	B U R E A U VERITAS
	FCC Test Report
Report No.:	RFBDKX-WTW-P21100164
FCC ID:	EMJKTPA-P005K
Test Model:	ТРА-Р005К
Received Date:	2021/10/7
Test Date:	2021/10/7 ~ 2021/10/12
Issued Date:	2021/11/9
	PRIMAX ELECTRONICS LTD.
Address:	No. 669, Ruey Kuang Road, Neihu, Taipei, Taiwan, R.O.C.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
FCC Registration / Designation Number:	198487 / TW2021

AN VER

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification.

Table of Contents

R	elease	e Control Record	3
1	C	Certificate of Conformity	4
2	S	Summary of Test Results	5
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	General Information	6
	3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.5	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards	6 7 8 9 9
4	Т	est Types and Results	10
	4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	Test Instruments	10 .11 12 12 13 14 15 20 20 20 20 20 20 20 21
5		victures of Test Arrangements	
Α	ppend	lix – Information of the Testing Laboratories	23

Release Control Record

Issue No.	Description	Date Issued
RFBDKX-WTW-P21100164	Original release.	2021/11/9

1 Certificate of Conformity

Product:	HP 510 Wireless Keyboard
Brand:	hp
Test Model:	ТРА-Р005К
Sample Status:	Engineering sample
Applicant:	PRIMAX ELECTRONICS LTD.
Test Date:	2021/10/7 ~ 2021/10/12
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.249)
	ANSI C63.10: 2013

A

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Pre	nor	24	hv.	
гіе	Dar	eu	DV.	

Bruie Chang	, Date:	
Annie Chang / Senior Specialist		
$\overline{\mathbf{A}}$		

Approved by :

Rex Lai / Associate Technical Manager

2021/11/9

2021/11/9

Date:

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.249)					
FCC Clause	Test Item	Result	Remarks		
15.207	AC Power Conducted Emission	N/A	Power supply is 3Vdc from batteries.		
15.215	Channel Bandwidth Measurement	PASS	Meet the requirement of limit.		
15.209 15.249 15.249 (d)	Radiated Emission and Bandedge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -11.08dB at 2483.50MHz.		
15.203			No antenna connector is used.		

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions	9kHz ~ 40GHz	2.63 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.38 dB
Radiated Emissions up to 1 GHZ	30MHz ~ 1000MHz	5.70 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.21 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	HP 510 Wireless Keyboard
Brand	hp
Test Model	ТРА-Р005К
Status of EUT	Engineering sample
Power Supply Rating	3Vdc from batteries
Modulation Type	GFSK
Operating Frequency	2405MHz ~ 2474MHz
Number of Channel	12
Field Strength	69.91dBuV/m (3m)
Antenna Type	PCB antenna with 0.96dBi gain
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note: The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

12 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
1	2405	7	2442
2	2407	8	2447
3	2418	9	2458
4	2426	10	2469
5	2430	11	2471
6	2437	12	2474

