

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPART C REQUIREMENT

OF

Splashproof + Shockproof Wireless Stereo Earbuds

Model No.: iB96, iB96X (X means A-Z, denote as color of cabinet)

Trademark: iHome

FCC ID: EMOIB96

Report No.: ES180124006E1

Issue Date: January 31, 2018

Prepared for

SDI Technologies Inc. 1299, Main Street, Rahway, NJ 07065, U.S.A.

Prepared by

EMTEK(SHENZHEN) CO., LTD.

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China.

> TEL: 86-755-26954280 FAX: 86-755-26954282

This report shall not be reproduced, except in full, without the written approval of EMTEK(SHENZHEN) CO., LTD.

TRF No. FCC Part 15.247/A

Page 1 of 69

VERIFICATION OF COMPLIANCE

Applicant:	SDI Technologies Inc. 1299, Main Street, Rahway, NJ 07065, U.S.A.
Manufacturer:	SDI Technologies Inc. 1299, Main Street, Rahway, NJ 07065, U.S.A.
Factory :	Cirque Audio Technology Co., Ltd. No.2, Road Beiyiheng, HuangJiabao Industrial Park, Shipai, Dongguan, Guangdong, China, 523347.
Product Description:	Splashproof + Shockproof Wireless Stereo Earbuds
Trade Mark:	iHome
Model Number:	iB96, iB96X (X means A-Z, denote as color of cabinet) (Note: The samples are the same except difference color of appearance and model number, Here iB96 was selected for full test.)

We hereby certify that:

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247(2018).

Date of Test :

January 24, 2018 to January 30, 2018

Yaping Shen

repared/Tested by :

Yaping Shen/Editor

o Ha

Reviewer:

Joe Xia/Supervisor

Approved & Authorized Signer :

Lisa Wang/Manager

TRF No. FCC Part 15.247/A

Page 2 of 69

Report No. ES180124006E1 Ver.1.0

Modified Information

Version	Summary	Revision Date	Report No.
Ver.1.0	Original Report	1	ES180124006E1

Table of Contents

1. GENERAL INFORMATION	6
1.1 Product Description	6
1.2 TEST METHODOLOGY	6
1.3 TEST FACILITY	7
2. SYSTEM TEST CONFIGURATION	8
2.1 EUT CONFIGURATION	8
2.2 EUT EXERCISE	8
2.3 TEST PROCEDURE	8
2.4 CONFIGURATION OF TESTED SYSTEM	9
3. SUMMARY OF TEST RESULTS	
4. DESCRIPTION OF TEST MODES	
5. TEST SYSTEM UNCERTAINTY	
6. RADIATED EMISSION TEST	
6.1 Measurement Procedure	
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
6.3 MEASUREMENT EQUIPMENT USED:	16
6.4 RADIATED EMISSION LIMIT	17
6.5 MEASUREMENT RESULT	
6.6 RADIATED MEASUREMENT PHOTOS:	
7. CHANNEL SEPARATION TEST	
7.1 Measurement Procedure	27
7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3 MEASUREMENT EQUIPMENT USED:	27
7.4 MEASUREMENT RESULTS:	
8. 20DB BANDWIDTH TEST	
8.1 Measurement Procedure	
8.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3 MEASUREMENT EQUIPMENT USED:	
8.4 MEASUREMENT RESULTS:	
9. QUANTITY OF HOPPING CHANNEL TEST	41
9.1 Measurement Procedure	41
9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	41
9.3 MEASUREMENT EQUIPMENT USED:	41
9.4 MEASUREMENT RESULTS:	41
10. TIME OF OCCUPANCY (DWELL TIME) TEST	

Report No. ES180124006E1 Ver.1.0

10.1 TEST DESCRIPTION	
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
10.3 MEASUREMENT EQUIPMENT USED:	
10.4 TEST REQUIREMENTS / LIMITS	
10.5 TEST RESULT	
11. MAXIMUM PEAK OUTPUT POWER TEST	
11.1 Measurement Procedure	
11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
11.3 MEASUREMENT EQUIPMENT USED:	
11.4 Measurement Results:	
12. BAND EDGE TEST	
12.1 Measurement Procedure	
12.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
12.3 MEASUREMENT EQUIPMENT USED:	
12.4 Measurement Results:	
13. ANTENNA APPLICATION	69
13.1 ANTENNA REQUIREMENT	69
13.2 RESULT	
14. PHOTOS OF EUT	69

1. GENERAL INFORMATION

1.1 Product Description

Characteristics	Description
Product Name	Splashproof + Shockproof Wireless Stereo Earbuds
Model number	iB96
Input Rating	DC 5V from adapter, Battery 3.7V
Power Supply	DC 3.7V Battery
Kind of Device	Bluetooth Ver.5.0+EDR
Modulation	GFSK, π/4-DQPSK, 8DPSK
Operating Frequency Range	2402-2480MHz
Number of Channels	79
Transmit Power Max(PK)	3.19dBm(0.002084W)
Antenna Type	Internal PCB antenna
Antenna Gain	1dBi
Product Software Version	V4.2
Product Hardware version	V3.0
Radio Software Version	V4.2
Radio Hardware version	V3.0

1.2 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10-2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

1.3 Test Facility

Site Descriptio	n	
EMC Lab.	:	Accredited by CNAS, 2016.10.24 The certificate is valid until 2022.10.28 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L2291.
		Accredited by TUV Rheinland Shenzhen 2016.5.19 The Laboratory has been assessed according to the requirements ISO/IEC 17025.
		Accredited by FCC, August 03, 2017 Designation Number: CN1204 Test Firm Registration Number: 882943
		Accredited by Industry Canada, November 24, 2015 The Certificate Registration Number is 4480A.
		Accredited by A2LA, July 31, 2017 The Certificate Number is 4321.01.
Name of Firm	:	EMTEK(SHENZHEN) CO., LTD.
Site Location	:	Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China.

