FCC Test Report (BT-LE)

Report No.: RF170309D08

FCC ID: EMJMAF30

Test Model: AF30

Received Date: Mar. 9, 2017

Test Date: Mar. 21, 2017

Issued Date: Mar. 23, 2017

Applicant: PRIMAX ELECTRONICS LTD.

Address: No. 669, Ruey Kuang Road, Neihu, Taipei, Taiwan, R.O.C.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C.)

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	elease	Control Record	4
1	С	ertificate of Conformity	5
2	S	ummary of Test Results	6
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	eneral Information	7
	3.1	General Description of EUT (BT-LE)	7
	3.2	Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	3.4.1	Configuration of System under Test	
	3.5	General Description of Applied Standards	
4	Т	est Types and Results	12
	4.1	Radiated Emission and Bandedge Measurement	12
	4.1.1		
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions Test Results	
	4.1.7	6dB Bandwidth Measurement	
		Limits of 6dB Bandwidth Measurement	
		Test Setup	
		Test Instruments	
		Test Procedure	
		Deviation fromTest Standard	
		EUT Operating Conditions	
		Test Result	
	4.3	Conducted Output Power Measurement	
	4.3.1	Limits OF Conducted Output Power Measurement Test Setup	
		Test Instruments	
		Test Procedures	
	4.3.5	Deviation from Test Standard	23
		EUT Operating Conditions	
	4.3.7	Test Results	
	4.4	Power Spectral Density Measurement	
	4.4.1	Limits of Power Spectral Density Measurement	
		Test Setup	
		Test Instruments Test Procedure	
		Deviation from Test Standard	
		EUT Operating Condition	
		Test Results	
	4.5	Conducted Out of Band Emission Measurement	
	4.5.1		
	4.5.2	Test Setup	27
		Test Instruments	
		Test Procedure	
	4.5.5	Deviation from Test Standard	27

	6 EUT Operating Condition	
4.5.	7 Test Results	28
5	Pictures of Test Arrangements	29
Appe	ndix – Information on the Testing Laboratories	30

Release Control Record

Issue No.	Description	Date Issued
RF170309D08	Original release.	Mar. 23, 2017

1 Certificate of Conformity

Product:	HUAWEI Bluetooth Mouse
Brand:	HUAWEI
Test Model:	AF30
Sample Status:	Engineering sample
Applicant:	PRIMAX ELECTRONICS LTD.
Test Date:	Mar. 21, 2017
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

Jessica Cheng / Senior Specialist

Date:

Date:

Mar. 23, 2017

Mar. 23, 2017

Approved by :

Rex Lai / Assistant Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)							
FCC Clause	Test Item	Result	Remarks				
15.207	AC Power Conducted Emission	N/A	Power supply is 1.5Vdc from battery				
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -11.75dB at 2390.00MHz.				
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.				
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.				
15.247(b)	Conducted power	PASS	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	No antenna connector is used.				

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.38 dB
naulated Emissions up to 1 GHz	30MHz ~ 1000MHz	5.54 dB
Radiated Emissions above 1 GHz	1GHz ~ 6GHz	4.77 dB
	6GHz ~ 18GHz	5.48 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-LE)

Product	HUAWEI Bluetooth Mouse
Brand	HUAWEI
Test Model	AF30
Status of EUT	Engineering sample
Power Supply Rating	1.5Vdc from battery
Modulation Type	GFSK
Transfer Rate	Up to 1Mbps
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	40
Output Power	1.225mW
Antenna Type	Chip antenna with 1.36dBi gain
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note:

1. The EUT is a HUAWEI Bluetooth Mouse.

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

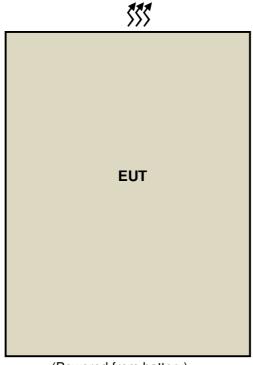
CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Test Mode Applicability and Tested Channel Detail 3.2.1