3.2.1 Test Mode Applicability and Tested Channel Detail

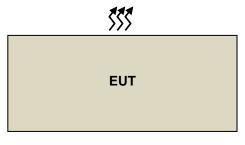
UT Configure		Applica	able To		Description			
Mode	RE≥1G	RE<1G	PLC	APCM	Description			
-	\checkmark	\checkmark	Note	\checkmark	-			
RE≥1G: Radiated Emission above 1GHz & Bandedge Measurement RE<1G: Radiated Emission below 1GHz								
-		nducted Emiss		APCM: Antenn EUT is powere	a Port Conducted Measu d by batteries.	urement		
available r	as been cor nodulations,	nducted to d data rates a	etermine the	a ports (if EU	e mode from all poss IT with antenna dive as listed below.	ible combinations betwe rsity architecture).		
EUT Config	gure Mode	Ava	ilable Channe	el	Tested Channel	Modulation Type		
			1 to 12					
Pre-Scan h	as been cor	nducted to d	etermine the		1, 7, 12 e mode from all poss rts (if EUT with ante			
Pre-Scan h between av Following c	as been cor vailable moc hannel(s) w	nducted to d Iulations, da	z): etermine the ta rates and	d antenna po	mode from all poss	ible combinations		
Pre-Scan h between av	as been cor vailable moc hannel(s) w	nducted to d lulations, da as (were) se	z): etermine the ta rates and	d antenna po he final test a	e mode from all poss rts (if EUT with ante			
Pre-Scan h between av Following c	as been cor vailable moc hannel(s) w	nducted to d lulations, da as (were) se	z): etermine the ta rates and elected for th	d antenna po he final test a	e mode from all poss rts (if EUT with ante as listed below.	ible combinations nna diversity architectur		
between av Following c EUT Confi ntenna Port This item in mode. Pre-Scan h between av	as been cor vailable moo hannel(s) w gure Mode Conducted icludes all te as been cor vailable moo	Measurement Measur	z): etermine the ta rates and elected for the ilable Channe 1 to 12 ent: each mode, etermine the ta rates and	d antenna po he final test a il but only incl e worst-case l antenna po	e mode from all poss rts (if EUT with ante as listed below. Tested Channel 7 udes spectrum plot e mode from all poss rts (if EUT with ante	bible combinations anna diversity architectur Modulation Type GFSK of worst value of each bible combinations		
 Pre-Scan h between av Following c EUT Config EUT Config This item in mode. Pre-Scan h between av Following c 	as been cor vailable moo hannel(s) w gure Mode Conducted icludes all te as been cor vailable moo hannel(s) w	Measuremenducted to d dulations, da as (were) se Ava Measurement est value of e nducted to d lulations, da as (were) se	z): etermine the ta rates and elected for the ilable Channe 1 to 12 ent: each mode, etermine the ta rates and	d antenna po he final test a l but only incl e worst-case l antenna po he final test a	e mode from all poss rts (if EUT with ante as listed below. Tested Channel 7 udes spectrum plot e mode from all poss	bible combinations anna diversity architectur Modulation Type GFSK of worst value of each bible combinations nna diversity architecture		
Pre-Scan h between av Following c EUT Confi This item in mode. Pre-Scan h between av	as been cor vailable moo hannel(s) w gure Mode Conducted icludes all te as been cor vailable moo hannel(s) w	Measuremenducted to d dulations, da as (were) se Ava Measurement est value of e nducted to d lulations, da as (were) se	z): etermine the ta rates and elected for the ilable Channe 1 to 12 ent: each mode, etermine the ta rates and elected for the	d antenna po he final test a l but only incl e worst-case l antenna po he final test a	e mode from all poss rts (if EUT with ante as listed below. Tested Channel 7 udes spectrum plot e mode from all poss rts (if EUT with ante as listed below.	bible combinations anna diversity architectur Modulation Type GFSK of worst value of each bible combinations		

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	30deg. C, 75%RH	3Vdc	Ian Chang
RE<1G	30deg. C, 75%RH	3Vdc	lan Chang
APCM	25deg. C, 60%RH	3Vdc	Dalen Dai

3.3 Duty Cycle of Test Signal

	um Analyzer - Swep						
	RF PRESEL 50 Ω Δ 17.6500 r	ns	SENSE	#Avg T	ALIGNAUTO ype: Pwr(RMS)	11:21:32 AM Oct 07, 2021 TRACE 123456 TYPE WWWWWW	Marker
		PNO: Fast IFGain:Low	#Atten: 10 d			DET PPNNN	Select Marker
10 dB/div Log	Ref Offset 10 d Ref 116.99 d				Δ	Mkr3 17.65 ms 0.63 dB	3
107							Norma
97.0 87.0							Norma
77.0							
67.0	anther man Muriane	en stars might show		1 <u>A2</u> andre Alexandre Andreas	whenman	304	Delt
47.0			X2				
37.0							Fixed
27.0							
	405000000 GH 6dB) 8.07 MH		SW 50 MHz		Sweep 50	Span 0 Hz 0.00 ms (1001 pts)	O
MKR MODE TF	RC SCL	× 600.0 µs (,	Y (A) 0.74 dE	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 F 1 3 Δ4 1	t (Δ)	24.70 ms 17.65 ms (,	58.28 dBμ\ Δ) 0.63 dE	3			
4 F 1 5	t	24.70 ms	58.28 dBµ\	/			Properties
6 7							
9							Mor
11 12							1 of
ISG					STATUS		


Duty cycle correction factor = 20 log(Duty cycle) = 20 log(0.6 ms / 17.65 ms) = -29.4dB

3.4 Description of Support Units

The EUT has been tested as an independent unit together without other necessary accessories or support units.