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The Tx frequency was fixed which was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

2.3.2 Radiated Emissions

Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of EUT was fixed in a particular direction according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013.

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

Item	Equipment	Trademark	Model No.	FCC ID	Note
1.	Splashproof + Shockproof Wireless Stereo Earbuds	iHome	iB96	EMOIB96	EUT

Note:

(1) Unless otherwise denoted as EUT in [Remark] column , device(s) used in tested system is a support equipment.

FCC Rules	Description Of Test	Result
§15.207	AC Power Conducted Emission	N/A(see note 1)
§15.247(d),§15.209	Radiated Emission	Compliant
§15.247(a)(1)	Channel Separation test	Compliant
§15.247(a)(1)	20dB Bandwidth	Compliant
§15.247(a)(1)(iii)	Quantity of Hopping Channel	Compliant
§15.247(a)(1)(iii)	Time of Occupancy(Dwell Time)	Compliant
§15.247(b)	Max Peak output Power test	Compliant
§15.247(d)	Band edge test	Compliant
§15.203	Antenna Requirement	Compliant

3. Summary of Test Results

Remark: The product was tested under the battery fully charged.

Note 1: During the charging procees, the Bluetooth function of this device is inactive.

Note 2: Left and right earbuds have the same RF module and antenna, schematics and component, Mirror PCB layout and some component's placement are slightly different on the back of PCB board because of the different amount of test points between right earbud and left earbud, and these differences will not cause any effects on RF performance after pre-test. Here right earbud was selected for related conducted tests. And for the radiated test, both earbuds are under the test. Right earbug acts as a master device and left earbud acts as a slave device.

4. Description of test modes

The EUT has been tested under its typical operating condition and fully-charged battery for EUT tested alone. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

For Radiated: The EUT's antenna was pre-tested under the following modes:

Test Mode	Description
Mode A	X-Y axis
Mode B	Y-Z axis
Mode C	X-Z axis

From the above modes, the worst case was found in Mode C. Therefore only the test data of the mode was recorded in this report

The EUT has been tested under TX operating condition.

This EUT is a FHSS system, were conducted to determine the final configuration from all possible combinations. We use software control the EUT, Let EUT hopping on and transmit with highest power, all the modes GFSK, $\Pi/4$ -DQPSK, 8DPSK have been tested. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test.

Channel	Frequency(MHz)
1	2402
40	2441
79	2480

5. TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5°C
Humidity	±3%

Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%

6. Radiated Emission Test

6.1 Measurement Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
 - 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
 - 2) Change the antenna polarization and repeat 1) with vertical polarization.
 - 3) Make a hardcopy of the spectrum.
 - 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
 - 5) Change the analyser mode to Clear/ Write and found the cone of emission.
 - 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
 - 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
 - 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Use the following spectrum analyzer settings:

When spectrum scanned from 30MHz to 1GHz setting resolution bandwidth 120KHz and video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	120KHz
VB	300KHz
Detector	QP
Trace	Max hold

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max hold

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 10Hz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	10Hz
Detector	Peak
Trace	Max hold

6.2 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Page 15 of 69

Report No. ES180124006E1 Ver.1.0

6.3 Measurement Equipment Used:

Item	Equipment	Manufacturer	Model No.	Serial No.	Characteristics	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	1166.5950.0 3	9KHz-3GHz	05/16/2017	1 Year
2.	Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	05/16/2017	1 Year
3.	Bilog Antenna	Schwarzbeck	VULB9163	000141	25MHz-2GHz	05/16/2017	1 Year
4.	Power Amplifier	CDS	RSU-M352	818	1MHz-1GHz	05/16/2017	1 Year
5.	Power Amplifier	HP	8447F	OPT H64	1GHz-26.5GHz	05/16/2017	1 Year
6.	Color Monitor	SUNSPO	SP-140A	N/A		05/16/2017	1 Year
7.	Single Line Filter	JIANLI	XL-3	N/A		05/16/2017	1 Year
8.	Single Phase Power Line Filter	JIANLI	DL-2X100B	N/A		05/16/2017	1 Year
9.	3 Phase Power Line Filter	JIANLI	DL-4X100B	N/A		05/16/2017	1 Year
10.	DC Power Filter	JIANLI	DL-2X50B	N/A		05/16/2017	1 Year
11.	Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	05/16/2017	1 Year
12.	Cable	Rosenberger	CIL02	A0783566	9KHz-3GHz	05/16/2017	1 Year
13.	Cable	Rosenberger	RG 233/U	525178	9KHz-3GHz	05/16/2017	1 Year
14.	Signal Analyzer	Rohde & Schwarz	FSV30	103040	9KHz-40GHz	05/16/2017	1 Year
15.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1272	1GHz-18GHz	05/16/2017	1 Year
16.	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA91703 99	14GHz -26.5GHz	05/16/2017	1 Year
17.	Power Amplifier	LUNAR EM	LNA1G18-4 0	J101000000 81	1GHz-26.5GHz	05/16/2017	1 Year
18.	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/16/2017	1 Year
19.	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/16/2017	1 Year
20.	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/16/2017	1 Year

6.4 Radiated Emission Limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Remark 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

:

6.5 Measurement Result

Below 30MHz:

Operation Mode:	ТХ	Test Date :	January 24, 2018
Frequency Range:	9KHz~30MHz	Temperature :	28 ℃
Test Result:	PASS	Humidity :	65 %
Measured Distance:	3m	Test By:	Yaping Shen

Freq.	Ant.Pol.	Emission	Limit 3m	Over
		Level		
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)

Note: The low frequency, which started from 9KHz-30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Below 1000MHz:

Pass.

