

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 2 February 2017

CERTIFICATION TEST REPORT

For

Lenovo Premium Wireless Mouse

MODEL No.: MORFL1L

FCC ID: EMJMMORFL1L

IC: 4251A-MMORFL1L

HVIN: MORFL1L

Trade Mark: Lenovo

REPORT NO: ES180816025W

ISSUE DATE: August 17, 2018

Prepared for

PRIMAX ELECTRONICS LTD. No. 669, Ruey Kuang Road, Neihu, Taipei, Taiwan, R.O.C.

Prepared by

EMTEK(SHENZHEN) CO., LTD.

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280 FAX: 86-755-26954282

Table of Contents

1	TEST	RESULT CERTIFICATION	.3
2	EUT 1	FECHNICAL DESCRIPTION	.4
3	SUM	MARY OF TEST RESULT	.5
4	TEST	METHODOLOGY	.6
	4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDS MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	. 6
5	FACIL	LITIES AND ACCREDITATIONS	.8
	5.1 5.2	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	. 8
6	TEST	SYSTEM UNCERTAINTY	.9
7	SETU	P OF EQUIPMENT UNDER TEST	10
	7.1 7.2 7.3	RADIO FREQUENCY TEST SETUP 1 RADIO FREQUENCY TEST SETUP 2 SUPPORT EQUIPMENT	10 11
8	TEST	REQUIREMENTS	12
	8.1 8.2 8.3 8.4 8.5 8.6	DTS 6DB BANDWIDTH MAXIMUM PEAK CONDUCTED OUTPUT POWER MAXIMUM POWER SPECTRAL DENSITY UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS RADIATED SPURIOUS EMISSION ANTENNA APPLICATION	18 19 22 27

1 TEST RESULT CERTIFICATION

Applicant:	PRIMAX ELECTRONICS LTD.
	No. 669, Ruey Kuang Road, Neihu, Taipei, Taiwan, R.O.C.
Manufacturer:	PRIMAX ELECTRONICS LTD.
	No. 669, Ruey Kuang Road, Neihu, Taipei, Taiwan, R.O.C.
EUT Description:	Lenovo Premium Wireless Mouse
Model Number:	MORFL1L
Trade Mark:	Lenovo
File Number:	ES180816025W
Date of Test:	August 01, 2018 to August 17, 2018

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C IC RSS-GEN, Issue 5, April 2018 IC RSS-247 Issue 2 February 2017.	PASS			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247, IC RSS-247 Issue 2 and IC RSS-GEN, Issue 5

The test results of this report relate only to the tested sample identified in this report

Date of Test :

August 01, 2018 to August 17, 2018

Yopping Shen

Prepared by :

Yaping Shen /Editor

रित्रे ve EMTE Joe Xia/Editor

Reviewer :

AND

Approve & Authorized Signer :

Lisa Wang/Manager

ESTING

Characteristics	Description
Product:	Lenovo Premium Wireless Mouse
Model Number:	MORFL1L
Modulation:	GFSK
Operating Frequency Range(s):	2402-2479MHz
Number of Channels:	78 channels
Transmit Power Max:	1.43 dBm
Antenna Type:	Integral Ceramic Antenna
Gain:	2 dBi
Power supply:	DC 1.5V (2* 'AAA' battery in parallel)
Temperature Range	0°C ~ +40°C

2 EUT TECHNICAL DESCRIPTION

Note: for more details, please refer to the User's manual of the EUT.

FCC Part Clause	Test Parameter	Verdict	Remark	
15.247(a)(2)	DTS (6dB) Bandwidth	PASS		
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS		
15.247(e)	Maximum Power Spectral Density Level	PASS		
15.247(d)	Unwanted Emission Into Non-Restricted Frequency Bands	PASS		
15.247(d) 15.209	Unwanted Emission Into Restricted Frequency Bands (conducted)	PASS		
15.247(d) 15.209	Radiated Spurious Emission	PASS		
15.207	Conducted Emission Test	N/A		
15.247(b)	Antenna Application	PASS		
	NOTE1: N/A (Not Applicable) NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.			

3 SUMMARY OF TEST RESULT

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: EMJMMORFL1L filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules. This submittal(s) (test report) is intended for IC: 4251A-MMORFL1L filing to comply with IC RSS-247 Issue 2

and IC RSS-GEN, Issue 5

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 DTS Meas Guidance v04 IC RSS-Gen, ISSUE 5 IC RSS-247, ISSUE 2 February 2017