3.4.1 Configuration of System under Test

3Vdc

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)		
902 ~ 928 MHz	50	500		
2400 ~ 2483.5 MHz	50	500		
5725 ~ 5875 MHz	50	500		
24 ~ 24.25 GHz	250	2500		

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model no.	Serial No.	Calibrated Date	Calibrated Until
Test Receiver Agilent N9038A		MY51210129	2021/3/12	2022/3/11
Software BVADT	ADT_Radiated_V8.7.0 8	NA	NA	NA
Software BVADT	ADT_RF Test Software V6.6.5.4	NA	NA	NA
Auto Control System(Antenna Tower, Table, Controller) ADT	SC100+AT100+TT100	0306	NA	NA
Pre_Amplifier EMCI	EMC001340	980269	2021/6/29	2022/6/28
LOOP ANTENNA EMCI	LPA600	270	2021/9/2	2023/9/1
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2021/7/13	2022/7/12
Pre_Amplifier HP	8447D	2432A03504	2021/2/18	2022/2/17
Bi-log Broadband Antenna Schwarzbeck	VULB9168	139	2020/11/6	2021/11/5
Attenuator Mini-Circuits	UNAT-5+	PAD-CH6-01	2021/7/13	2022/7/12
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2021/7/13	2022/7/12
Antenna(Horn) EMCO	3115	00028257	2020/11/22	2021/11/21
Test Receiver Agilent	N9038A	MY51210129	2021/3/12	2022/3/11
Pre-amplifier HP	8449B	3008A01201	2021/2/19	2022/2/18
RF Coaxial Cable HUBER SUHNER	SF-102	Cable-CH6-01	2021/7/8	2022/7/7
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	2021/5/28	2022/5/27
Fix tool for Boresight	BAF-01	5	NA	NA
Pre_Amplifier MITEQ	AMF-6F-260400-33-8P	892164	2021/2/19	2022/2/18
Antenna(Horn) Schwarzbeck	BBHA-9170	BBHA9170190	2020/11/22	2021/11/21
Spectrum Analyzer R&S	FSV40	101544	2021/5/24	2022/5/23
RF Coaxial Cable WOKEN	WC01	Cable-CH10-03	2021/7/8	2022/7/7
RF Coaxial Cable Rosnol	K1K50-UP0279- K1K50-3000	Cable- CH10(3m)-04	2021/7/8	2022/7/7
Highpass filter SUHNER	11SH10-7000/T18000- O/OP	SN 4	2021/5/28	2022/5/27

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 3. The test was performed in LK 966 chamber 1.
- 4. Tested Date: 2021/10/7

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

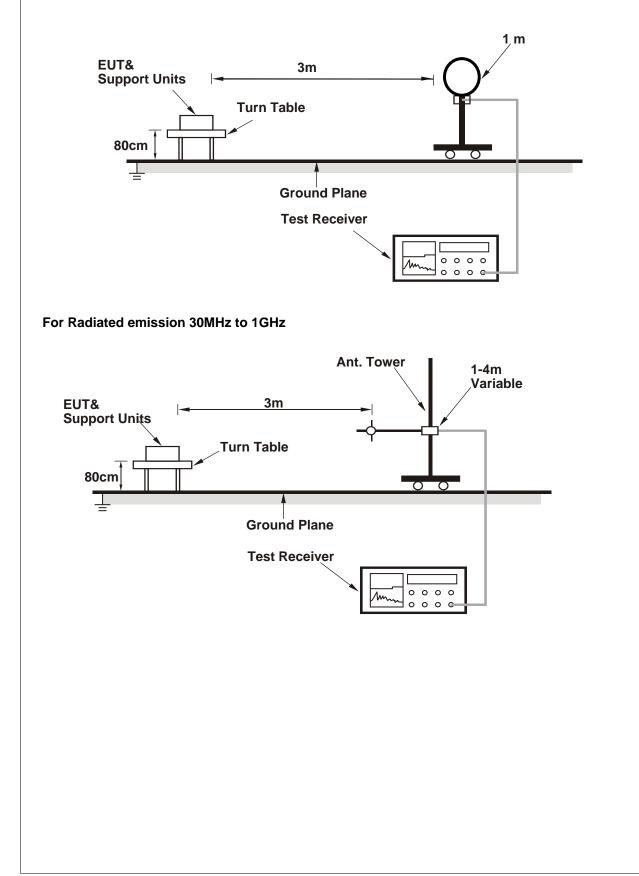
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