EUT		APPLICABLE TO	0			DE005.	RTION
CONFIGURE MODE	RE≥1G	RE<1G PL	LC	APCM		DESCRI	PTION
-	\checkmark	√ No	ote		-		
		mission above 1GHz			ission below 1GH		
PLC:	Power Line C	onducted Emission	APC	M: Antenna Port	Conducted Meas	urement	
		f Conducted Emission due re-tested on the positioned				when pos	itioned on X-plane.
Radiated En	nission Tes	st (Above 1GHz):					
between architectu	available m ıre).	conducted to determi odulations, data rate	s and a	ntenna ports	(if EUT with ar		
_) was (were) selected	a for the	inal lest as i	isted below.		
	NFIGUURE ODE	AVAILABLE CHANNEL	TEST	ED CHANNEL	MODULATION	ТҮРЕ	DATA RATE (Mbps)
	-	0 to 39	(0, 19, 39	GFSK		1
Pre-Scar between architectu	i has been (available m ure).	st (Below 1GHz): conducted to determi odulations, data rate	s and a	ntenna ports	(if EUT with ar		
 Pre-Scar between architectu Following EUT COI 	i has been (available m ure). g channel(s) \FIGUURE	conducted to determi	s and a d for the	ntenna ports	(if EUT with ar	ntenna	diversity
 Pre-Scar between architectu Following EUT COI 	i has been (available m ure). g channel(s)	conducted to determi odulations, data rate) was (were) selected	s and a d for the	ntenna ports	(if EUT with ar	ntenna	diversity
 Pre-Scar between architectu Following EUT COI Ma Antenna Poi This item mode. Pre-Scar between architectu Following 	has been of available m g channel(s) FIGUURE DDE - rt Conduct includes al has been of available m ure). g channel(s)	conducted to determi odulations, data rate) was (were) selected AVAILABLE CHANNEL	node, be s and a	ntenna ports final test as l D CHANNEL 0 ut only include worst-case mo ntenna ports	(if EUT with an isted below. MODULATION GFSK es spectrum pl ode from all po (if EUT with an	TYPE	diversity DATA RATE (Mbps) 1 orst value of each combinations
 Pre-Scar between architectu Following Eut cor Ma Antenna Po This item mode. Pre-Scar between architectu Following Eut cor 	n has been of available m ire). g channel(sj refiguure DDE - rt Conduct includes al n has been of available m ure).	conducted to determinedulations, data rate odulations, data rate was (were) selected AVAILABLE CHANNEL 0 to 39 ed Measurement: I test value of each n conducted to determinedulations, data rate	node, but ine the way and a	ntenna ports final test as l D CHANNEL 0 ut only include worst-case mo ntenna ports	(if EUT with an isted below. MODULATION GFSK es spectrum pl ode from all po (if EUT with an	TYPE	diversity DATA RATE (Mbps) 1 orst value of each combinations
 Pre-Scar between architectu Following Eut cor Ma Antenna Po This item mode. Pre-Scar between architectu Following Eut cor 	has been of available m ire). channel(s) NFIGUURE DDE - rt Conduct includes al has been of available m ire). channel(s) NFIGUURE	conducted to determinedulations, data rate odulations, data rate was (were) selected AVAILABLE CHANNEL 0 to 39 ed Measurement: I test value of each n conducted to determinedulations, data rate	node, but ine the version of the the version of the the version of the terms and a differ the terms and a terms and a terms the terms are the terms and a terms the terms are te	ntenna ports o final test as l ED CHANNEL 0 ut only include worst-case mo ntenna ports o final test as l	(if EUT with an isted below. MODULATION GFSK es spectrum pl ode from all po (if EUT with an isted below.	TYPE	diversity DATA RATE (Mbps) 1 orst value of each combinations diversity