All the modulation modes were tested the data of the worst mode (8DPSK TX2480MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.

Please refer to the following data.

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		507.2400	29.87	-8.72	21.15	46.00	-24.85	QP			
2		572.2300	29.43	-7.18	22.25	46.00	-23.75	QP			
3		630.4300	30.80	-5.55	25.25	46.00	-20.75	QP			
4		749.7400	30.74	-3.55	27.19	46.00	-18.81	QP			
5		803.0900	30.94	-3.27	27.67	46.00	-18.33	QP			
6	*	922.4000	31.10	-3.23	27.87	46.00	-18.13	QP			

*:Maximum data x:Ov

x:Over limit !:over margin

Comment: Factor build in receiver.

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		46.4900	30.00	-15.72	14.28	40.00	-25.72	QP			
2		647.8900	31.20	-6.70	24.50	46.00	-21.50	QP			
3		739.0700	29.96	-4.97	24.99	46.00	-21.01	QP			
4		750.7100	30.26	-4.75	25.51	46.00	-20.49	QP			
5		822.4900	30.52	-3.98	26.54	46.00	-19.46	QP			
6	*	915.6100	29.57	-2.72	26.85	46.00	-19.15	QP			

*:Maximum data x:Over li

x:Over limit I:over margin

Comment: Factor build in receiver.

Above 1000MHz~10th Harmonics:

Operation Mode:		GFSK	(CH1: 2402M	IHz) Tes	t Date :	January	24, 2018			
· · · · · · · · · · · · · · · · · · ·										
Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Margi	n(dB)			
(MHz)	H/V	PK	AV	PK	AV	PK	AV			
4804	V	64.28	44.24	74	54	-9.72	-9.76			
7206	V	63.33	43.28	74	54	-10.67	-10.72			
9608	V	62.49	42.69	74	54	-11.51	-11.31			
12010	V	61.47	41.27	74	54	-12.53	-12.73			
14412	V	60.39	40.38	74	54	-13.61	-13.62			
16814	V	59.35	39.65	74	54	-14.65	-14.35			
4804	Н	63.74	43.14	74	54	-10.26	-10.86			
7206	Н	62.18	42.18	74	54	-11.82	-11.82			
9608	Н	61.94	41.29	74	54	-12.06	-12.71			
12010	Н	60.44	40.28	74	54	-13.56	-13.72			
14412	H	59.38	39.58	74	54	-14.62	-14.42			
16814	H	58.63	38.67	74	54	-15.37	-15.33			

Operation Mode: GFSK (CH40: 2441MHz) Test Date : January 24, 2018

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Margin(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4882	V	64.91	44.36	74	54	-9.09	-9.64
7323	V	63.41	43.29	74	54	-10.59	-10.71
9764	V	62.15	42.14	74	54	-11.85	-11.86
12205	V	61.25	41.28	74	54	-12.75	-12.72
14646	V	60.28	40.27	74	54	-13.72	-13.73
17087	V	59.24	39.58	74	54	-14.76	-14.42
4882	Н	63.42	43.27	74	54	-10.58	-10.73
7323	Н	62.14	42.65	74	54	-11.86	-11.35
9764	Н	61.28	41.41	74	54	-12.72	-12.59
12205	Н	60.41	40.18	74	54	-13.59	-13.82
14646	Н	59.25	39.28	74	54	-14.75	-14.72
17087	Н	58.64	38.67	74	54	-15.36	-15.33

Operation Mode:

GFSK (CH79: 2480MHz) Test Date : January 24, 2018

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Margin(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4960	V	62.39	42.36	74	54	-11.61	-11.64
7440	V	61.47	41.24	74	54	-12.53	-12.76
9920	V	60.18	40.18	74	54	-13.82	-13.82
12400	V	59.25	39.28	74	54	-14.75	-14.72
14880	V	58.64	38.64	74	54	-15.36	-15.36
17360	V	57.63	37.54	74	54	-16.37	-16.46
4960	Н	64.55	44.18	74	54	-9.45	-9.82
7440	Н	63.28	43.92	74	54	-10.72	-10.08
9920	Н	62.49	42.54	74	54	-11.51	-11.46
12400	Н	61.28	41.39	74	54	-12.72	-12.61
14880	Н	60.48	40.28	74	54	-13.52	-13.72
17360	Н	59.58	39.58	74	54	-14.42	-14.42

Operation Mode:

Pi/4-DQPSK (CH1: 2402MHz) Test Date : January 24, 2018

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4804	V	63.24	43.24	74	54	-10.76	-10.76
7206	V	62.14	42.64	74	54	-11.86	-11.36
9608	V	61.29	41.24	74	54	-12.71	-12.76
12010	V	60.28	40.28	74	54	-13.72	-13.72
14412	V	59.25	39.35	74	54	-14.75	-14.65
16814	V	58.64	38.64	74	54	-15.36	-15.36
4804	Н	64.36	44.14	74	54	-9.64	-9.86
7206	Н	63.25	43.29	74	54	-10.75	-10.71
9608	Н	62.41	42.54	74	54	-11.59	-11.46
12010	Н	61.49	41.24	74	54	-12.51	-12.76
14412	Н	60.25	40.28	74	54	-13.75	-13.72
16814	Н	59.57	39.58	74	54	-14.43	-14.42

