

FCC Test Report

Product Name	GAMING MOUSE
Model No.	P709
FCC ID.	EMJMP709

Applicant	Primax Electronics Ltd
Address	669 Ruey Kuang Road Neihu 114, Taipei, Taiwan

Date of Receipt	Jun. 06, 2022
Issued Date	Jul. 15, 2022
Report No.	2260114R-RFUSOTHV05-A
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test Report

Issued Date: Jul. 15, 2022

Report No.: 2260114R-RFUSOTHV05-A

	T
Product Name	GAMING MOUSE
Applicant	Primax Electronics Ltd
Address	669 Ruey Kuang Road Neihu 114, Taipei, Taiwan
Manufacturer	Primax Electronics Ltd
Model No.	P709
FCC ID.	EMJMP709
EUT Rated Voltage	DC 3.7V (Power by Battery) or DC 5C (Power by USB)
EUT Test Voltage	DC 5V (Power by USB)
Trade Name	ASUS
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C
	ANSI C63.4: 2014, ANSI C63.10: 2013
Test Result	Complied

Documented By	:	Joanne Lin
		(Senior Project Specialist / Joanne Lin)
Tested By	:	Bill Lin
		(Senior Engineer / Bill Lin)
Approved By	:	Jack Usu
		(Senior Engineer / Jack Hsu)

TABLE OF CONTENTS

Desc	cription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	
1.2.	Tested System Details	7
1.3.	Configuration of Tested System	
1.4.	EUT Exercise Software	
1.5.	Test Facility	8
1.6.	List of Test Equipment	9
1.7.	Uncertainty	10
2.	CONDUCTED EMISSION	11
2.1.	Test Setup	11
2.2.	Limits	11
2.3.	Test Procedure	
2.4.	Test Result of Conducted Emission	13
3.	PEAK POWER OUTPUT	14
3.1.	Test Setup	14
3.2.	Limit	14
3.3.	Test Procedure	14
3.4.	Test Result of Peak Power Output	15
4.	RADIATED EMISSION	16
4.1.	Test Setup	
4.2.	Limits	17
4.3.	Test Procedure	18
4.4.	Test Result of Radiated Emission	20
5.	RF ANTENNA CONDUCTED TEST	22
5.1.	Test Setup	
5.2.	Limits	22
5.3.	Test Procedure	22
5.4.	Test Result of RF Antenna Conducted Test	23
6.	BAND EDGE	24
6.1.	Test Setup	24
6.2.	Limit	25
6.3.	Test Procedure	
6.4.	Test Result of Band Edge	27
7.	6DB BANDWIDTH	
7.1.	Test Setup	29
7.2.	Limits	
7.3.	Test Procedure	
7.4.	Test Result of 6dB Bandwidth	
8.	POWER DENSITY	31
8.1.	Test Setup	31
8.2.	Limits	31
8.3.	Test Procedure	
8.4.	Test Result of Power Density	
9.	DUTY CYCLE	
9.1.	Test Setup	
9.2.	Test Procedure	
9.3.	Test Result of Duty Cycle	34
Append	lix 1: EUT Test Photographs	

Appendix 2: Product Photos-Please refer to the file: 2260114R-Product Photos

Revision History

Report No.	Version	Description	Issued Date
2260114R-RFUSOTHV05-A	V1.0	Initial issue of report.	Jul. 15, 2022

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	GAMING MOUSE
Trade Name	ASUS
Model No.	P709
FCC ID.	ЕМЈМР709
Frequency Range	2402-2480MHz
Channel Number	79
Type of Modulation	GFSK
Antenna Type	PIFA Antenna
Channel Control	Auto
Antenna Gain	Refer to the table "Antenna List"
WIRELESS DONGLE	ASUS, MPDONGLE1
Type C to USB plug adapter	ASUS, P709
Type C to USB Cable	ASUS, P709, Non-shielded, 2.1m
Battery	MFR: Hangzhou Future Power Technology Co., Ltd.
	M/N: FT442631P/370mAh

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	ZHUHAI JINZHAOFENG		PIFA Antenna	1.87dBi for 2.4GHz
	CIRCUIT BOARD CO.,LTD	651000048560		

Note: The antenna of EUT is conforming to FCC 15.203.