4.2 MEASUREMENT EQUIPMENT USED

		-			
EQUIPMENT	MFR	MODEL	SERIAL	LAST CAL.	DUE CAL.
TYPE		NUMBER	NUMBER		
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	May 20, 2018	May 20, 2019
Pre-Amplifier	HP	8447F	2944A07999	May 20, 2018	May 20, 2019
Bilog Antenna	Schwarzbeck	VULB9163	142	May 20, 2018	May 20, 2019
Cable	Schwarzbeck	AK9513	ACRX1	May 20, 2018	May 20, 2019
Cable	Rosenberger	N/A	FP2RX2	May 20, 2018	May 20, 2019
Cable	Schwarzbeck	AK9513	CRPX1	May 20, 2018	May 20, 2019
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	May 20, 2018	May 20, 2019
Pre-Amplifier	A.H.	PAM-0126	1415261	May 20, 2018	May 20, 2019
Horn Antenna	Schwarzbeck	BBHA 9120	707	May 20, 2018	May 20, 2019
Loop Antenna	Laplace Instrument Ltd	RF300	8006	May 20, 2018	May 20, 2019
Cable	H+B	0.5M SF104-26.5	289147/4	May 20, 2018	May 20, 2019
Cable	H+B	3M SF104-26.5	295838/4	May 20, 2018	May 20, 2019
Cable	H+B	6M SF104-26.5	295840/4	May 20, 2018	May 20, 2019

4.2.1 Radiated Emission Test Equipment

4.2.2 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	DUE CAL.
Spectrum Analyzer	Agilent	E4407B	88156318	May 20, 2018	May 20, 2019
Signal Analyzer	Agilent	N9010A	My53470879	May 20, 2018	May 20, 2019
Power meter	Anritsu	ML2495A	0824006	May 20, 2018	May 20, 2019
Power sensor	Anritsu	MA2411B	0738172	May 20, 2018	May 20, 2019
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	May 20, 2018	May 20, 2019

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2402	40	2441		
2	2403	41	2442	76	2477
3	2404	42	2443	77	2478
				78	2479
Note: fc=2402MHz+(k-1)×1MHz k=1 to 78					

Test Frequency and channel:

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2402	40	2441	78	2479

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
EMC Lab.	: Accredited by CNAS, 2016.10.24
	The certificate is valid until 2022.10.28
	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L2291.
	Accredited by TUV Rheinland Shenzhen 2016.5.19
	The Laboratory has been assessed according to the requirements
	ISO/IEC 17025.
	Accredited by FCC, Valid until 2018/08/31
	A2LA Designation Number is CN1204 Test Firm Registration Number: 882943
	Test Finn Registration Number: 002945
	Accredited by Industry Canada, November 24, 2015
	The Certificate Registration Number is 4480A.
Name of Firm	: EMTEK(SHENZHEN) CO., LTD.
Site Location	: Bldg 69, Majialong Industry Zone,
	Nanshan District, Shenzhen, Guangdong, China

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

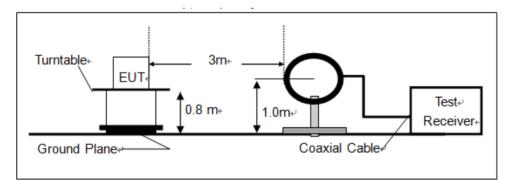
The product component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

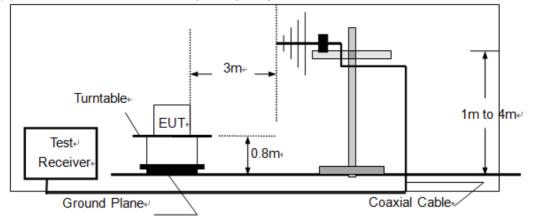
The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

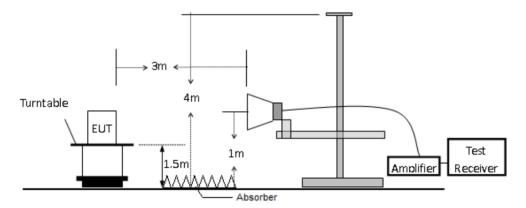

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


Above 1GHz:

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz



(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.3 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Notebook	Lenovo	WB0205140E	WB06355728	N/A

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 DTS 6DB BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v04 According to RSS-247.5.2(a) and KDB 558074 DTS 01 Meas. Guidance v04

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in Bluetooth 4.0DTS mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300 kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

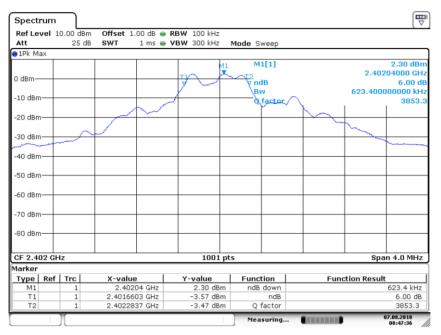
Set Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

Test Results


Temperature :	28 ℃	Test Date :	August 7, 2018
Humidity :	55 %	Test By:	KK

Operation Mode	Channel Number	Channel Frequency (MHz)	uency Measurement Bandwidth (kHz)		Verdict
	1	2402	623.4	>500	PASS
GFSK	40	2441	631.4	>500	PASS
	78	2479	639.4	>500	PASS

