Signal Analyzer	Rohde & Schwarz	FSV30	103040	9KHz-40GHz	05/23/2019	1 Year
15.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1272	1GHz-18GHz	05/23/2019	1 Year
16.	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA91703 99	14GHz -26.5GHz	05/23/2019	1 Year
17.	Power Amplifier	LUNAR EM	LNA1G18-4 0	J101000000 81	1GHz-26.5GHz	05/23/2019	1 Year
18.	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/23/2019	1 Year
19.	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/23/2019	1 Year
20.	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/23/2019	1 Year

7.4 Radiated Emission Limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Field Strength	Measurement Distance
(micorvolts/meter)	(meters)
2400/F(KHz)	300
24000/F(KHz)	30
30	30
100	3
150	3
200	3
500	3
	(micorvolts/meter) 2400/F(KHz) 24000/F(KHz) 30 100 150 200

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	0.090 - 0.110 16.42 - 16.423		4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - <mark>1</mark> 710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Remark 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of x 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

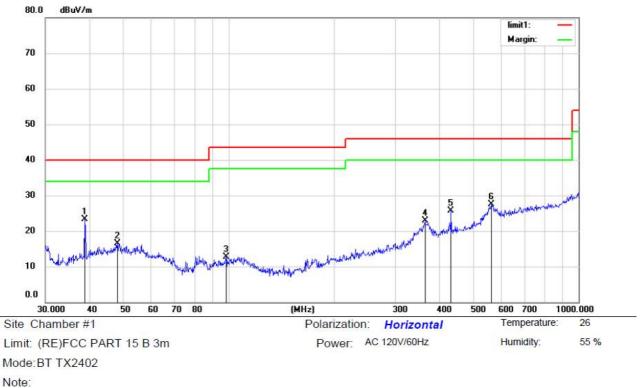
7.5 Measurement Result

Operation Mode:	ТХ	Test Date :	January 10, 2020
Test By:	Loren	Temperature :	28 °C
Test Result:	PASS	Humidity :	65 %
Measured Distance:	3m		

Below 30MHz:

Freq.	Ant.Pol.	Emission	Limit 3m	Over
		Level		
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
			-	

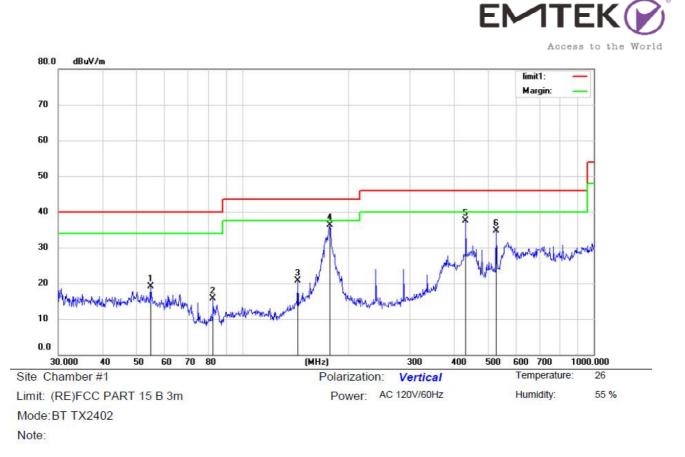
Note: The low frequency, which started from 9KHz-30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


Below 1000MHz:

Pass.

All modulation modes have been tested, the worst mode is (GFSK TX 2402MHz), the data is recorded on the following page, other modulation modes do not exceed this limit.

Please refer to the following data.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	2
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	38.8878	40.28	-17.04	23.24	4 0.00	-16.76	QP			
2		48.1625	32.22	-15. <mark>6</mark> 7	16.55	40.00	-23.45	QP			
3		98.4866	31.47	-18.74	12.73	43.50	-30.77	QP			
4		364.2595	34.90	-11.98	22.92	46.00	-23.08	QP			
5		432.5456	36.05	-10.27	25.78	46.00	-20.22	QP			
6		562.6623	34.85	-7.42	27.43	46.00	-18.57	QP			

*:Maximum data x:Over limit I:over margin

Operator: HUANG

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	54.8348	35.10	-15.93	19.17	40.00	-20.83	QP			
2	82.6481	37.20	-21.45	15.75	40.00	-24.25	QP			
3	143.8295	42.34	-21.66	20.68	43.50	-22.82	QP			
4 *	177.5091	56.06	-19.71	36.35	43.50	-7.15	QP			
5	432.5456	47.86	-10.27	37.59	46.00	-8. <mark>41</mark>	QP			
6	528.2458	<mark>43.1</mark> 2	-8.34	34.78	46.00	-11.22	QP			

*:Maximum data x:Over limit I:over margin

Operator: HUANG

Above 1000MHz~10th Harmonics:

All modulation modes have been tested, the worst mode is (GFSK), the data is recorded on the following page, other modulation modes do not exceed this limit.Please refer to the following data.

Operatio	n Mod	e: GFSK	(CH1: 2	402MHz)		Test	Date :	Já	anuary 10	0, 2020
Freq.	Ant.	Rea	•	Correct	Emission		Limit		Margin(dB)	
	Pol.	Level(d	BuV/m)	Factor	Level(d	BuV/m)	3n	<u>)</u>	(dB)	
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4804	V	96.49	72.76	-32.3	64.19	40.46	74	54	-9.81	-13.54
7206	V	91.06	75.95	-37.2	53.86	38.75	74	54	-20.14	-15.25
9608	V	93.83	71.94	-39.8	54.03	32.14	74	54	-19.97	-21.86
12010	V	92.16	75.73	-40.5	51.66	35.23	74	54	-22.34	-18.77
14412	V	98.12	70.55	-41.7	56.42	28.85	74	54	-17.58	-25.15
16814	V	94.55	70.37	-40	54.55	30.37	74	54	-19.45	-23.63
4804	Н	98.78	72.90	-31.6	67.18	41.30	74	54	-6.82	-12.70
7206	Н	97.80	73.65	-35.5	62.30	38.15	74	54	-11.70	-15.85
9608	Н	93.93	71.97	-38.3	55.63	33.67	74	54	-18.37	-20.33
12010	Н	95.26	76.03	-39	56.26	37.03	74	54	-17.74	-16.97
14412	Н	92.87	72.92	-42	50.87	30.92	74	54	-23.13	-23.08
16814	Н	95.51	74.67	-39.3	56.21	35.37	74	54	-17.79	-18.63