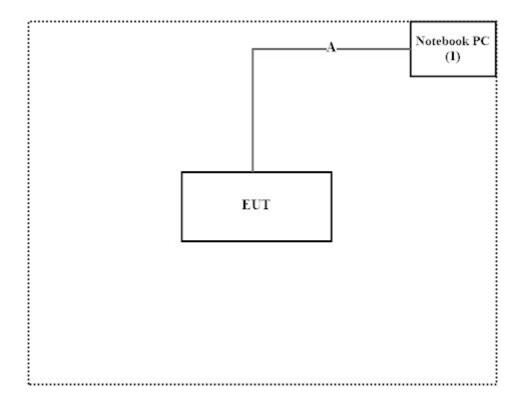
Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00:	2402 MHz	Channel 20:	2422 MHz	Channel 40:	2442 MHz	Channel 60:	2462 MHz
Channel 01:	2403 MHz	Channel 21:	2423 MHz	Channel 41:	2443 MHz	Channel 61:	2463 MHz
Channel 02:	2404 MHz	Channel 22:	2424 MHz	Channel 42:	2444 MHz	Channel 62:	2464 MHz
Channel 03:	2405 MHz	Channel 23:	2425 MHz	Channel 43:	2445 MHz	Channel 63:	2465 MHz
Channel 04:	2406 MHz	Channel 24:	2426 MHz	Channel 44:	2446 MHz	Channel 64:	2466 MHz
Channel 05:	2407 MHz	Channel 25:	2427 MHz	Channel 45:	2447 MHz	Channel 65:	2467 MHz
Channel 06:	2408 MHz	Channel 26:	2428 MHz	Channel 46:	2448 MHz	Channel 66:	2468 MHz
Channel 07:	2409 MHz	Channel 27:	2429 MHz	Channel 47:	2449 MHz	Channel 67:	2469 MHz
Channel 08:	2410 MHz	Channel 28:	2430 MHz	Channel 48:	2450 MHz	Channel 68:	2470 MHz
Channel 09:	2411 MHz	Channel 29:	2431 MHz	Channel 49:	2451 MHz	Channel 69:	2471 MHz
Channel 10:	2412 MHz	Channel 30:	2432 MHz	Channel 50:	2452 MHz	Channel 70:	2472 MHz
Channel 11:	2413 MHz	Channel 31:	2433 MHz	Channel 51:	2453 MHz	Channel 71:	2473 MHz
Channel 12:	2414 MHz	Channel 32:	2434 MHz	Channel 52:	2454 MHz	Channel 72:	2474 MHz
Channel 13:	2415 MHz	Channel 33:	2435 MHz	Channel 53:	2455 MHz	Channel 73:	2475 MHz
Channel 14:	2416 MHz	Channel 34:	2436 MHz	Channel 54:	2456 MHz	Channel 74:	2476 MHz
Channel 15:	2417 MHz	Channel 35:	2437 MHz	Channel 55:	2457 MHz	Channel 75:	2477 MHz
Channel 16:	2418 MHz	Channel 36:	2438 MHz	Channel 56:	2458 MHz	Channel 76:	2478 MHz
Channel 17:	2419 MHz	Channel 37:	2439 MHz	Channel 57:	2459 MHz	Channel 77:	2479 MHz
Channel 18:	2420 MHz	Channel 38:	2440 MHz	Channel 58:	2460 MHz	Channel 78:	2480 MHz
Channel 19:	2421 MHz	Channel 39:	2441 MHz	Channel 59:	2461 MHz		

Note:

- 1. The EUT is a GAMING MOUSE with built-in Bluetooth V5.2 and 2.4G wireless transceiver, this report for 2.4G wireless.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test
- 3. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.
- 4. These tests were conducted on a sample for the purpose of demonstrating compliance of transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.

Test Mode


1.2. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	Latitude 5491	1PL56S2	N/A

Sig	nal Cable Type	Signal cable Description
A	Type C to USB Cable	Non-shielded, 2.1m

1.3. Configuration of Tested System

1.4. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.3.
- (2) Execute software "nRF_DTM v2.4.0" on the Notebook PC.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item Items		Required	Actual
Constant 1 Environment	Temperature (°C)	10~40 °C	26.7 °C
Conducted Emission	Humidity (%RH)	10~90 %	51.1 %
D 1: (1E : :	Temperature (°C)	10~40 °C	24.3 °C
Radiated Emission	Humidity (%RH)	10~90 %	62.4 %
C 1 ··	Temperature (°C)	10~40 °C	25 ℃
Conductive	Humidity (%RH)	10~90 %	54.6 %

USA : FCC Registration Number: TW0033

Canada: CAB Identifier Number: TW3023 / Company Number: 26930

Site Description : Accredited by TAF

Accredited Number: 3023

Test Laboratory : DEKRA Testing and Certification Co., Ltd

Address : No. 5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan Performed Location : No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan,

R.O.C.