_							
Freq.	Ant. Pol.	Emission Le	Emission Level(dBuV/m)		(dBuV/m)	Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4882	V	63.42	43.28	74	54	-10.58	-10.72
7323	V	62.94	42.54	74	54	-11.06	-11.46
9764	V	61.14	41.36	74	54	-12.86	-12.64
12205	V	60.24	40.24	74	54	-13.76	-13.76
14646	V	59.58	39.28	74	54	-14.42	-14.72
17087	V	58.64	38.61	74	54	-15.36	-15.39
4882	Н	64.24	44.14	74	54	-9.76	-9.86
7323	Н	63.24	43.25	74	54	-10.76	-10.75
9764	Н	62.08	42.36	74	54	-11.92	-11.64
12205	Н	61.48	41.25	74	54	-12.52	-12.75
14646	Н	60.49	40.25	74	54	-13.51	-13.75
17087	Н	59.58	39.65	74	54	-14.42	-14.35

Operation Mode: Pi/4-DQPSK (CH40: 2441MHz) Test Date : January 24, 2018

Operation Mode: Pi/4-DQPSK (CH79: 2480MHz) Test Date : January 24, 2018

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4960	V	63.21	43.29	74	54	-10.79	-10.71
7440	V	62.14	42.61	74	54	-11.86	-11.39
9920	V	61.09	41.28	74	54	-12.91	-12.72
12400	V	60.25	40.39	74	54	-13.75	-13.61
14880	V	59.25	39.24	74	54	-14.75	-14.76
17360	V	58.61	38.65	74	54	-15.39	-15.35
4960	Н	64.33	44.12	74	54	-9.67	-9.88
7440	Н	62.97	42.18	74	54	-11.03	-11.82
9920	Н	61.27	41.36	74	54	-12.73	-12.64
12400	Н	60.42	40.25	74	54	-13.58	-13.75
14880	Н	59.91	39.65	74	54	-14.09	-14.35
17360	Н	58.64	38.62	74	54	-15.36	-15.38

Operation	Mode:
-----------	-------

8DPSK (CH1: 2402MHz)

Test Date :

January 24, 2018

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4804	V	64.58	44.21	74	54	-9.42	-9.79
7206	V	63.49	43.21	74	54	-10.51	-10.79
9608	V	62.17	42.14	74	54	-11.83	-11.86
12010	V	61.47	41.24	74	54	-12.53	-12.76
14412	V	60.29	40.38	74	54	-13.71	-13.62
16814	V	59.58	39.25	74	54	-14.42	-14.75
4804	Н	63.58	43.65	74	54	-10.42	-10.35
7206	Н	62.42	42.51	74	54	-11.58	-11.49
9608	Н	61.52	41.27	74	54	-12.48	-12.73
12010	Н	60.24	40.28	74	54	-13.76	-13.72
14412	Н	59.36	39.28	74	54	-14.64	-14.72
16814	Н	58.64	38.67	74	54	-15.36	-15.33

Operation Mode:

8DPSK (CH40: 2441MHz) Test Date :

January 24, 2018

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Over	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4882	V	64.25	44.23	74	54	-9.75	-9.77
7323	V	63.26	43.69	74	54	-10.74	-10.31
9764	V	62.54	42.54	74	54	-11.46	-11.46
12205	V	61.42	41.24	74	54	-12.58	-12.76
14646	V	60.29	40.18	74	54	-13.71	-13.82
17087	V	59.52	39.25	74	54	-14.48	-14.75
4882	Н	63.52	43.62	74	54	-10.48	-10.38
7323	Н	62.47	42.57	74	54	-11.53	-11.43
9764	Н	61.97	41.29	74	54	-12.03	-12.71
12205	Н	60.74	40.25	74	54	-13.26	-13.75
14646	Н	60.55	40.14	74	54	-13.45	-13.86
17087	Н	59.88	39.28	74	54	-14.12	-14.72

Operation Mode:

8DPSK (CH79: 2480MHz) Te

Test Date :

January 24, 2018

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m	(dBuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4960	V	66.93	46.95	74	54	-7.07	-7.05
7440	V	65.28	45.36	74	54	-8.72	-8.64
9920	V	64.25	44.15	74	54	-9.75	-9.85
12400	V	63.49	43.26	74	54	-10.51	-10.74
14880	V	62.41	42.15	74	54	-11.59	-11.85
17360	V	61.84	41.95	74	54	-12.16	-12.05
4960	Н	65.48	45.36	74	54	-8.52	-8.64
7440	Н	64.94	44.52	74	54	-9.06	-9.48
9920	Н	63.48	43.28	74	54	-10.52	-10.72
12400	Н	62.98	42.39	74	54	-11.02	-11.61
14880	Н	61.42	41.28	74	54	-12.58	-12.72
17360	Н	60.48	40.29	74	54	-13.52	-13.71

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

6.6 Radiated Measurement Photos:

TRF No. FCC Part 15.247/A

Page 26 of 69

Report No. ES180124006E1 Ver.1.0

7. Channel Separation test

7.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

7.2 Test SET-UP (Block Diagram of Configuration)

EUT	Spectrum Analyzer
-----	-------------------

7.3 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	Characteristics	LAST	CAL DUE.
TYPE		NUMBER	NUMBER		CAL.	
Spectrum Analyzer	Rohde & Schwarz	FSV30	1321.3008K	10Hz-30GHz	05/16/2017	05/15/2018
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/16/2017	05/15/2018
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/16/2017	05/15/2018