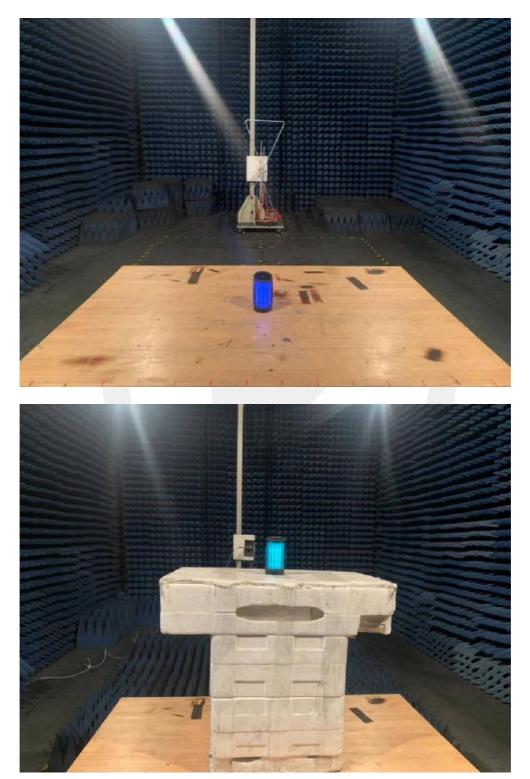
Operation Mode: GFSK (CH40: 2441MHz)

January 10, 2020 Test Date :

Freq.	Ant.	Rea	dina	Correct	Emis	sion	Lii	mit	Marg	in(dB)
1 109.	Pol.	Level(d	9	Factor		Level(dBuV/m)		3m(dBuV/m)		m(ab)
	1 01.	Levei(u	buv/iii)	T actor	Levei(u	Duvinij	Sin(u	juv/iii)		
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4880	V	94.14	72.82	-32.3	61.84	40.52	74	54	-12.16	-13.48
7320	V	95.58	72.22	-37.2	58.38	35.02	74	54	-15.62	-18.98
9760	V	93.11	73.19	-39.8	53.31	33.39	74	54	-20.69	-20.61
12200	V	93.87	72.00	-40.5	53.37	31.5	74	54	-20.63	-22.5
14640	V	91.65	71.38	-41	50.65	30.38	74	54	-23.35	-23.62
17080	V	97.15	72.96	-41.1	56.05	31.86	74	54	-17.95	-22.14
4880	Н	91.81	73.46	-31.6	60.21	41.86	74	54	-13.79	-12.14
7320	Н	92.72	72.88	-35.5	57.22	37.38	74	54	-16.78	-16.62
9760	Н	97.66	76.21	-38.3	59.36	37.91	74	54	-14.64	-16.09
12200	Н	93.85	75.22	-39	54.85	36.22	74	54	-19.15	-17.78
14640	Н	92.31	75.29	-42	50.31	33.29	74	54	-23.69	-20.71
17080	Н	96.75	74.54	-41.5	55.25	33.04	74	54	-18.75	-20.96

Freq.	Ant.	Rea	ding	Correct	Emis	sion	Liı	mit	Marg	in(dB)
	Pol.	Level(d	BuV/m)	Factor	Level(d	Level(dBuV/m)		3m(dBuV/m)		
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4960	V	91.39	72.13	-32.3	59.09	39.83	74	54	-14.91	-14.17
7440	V	92.47	71.86	-37.2	55.27	34.66	74	54	-18.73	-19.34
9920	V	98.48	72.16	-39.8	58.68	32.36	74	54	-15.32	-21.64
12400	V	92.17	72.33	-40.5	51.67	31.83	74	54	-22.33	-22.17
14880	V	96.03	72.79	-41	55.03	31.79	74	54	-18.97	-22.21
17360	V	93.53	70.58	-41.1	52.43	29.48	74	54	-21.57	-24.52
4960	Н	96.44	70.46	-31.6	64.84	38.86	74	54	-9.16	-15.14
7440	Н	92.02	75.11	-35.5	56.52	39.61	74	54	-17.48	-14.39
9920	Н	95.43	70.27	-38.3	57.13	31.97	74	54	-16.87	-22.03
12400	Н	97.99	74.53	-39	58.99	35.53	74	54	-15.01	-18.47
14880	Н	92.91	75.40	-42	50.91	33.4	74	54	-23.09	-20.6
17360	Н	93.33	72.98	-41.5	51.83	31.48	74	54	-22.17	-22.52

Operation Mode: GFSK (CH79: 2480MHz)


Test Date : January 10, 2020

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

7.5 Radiated Measurement Photos:



8. Channel Separation test

8.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

8.2 Test SET-UP (Block Diagram of Configuration)

8.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Characteristics	LAST CAL.	CAL DUE.
Spectrum Analyzer	Rohde & Schwarz	FSV30	1321.3008K	10Hz-30GHz	05/23/2019	05/22/2020
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/23/2019	05/22/2020
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/23/2019	05/22/2020

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

8.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Da
Test By:	Loren	Temper
Test Result:	PASS	Humidit
Modulation:	GFSK	

Test Date : Temperature : Humidity : January 10, 2020 24℃ 53 %

Channel number	Channel	Separation Read	Separation Limit
	frequency (MHz)	Value (kHz)	2/3 20dB Down BW(kHz)
1	2402	1003	>559
40	2441	1003	>562
79	2480	1003	>562

Spectrum Detector:
Test By:
Test Result:
Modulation:

РК Loren PASS П/4-DQPSK Test Date : Temperature : Humidity : January 10, 2020 24℃ 53 %

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
1	2402	1003	>854
40	2441	1003	>854
79	2480	1003	>854

Spectrum Detector:	ΡK
Test By:	Lore
Test Result:	PAS
Modulation:	8DF

Loren PASS 8DPSK Test Date : Temperature : Humidity : January 10, 2020 24℃ 53 %

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
1	2402	1003	>854
40	2441	1003	>854
79	2480	1003	>854

9. 20dB Bandwidth test

9.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

9.2 Test SET-UP (Block Diagram of Configuration)

EUT	- Spectrum Analyzer
-----	---------------------

9.3 Measurement Equipment Used:

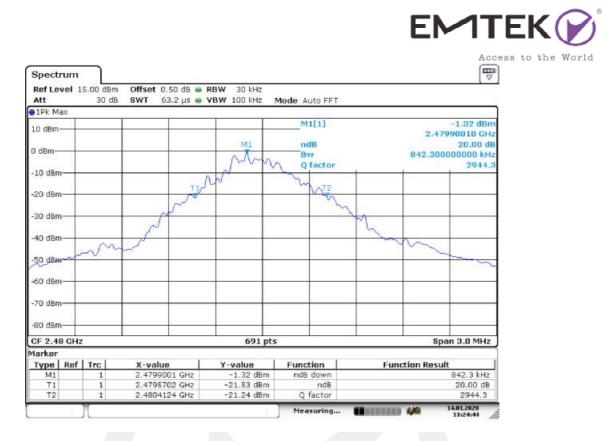
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Characteristics	LAST CAL.	CAL DUE.
Spectrum Analyzer	Rohde & Schwarz		1321.3008K	10Hz-30GHz	05/23/2019	05/22/2020
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/23/2019	05/22/2020
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/23/2019	05/22/2020