 Pre-Scar between architectu Following Eut cor Ma Antenna Po This item mode. Pre-Scar between architectu Following Eut cor Ma 	has been of available m ire). channel(s) FIGUURE DDE - rt Conduct includes all has been of available m ure). channel(s) FIGUURE DDE -	conducted to determinedulations, data rate odulations, data rate was (were) selected availABLE CHANNEL 0 to 39 ed Measurement: I test value of each n conducted to determinedulations, data rate) was (were) selected AVAILABLE CHANNEL	node, but ine the version of the the version of the the version of the terms and a differ the terms and a terms and a terms the terms are the terms and a terms the terms are te	ntenna ports o final test as l D CHANNEL 0 ut only include worst-case mo ntenna ports o final test as l ED CHANNEL	(if EUT with an isted below. MODULATION GFSK es spectrum pl ode from all po (if EUT with an isted below. MODULATION	TYPE	diversity DATA RATE (Mbps) 1 orst value of each combinations diversity DATA RATE (Mbps)
 Pre-Scar between architectu Following EUT COI Ma Antenna Poi This item mode. Pre-Scar between architectu Following EUT COI Ma 	has been of available m ire). channel(s) FIGUURE DDE - rt Conduct includes al has been of available m ire). channel(s) FIGUURE DDE - -	conducted to determinedulations, data rate odulations, data rate was (were) selected availABLE CHANNEL 0 to 39 ed Measurement: I test value of each n conducted to determinedulations, data rate) was (were) selected AVAILABLE CHANNEL	node, but in a the version of the ve	ntenna ports o final test as l D CHANNEL 0 ut only include worst-case mo ntenna ports o final test as l ED CHANNEL	(if EUT with an isted below. MODULATION GFSK es spectrum pl ode from all po (if EUT with an isted below. MODULATION GFSK	TYPE	diversity DATA RATE (Mbps) 1 orst value of each combinations diversity DATA RATE (Mbps)
 Pre-Scar between architectu Following Eut cor Ma Antenna Po This item mode. Pre-Scar between architectu Following Eut cor Ma 	has been of available m ire). channel(s) FIGUURE DDE - rt Conduct includes all has been of available m ire). channel(s) FIGUURE DDE - -	conducted to determinedulations, data rate odulations, data rate was (were) selected availABLE CHANNEL 0 to 39 ed Measurement: I test value of each n conducted to determinedulations, data rate) was (were) selected availABLE CHANNEL 0 to 39	node, but ine the version of the version of the version of the the version of the version of the version of	ntenna ports o final test as l ED CHANNEL 0 ut only include worst-case mo final test as l ED CHANNEL 0, 19, 39	(if EUT with an isted below. MODULATION GFSK es spectrum pl ode from all po (if EUT with an isted below. MODULATION GFSK	TYPE	diversity DATA RATE (Mbps) 1 orst value of each combinations diversity DATA RATE (Mbps) 1
 Pre-Scar between architectu Following EUT COI Ma Antenna Po This item mode. Pre-Scar between architectu Following EUT COI Ma 	has been of available m ire). channel(s) FIGUURE DDE - rt Conduct includes all has been of available m ire). channel(s) FIGUURE DDE - channel(s) FIGUURE DDE -	conducted to determinedulations, data rate odulations, data rate was (were) selected avaiLABLE CHANNEL 0 to 39 ed Measurement: I test value of each n conducted to determinedulations, data rate odulations, data rate was (were) selected avaiLABLE CHANNEL 0 to 39 ENVIRONMENTAL CON	node, but ine the vestion of the the vestication of the v	ntenna ports o final test as l ED CHANNEL 0 ut only include worst-case mo ntenna ports o final test as l ED CHANNEL 0, 19, 39 INPUT I 1.5	(if EUT with an isted below. MODULATION GFSK es spectrum pl ode from all po (if EUT with an isted below. MODULATION GFSK POWER	TYPE	diversity DATA RATE (Mbps) 1 orst value of each combinations diversity DATA RATE (Mbps) 1 1 TESTED BY