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

7.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	January 24, 2018
Test By:	Yaping Shen	Temperature :	24℃
Test Result: Modulation:	PASS GFSK	Humidity :	53 %

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
1	2402	1003	>747
40	2441	1003	>747
79	2480	1003	>721

Pof Lough	10.00 d0m			e pow	100 kUs						(,
Att	AP 0C	OWT	10.00		200 KH2	Mada	Auto FET				
10k May	30 UB	5W1	ta ha	. . VDW	300 KH2	Mode	AULO FFT				
TEV MON			_			_	D9[1]				-0.04 dt
			- 1				02[1]				1.00290 MH
0 dBm			_		M1	_	M1[1]				-3.05 dBn
					12	-	~		D2		49183500 GH
											N
-10 dBm-			-		\vee						
			- 1		1						
-20 d8m-			\rightarrow	~	<u> </u>	+		\sim	-	-	\rightarrow
				(
-0.0 dam			\square								
-50 GDIII											
		/									
40 dBm-			-			-		_			
La			- 1								
-50 dBm-			\rightarrow		<u> </u>	+					_
			- 1								
60 d8m											
00 0011											
			- 1								
-70 dBm			-+			-			-		_
-80 d8m-			\rightarrow			_					
			- 1								
CF 2.402 G	Hz				6	91 pts					Span 3.0 MHz
	Y						Measurin	1g	CONTRACTOR OF STREET,	100	24.01.2018

Spectrum Detector:	
Test By:	
Test Result:	
Modulation:	

PK Yaping Shen PASS П/4-DQPSK Test Date : Temperature : Humidity : January 24, 2018 24℃ 53 %

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
1	2402	1003	>917
40	2441	1003	>912
79	2480	1003	>915

Measuring...

TRF No. FCC Part 15.247/A

24.01.2018 12:56:08

1

Spectrum Detector: Test By: Test Result: Modulation:	PK Yaping Shen PASS 8DPSK	Test Date : Temperature : Humidity :	January 24, 2018 24℃ 53 %	
Channel number	Channel	Separation Read	Separation Limit	
	frequency (MHz)	Value (kHz)	2/3 20dB Down BW(kHz)	
1	2402	1003	>929	
40	2441	1003	>926	

Spectrum

8. 20dB Bandwidth test

8.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

8.2 Test SET-UP (Block Diagram of Configuration)

EUT Spectrum Analyzer	
-----------------------	--

8.3 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	Characteristics	LAST	CAL DUE.
TYPE		NUMBER	NUMBER		CAL.	
Spectrum Analyzer	Rohde & Schwarz	FSV30	1321.3008K	10Hz-30GHz	05/16/2017	05/15/2018
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/16/2017	05/15/2018
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/16/2017	05/15/2018

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

8.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	January 24, 2018
Test By:	Yaping Shen	Temperature :	24°C
Test Result: Modulation:	PASS GFSK	Humidity :	53 %

Channel number	Channel frequency	20dB Down
	(MHz)	BW(kHz)
1	2402	1120
40	2441	1120
79	2480	1081

Spectrur	n								₩
Ref Level	10.00 dBr	n	RBW	100 kHz					
Att	30 d	SWT 19	µs 🖶 VBW	300 kHz	Mode	e Auto FFT			
1Pk Max									
						M1[1]			-1.85 dBm
0.40						M1		2.44	116060 GHz
U dBm				\sim	~	ndB			20.00 dB
-10 d8m-						BW		1.1201	00000 MHz
-10 0011			-	1		Qtactor			2179.4
-20 d8m-			12~		_	~	12		
			2				Y.		
-30 d8m-		/			+				
N									
-40 d8m-					+		_	+	
-		1						· ·	
-50 d8m-		-	-		+			+	
		1						1	
-60 dBm-		-			+		-		
-70 dBm-					+				
00 40 m									
-80 dBm-									
CF 2.441	GHz			6	91 pts			Spa	an 3.0 MHz
Marker									
Type R	of Trc	X-valu	e	Y-value	,	Function	Fur	nction Resul	t I
M1	1	2.44110	506 GHz	-1.85	dBm	ndB down		1	1.1201 MHz
T1 T0	1	2,44043	S50 GHZ	-21.80	dBm	ndB O factor			20.00 dB
12	1	2.4415	sar unz	-21.09	uam	Q Tactor			21/9.4
						Measuring		140	24.01.2018 10:58:35

PK Yaping Shen PASS П/4-DQPSK Test Date : Temperature : Humidity : January 24, 2018 24℃ 53 %

Channel number	Channel frequency	20dB Down
	(MHz)	BW(kHz)
1	2402	1376
40	2441	1368
79	2480	1372

₽ Spectrum Ref Level 10.00 dBm RBW 100 kHz 30 dB SWT 19 µs . VBW 300 kHz Att Mode Auto FFT 1Pk Max M1[1] -0.47 dBn 2.40200000 GHz 0 dBmndB 20.00 dB 1.376300000 MHz Bw 10 dBm O factor 1745.5 τ1, -29.72 dB D3[1] -20 dBm -1.50000 MHz 30 dBm--40 dBm -50 dBm--60 dBm 70 dBm--80 dBm-CF 2.402 GHz 691 pts Span 3.0 MHz Marker Type | Ref | Trc Function Function Result X-value Y-value 1.3763 MHz M1 2.402 GHz -0.47 dBm ndB down 1 2.4013054 GHz Τ1 1 -20.41 dBm ndB 20.00 dB 2.4026816 GHz Q factor T2 1 -20.63 dBm 1745.3 M1 D3 1 -1.5 MHz -29.72 dB 24.01.2018 Measuring...