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

9.4 Measurement Results:

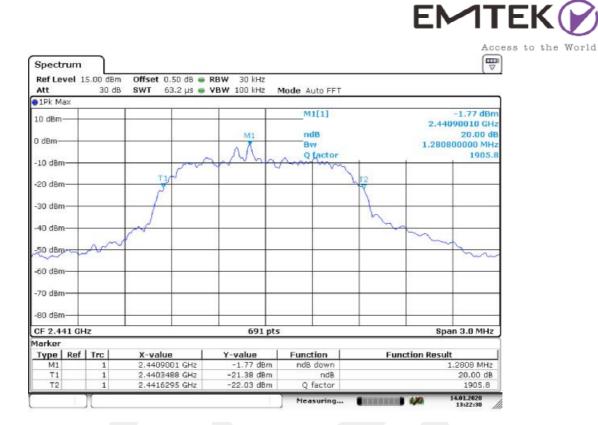
Refer to attached data chart.

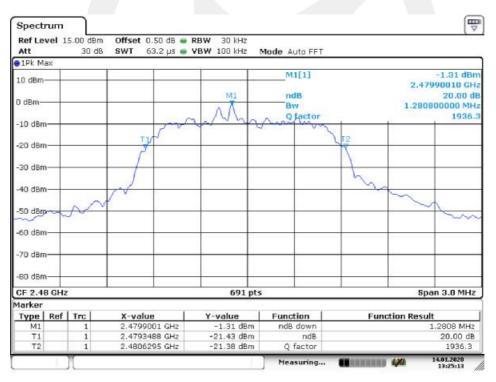
Spectrum Detector:	PK	Test Date :	January 10, 2020
Test By:	Loren	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %
Modulation:	GFSK	-	


Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
1	2402	837.9
40	2441	842.3
79	2480	842.3

Ref Level :			0.50 dB 🖷 63.2 µs 🖷	RBW 30 kH VBW 100 kH		le Auto FFT			(*
1Pk Max									
10 dBm						M1[1]		2.40	-1.96 dBn 189580 GH
0 dBm				MI		ndB Bw Q factor		837.900	20.00 dt 000000 kH 2866.1
-10 dBm		-		n N	12	Quactor	1	1	2800.
-20 dBm		-	T1/		-	m 12		-	
-30 dBm		1	~~		-		4		-
-40 dBm	- 4	S			-		5	h~	
-50 dBm	~~~	~~			-	-	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
-60 dBm			-	-	-		_	0	
-70 d8m					<u> </u>		_	-	
-80 dBm					-		_	8	
CF 2.402 G	Hz	2		691	pts	1	-	Spa	an 3.0 MHz
Marker									
Type Ref	Trc	X-valu	ie	Y-value	11	unction	Fune	ction Resul	t
M1	1	2,4018	958 GHz	-1.96 d	Bm	ndB down			837.9 kHz
T1 T2	1		702 GHz 081 GHz	-21.49 d		ndB Q factor			20.00 dB 2866.5
12	1 4	2.4024	OOT GHZ	-21.03 u	5 m (2000.5
	Л					Measuring	MARREN	4/4	13:19:07

Spectrum

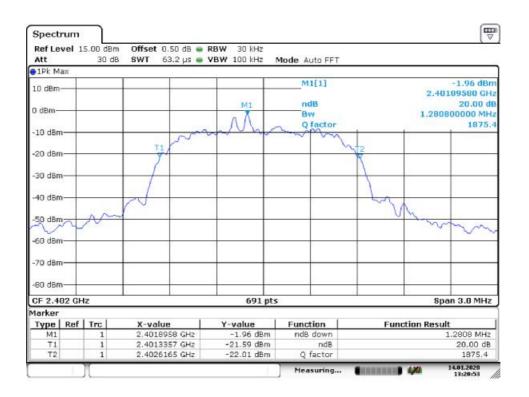


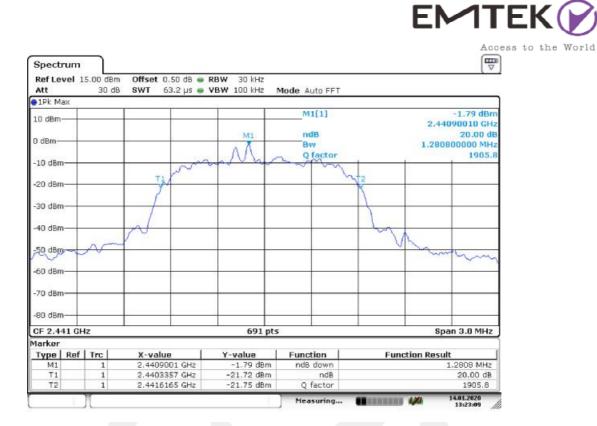


Spectrum Detector: Test By: Test Result: Modulation: РК Loren PASS П/4-DQPSK Test Date : Temperature : Humidity : January 10, 2020 24℃ 53 %

Channel number	Channel frequency	20dB Down
	(MHz)	BW(kHz)
1	2402	1281
40	2441	1281
79	2480	1281

Ref Level : Att	15.00 dBn 30 dB			Mode Auto FFT		
1Pk Max		50				
10 dBm				M1[1] ndB Bw Q factor	192	-1.96 dBr 2.40189580 GH 20.00 d 1.280800000 MH 1875.
-10 dBm		IV T	w m	and proved	12	
-30 d8m					h	
-40 dBm	~	100			20	~~~
-50 dBm	N					- h
-70 d8m						
-80 dBm						
CF 2.402 G	-Iz		691 pts	8		Span 3.0 MHz
Marker Type Ref	Trc	x-value	Y-value	Function	Func	tion Result
M1	1	2.4018958 GHz	-1.96 dBm	ndB down		1,2808 MHz
T1 T2	1	2.4013444 GHz 2.4026252 GHz	-22.38 dBm -21.96 dBm	ndB Q factor		20.00 dB 1875.4


Spectrum Detector:	
Test By:	
Test Result:	
Modulation:	


Loren PASS 8DPSK

ΡK

Test Date : Temperature : Humidity : January 10, 2020 24℃ 53 %

Channel number	Channel frequency	20dB Down
	(MHz)	BW(kHz)
1	2402	1281
40	2441	1281
79	2480	1281