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is < 98 %, duty factor shall be considered. <u>Duty cycle = 0.536 ms/2.471 ms = 0.217, Duty factor = 10 * log(1/0.217) = 6.635</u>


1Pk View													
PAPA TIO	~			-	_	-	D	3[1]	_				-0.10 dP
	M1		D2					D3					2.47101 m
0 dBm-		75	1 ft			_		111		1/	Ê.		0.62 dBn
-10 d8m-							1243						565.22 µ
-10 uBiii-										Ш			
-20 dBm-				·	_					ш			-
										ш			
-30 dBm-		+		-	-	-				IJ		-	-
	1								1	ľ			
40 dBm-		1	1									1	1
-51 cPm									U				
		1							ļ	1			
Mar 19 A 1	~	1.1	Scamon	ሞኑላምስ	40 march 100	Mun m	and Ballion			٢	wykeelijaarik	Mr. Haplany	any bet made
-71 cPm-	-									+			
-30 cBm-													
-su cem-										Т			
GE 2.403				l I				1				1	
tar 2.403 Tarker	/ GHZ					691 pt	ς						500.0 ps/
туре I	a l	Tru	X-value		Y-yak		Func	tion	1		Euro	ction Resul	1
ML N		1		5.22 µs		2 dBm							<u> </u>
02	M1	1	530	5.23 µs	3	.05 J5							
23	M1	1	2 47	101 ms	- 0	.10 J5							

3.4 Description of Support Units

The EUT has been tested as an independent unit together without other necessary accessories or support units.

3.4.1 Configuration of System under Test

(Powered from battery)

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 21, 2017	Feb. 20, 2018
HP Preamplifier	8449B	3008A01201	Feb. 22, 2017	Feb. 21, 2018
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 21, 2017	Feb. 20, 2018
Agilent TEST RECEIVER	N9038A	MY51210129	Feb. 08, 2017	Feb. 07, 2018
Schwarzbeck Antenna	VULB 9168	139	Dec. 13, 2016	Dec. 12, 2017
Schwarzbeck Antenna	VHBA 9123	480	May 29, 2015	May 28, 2017
Schwarzbeck Horn Antenna	BBHA-9170	212	Dec. 30, 2016	Dec. 29, 2017
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Dec. 27, 2016	Dec. 26, 2017
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.5	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF104	CABLE-CH6	Aug. 15, 2016	Aug. 14, 2017
SUHNER RF cable With 3dB PAD	SF102	Cable-CH8-3.6m	Aug. 15, 2016	Aug. 14, 2017
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	May 25, 2016	May 24, 2017
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Jul. 26, 2016	Jul. 25, 2017
Loop Antenna EMCI	LPA600	270	Aug. 20, 2015	Aug. 19, 2017
EMCO Horn Antenna	3115	00028257	Dec. 15, 2016	Dec. 14, 2017
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 30, 2016	Sep. 29, 2017
Anritsu Power Sensor	MA2411B	0738404	Apr. 28, 2016	Apr. 27, 2017
Anritsu Power Meter	ML2495A	0842014	Apr. 28, 2016	Apr. 27, 2017

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

4. The Industry Canada Reference No. IC 7450E-6.

5. The FCC Site Registration No. is 447212.

4.1.3 Test Procedures

For Radiated emission below 30MHz

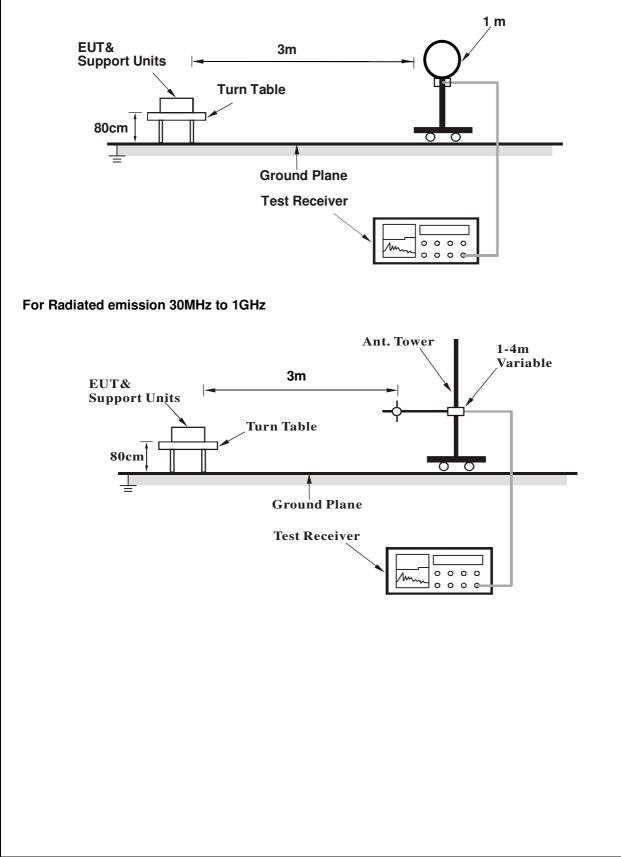
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