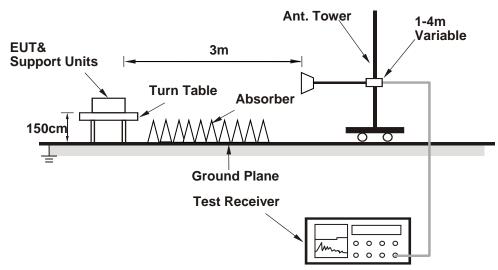
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection at frequency above 1GHz. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty factor. The duty factor refer to Chapter 3.3 of this report.
- 3. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard

No deviation.


4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

RF Mode	TX GFSK	Channel	CH 1:2405 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	58.06 PK	74.00	-15.94	1.84 H	160	60.34	-2.28		
2	2390.00	39.57 AV	54.00	-14.43	1.84 H	160	41.85	-2.28		
3	2400.00	49.03 PK	74.00	-24.97	1.84 H	160	51.25	-2.22		
4	2400.00	19.63 AV	54.00	-34.37	1.84 H	160	21.85	-2.22		
5	*2405.00	99.04 PK	114.00	-14.96	1.84 H	160	101.25	-2.21		
6	*2405.00	69.64 AV	94.00	-24.36	1.84 H	160	71.85	-2.21		
7	4810.00	47.60 PK	74.00	-26.40	2.39 H	322	41.94	5.66		
8	4810.00	18.20 AV	54.00	-35.80	2.39 H	322	12.54	5.66		

Ante	enna Polarit	y & Test Dis	stance : Ver	tical at 3 m	
Emissian			Antonno	Tabla	E

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	55.88 PK	74.00	-18.12	2.81 V	112	58.16	-2.28
2	2390.00	39.80 AV	54.00	-14.20	2.81 V	112	42.08	-2.28
3	2400.00	45.91 PK	74.00	-28.09	2.81 V	112	48.13	-2.22
4	2400.00	16.51 AV	54.00	-37.49	2.81 V	112	18.73	-2.22
5	*2405.00	95.92 PK	114.00	-18.08	2.81 V	112	98.13	-2.21
6	*2405.00	66.52 AV	94.00	-27.48	2.81 V	112	68.73	-2.21
7	4810.00	45.95 PK	74.00	-28.05	3.91 V	40	40.29	5.66
8	4810.00	16.55 AV	54.00	-37.45	3.91 V	40	10.89	5.66

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(0.6 ms / 17.65 ms) = -29.4 dB

Please refer to the plotted duty (see section 3.3)

RF Mode	TX GFSK	Channel	CH 7:2442 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2442.00	99.31 PK	114.00	-14.69	1.64 H	161	101.45	-2.14			
2	*2442.00	69.91 AV	94.00	-24.09	1.64 H	161	72.05	-2.14			
3	4884.00	47.59 PK	74.00	-26.41	2.48 H	328	41.89	5.70			
4	4884.00	18.19 AV	54.00	-35.81	2.48 H	328	12.49	5.70			

Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m	

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2442.00	96.51 PK	114.00	-17.49	2.85 V	128	98.65	-2.14
2	*2442.00	67.11 AV	94.00	-26.89	2.85 V	128	69.25	-2.14
3	4884.00	45.86 PK	74.00	-28.14	3.63 V	128	40.16	5.70
4	4884.00	16.46 AV	54.00	-37.54	3.63 V	128	10.76	5.70

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(0.6 ms / 17.65 ms) = -29.4 dB

Please refer to the plotted duty (see section 3.3)

RF Mode	TX GFSK	Channel	CH 12:2474 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2474.00	98.46 PK	114.00	-15.54	1.64 H	163	100.46	-2.00
2	*2474.00	69.06 AV	94.00	-24.94	1.64 H	163	71.06	-2.00
3	2483.50	62.92 PK	74.00	-11.08	1.64 H	163	64.86	-1.94
4	2483.50	33.52 AV	54.00	-20.48	1.64 H	163	35.46	-1.94
5	4948.00	47.04 PK	74.00	-26.96	1.96 H	230	41.20	5.84
6	4948.00	17.64 AV	54.00	-36.36	1.96 H	230	11.80	5.84
	Antenna Polarity & Test Distance : Vertical at 3 m							