10. Quantity of Hopping Channel Test

10.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

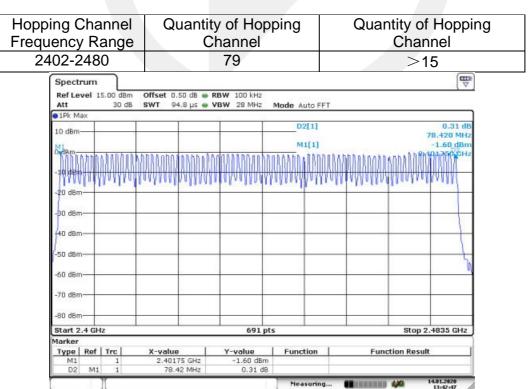
10.2Test SET-UP (Block Diagram of Configuration)

EUT		Spectrum Analyzer
-----	--	-------------------

10.3Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Characteristics	LAST CAL	CAL DUE.
Spectrum Analyzer	Rohde & Schwarz		1321.3008K	10Hz-30GHz	05/23/2019	05/22/2020
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/23/2019	05/22/2020
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/23/2019	05/22/2020

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.


10.4 Measurement Results:

Refer to attached data chart. Worst Test Mode GFSK

Test By: L Test Result: F

Loren PASS Test Date : Temperature : Humidity :

January 10, 2020 25 ℃ 50 %

11. Time of Occupancy (Dwell Time) test

11.1 Test Description

The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The EUT was connected to the spectrum analyzer via a short coax cable. The dwell time is calculated by:

Dwell time = time slot length * hop rate / number of hopping channels * 31.6s

with:

- hop rate = $1600 \times 1/s$ for DH1 packets = 1600 s^{-1}

- hop rate = $1600/3 \times 1/s$ for DH3 packets = 533.33 s^{-1}
- number of hopping channels = 79
- 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79

The highest value of the dwell time is reported.

11.2 Test SET-UP (Block Diagram of Configuration)

Spectrum Analyzer

11.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Characteristics	LAST CAL.	CAL DUE.
Spectrum Analyzer	Rohde & Schwarz	FSV30	1321.3008K	10Hz-30GHz	05/23/2019	05/22/2020
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/23/2019	05/22/2020
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/23/2019	05/22/2020

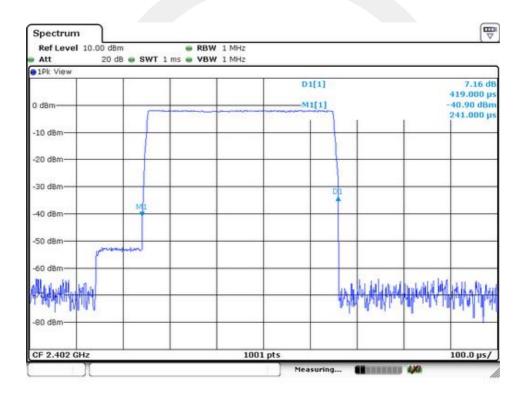
Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

11.4 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

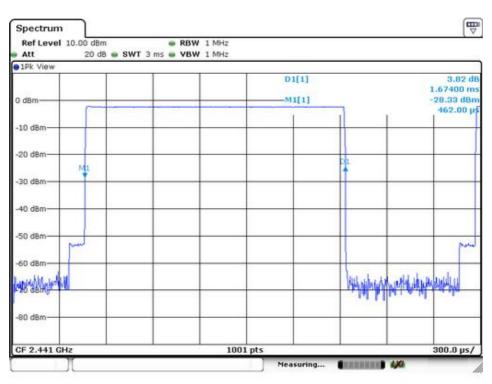
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6seconds. Refer to attached data chart.

<sup>余葉市信濃科技有限公司
地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn
EMTEK (Dongguan) Co..td.
Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
Dongguan, Guangdong.China Http://www.emtek.com.cn E-mail: project@emtek.com.cn</sup>

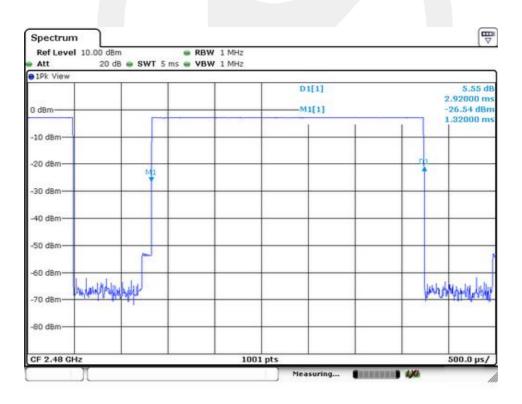

Modulation:	GFSK	Test Date :	January 10, 2020
Test By:	Loren	Temperature :	25 ℃
Test Result:	PASS	Humidity :	50 %
lest Result:	PASS	Humidity :	50 %

11.5 Test result

Mode	Number of transmission in a 31.6(79 Hopping*0.4)	Length of transmissions time(msec)	Result (msec)	Limit (msec)
DH1	1600/(2*79) x 31.6 = 320	0.419	134.07	400
DH3	1600/(4*79) x 31.6 =160	1.674	267.83	400
DH5	1600/(6*79) x 31.6 =106.67	2.920	311.47	400


Remark: The results of worst cased was recorded.

DH1:



DH5:

12. MAXIMUM PEAK OUTPUT POWER TEST

12.1 Measurement Procedure

a. Check the calibration of the measuring instrument(SA) using either an internal calibrator or a known signal from an external generator.

b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.

c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using proper RBW and VBW setting.

d. Measure the captured power within the band and recording the plot.

e. Repeat above procedures until all frequencies required were complete.

12.2 Test SET-UP (Block Diagram of Configuration)

12.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Characteristics	LAST CAL.	CAL DUE.
Spectrum Analyzer	Rohde & Schwarz	FSV30	1321.3008K	10Hz-30GHz	05/23/2019	05/22/2020
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/23/2019	05/22/2020
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/23/2019	05/22/2020

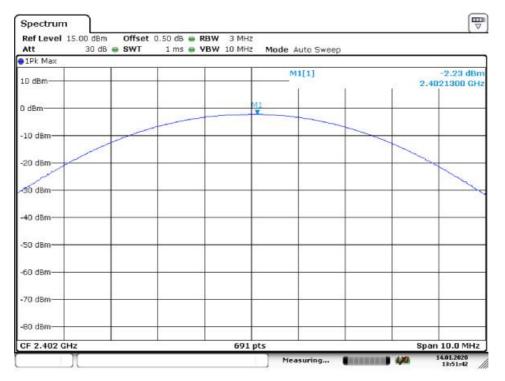
Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

12.4 Measurement Results:

Refer to attached data chart.