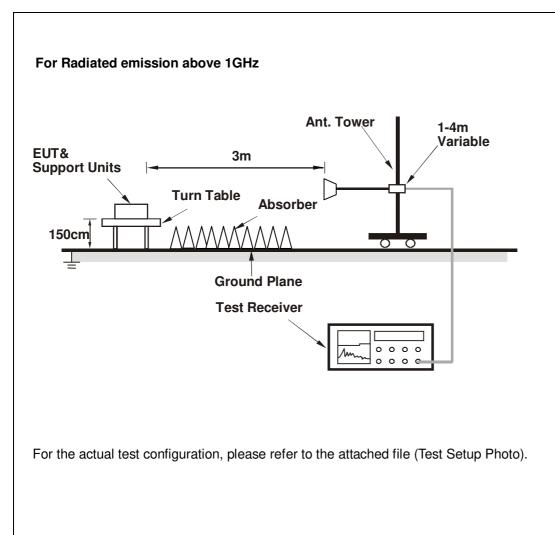
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	62.25 PK	74.00	-11.75	2.50 H	311	62.84	-0.59		
2	2390.00	40.25 AV	54.00	-13.75	2.50 H	311	40.84	-0.59		
3	*2402.00	95.17 PK			2.50 H	311	95.69	-0.52		
4	*2402.00	90.50 AV			2.50 H	311	91.02	-0.52		
5	4804.00	46.46 PK	74.00	-27.54	1.04 H	360	39.58	6.88		
6	4804.00	34.74 AV	54.00	-19.26	1.04 H	360	27.86	6.88		
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	54.79 PK	74.00	-19.21	3.42 V	256	55.38	-0.59		
2	2390.00	40.15 AV	54.00	-13.85	3.42 V	256	40.74	-0.59		
3	*2402.00	91.71 PK			3.42 V	226	92.23	-0.52		
4	*2402.00	87.27 AV			3.42 V	226	87.79	-0.52		
5	4804.00	48.76 PK	74.00	-25.24	1.48 V	11	41.88	6.88		
6	4804.00	37.64 AV	54.00	-16.36	1.48 V	11	30.76	6.88		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2440.00	93.75 PK			2.01 H	311	94.02	-0.27		
2	*2440.00	89.15 AV			2.01 H	311	89.42	-0.27		
3	4880.00	46.47 PK	74.00	-27.53	1.00 H	358	39.45	7.02		
4	4880.00	34.61 AV	54.00	-19.39	1.00 H	358	27.59	7.02		
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2440.00	91.22 PK			3.77 V	33	91.49	-0.27		
2	*2440.00	86.74 AV			3.77 V	33	87.01	-0.27		
3	4880.00	48.78 PK	74.00	-25.22	1.42 V	20	41.76	7.02		
4	4880.00	37.84 AV	54.00	-16.16	1.42 V	20	30.82	7.02		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2480.00	94.41 PK			1.60 H	202	94.42	-0.01		
2	*2480.00	89.83 AV			1.60 H	202	89.84	-0.01		
3	2483.50	58.93 PK	74.00	-15.07	1.60 H	202	58.93	0.00		
4	2483.50	40.25 AV	54.00	-13.75	1.60 H	202	40.25	0.00		
5	4960.00	46.63 PK	74.00	-27.37	1.00 H	9	39.42	7.21		
6	4960.00	34.87 AV	54.00	-19.13	1.00 H	9	27.66	7.21		
		ANTENNA	A POLARIT	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2480.00	90.49 PK			3.59 V	0	90.50	-0.01		
2	*2480.00	86.01 AV			3.59 V	0	86.02	-0.01		
3	2483.50	57.78 PK	74.00	-16.22	3.59 V	0	57.78	0.00		
4	2483.50	40.21 AV	54.00	-13.79	3.59 V	0	40.21	0.00		
5	4960.00	48.74 PK	74.00	-25.26	1.60 V	23	41.53	7.21		
6	4960.00	37.43 AV	54.00	-16.57	1.60 V	23	30.22	7.21		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