Phone number : +886-3-275-7255

Fax number : +866-3-327-8031

Email address : info.tw@dekra.com

Website : http://www.dekra.com.tw

1.6. List of Test Equipment

For Conduction measurements / HY-SR01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
X	EMI Test Receiver	R&S	ESR7	101602	2022.03.16	2023.03.15
X	Two-Line V-Network	R&S	ENV216	101306	2022.05.23	2023.05.22
X	Two-Line V-Network	R&S	ENV216	10147	2021.08.13	2022.08.12
X	Coaxial Cable	SUHNER	RG400_BNC	RF001	2022.05.24	2023.05.23

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: E3 210616 dekra V9.

For Conducted measurements / HY-SR02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
X	Spectrum Analyzer	R&S	FSV30	103466	2021.12.27	2022.12.26
X	Peak Power Analyzer	KEYSIGHT	8900B	MY51000539	2022.05.27	2023.05.26
X	Power Sensor	KEYSIGHT	N1923A	MY59240002	2022.05.19	2023.05.18
X	Power Sensor	KEYSIGHT	N1923A	MY59240003	2022.05.19	2023.05.18

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: RF Conducted Test Tools R3 V3.0.1.19.

For Radiated measurements /HY-CB03

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
X	Loop Antenna	AMETEK	HLA6121	56736	2022.05.14	2023.05.13
X	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2021.08.10	2022.08.09
X	Horn Antenna	ETS-Lindgren	3117	00227700	2021.11.09	2022.11.08
	Horn Antenna	Com-Power	AH-840	101087	2021.06.16	2022.06.15
X	Pre-Amplifier	SGH	SGH0301-9	20211007-10	2022.02.22	2023.02.21
X	Pre-Amplifier	EMCI	EMC051835SE	980313	2021.11.24	2022.11.23
X	Pre-Amplifier	EMCI	EMC05820SE	980309	2021.09.27	2022.09.26
	Pre-Amplifier	EMCI	EMC184045SE	980369		
	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2022.05.12	2023.05.11
	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242		
X	Filter	MICRO TRONICS	BRM50702	G251	2021.09.16	2022.09.15
	Filter	MICRO TRONICS	BRM50716	G188		2022.09.15
X	EMI Test Receiver	R&S	ESR	102793	2021.12.15	2022.12.14
X	Spectrum Analyzer	R&S	FSV3044	101113	2022.01.25	2023.02.24
	Coaxial Cable	SGH	SGH18	2021005-3		
X	Coaxial Cable	SGH	SGH18	202108-4	2022.03.18	2022 02 17
Α	Coaxial Cable	SGH	SGH18	20110223-1	2022.03.18	2023.03.17
	Coaxial Cable	SGH	HA800	GD20110222-3		

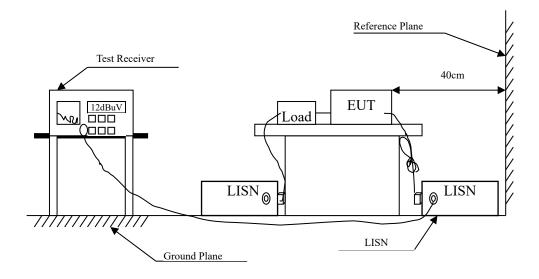
Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version: E3 210616 dekra V9.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.


Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test item	Uncertainty	
Conducted Emission	±3.4	2 dB
Peak Power Output	±0.8	9dB
D. II. d. I. E. d. d.	Under 1GHz	Above 1GHz
Radiated Emission	±4.05 dB	±3.73 dB
RF Antenna Conducted Test	±2.06 dB	
D 151	Under 1GHz	Above 1GHz
Band Edge	±4.05 dB	±3.73 dB
6dB Bandwidth ±1544.74 Hz		.74 Hz
Power Density	±2.06 dB	
Duty Cycle	±2.31 ms	

2. Conducted Emission

2.1. Test Setup

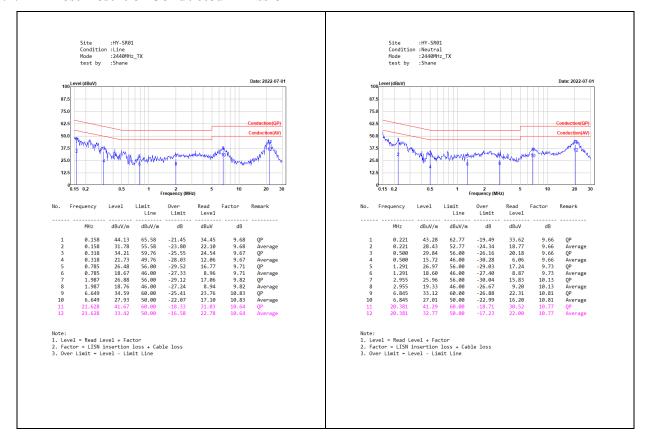
2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit					
Frequency	Limits				
MHz	QP	AV			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

Remarks: In the above table, the tighter limit applies at the band edges.

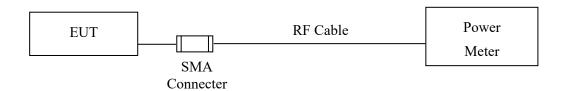
2.3. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)


Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.4, 2014; tested to DTS test procedure of FCC KDB-558074 for compliance to FCC 47CFR Subpart C requirements.


2.4. Test Result of Conducted Emission

3. Peak Power Output

3.1. Test Setup

3.2. Limit

The maximum peak power shall be less 1Watt.

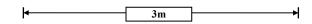
3.3. Test Procedure

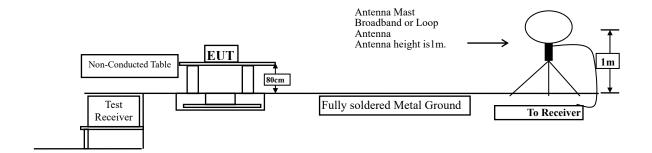
The EUT was tested according to C63.10:2013 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using C63.10:2013 Section 11.9.1.3 PKPM1 Peak power meter method.

3.4. Test Result of Peak Power Output

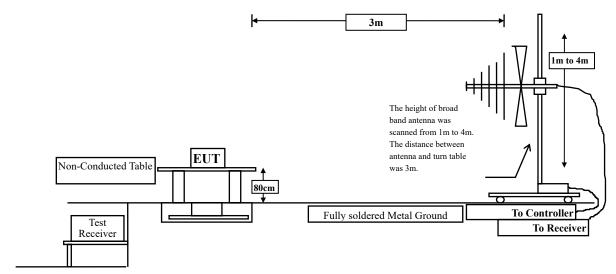
Product : GAMING MOUSE
Test Item : Peak Power Output
Test Mode : Mode 1: Transmit

Test Date : 2022/06/30

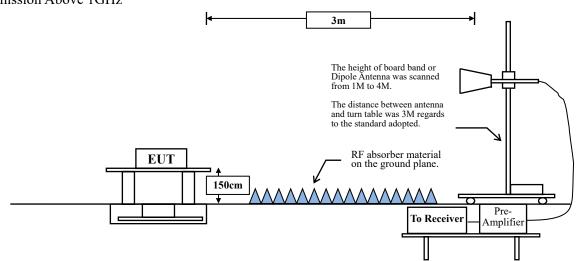

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
00	2402	7.68	1 Watt= 30 dBm	Pass
38	2440	7.59	1 Watt= 30 dBm	Pass
78	2480	7.35	1 Watt= 30 dBm	Pass



4. Radiated Emission


4.1. Test Setup

Radiated Emission Under 30MHz



Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

Page: 16 of 34

4.2. Limits

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency MHz	Field strength	Measurement distance			
TVITIZ	(microvolts/meter)	(meter)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

Remarks:

- 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

RBW and VBW Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

 $VBW \ge 3 \times RBW$.