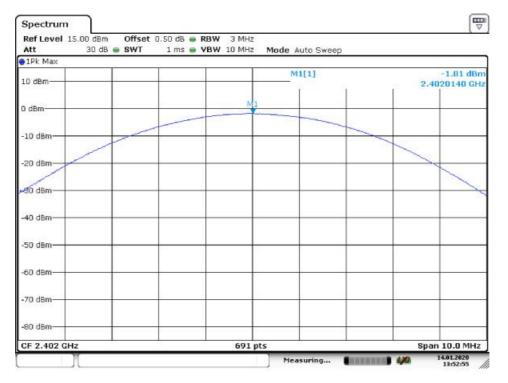
Spectrum Detector:	PK	Test Date :	January 10, 2020
Test By:	Loren	Temperature :	25 ℃
Test Result:	PASS	Humidity :	50 %
Modulation:	GFSK	-	

Channel number	Channel Frequency (MHz)	Peak Power output(dBm)	Peak Power output(mW)	Peak Power Limit(mW)	Pass/Fail
01	2402	-1.00	0.794	1000	PASS
40	2441	-0.82	0.828	1000	PASS
79	2480	-0.36	0.920	1000	PASS



Spectrum Detector: Test By: Test Result: Modulation: РК Loren PASS П/4-DQPSK Test Date : Temperature : Humidity : January 10, 2020 25 ℃ 50 %

Channel number	Channel Frequency (MHz)	Peak Power output(dBm)	Peak Power output(mW)	Peak Power Limit(mW)	Pass/Fail
01	2402	-2.23	0.598	125	PASS
40	2441	-2.08	0.619	125	PASS
79	2480	-1.59	0.693	125	PASS



Spectrum Detector: Test By: Test Result: Modulation: PK Loren PASS 8DPSK Test Date : Temperature : Humidity : January 10, 2020 25 ℃ 50 %

Channel number	Channel Frequency (MHz)	Peak Power output(dBm)	Peak Power output(mW)	Peak Power Limit(mW)	Pass/Fail
01	2402	-1.81	0.659	125	PASS
40	2441	-1.70	0.676	125	PASS
79	2480	-1.27	0.746	125	PASS

Band EDGE test 13.

13.1 Measurement Procedure

For Conducted Test

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

For Radiated emission Test

The EUT was placed on a styrofoam table which is 1.5m above ground plane.

The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

The measurements were performed at the lower end of the 2.4GHz band. Use the following spectrum analyzer settings:

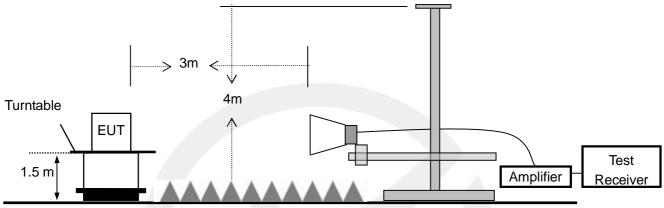
For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	1MHz
VBW	3MHz
Detector	Peak
Trace	Max hold

For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

亲莞市信源科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co. trd. Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songahanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn



13.2 Test SET-UP (Block Diagram of Configuration)

For Conducted Test

For Radiated emission Test

13.3 Measurement Equipment Used:

For Conducted Test

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Characteristics	LAST CAL.	CAL DUE.
Spectrum Analyzer	Rohde & Schwarz	FSV30	1321.3008K	10Hz-30GHz	05/23/2019	05/22/2020
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/23/2019	05/22/2020
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/23/2019	05/22/2020

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list. For Radiated emission Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Characteristics	Last Cal.	Cal. Interval
1	Signal Analyzer	Rohde & Schwarz	FSV30	103040	9KHz-40GHz	05/23/2019	1 Year
2	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-12 72	1GHz-18GHz	05/23/2019	1 Year
3	Power Amplifier	LUNAR EM	LNA1G18-40	J1010000 0081	1GHz-26.5GHz	05/23/2019	1 Year
4	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/23/2019	1 Year
5	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/23/2019	1 Year
6	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/23/2019	1 Year

东莞市信源科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮籍:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co. Ltd. Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong,China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

13.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	January 10, 2020
Test By:	Loren	Temperature :	25 ℃
Test Result:	PASS	Humidity :	50 %

1. Conducted Test

For Non-Hopping Mode:


Frequency (MHz)	Modulation	Peak Power Output(dBm)	Result of Band edge(dBc)	Band edge Limit(dBc)
2401.82	GFSK	-1.30	51.1	>20dBc
2401.82	pi/4-DQPSK	-0.40	51.92	>20dBc
2401.82	8DPSK	-1.29	51.14	>20dBc
2479.82	GFSK	-4.58	50.38	>20dBc
2479.82	pi/4-DQPSK	-1.29	51.14	>20dBc
2479.82	8DPSK	-4.60	50.87	>20dBc

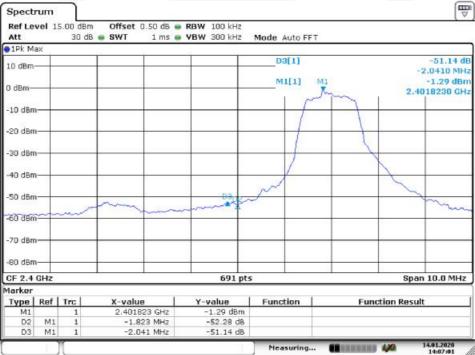
Test plots of GFSK

Specti Ref Le Att		5.00 dBr 30 di		RBW 100 kHz VBW 300 kHz	Mode Auto FFT		(7
P1Pk M	ax			- 77			
10 dBm	-				D3[1]		-51.10 d -4.5150 MH
0 dBm—	-				M1[1] M	4	-1.30 dBn 2.4018230 GH
-10 dBm							
-20 dBm							
-30 dBm	-						
-40 dBm					-A-		
-50 d8m				- P		-	
-60 dBm		m	of manun			-	
-70 d8m							
-80 dBm	-						
CF 2.4	GHz			691 pts	8		Span 10.0 MHz
Marker	3		1000 Carbon Carbon (1000)				
Type	Ref		X-value	Y-value	Function	Funct	tion Result
M1		1	2.401823 GHz	-1.30 dBm			
D2 D3	M1 M1	1	-1.823 MHz -4.515 MHz	-49.19 dB -51.10 dB			
101500		1			Measuring	Constant)	14.01.2020 14:03:53

pect	5 5					
10.000						Access
ker Le Mtt	vel 15	5.00 dBm 30 dB		 RBW 100 kHz VBW 300 kHz 	Mode Auto FFT	
1Pk M	ах				Hour Hucorri	
) dBm-					D3[1]	-51.92 dB
dBm-		MI			M1[1]	4.7610 MHz -0.40 dBm 2.4798240 GHz
		\square				2.4798240 GHZ
.0 dBm		1				
0 dBm	A	1				
	1					
O dBm	1					
dBm						
0 dBm	-			n op	An I	
0 dBm				minition	~ h	
11						
0 dBm						
30 dBm						
F 2.48	835 GI	Ηz	1	691 pts	8	Span 10.0 MHz
arker	8					
Tung	Ref		X-value	Y-value	Function	Function Result
		1	2.479824 GHz	-0.40 dBm		
M1	6.4.4		D CZED MUL			
	M1 M1	1	3.6758 MHz 4.761 MHz	-56.44 dB -51.92 dB		