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2474.00	95.68 PK	114.00	-18.32	2.74 V	121	97.68	-2.00
2	*2474.00	66.28 AV	94.00	-27.72	2.74 V	121	68.28	-2.00
3	2483.50	58.49 PK	74.00	-15.51	2.74 V	121	60.43	-1.94
4	2483.50	29.09 AV	54.00	-24.91	2.74 V	121	31.03	-1.94
5	4948.00	46.23 PK	74.00	-27.77	3.78 V	15	40.39	5.84
6	4948.00	16.83 AV	54.00	-37.17	3.78 V	15	10.99	5.84

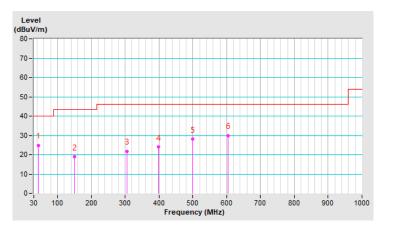
Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(0.6 ms / 17.65 ms) = -29.4 dB

Please refer to the plotted duty (see section 3.3)

BELOW 1GHz WORST-CASE DATA

RF Mode	TX GFSK	Channel	CH 7:2442 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)


	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	42.61	24.71 QP	40.00	-15.29	1.78 H	297	32.00	-7.29
2	150.28	18.89 QP	43.50	-24.61	1.98 H	278	25.17	-6.28
3	304.51	21.80 QP	46.00	-24.20	2.13 H	263	25.76	-3.96
4	397.63	23.93 QP	46.00	-22.07	2.37 H	239	26.15	-2.22
5	500.45	28.02 QP	46.00	-17.98	1.50 H	325	28.00	0.02
6	604.24	29.75 QP	46.00	-16.25	1.32 H	342	27.44	2.31

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

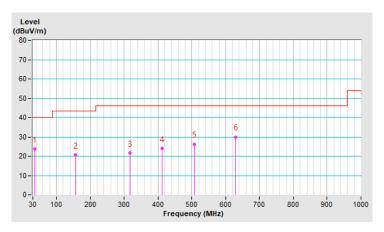
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX GFSK	Channel	CH 7:2442 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	34.85	23.57 QP	40.00	-16.43	1.43 V	168	32.02	-8.45
2	156.10	20.58 QP	43.50	-22.92	1.62 V	228	26.85	-6.27
3	318.09	21.56 QP	46.00	-24.44	1.83 V	106	25.11	-3.55
4	412.18	23.98 QP	46.00	-22.02	2.06 V	339	25.82	-1.84
5	508.21	26.08 QP	46.00	-19.92	2.20 V	216	25.79	0.29
6	630.43	29.94 QP	46.00	-16.06	2.38 V	174	26.80	3.14

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2.1 Test Setup

4.2.2 Test Instruments

Description & Manufacturer	Model no.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer R&S	FSV40	101042	2021/9/9	2022/9/8

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

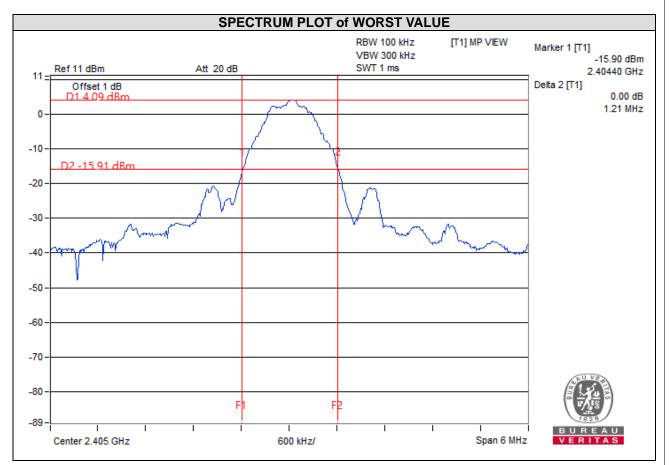
- 2. The test was performed in LK Oven
- 3. Tested Date: 2021/10/12

4.2.3 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.2.4 Deviation from Test Standard

No deviation.


4.2.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.2.6 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
1	2405	1.21
7	2442	1.21
12	2474	1.20

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180

Fax: 886-2-26052180

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---