Table 1 - RBW as a function of frequency

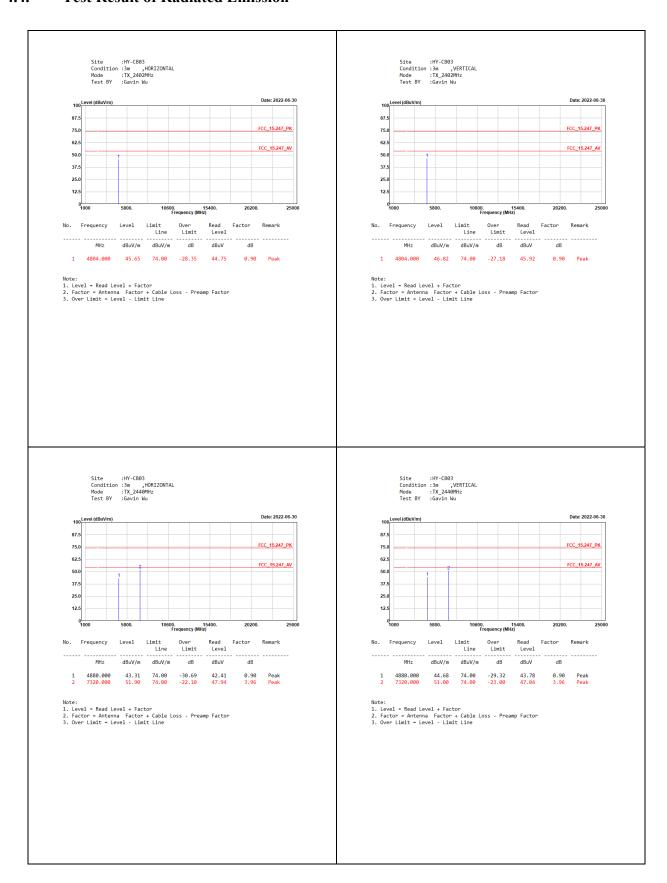
Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

RBW = 1MHz.

VBW = 10Hz, when duty cycle \geq 98 %

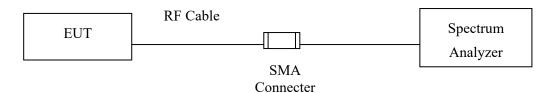
VBW \geq 1/T, when duty cycle \leq 98 %


(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

2.4GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
2.4G Wireless	57.33	1.0750	930	1000


Note: Duty Cycle Refer to Section 9.

4.4. Test Result of Radiated Emission



5. RF Antenna Conducted Test

5.1. Test Setup

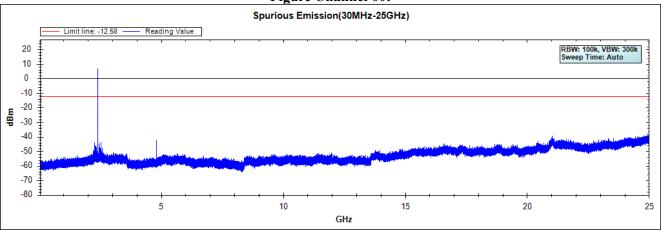
5.2. Limits

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.3. Test Procedure

The EUT was tested according to C63.10:2013 Section 11.11 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

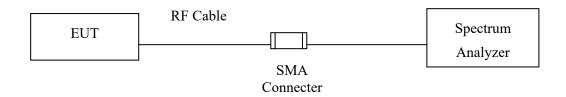

5.4. Test Result of RF Antenna Conducted Test

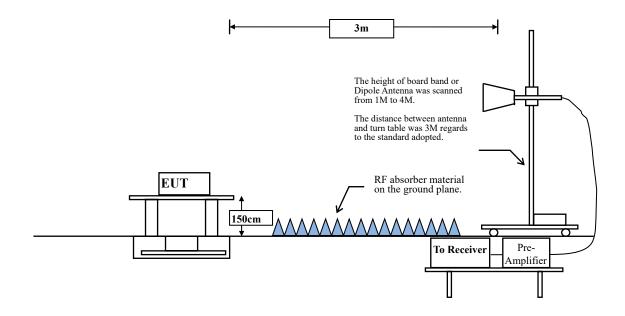
Product : GAMING MOUSE

Test Item : RF Antenna Conducted Test

Test Mode : Mode 1: Transmit

Figure Channel 00:




6. Band Edge

6.1. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.2. Limit

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

RBW and VBW Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

 $VBW \ge 3 \times RBW$.