Test plots of pi/4-DQPSK

 京葉市信濃科技有理公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn


 EMTEK (Dongguan) Co. Ltd.
 Add: -1&2/F ...,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9. Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China
 Http://www.emtlek.com.cn
 E-mail: project@emtek.com.cn

the World

Specti Ref Le Att	rum					
	vel 15			 RBW 100 kHz VBW 300 kHz 	Mode Auto FFT	
1Pk M	ax	30 GL	5 5 5 5 1 1 115 1	THE SOUTH	MOUB AUTOFFT	
LO dBm-	1			1	D2[1]	-54.43 dB
0 GBM						3.6900 MHz
) dBm—		11			M1[1]	-4.58 dBm 2.4798240 GHz
		Man				
10 dBm	1		1			
20 dBm	1			_		
	1					
30 dBm	1					
40 dBm						
10 000						
dBm					03	
60 dBm				monte	mon	
зо авп			- C	1		
70 dBm						
80 dBm	S					
	835 GH	łz		691 pts	8	Span 10.0 MHz
arker	0-61	x - 1	×		Function	Function Result
M1	Ref	1	2,479824 GHz	-4.58 dBm	Function	Function Result
D2	M1	1	3.69 MHz	-54.43 dB		
D3	M1	1	4.747 MHz	-50.38 dB		

Test plots of 8DPSK

um			(E
- I the set in the set of the set			[¹
el 15.00 dBm Offset 0.50 dB 30 dB SWT 1 ms	• VBW 300 kHz	Mode Auto FFT	
		D2[1]	-54.14 d 3.6900 MH
		M1[1]	-4.60 dB
Tel 1			2.4798240 GH
		1	
	_		
m	mange	mon	and the second
			m man - man - man
35 GHz	691 pts		Span 10.0 MHz
Ref Trc X-value	Y-value	Function	Function Result
1 2.479824 GHz	-4.60 dBm	runcaun	Function Result
M1 1 3.69 MHz	-54.14 dB		

For Hopping Mode:

Frequency (MHz)	Modulation	Peak Power Output(dBm)	Result of Band edge(dBc)	Band edge Limit(dBc)
2401.82	GFSK	-5.30	39.72	>20dBc
2401.82	pi/4-DQPSK	-4.56	44.80	>20dBc
2401.82	8DPSK	-5.30	43.78	>20dBc
2479.82	GFSK	-4.57	49.62	>20dBc
2479.82	pi/4-DQPSK	-5.31	43.72	>20dBc
2479.82	8DPSK	-4.59	51.67	>20dBc

Test plots of GFSK

Att		5.00 dBm 30 dB		VBW 300 kHz	Mode Auto FFT		
1Pk M	ах		MI		100.000		
10 dBm	-				D3[1]		-39.72 d -1.8230 MH
0 dBm–					M1[1]		-5.30 dBr 2.4018230 GH
-10 dBn	n					ЪÆ	\mathcal{T}
-20 dBn	n			+ +			VV
-30 dBn	-						
-40 dBn	n		ei de	Da		+ +	
-50 dBn	n			~			
-60 dBn	V I	~~~					
-70 dBn	n					+	
-80 dBn	n						
CF 2.4	GHz			691 pts	e		Span 10.0 MHz
1arker	0.0		N		5 - 11 - 1		
Type M1	Ref	1 I	2.401823 GHz	-5.30 dBm	Function	Functi	on Result
D2	M1	1	-1.823 MHz	-39.72 dB			
D3	M1	1	-1.823 MHz	-39.72 dB			

0 dBm				
0 dBm				
) dBm				
) dBm		- 403	m	
a dam				hard
dBm				
d8m				
ubm				
d8m				
28000				
4835 GHz		691 nts		Snan 10.0 MHz
.4835 GHz er		691 pts	8	Span 10.0 MHz
	1. A.	691 pts	8	Span 10.0 MHz
		691 pts	8	Span 10.0 MHz
		691 pts	8	Span 10.0 MHz
im				
m				
im				
200			1	
8m				- Am
				mont
IBM		12	-um	
dBm	1	003	and the second	the second se
211			100	
d8mm8b				
802				
675500				
Bm-				
IBm V				
				4
IBm				
m Im			1	ALT POL TO GITE
m M1			0.000	2.4798240 GHz
			M1[1]	-4.56 dBm
iBm	L		00[1]	3.8490 MHz
426.0 II			D3[1]	-44.80 dB

Test plots of pi/4-DQPSK

 京美市信濃科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

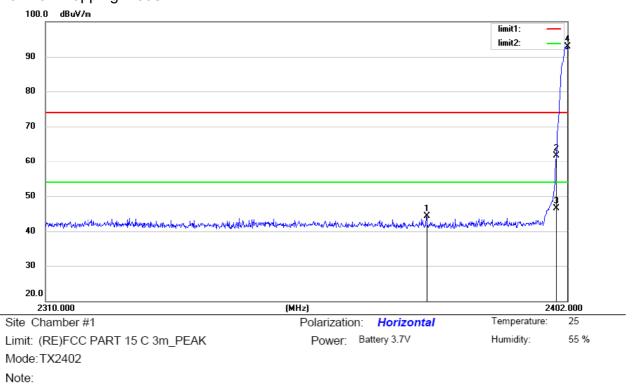

 EMTEK (Dongguan) Co.. út/do
 Add: -1&2/F ...Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China
 Http://www.emtek.com.cn
 E-mail: project@emtek.com.cn