DTS (6dB) Bandwidth

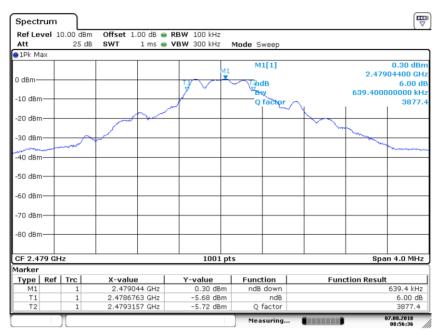
Channel 1: 2402MHz

Date: 7.AUG.2018 08:47:36

DTS (6dB) Bandwidth

Channel 40: 2441MHz

Ref Level	10.00 dBm	Offset 1.00 dB 👄	RBW 100 kHz			
Att	25 dB	SWT 1 ms 👄	VBW 300 kHz	Mode Sweep		
∋1Pk Max						
			М1	M1[1]		1.34 dBr
0 dBm						2.44104800 GH
o ubili			$ \neq \lor $	FindB		6.00 d
-10 dBm				BW	~	631.40000000 kH
				Otactor	/ \	3866.
-20 dBm						
					~	
-30 dBm						
-40 dBm—						
-50 dBm						
-60 dBm—						
-70 dBm—						
-80 dBm						
CF 2.441 (GHz		1001 pt	s	<u> </u>	Span 4.0 MHz
Marker						
Type Re	f Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.441048 GHz	1.34 dBm	ndB down		631.4 kHz
T1	1	2.4406603 GHz	-4.80 dBm	ndB		6.00 dB
T2	1	2.4412917 GHz	-4.77 dBm	Q factor		3866.3


Date: 7.AUG.2018 08:54:21

Test Model

DTS (6dB) Bandwidth

Channel 78: 2479MHz

Date: 7.AUG.2018 08:56:35

8.2 DTS 99% BANDWIDTH

8.2.1 Applicable Standard

According to RSS-247 and KDB 558074 DTS 01 Meas. Guidance v04

8.2.2 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.3 Test Procedure

The EUT was operating in and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 1%-5% OBW.

Set the video bandwidth (VBW) =100 kHz.

Set Span=3MHz

Set Detector = Peak.

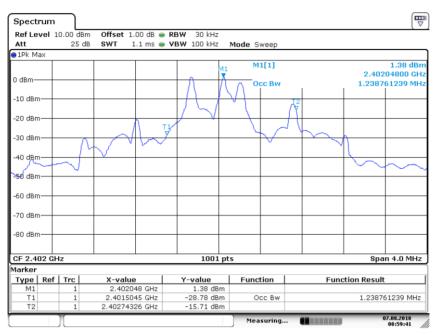
Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

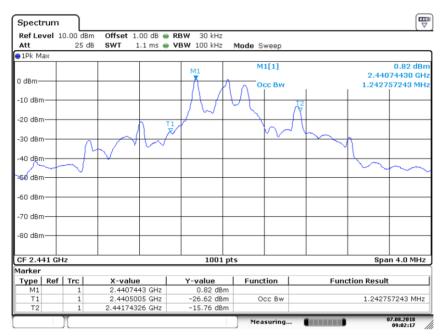
Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.


Test Results

Temperature : Humidity :	28℃ 55 %	Test Date : Test By:	August 7, 2018 KK	
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Bandwidth (MHz)	Verdict
	1	2402	1.238	PASS
GFSK	40	2441	1.243	PASS
	78	2479	1.291	PASS

DTS 99% Bandwidth

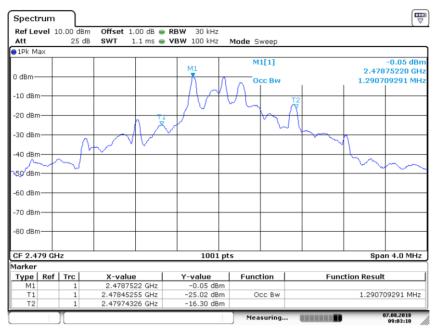

Channel 0: 2402MHz

Date: 7.AUG.2018 08:59:41

DTS 99% Bandwidth

Channel 19: 2440MHz

Date: 7.AUG.2018 09:02:17


Test Model

DTS 99% Bandwidth

Test Model

Channel 39: 2480MHz

Date: 7.AUG.2018 09:03:10

8.3 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.3.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v04 According to RSS-247.5.4(d) and KDB 558074 DTS 01 Meas. Guidance v04

8.3.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.3.4 Test Procedure

According to FCC Part15.247(b)(3)

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The RF output of EUT was connected to the power meter by RF cable and attnuator. The path loss was compensated to the results for each measurement.

Set to the maximum output power setting and enable the EUT transmit continuously.

Measure the conducted output power with cable loss and record the results in the test report. Measure and record the results in the report.