Spectrum Detector:	PK	Test Date :	January 24, 2018
Test By:	Yaping Shen	Temperature :	24℃
Test Result: Modulation:	PASS 8DPSK	Humidity :	53 %

Channel number	Channel frequency	20dB Down
Channel number	(MHz)	BW(kHz)
1	2402	1394
40	2441	1389
79	2480	1381

₽ Spectrum Ref Level 10.00 dBm RBW 100 kHz Att 30 dB . SWT 5 ms . VBW 300 kHz Mode Auto FFT 1Pk Max M1[1] 1.69 dBn M1 2.48015630 GHz 0 dBm-20.00 dB 1.380600000 MHz Ahn. Bw -10 dBm-Q factor 1796.4 τу -20 dBm--30 dBm-40 dBm -50 dBm--60 dBm--70 dBm--80 dBm-CF 2.48 GHz 691 pts Span 3.0 MHz Marker Type | Ref | Trc | Function Result X-value Y-value Function 2.4801563 GHz 2.4793097 GHz 1.3806 MHz 1.69 dBm M1 1 ndB down 20.00 dB 1796.4 T1 -18.33 dBm 1 ndB 2.4806903 GHz Q factor Τ2 1 -18.09 dBm 24.01.2018 13:00:21 Measuring...

9. Quantity of Hopping Channel Test

9.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

9.2 Test SET-UP (Block Diagram of Configuration)

EUT		Spectrum Analyzer
-----	--	-------------------

9.3 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	Characteristics	LAST	CAL DUE.
TYPE		NUMBER	NUMBER		CAL.	
Spectrum Analyzer	Rohde & Schwarz	FSV30	1321.3008K	10Hz-30GHz	05/16/2017	05/15/2018
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/16/2017	05/15/2018
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/16/2017	05/15/2018

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

9.4 Measurement Results:

Refer to attached data chart.

		and fille and the state	Our and the set of the second second
Test Result:	PASS	Humidity :	50 %
Test By:	Yaping Shen	Temperature :	25 ℃
Worst Test Mode	GFSK	Test Date :	January 24, 2018

Hopping Channel	Quantity of Hopping	Quantity of Hopping
Frequency Range	Channel	Channel
2402-2480	79	>15
Spectrum	•	
Ref Level 10.00 dBr Att 30 d	m	т
e 1Pk Max	02[1]	2 12 49
	02[1]	78.300 MHz
-20 dBm		
-30 d8m		
N40 dBm		
-50 dBm		
-60 dBm		
-70 dBm		
Start 2.4 GHZ	691 pts Measurin	stop 2,4835 GH2

10. Time of Occupancy (Dwell Time) test

10.1 Test Description

The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The EUT was connected to the spectrum analyzer via a short coax cable. The dwell time is calculated by:

Dwell time = time slot length * hop rate / number of hopping channels * 31.6s

with:

- hop rate = 1600 * 1/s for DH1 packets = $1600 s^{-1}$

- hop rate = $1600/3 \times 1/s$ for DH3 packets = 533.33 s^{-1}

- number of hopping channels = 79

- 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79

The highest value of the dwell time is reported.

10.2 Test SET-UP (Block Diagram of Configuration)

EUT Spectrum Analyzer

10.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Characteristics	LAST CAL.	CAL DUE.
Spectrum Analyzer	Rohde & Schwarz	FSV30	1321.3008K	10Hz-30GHz	05/16/2017	05/15/2018
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/16/2017	05/15/2018
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/16/2017	05/15/2018

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

10.4 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6seconds. Refer to attached data chart.

10.5 Test result

Modulation:	GFSK	Test Date :	January 24, 2018
Test By:	Yaping Shen	Temperature :	25 ℃
Test Result:	PASS	Humidity :	50 %

Mode	Number of transmission in a 31.6(79 Hopping*0.4)	Length of transmissions time(msec)	Result (msec)	Limit (msec)
DH1	1600/(2*79) x 31.6 = 320	0.420	134.4	400
DH3	1600/(4*79) x 31.6 =160	1.678	268.48	400
DH5	1600/(6*79) x 31.6 =106.67	2.928	312.33	400

Remark: The results of worst cased was recorded.

DH1:

TRF No. FCC Part 15.247/A

Page 43 of 69

DH5:

DH3:

TRF No. FCC Part 15.247/A

Report No. ES180124006E1 Ver.1.0

11. MAXIMUM PEAK OUTPUT POWER TEST

11.1 Measurement Procedure

a. Check the calibration of the measuring instrument(SA) using either an internal calibrator or a known signal from an external generator.

b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.

c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using proper RBW and VBW setting.

d. Measure the captured power within the band and recording the plot.

e. Repeat above procedures until all frequencies required were complete.