the World

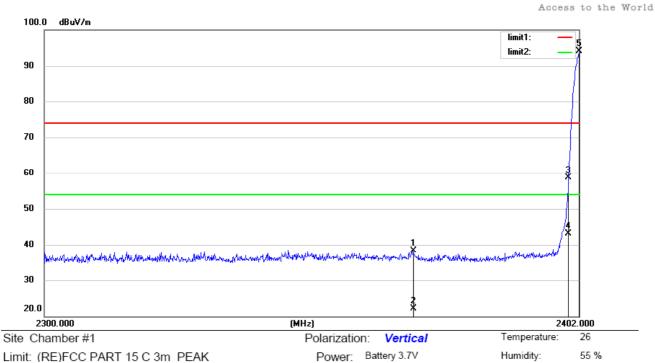
Att		5.00 dBm	Offcot 0 E	0.49.00	RBW 100 kHz		
	SAGL T				VBW 300 kHz	Mode Auto FFT	r
1Pk M	1ax				27	the second second	
LO dBm			+			D3[1]	-49.62 dB 5.1660 MHz
) tdBm-						M1[1]	-4.57 dBm 2.4788260 GHz
-10 dBr		m					
20 dBr	m						
30 dBr	m						
40 dBr	m						
50 dBr	m			~	me	D3	
60 dBr	m						mun
70 dBr	m		-				
-80 dBr	68 <u> </u>						
CF 2.4		Hz			691 pts	8	Span 10.0 MHz
1arker Type		Tre	X-value	1	Y-value	Function	Function Result
M1		1	2.478826	GHz	-4.57 dBm		
D2	M1	1	4.674	MHz	-49.94 dB		

Test plots of 8DPSK


东莞市信源科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mall: project@emtek.com.cn EMTEK (Dongguan) Co. Ltd. Add: -182/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songahanhu High-technology Industrial Development Zone, Dongguan, Guangdong.China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

the World

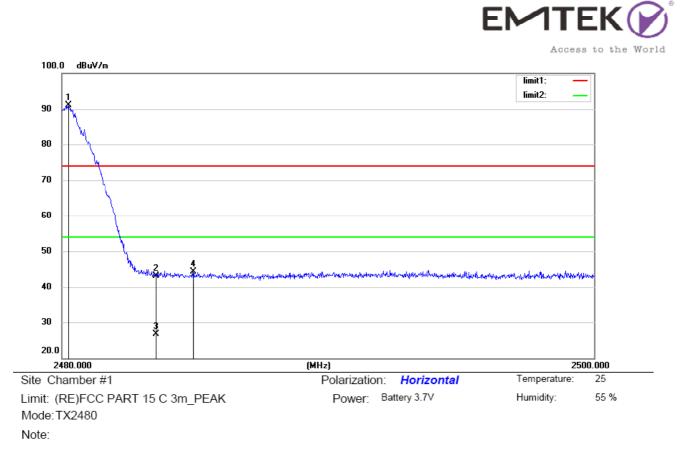
Att 1Pk M		30 dBm	Offset (RBW 100 kHz VBW 300 kHz	Mode Auto FF	T		86.5
V 16	ax	50 00	, and	1 113	TEN DOD KITZ	MOUS AUTO PP			
:Brr						D3[1]		1.000	-51.67 dB
Bm-		M1	-			M1[1]		-4.59 dBn 2.4798240 GH	
dBr	n n n	m	1						
dBr	n		\uparrow				_	5. 73	
dBr	n								
dBr	n		5	8				-	
Br	n		1 m	ham	man me	D3			
dBr	n		-	-		-	man	m	m
dBr	n							-	
dBr	n		-				-	10	-
.4	835 G	lz			691 p	ts		Spar	10.0 MHz
er			200000000000000000000000000000000000000						
	Ref		X-value		Y-value	Function	Fun	iction Result	
M1 D2		1	2,4798		-4.59 dBm				
)2)3	M1 M1	1		76 MHz	-54.30 dB -51.67 dB				


2. Radiated emission Test Worst test modulation 8DPSK For Non-Hopping Mode:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2	2376.884	55.92	-11.68	44.24	74.00	-29.76	peak			
2	2	2400.000	73.27	-11.63	61.64	74.00	-12.36	peak			
3	2	2400.000	58.15	-11.63	46.52	54.00	-7.48	AVG			
4	* 2	2401.908	104.51	-11.63	92.88	74.00	18.88	peak			

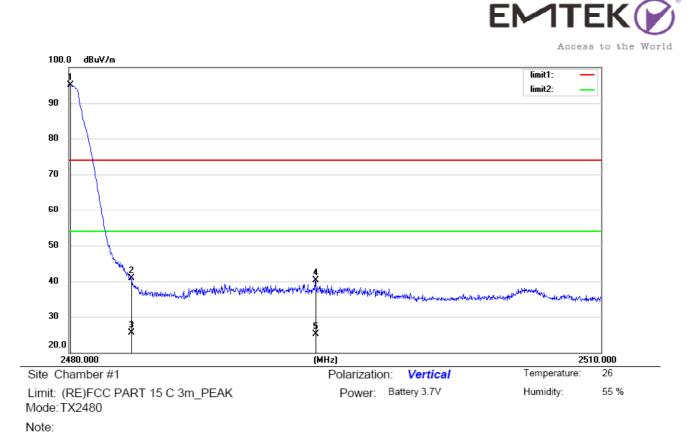
*:Maximum data x:Over limit I:over margin

Operator: HU



Mode: TX2402 Note:

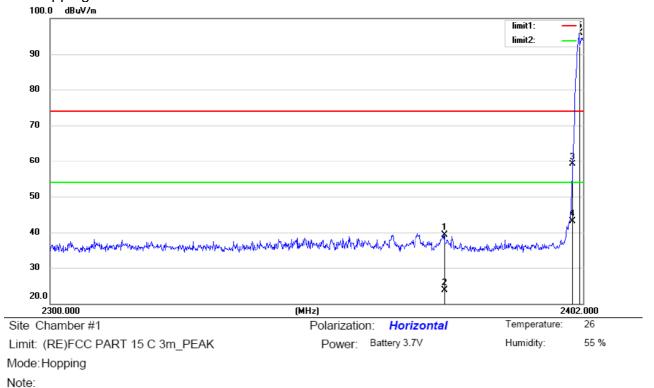
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2	2369.972	57.02	-18.68	38.34	74.00	-35.66	peak		0	
2	2	2369.972	40.70	-18.68	22.02	54.00	-31.98	AVG		0	
3	2	2400.000	77.14	-18.50	58.64	74.00	-15.36	peak		0	
4	2	2400.000	61.56	-18.50	43.06	54.00	-10.94	AVG		0	
5	* 2	2402.000	112.65	-18.49	94.16	74.00	20.16	peak		0	