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain - 6) exceeds 6 dBi.

Test Results

Temperature :	28 ℃	Test Date :	August 7, 2018
Humidity :	55 %	Test By:	KK

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	EIRP (dBm)	Limit for peak conducted output power (dBm)	Limit for EIRP (dBm)	Verdict	
	1	2402	1.43	3.43	30	36	PASS	
GFSK	40	2441	0.90	2.90	30	36	PASS	
	78	2479	0.04	2.04	30	36	PASS	
Note: The a	Note: The antenna gain is 2dBi							

8.4 MAXIMUM POWER SPECTRAL DENSITY

8.4.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v04 According to RSS-247 A8.2(b) and KDB 558074 DTS 01 Meas. Guidance v04

8.4.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

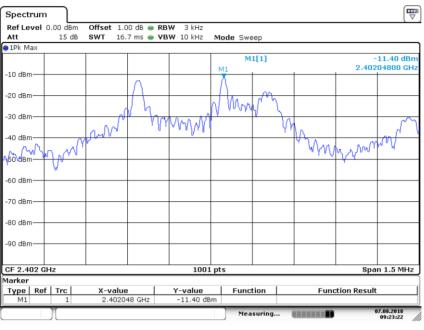
8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

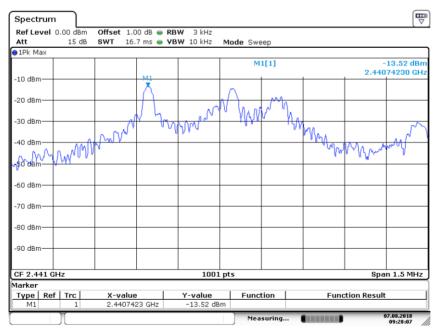
This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 3 kHz Set the VBW to: 10 kHz. Set Detector = peak. Set Sweep time = auto couple. Set Trace mode = max hold. Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.


8.4.5 Test Results

Temperature Humidity :	9:	28℃ Test Date : 55 % Test By:		August 7, 2018 KK	
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	1	2402	-11.40	<8	PASS
GFSK	40	2441	-13.52	<8	PASS
	78	2479	-14.12	<8	PASS
Note: N/A					

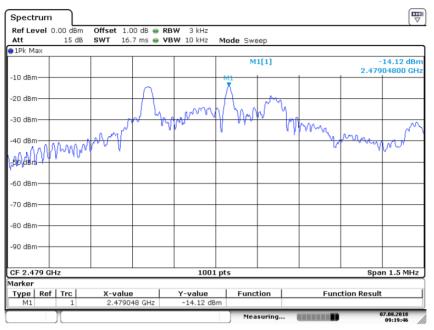
Power Spectral Density


Channel 1: 2402MHz

Date: 7.AUG.2018 09:23:22

Power Spectral Density

Channel 40: 2441MHz


Date: 7.AUG.2018 09:28:07

Test Model

Power Spectral Density

Channel 78: 2479MHz

Date: 7.AUG.2018 09:19:46

8.5 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v04 According to RSS-247, nd KDB 558074 DTS 01 Meas. Guidance v04

8.5.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.5.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.5.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to = 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW =300 kHz.

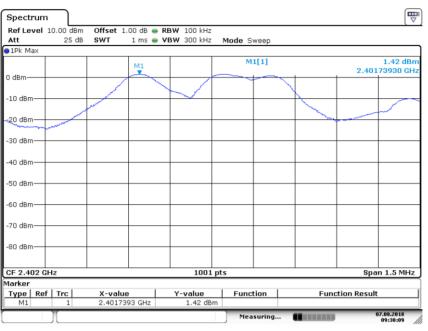
Set Detector = peak

Sweep time = auto couple.

Trace mode = max hold.

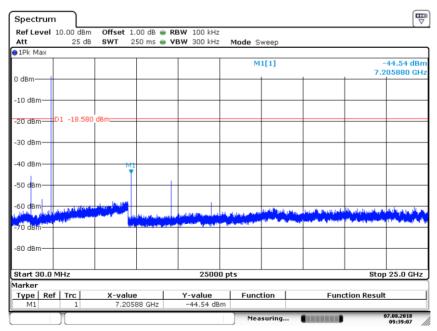
Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.


Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

8.5.5 Test Results

PSD(Power Spectral Density) RBW=100kHz


Channel 1: 2402MHz

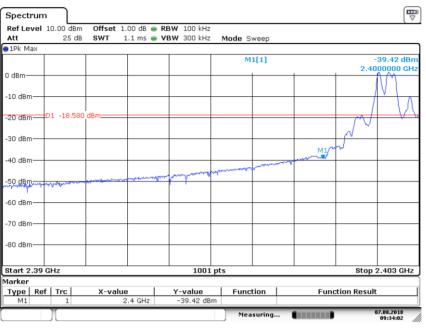
Date: 7.AUG.2018 09:30:09

Unwanted Emissions in non-restricted frequency bands

Channel 1: 2402MHz

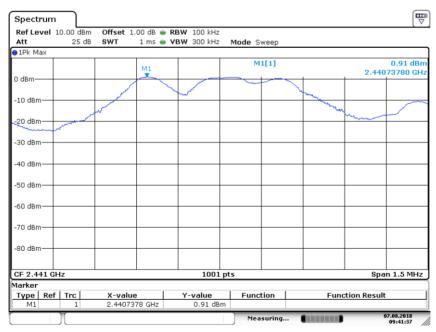
Date: 7.AUG.2018 09:39:06

Test Model


Test Model

TRF No.:FCC 15.247/RSS-247/A

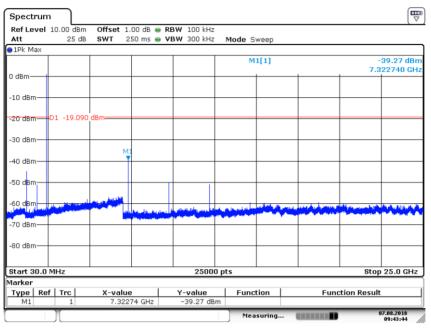
Band edge


Channel 1: 2402MHz

Date: 7.AUG.2018 09:34:01

PSD(Power Spectral Density) RBW=100kHz

Channel 40: 2441MHz


Date: 7.AUG.2018 09:41:36

Test Model

Unwanted Emissions In Non-Restricted Frequency Bands

Channel 40: 2441MHz

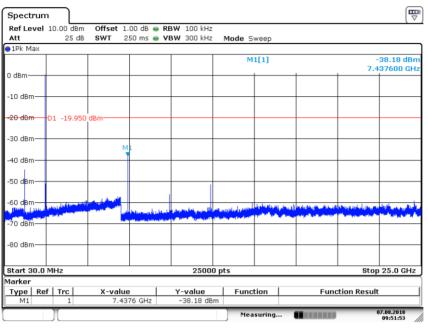
Date: 7.AUG.2018 09:43:44

PSD(Power Spectral Density) RBW=100kHz

Channel 78: 2479MHz

Ref Level Att	25 dB			RBW 100 kHz VBW 300 kHz		weep			
●1Pk Max		1	1			1[1]			0.05 dB
0 dBm			M1					2.478	875120 GF
U dBm		1							
-10 dBm									
-20 dBm		and the second s							
20 0011									
-30 dBm									
-40 dBm									
40 dbiii									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
CF 2.479 G	Hz			100:	L pts			Spa	an 1.5 MH:
Marker	Trc	X-value		Y-value	Fund	tion	Fund	tion Resul	•
Type Ref M1	1	2.47875		0.05 dE		aion	Func	tion Resul	ι

Date: 7.AUG.2018 09:46:40


Test Model

Test Model

Unwanted Emissions In Non-Restricted Frequency Bands


Channel 78: 2479MHz

Date: 7.AUG.2018 09:51:53

Band edge

Channel 78: 2479MHz

Date: 7.AUG.2018 09:50:59

8.6 RADIATED SPURIOUS EMISSION

8.6.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 DTS 01 Meas. Guidance v04 According to KDB 558074 DTS 01 Meas. Guidance v04

8.6.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 art 13.	200, Restricted barros		
MHz MHz		MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	12.51975-12.52025 240-285		36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Restricted Frequency(MHz) Field Strength (µV/m) F		Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.6.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.6.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz)

$$VBW \ge RBW$$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.6.5 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

Temperature:	24 °C	Test Date:	August 7, 2018
Humidity:	53 %	Test By:	KK
Test mode:	TX Mode		

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m	(dBuV/m)	Over(dB)	
(MHz)	H/V	PK È	ÁV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

Spurious Emission Above 1GHz (1GHz to 25GHz)

Temperature :	28 °C	Test Date :	August 7, 2018
Humidity :	55 %	Test By:	KK
Frequency:	Channel 1: 2402MHz	-	

Freq.	Ant.Pol.	Emis Level(d	ssion BuV/m)	Limit 3m	(dBuV/m)	n) Over(dB)		
(MHz)	H/V	PK È	ÁV	PK	AV	PK	AV	
2472.625	V	45.80	32.40	74.00	54.00	-28.20	-21.60	
4952.500	V	46.82	33.60	74.00	54.00	-27.18	-20.40	
7742.625	V	49.69	35.40	74.00	54.00	-24.31	-18.60	
18892.50	V	52.73	40.60	74.00	54.00	-21.27	-13.40	
2474.750	Н	46.42	34.80	74.00	54.00	-27.58	-19.20	
5575.125	Н	48.57	35.40	74.00	54.00	-25.43	-18.60	
7734.125	Н	48.50	36.20	74.00	54.00	-25.50	-17.80	
18835.00	Н	52.12	40.90	74.00	54.00	-21.88	-13.10	