BELOW 1GHz WORST-CASE DATA

CHANNEL	TX Channel 0	DETECTOR	Quesi Book (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

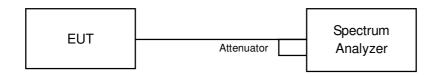
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	49.01	17.44 QP	40.00	-22.56	4.00 H	115	26.65	-9.21	
2	158.23	17.66 QP	43.50	-25.84	4.00 H	235	26.52	-8.86	
3	464.41	23.58 QP	46.00	-22.42	2.65 H	322	27.39	-3.81	
4	575.29	26.06 QP	46.00	-19.94	1.53 H	155	27.53	-1.47	
5	661.37	27.20 QP	46.00	-18.80	1.17 H	228	27.38	-0.18	
6	982.05	33.06 QP	54.00	-20.94	1.00 H	209	27.51	5.55	
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	30.58	23.20 QP	40.00	-16.80	1.22 V	360	34.16	-10.96	
2	115.65	26.83 QP	43.50	-16.67	1.00 V	269	38.99	-12.16	
3	462.04	24.50 QP	46.00	-21.50	1.96 V	205	28.40	-3.90	
4	581.88	26.67 QP	46.00	-19.33	2.27 V	205	27.87	-1.20	
5	920.61	32.83 QP	46.00	-13.17	2.03 V	113	28.50	4.33	
6	967.89	34.01 QP	54.00	-19.99	1.88 V	234	28.61	5.40	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.


4. Margin value = Emission Level – Limit value

4.2 6dB Bandwidth Measurement

4.2.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.2.2 Test Setup

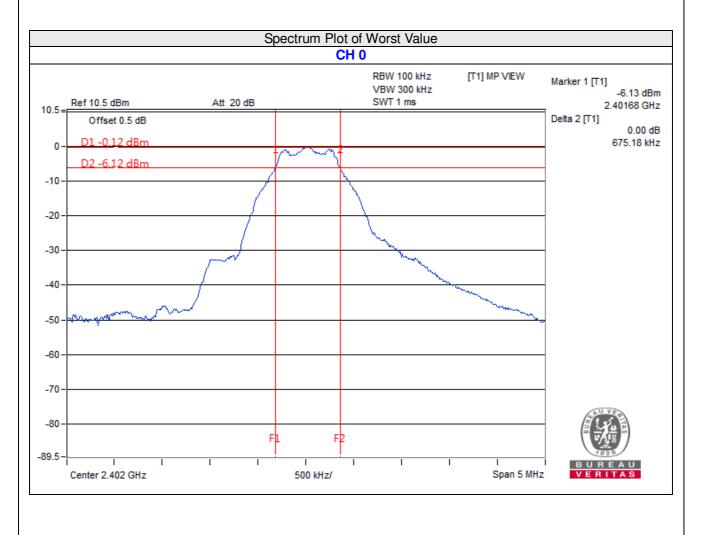
4.2.3 Test Instruments

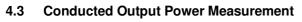
Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.2.5 Deviation fromTest Standard

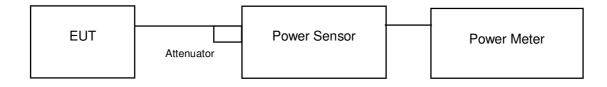
No deviation.


4.2.6 EUT Operating Conditions


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.7 Test Result

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.67	0.5	Pass
19	2440	0.66	0.5	Pass
39	2480	0.66	0.5	Pass



4.3.1 Limits OF Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.2.6.

4.3.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	1.161	0.65	30	Pass
19	2440	1.225	0.88	30	Pass
39	2480	1.125	0.51	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	1.119	0.49
19	2440	1.186	0.74
39	2480	1.096	0.40

4.4 Power Spectral Density Measurement

4.4.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm.