11.2 Test SET-UP (Block Diagram of Configuration)

EUT]	Spectrum Analyzer
-----	---	-------------------

11.3 Measurement Equipment Used:

	MFR		SERIAL	Characteristics	LAST	CAL DUE.
		NUMBER	NUMBER		UAL.	
Spectrum Analyzer	Rohde & Schwarz	FSV30	1321.3008K	10Hz-30GHz	05/16/2017	05/15/2018
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/16/2017	05/15/2018
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/16/2017	05/15/2018

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

11.4Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	January 24, 2018
Test By:	Yaping Shen	Temperature :	25 ℃
Test Result:	PASS	Humidity :	50 %
Modulation:	GFSK	•	

Channel number	Channel Frequency (MHz)	Peak Power output(dBm)	Peak Power output(mW)	Peak Power Limit(mW)	Pass/Fail
01	2402	-2.61	0.548	1000	PASS
40	2441	-1.6	0.692	1000	PASS
79	2480	-0.65	0.861	1000	PASS

Spectrum Detector: Test By: Test Result: Modulation: РК Yaping Shen PASS П/4-DQPSK Test Date : Temperature : Humidity : January 24, 2018 25 ℃ 50 %

Channel number	Channel Frequency (MHz)	Peak Power output(dBm)	Peak Power output(mW)	Peak Power Limit(mW)	Pass/Fail
01	2402	0.41	1.099	125	PASS
40	2441	1.72	1.486	125	PASS
79	2480	2.73	1.875	125	PASS

Spectrum Detector: Test By: Test Result: Modulation:

PK Yaping Shen PASS 8DPSK Test Date : Temperature : Humidity : January 24, 2018 25 ℃ 50 %

Channel number	Channel Frequency (MHz) Peak Power output(dBm)		Peak Power output(mW)	Peak Power Limit(mW)	Pass/Fail
01	2402	1.01	1.262	125	PASS
40	2441	2.13	1.633	125	PASS
79	2480	3.19	2.084	125	PASS

Spectrun	'n											Em ⊽
Ref Level	10.00	dBm			RBW	3 MHz						
Att	3	0 dB (SWT	5 ms	VBW	10 MHz	Mode	Auto Swe	ер			
1Pk Max												
							11	M1[1	1		2	1.01 dBm 4020780 GHz
0 dBm			-	7						-		
-10 dBm		\neg		+								\leftarrow
-20 dBm-		_		+			_					
-30 dBm		_		+			_					
-40 dBm				_			_					
-50 d8m		_		+			_					
-60 dBm		_		+			_	_				_
-70 dBm		_		+			_	_				
-80 d8m		_		+			+					
CF 2.402 (Hz					6	91 pts				s	pan 9.0 MHz
	Т							Measuri	ing		490	24.01.2018

₽ Spectrum Ref Level 10.00 dBm RBW 3 MHz Mode Auto Sweep Att 30 dB 👄 SWT 5 ms 👄 VBW 10 MHz 1Pk Max M1[1] 2.13 dBn м1 2.4411040 GHz -0 dBm--10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBm--70 dBm -80 d8m-Span 9.0 MHz 691 pts CF 2.441 GHz 24.01.2018 13:03:22 Measuring... 1 ₽ Spectrum Ref Level 10.00 dBm RBW 3 MHz Att 30 dB . SWT 5 ms . VBW 10 MHz Mode Auto Sweep 1Pk Max 3.19 dBm M1[1] 11 2.4800780 GHz 0 dBm-

Spectrum
(v)

Ref Level 10.00 dBm
• RBW 3 MHz

Att
30 dB • SWT 5 ms • VBW 10 MHz
Mode Auto Sweep

• IPk Max
• 11
M1[1]
3.19 dBm

0 dBm
• 11
M1[1]
2.4800780 GHz

• 10 dBm
• 11
M1[1]
2.4800780 GHz

• 10 dBm
• 10
• 10
• 10

• 20 dBm
• 10
• 10
• 10

• 20 dBm
• 10
• 10
• 10

• 20 dBm
• 10
• 10
• 10

• 20 dBm
• 10
• 10
• 10

• 20 dBm
• 10
• 10
• 10
• 10

• 20 dBm
• 10
• 10
• 10
• 10

• 40 dBm
• 10
• 10
• 10
• 10

• 40 dBm
• 10
• 10
• 10
• 10

• 50 dBm
• 10
• 10
• 10
• 10

• 60 dBm
• 10
• 10
• 10
• 10

• 80 dBm
• 10
• 10
• 10
• 10

• 11
• 10
• 10

12. Band EDGE test

12.1 Measurement Procedure

For Conducted Test

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

For Radiated emission Test

The EUT was placed on a styrofoam table which is 1.5m above ground plane.

The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

The measurements were performed at the lower end of the 2.4GHz band. Use the following spectrum analyzer settings:

For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	1MHz
VBW	3MHz
Detector	Peak
Trace	Max hold

For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

12.2 Test SET-UP (Block Diagram of Configuration)

For Conducted Test

For Radiated emission Test

12.3 Measurement Equipment Used:

For Conducted Test

EQUIPMENT	QUIPMENT MFR		SERIAL	Characteristics	LAST	CAL DUE.
TYPE		NUMBER	NUMBER		CAL.	
Spectrum Analyzer	Rohde & Schwarz	FSV30	1321.3008K	10Hz-30GHz	05/16/2017	05/15/2018
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	05/16/2017	05/15/2018
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	10Hz-30GHz	05/16/2017	05/15/2018

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list. For Radiated emission Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Characteristics	Last Cal.	Cal. Interval
1	Signal Analyzer	Rohde & Schwarz	FSV30	103040 ^{9KHz-40GHz}		05/16/2017	1 Year
2	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-12 72	1GHz-18GHz	05/16/2017	1 Year
3	Power Amplifier	LUNAR EM	LNA1G18-40	J1010000 0081	1GHz-26.5GHz	05/16/2017	1 Year
4	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/16/2017	1 Year
5	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/16/2017	1 Year
6	Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	05/16/2017	1 Year