Temperature :	28 ℃	Test Date :	August 7, 2018
Humidity :	55 %	Test By:	KK
Frequency:	Channel 40: 2441MHz		

Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V			PK AV		PK	AV	
2481.125	V	44.00	32.50	74.00	54.00	-30.00	-21.50	
5670.750	V	48.75	33.80	74.00	54.00	-25.25	-20.20	
8023.125	V	48.95	34.80	74.00	54.00	-25.05	-19.20	
18561.00	V	51.60	40.40	74.00	54.00	-22.40	-13.60	
2474.750	Н	46.41	34.20	74.00	54.00	-27.59	-19.80	
5226.625	Н	48.82	35.00	74.00	54.00	-25.18	-19.00	
8384.375	Н	48.40	35.20	74.00	54.00	-25.60	-18.80	
18280.50	Н	50.54	40.10	74.00	54.00	-23.46	-13.90	

Temperature :	28 °C	Test Date :	August 7, 2018
Humidity :	55 %	Test By:	KK
Frequency:	Channel 78: 2479MHz	-	

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
2472.625	V	47.45	34.10	74.00	54.00	-26.55	-19.90	
4988.625	V	49.15	34.50	74.00	54.00	-24.85	-19.50	
7685.250	V	50.19	36.00	74.00	54.00	-23.81	-18.00	
19156.00	V	51.96	40.10	74.00	54.00	-22.04	-13.90	
2474.750	Н	45.58	32.50	74.00	54.00	-28.42	-21.50	
5655.875	Н	51.63	36.60	74.00	54.00	-22.37	-17.40	
7623.625	Н	49.65	37.20	74.00	54.00	-24.35	-16.80	
18892.50	Н	51.73	41.20	74.00	54.00	-22.27	-12.80	

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor +Cable Loss.

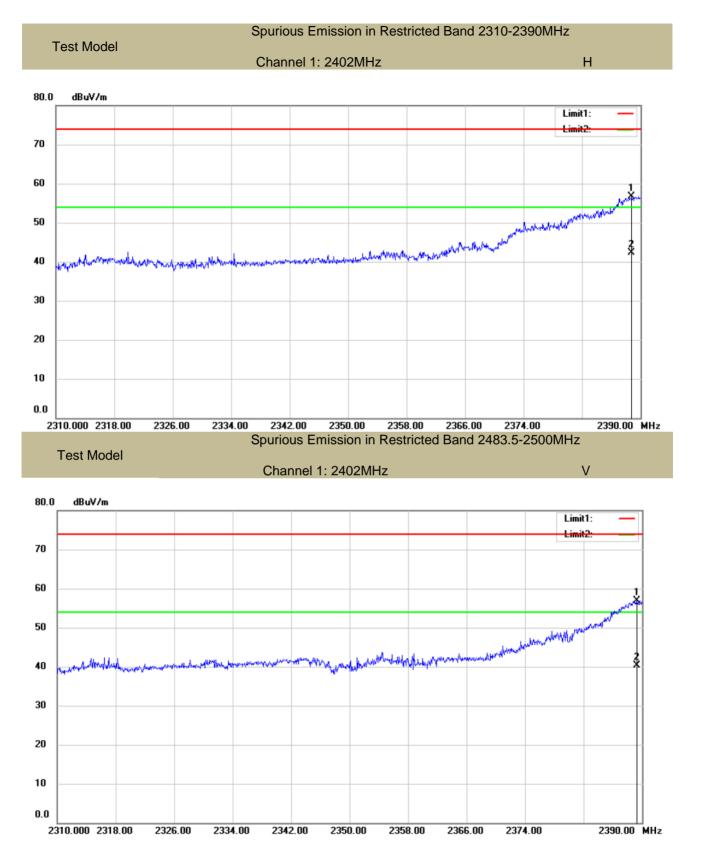
(3) Correct Factor= Ant_F + Cab_L - Preamp