Table 1 - RBW as a function of frequency

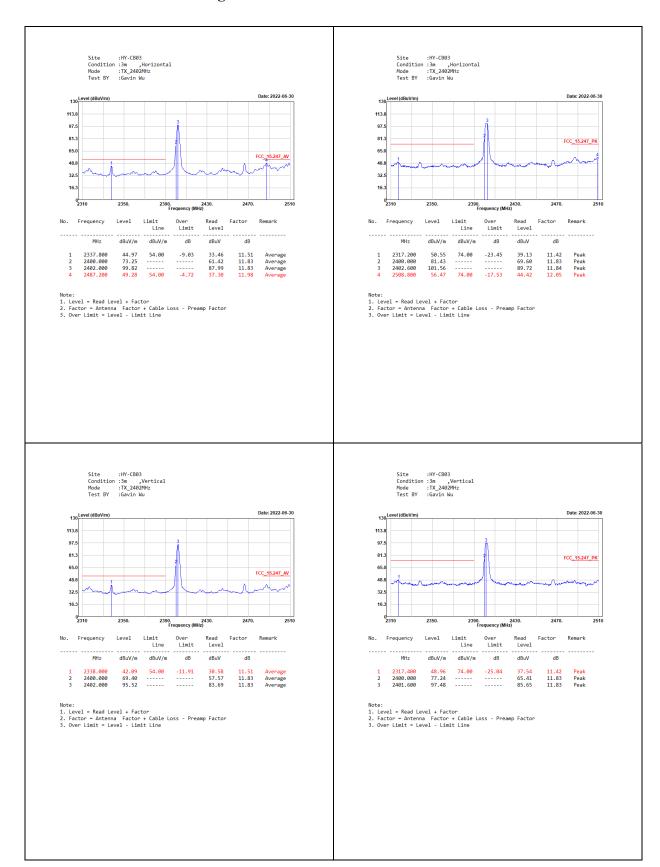
Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

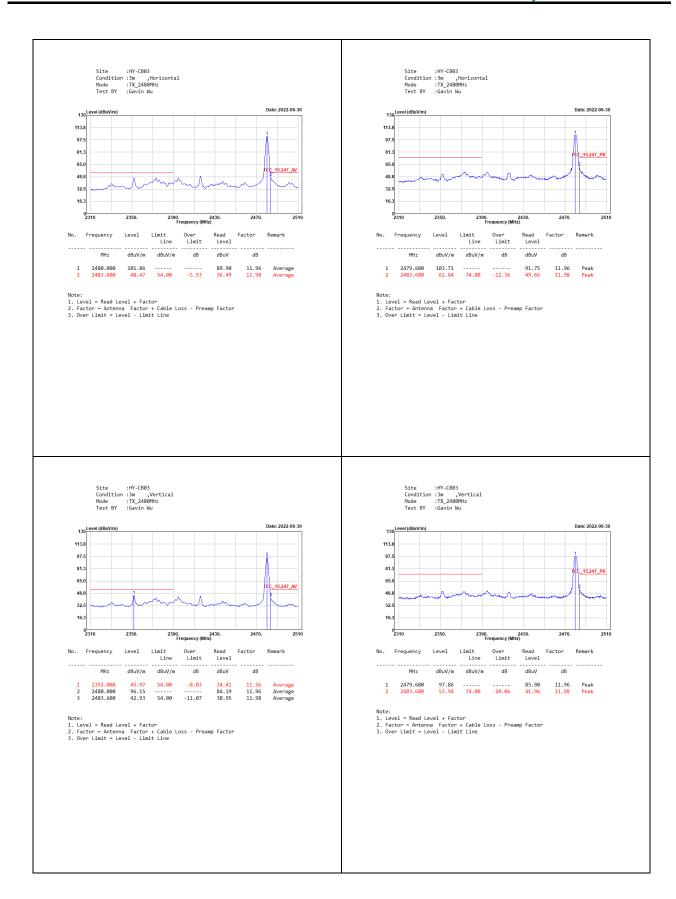
RBW = 1MHz.

VBW = 10Hz, when duty cycle \geq 98 %

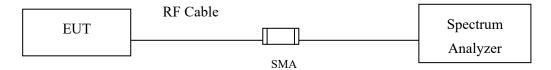
VBW \geq 1/T, when duty cycle \leq 98 %


(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

2.4GHz band	Duty Cycle	T	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
2.4G Wireless	57.33	1.0750	930	1000


Note: Duty Cycle Refer to Section 9.