TRF No. FCC Part 15.247/A

Report No. ES180124006E1 Ver.1.0

12.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	January 24, 2018
Test By:	Yaping Shen	Temperature :	25 °C
Test Result:	PASS	Humidity :	50 %

1. Conducted Test

For Non-Hopping Mode:

Frequency (MHz)	Modulation	Peak Power Output(dBm)	Result of Band edge(dBc)	Band edge Limit(dBc)
2399.51	GFSK	-2.84	38.2	>20dBc
2399.51	pi/4-DQPSK	-0.49	33.24	>20dBc
2399.51	8DPSK	-0.42	32.46	>20dBc
2483.99	GFSK	-0.86	44.99	>20dBc
2484.01	pi/4-DQPSK	-1.24	41.43	>20dBc
2484.01	8DPSK	1.74	41.02	>20dBc

Test plots of GFSK

Test plots of pi/4-DQPSK

Test plots of 8DPSK

For Hopping Mode:

Frequency	Modulation	Peak Power	Result of Band	Band edge
(MHz)		Output(dBm)	edge(dBc)	Limit(dBc)
2399.51	GFSK	-2.89	38.99	>20dBc
2399.86	pi/4-DQPSK	-0.45	38.47	>20dBc
2399.52	8DPSK	-0.4	32.74	>20dBc
2484.01	GFSK	-0.84	45.61	>20dBc
2483.99	pi/4-DQPSK	1.64	41.27	>20dBc
2484.01	8DPSK	1.75	41.17	>20dBc

Test plots of pi/4-DQPSK

TRF No. FCC Part 15.247/A

Report No. ES180124006E1 Ver.1.0

2. Radiated emission Test Worst test modulation 8DPSK For Non-Hopping Mode:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2	2349.560	55.98	-11.74	44.24	74.00	-29.76	peak			
2	2	2400.000	74.31	-11.63	62.68	74.00	-11.32	peak			
3	2	2400.000	58.55	-11.63	46.92	54.00	-7.08	AVG			
4	* 4	2402.000	108.33	-11.63	96.70	74.00	22.70	peak			

*:Maximum data x:Over limit I:over margin Comment: Factor build in receiver. Operator: Yaping shen

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2	2393.536	57.52	-10.51	47.01	74.00	-26.99	peak			
2	2	400.000	73.65	-10.47	63.18	74.00	-10.82	peak			
3	2	400.000	58.69	-10.47	48.22	54.00	-5.78	AVG			
4	* 2	402.000	106.84	-10.46	96.38	74.00	22.38	peak			

*:Maximum data x:Over limit I:over margin

Comment: Factor build in receiver.

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2480.040	110.00	-11.45	98.55	74.00	24.55	peak			
2		2483.500	54.44	-11.46	42.98	74.00	-31.02	peak			
3		2483.500	38.66	-11.46	27.20	54.00	-26.80	AVG			
4		2489.800	56.70	-11.44	45.26	74.00	-28.74	peak			

*:Maximum data x:Ov

x:Over limit I:over margin

Comment: Factor build in receiver.

No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2480.060	108.27	-10.02	98.25	74.00	24.25	peak			
2		2483.500	55.55	-10.01	45.54	74.00	-28.46	peak			
3		2483.500	39.25	-10.01	29.24	54.00	-24.76	AVG			
4		2488.900	59.64	-9.98	49.66	74.00	-24.34	peak			

*:Maximum data x:Over

x:Over limit I:over margin

Comment: Factor build in receiver.

Note:

No.	Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2480.360	110.40	-11.45	98.95	74.00	24.95	peak			
2		2483.500	54.89	-11.46	43.43	74.00	-30.57	peak			
3		2483.500	38.66	-11.46	27.20	54.00	-26.80	AVG			
4		2495.100	56.98	-11.43	45.55	74.00	-28.45	peak			

*:Maximum data x:Over limit I:over margin Comment: Factor build in receiver. Operator: Yaping shen

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2480.180	108.98	-10.02	98.96	74.00	24.96	peak			
2		2483.500	54.49	-10.01	44.48	74.00	-29.52	peak			
3		2483.500	37.98	-10.01	27.97	54.00	-26.03	AVG			
4		2493.540	58.57	-9.95	48.62	74.00	-25.38	peak			

x:Over limit I:over margin

Comment: Factor build in receiver.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2	2372.928	56.11	-11.69	44.42	74.00	-29.58	peak			
2	2	2400.000	69.69	-11.63	58.06	74.00	-15.94	peak			
3	2	2400.000	51.36	-11.63	39.73	54.00	-14.27	AVG			
4	* 2	2402.000	108.23	-11.63	96.60	74.00	22.60	peak			

*:Maximum data x:C

x:Over limit I:over margin

Comment: Factor build in receiver.

No.	Mk. Fre	Re q. L	eading evel	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MH	z o	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2393.4	44 (56.41	-10.51	45.90	74.00	-28.10	peak			
2	2400.0	00 6	66.45	-10.47	55.98	74.00	-18.02	peak			
3	2400.0	00 5	50.36	-10.47	39.89	54.00	-14.11	AVG			
4	* 2401.7	24 10	06.54	-10.46	96.08	74.00	22.08	peak			

*:Maximum data x:C

x:Over limit I:over margin

Comment: Factor build in receiver.

13. Antenna Application

13.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

FCC part 15C section 15.247 requirements:

Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

13.2 Result

The EUT's antenna, permanent attached antenna, used a PCB antenna and integrated on PCB, The antenna's gain is 1dBi and meets the requirement.

14. Photos of EUT

Please refer to external photos and internal photos.