(4)Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

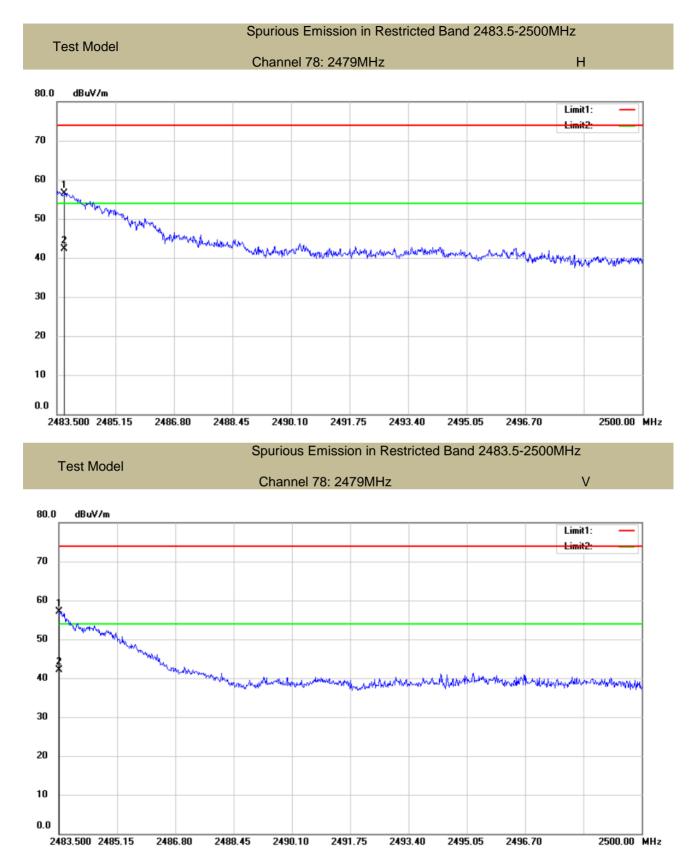
■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

Temperature : Humidity : Frequency:	Chann		est Date : est By:	August 7, 2018 KK					
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)		
2388.80	Н	56.68	74.00	-17.32	42.30	54.00	-11.70		
2389.28	V	56.84	74.00	-17.16	40.30	54.00	-13.70		
Temperature : Humidity : Frequency:	Channe		est Date : est By:		August 7, 20 KK	18			
Frequency			Limit 2m	Margin	()//dD:.)//ma)	Limit 2m	Moraia		

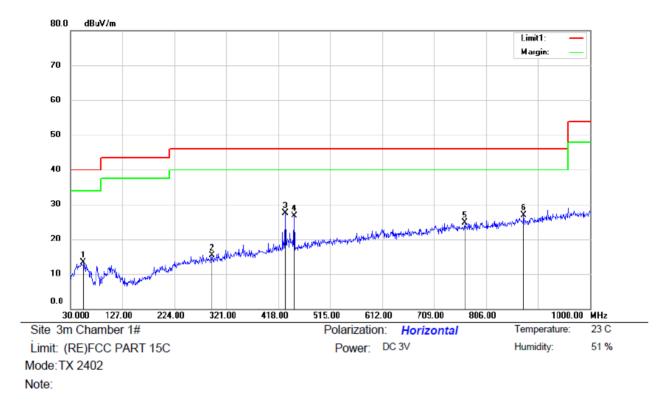
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)
2483.715	Н	56.67	74.00	-17.43	42.30	54.00	-11.70
2483.517	V	57.19	74.00	-16.81	42.10	54.00	-11.90


Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor +Cable Loss.

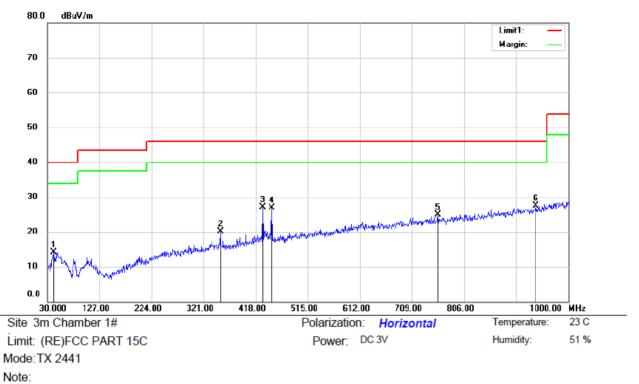

(3) Correct Factor= Ant_F + Cab_L - Preamp

(4)Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

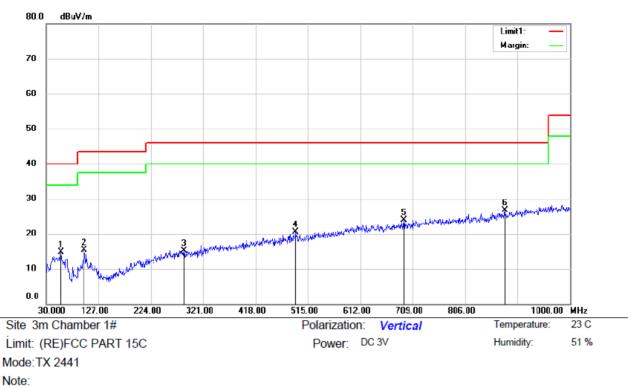


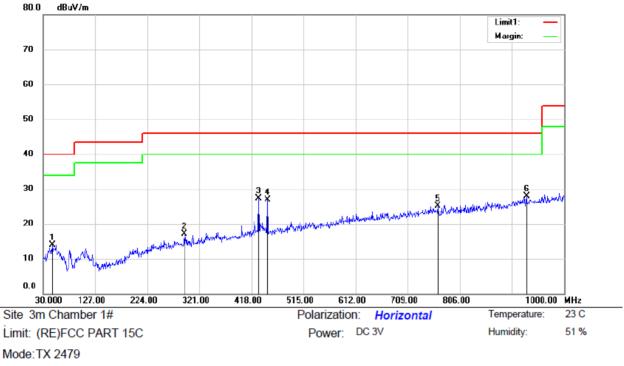
Spurious Emission below 1GHz (30MHz to 1GHz)