6.4. Test Result of Band Edge



7. 6dB Bandwidth

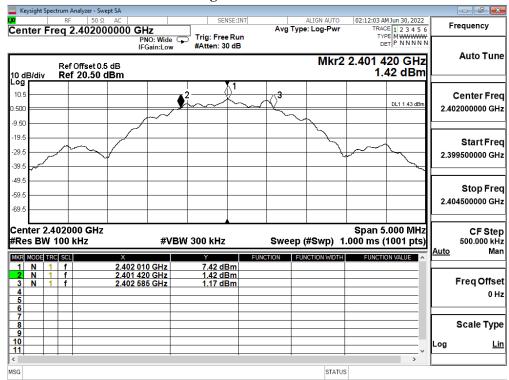
7.1. Test Setup

7.2. Limits

The minimum bandwidth shall be at least 500 kHz.

7.3. Test Procedure

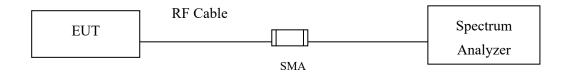
The EUT was setup according to ANSI C63.4, 2014; tested according to ANSI C63.10 Section 11.8 for compliance to FCC 47CFR 15.247 requirements.



7.4. Test Result of 6dB Bandwidth

Product : GAMING MOUSE
Test Item : 6dB Bandwidth Data
Test Mode : Mode 1: Transmit

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	1165	>500	Pass
38	2440	1175	>500	Pass
78	2480	1180	>500	Pass


Figure Channel 00:

8. Power Density

8.1. Test Setup

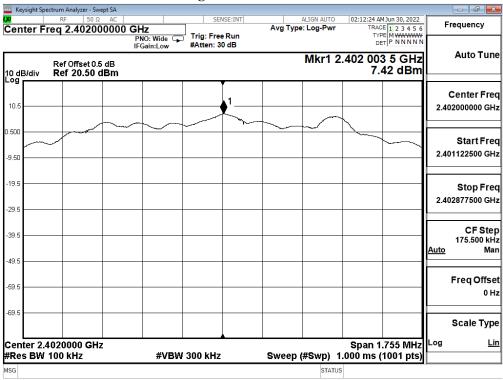
8.2. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

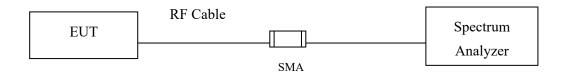
The maximum power spectral density using C63.10 Section 11.10.2 Method PKPSD (peak PSD)



8.4. Test Result of Power Density

Product : GAMING MOUSE
Test Item : Power Density Data
Test Mode : Mode 1: Transmit

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
00	2402	7.42	≦8dBm	Pass
38	2440	7.25	≤8dBm	Pass
78	2480	6.99	≤8dBm	Pass


Figure Channel 00:

9. Duty Cycle

9.1. Test Setup

9.2. Test Procedure

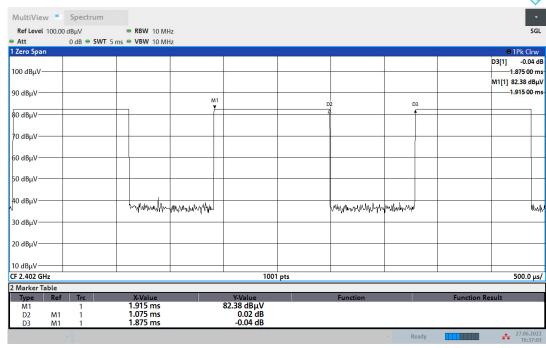
The EUT was setup according to ANSI C63.10 2013; tested according to ANSI C63.10 2013 for compliance to FCC 47CFR 15.247 requirements.

9.3. Test Result of Duty Cycle

Product : GAMING MOUSE

Test Item : Duty Cycle

Test Mode : Mode 1: Transmit


Duty Cycle Formula:

 $Duty \ Cycle = Ton \ / \ (Ton + Toff)$

Duty Factor = 10 Log (1/Duty Cycle)

Results:

2.4GHz band	Ton	Ton + Toff	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
2.4G Wireless	1.0750	1.8750	57.33	2.42

16:37:04 27.06.2022