4.4.2 Test Setup

4.4.3 Test Instruments

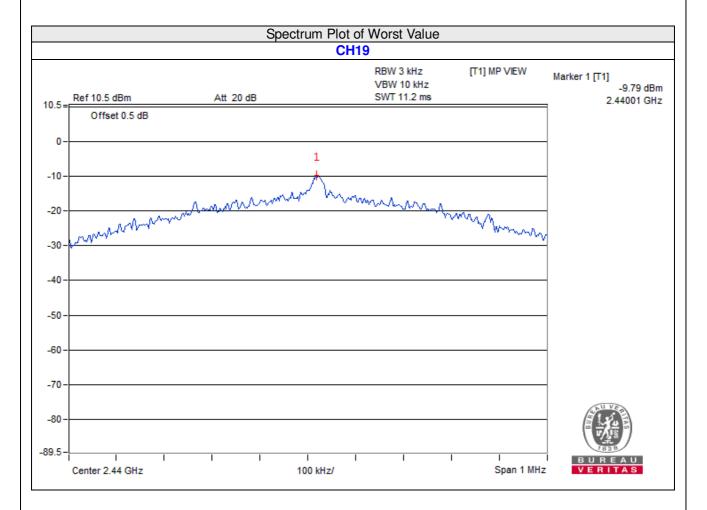
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.4.5 Deviation from Test Standard

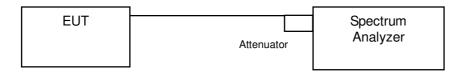
No deviation.


4.4.6 EUT Operating Condition

Same as Item 4.2.6

4.4.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	2402	-11.01	8	Pass
19	2440	-9.79	8	Pass
39	2480	-10.67	8	Pass



4.5 Conducted Out of Band Emission Measurement

4.5.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

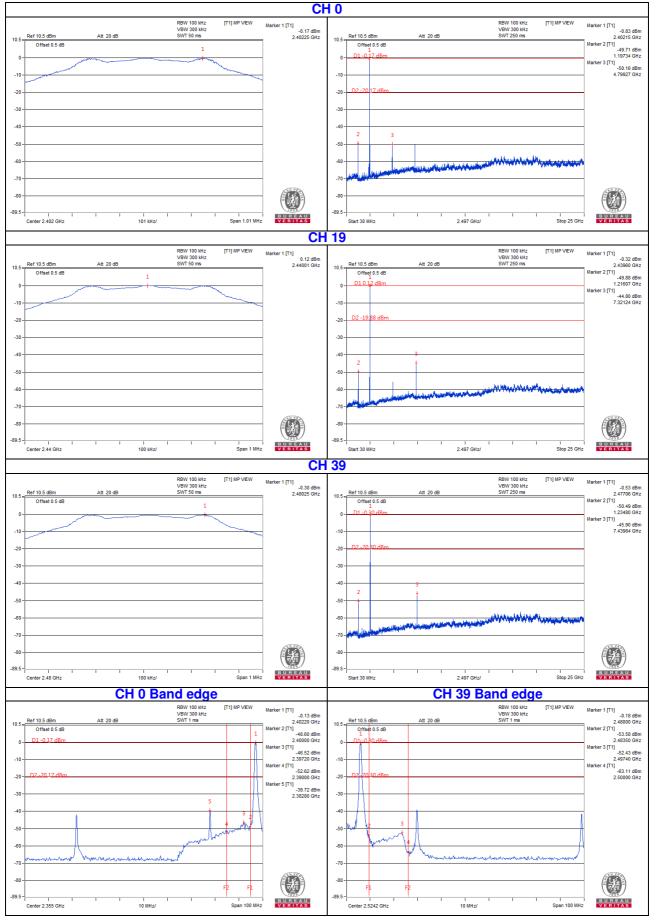
4.5.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.


4.5.5 Deviation from Test Standard No deviation.

4.5.6 EUT Operating Condition

Same as Item 4.2.6

4.5.7 Test Results

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---