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		54.7350	28.13	-14.79	13.34	40.00	-26.66	QP			
2		295.2950	28.32	-12.95	15.37	46.00	-30.63	QP			
3	*	432.0650	37.46	-9.90	27.56	46.00	-18.44	QP			
4		448.0700	36.53	-9.73	26.80	46.00	-19.20	QP			
5		766.2300	28.46	-3.82	24.64	46.00	-21.36	QP			
6		876.8100	29.05	-2.16	26.89	46.00	-19.11	QP			

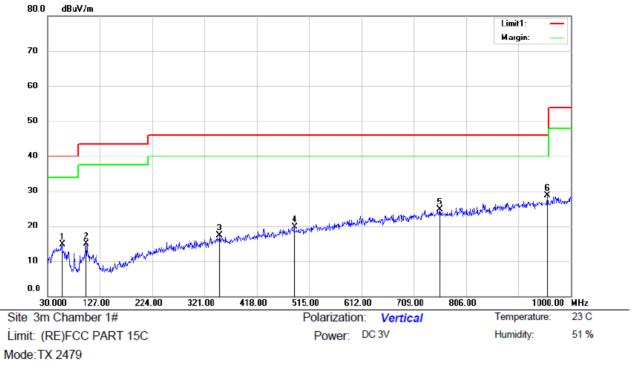



```
Note:
```


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		68.8000	33.04	-18.29	14.75	40.00	-25.25	QP			
2	2	254.5550	29.84	-14.16	15.68	46.00	-30.32	QP			
3	4	409.7550	28.76	-10.35	18.41	46.00	-27.59	QP			
4	Ę	590.1750	28.59	-6.64	21.95	46.00	-24.05	QP			
5	8	342.3750	28.38	-2.77	25.61	46.00	-20.39	QP			
6	* (935.4950	29.48	-1.09	28.39	46.00	-17.61	QP			


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		43.0950	28.79	-14.62	14.17	40.00	-25.83	QP			
2		352.0400	31.62	-11.45	20.17	46.00	-25.83	QP			
3		432.0650	37.08	-9.90	27.18	46.00	-18.82	QP			
4		448.0700	36.70	-9.73	26.97	46.00	-19.03	QP			
5		757.5000	28.74	-3.83	24.91	46.00	-21.09	QP			
6	*	939.8600	28.41	-0.99	27.42	46.00	-18.58	QP			

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		58.1300	30.61	-15.82	14.79	40.00	-25.21	QP			
2		101.2950	31.76	-16.40	15.36	43.50	-28.14	QP			
3		285.5950	28.71	-13.53	15.18	46.00	-30.82	QP			
4		492.6900	29.21	-8.62	20.59	46.00	-25.41	QP			
5		692.9950	28.98	-5.07	23.91	46.00	-22.09	QP			
6	*	879.7200	28.84	-2.20	26.64	46.00	-19.36	QP			




```
Note:
```

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		47.9450	28.17	-14.18	13.99	40.00	-26.01	QP			
2		293.3550	30.08	-13.07	17.01	46.00	-28.99	QP			
3		432.0650	37.11	-9.90	27.21	46.00	-18.79	QP			
4		448.0700	36.71	-9.73	26.98	46.00	-19.02	QP			
5		765.2600	28.88	-3.81	25.07	46.00	-20.93	QP			
6	*	930.1600	29.10	-1.20	27.90	46.00	-18.10	QP			


```
Note:
```

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		57.1600	30.17	-15.51	14.66	40.00	-25.34	QP			
2	1	01.7800	31.29	-16.36	14.93	43.50	-28.57	QP			
3	3	349.6150	28.78	-11.43	17.35	46.00	-28.65	QP			
4	4	87.8400	28.38	- <mark>8.6</mark> 9	19.69	46.00	-26.31	QP			
5	7	57.9850	28.62	-3.82	24.80	46.00	-21.20	QP			
6	* 9	56.8350	29.57	- 0 .88	28.69	46.00	-17.31	QP			

8.7 ANTENNA APPLICATION

8.7.1 Antenna Requirement

Standard FCC CRF Part 15.203	Requirement An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d) must be measured at the installation site. However, the

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.7.2 Result

PASS.

Note:

The EUT has one integral ceramic antenna, and the gain is max 2dBi.

- \boxtimes Antenna use a permanently attached antenna which is not replaceable.
 - Not using a standard antenna jack or electrical connector for antenna replacement
 - The antenna has to be professionally installed (please provide method of installation)

which in accordance to section 15.203, please refer to the internal photos.