*:Maximum data x:Over limit I:over margin Operator: HU

EMTE

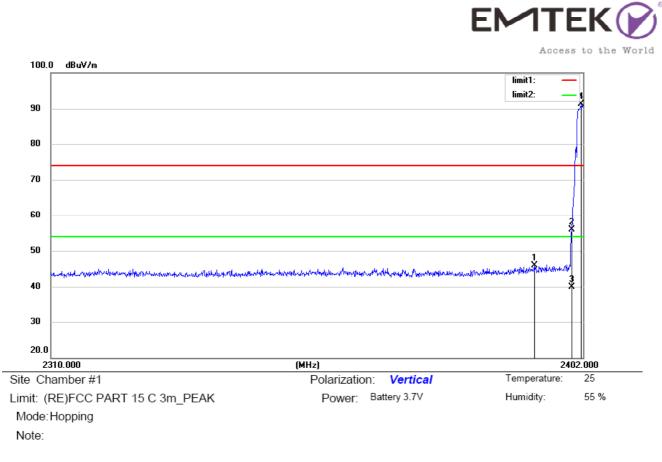
No.	Mł	۲.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	248	0.240	102.64	-11.45	91.19	74.00	17.19	peak			
2		248	3.500	54.49	-11.46	43.03	74.00	-30.97	peak			
3		248	3.500	38.16	-11.46	26.70	54.00	-27.30	AVG			
4		2484	4.920	55.79	-11.44	44.35	74.00	-29.65	peak			

*:Maximum data x:Over limit I:over margin Operator: HU

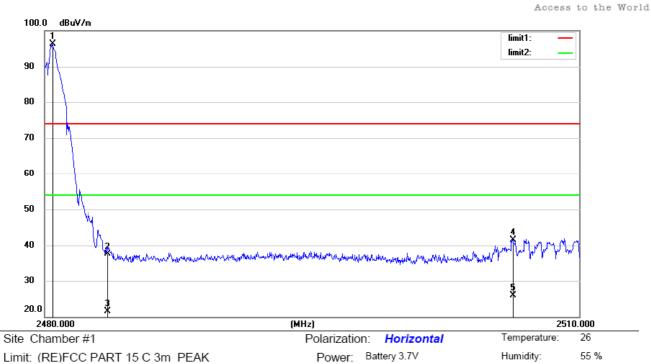


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2480.060	113.05	-18.03	95.02	74.00	21.02	peak		0	
2		2483.500	58.94	-18.01	40.93	74.00	-33.07	peak		0	
3		2483.500	43.60	-18.01	25.59	54.00	-28.41	AVG		0	
4		2493.860	58.32	-17.95	40.37	74.00	-33.63	peak		0	
5		2493.860	42.98	-17.95	25.03	54.00	-28.97	AVG		0	

*:Maximum data x:Over limit I:over margin Operator: HU


For Hopping Mode:

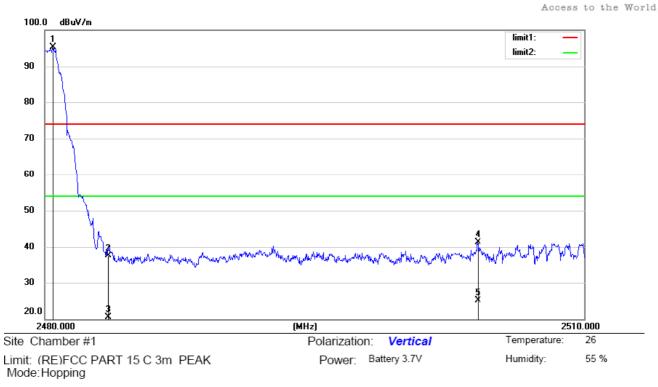
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	:	2374.970	57.90	-18.64	39.26	74.00	-34.74	peak		0	
2		2374.970	42.30	-18.64	23.66	54.00	-30.34	AVG		0	
3		2400.000	77.70	-18.50	59.20	74.00	-14.80	peak		0	
4		2400.000	61.69	-18.50	43.19	54.00	-10.81	AVG		0	
5	*	2401.286	114.45	-18.49	95.96	74.00	21.96	peak		0	


*:Maximum data x:Over limit I:over margin

Operator: HU

No.	Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2393.444	56.41	-10.51	45.90	74.00	-28.10	peak			
2		2400.000	66.45	-10.47	55.98	74.00	-18.02	peak			
3		2400.000	50.36	-10.47	39.89	54.00	-14.11	AVG			
4	*	2401.632	101.74	-10.46	91.28	74.00	17.28	peak			

*:Maximum data x:Over limit I:over margin Operator: HU



Limit: (RE)FCC PART 15 C 3m PEAK Mode: Hopping Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2480.420	114.31	-18.03	96.28	74.00	22.28	peak		0	
2		2483.500	55.55	-18.01	37.54	74.00	-36.46	peak		0	
3		2483.500	39.58	-18.01	21.57	54.00	-32.43	AVG		0	
4		2506.280	59.44	-17.89	41.55	74.00	-32.45	peak		0	
5		2506.280	43.88	-17.89	25.99	54.00	-28.01	AVG		0	

*:Maximum data x:Over limit I:over margin Operator: HU

EMTE

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2480.420	113.31	-18.03	95.28	74.00	21.28	peak			
2		2483.500	55.55	-18.01	37.54	74.00	-36.46	peak			
3		2483.500	38.50	-18.01	20.49	54.00	-33.51	AVG			
4		2504.060	59.17	-17.90	41.27	74.00	-32.73	peak			
5		2504.060	42.96	-17.90	25.06	54.00	-28.94	AVG			

* *:Maximum data x:Over limit I:over margin

Operator: HU

EMTE

14. Antenna Application

14.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

FCC part 15C section 15.247 requirements:

Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

14.2 Result

The EUT's antenna, permanent attached antenna, used a PCB antenna and integrated on PCB, The antenna's gain is 0 Bi and meets the requirement.

15. Photos of EUT

Please refer to external photos and internal photos.

*** End of Report ***

声明 Statement

1. 本报告无授权批准人签字及"检验报告专用章"无效;

This report will be void without authorized signature or special seal for testing report.

2. 未经许可本报告不得部分复制;

This report shall not be copied partly without authorization.

3. 本报告的检测结果仅对送测样品有效,委托方对样品的代表性和资料的真实性负责;

The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material.

 本检测报告中检测项目标注有特殊符号则该项目不在资质认定范围内,仅作为客户委托、科研、教学或内部 质量控制等目的使用;

The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.

5. 本检测报告以实测值进行符合性判定,未考虑不确定度所带来的风险,本实验室不承担相关责任,特别约定、 标准或规范中有明确规定的除外;

The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, EMTEK shall not assume any responsibility.

6. 对本检测报告若有异议,请于收到报告之日起20日内提出;

Objections shall be raised within 20 days from the date receiving the report.