	BUREAU VERITAS
	FCC Test Report
Report No.:	RFBDKX-WTW-P21050652
FCC ID:	EMJDHSAP012D
Test Model:	HSA-P012D
Received Date:	May 18, 2021
Test Date:	May 19 to 26, 2021
Issued Date:	Jun. 2, 2021
Applicante	PRIMAX ELECTRONICS LTD.
	No. 669, Ruey Kuang Road, Neihu, Taipei, Taiwan, R.O.C.
Address.	No. 669, Ruey Ruang Road, Neinu, Taipei, Taiwan, R.O.C.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
FCC Registration / Designation Number:	198487 / TW2021
	and and a second s
	AC-MRA
	Testing Laboratory 2021
only with our prior written permission. Th report are not indicative or representativ unless specifically and expressly noted. provided to us. You have 60 days from however, that such notice shall be in writt shall constitute your unqualified acceptan	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ng and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time ce of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Re	elease	e Control Record	3
1	C	Certificate of Conformity	4
2	S	Summary of Test Results	5
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	Seneral Information	6
	3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.5	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards	7 8 9 10 10
4	Т	est Types and Results	.11
	4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures Deviation From Test Standard Test Setup EUT Operating Condition Test Results Deviation From Test Standard Test Results	.11 12 13 13 14 15 16 21 21 22 22 22 22 23
	4.3.2 4.3.3 4.3.4 4.3.5	Channel Bandwidth Test Setup Test Instruments Test Procedure Deviation from Test Standard EUT Operating Condition Test Results	25 25 25 25 25
5	Ρ	Pictures of Test Arrangements	27
Ap	opend	lix – Information of the Testing Laboratories	28

Release Control Record

Issue No.	Description	Date Issued
RFBDKX-WTW-P21050652	Original release.	Jun. 2, 2021

Certificate of Conformity 1

Product:	Wireless Dongle
Brand:	hp
Test Model:	HSA-P012D
Sample Status:	Engineering sample
Applicant:	PRIMAX ELECTRONICS LTD.
Test Date:	May 19 to 26, 2021
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.249) ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Chory

Jessica Cheng / Senior Specialist

Date:

Date:

Jun. 2, 2021

Jun. 2, 2021

Approved by :

Rex Lai / Associate Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.249)									
FCC Clause	Test Item	Result	Remarks						
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -12.04dB at 0.15000MHz.						
15.215	Channel Bandwidth Measurement	-							
15.209 15.249 15.249 (d)	Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -5.46dB at 2390.00MHz.						
15.203	Antenna Requirement	PASS	No antenna connector is used.						

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)	
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.94 dB	
Conducted Emissions	9kHz ~ 40GHz	2.63 dB	
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.61 dB	
Radiated Emissions up to 1 GHz	30MHz ~ 1000MHz	5.43 dB	
Radiated Emissions above 1 GHz	Above 1GHz	5.42 dB	

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wireless Dongle
Brand	hp
Test Model	HSA-P012D
Status of EUT	Engineering sample
Power Supply Rating	5Vdc from host equipment
Modulation Type	GFSK
Operating Frequency	2402MHz ~ 2476MHz
Number of Channel	75
Antenna Type	PCB antenna with 2.04dBi gain
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note:

1. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

75 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457		
16	2418	36	2438	56	2458		
17	2419	37	2439	57	2459]	
18	2420	38	2440	58	2460	1	
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To								
Mode	RE≥1G	RE<1G	PLC	APCM		Description					
-	\checkmark	\checkmark	\checkmark	\checkmark	-						
Vhere	G: Radiated E edge Measure	mission above ment	1GHz & R	RE<1G: Radia	ated Emission below 1GH	z					
		onducted Emiss			na Port Conducted Meas						
NOTE: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane.											
Radiated Emission Test (Above 1GHz):											
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).											
\square Following channel(s) was (were) selected for the final test as listed below.											
EUT Config	. ,		ilable Channel		Tested Channel	Modulation Type					
			0 to 74		0, 40, 74	GFSK					
adiated Emis					a secola facilità	9.1					
					e mode from all pose						
				•	as listed below.	enna diversity architecture					
	()										
EUT Config	gure Mode	Ava	ilable Channel		Tested Channel	Modulation Type					
-			0 to 74		0	GFSK					
	onducted E	mission Te	<u>st:</u>	I							
Pre-Scan h between av	as been co ailable moc	nducted to d Iulations, dat	etermine the ta rates and a	antenna po							
 Pre-Scan h between av Following c 	as been co ailable moc hannel(s) w	nducted to d lulations, dat /as (were) se	etermine the ta rates and a	antenna po		nna diversity architecture)					
Pre-Scan h between av	as been co ailable moc hannel(s) w	nducted to d lulations, dat /as (were) se	etermine the ta rates and a elected for the	antenna po	orts (if EUT with ante as listed below.						
 Pre-Scan h between av Following c EUT Config - Antenna Port This item in mode. Pre-Scan h between av 	as been co ailable moo hannel(s) w uure Mode Conducteo cludes all to as been co vailable moo	nducted to d dulations, dat /as (were) se Avail I Measurem est value of e nducted to d dulations, da	etermine the ta rates and a elected for the able Channel 0 to 74 ent: each mode, b etermine the ta rates and a	e final test	orts (if EUT with anter as listed below. Tested Channel 0 ludes spectrum plot e mode from all poss	nna diversity architecture Modulation Type GFSK of worst value of each sible combinations					
 Pre-Scan h between av Following c EUT Config - <li< td=""><td>as been co ailable moo hannel(s) w ure Mode Conducteo cludes all to as been co vailable moo hannel(s) w</td><td>nducted to d dulations, dat vas (were) se Avail I Measurem est value of e nducted to d dulations, da vas (were) se</td><th>etermine the ta rates and a elected for the able Channel 0 to 74 ent: each mode, b etermine the ta rates and a</th><td>e final test</td><td>orts (if EUT with anter as listed below. Tested Channel 0 ludes spectrum plot e mode from all pose orts (if EUT with anter</td><td>nna diversity architecture Modulation Type GFSK of worst value of each</td></li<>	as been co ailable moo hannel(s) w ure Mode Conducteo cludes all to as been co vailable moo hannel(s) w	nducted to d dulations, dat vas (were) se Avail I Measurem est value of e nducted to d dulations, da vas (were) se	etermine the ta rates and a elected for the able Channel 0 to 74 ent: each mode, b etermine the ta rates and a	e final test	orts (if EUT with anter as listed below. Tested Channel 0 ludes spectrum plot e mode from all pose orts (if EUT with anter	nna diversity architecture Modulation Type GFSK of worst value of each					
 Pre-Scan h between av Following c EUT Config 	as been co ailable moo hannel(s) w ure Mode Conducteo cludes all to as been co vailable moo hannel(s) w	nducted to d dulations, dat vas (were) se Avail I Measurem est value of e nducted to d dulations, da vas (were) se	etermine the ta rates and a elected for the able Channel 0 to 74 ent: each mode, b etermine the ta rates and a elected for the	e final test	orts (if EUT with anter as listed below. Tested Channel 0 ludes spectrum plot e mode from all poss orts (if EUT with anter as listed below.	nna diversity architecture Modulation Type GFSK of worst value of each sible combinations enna diversity architecture					
 Pre-Scan h between av Following c EUT Config ntenna Port This item in mode. Pre-Scan h between av Following c EUT Config 	as been co ailable moo hannel(s) w ure Mode Conducteo cludes all to as been co vailable moo hannel(s) w gure Mode	nducted to d dulations, dat vas (were) se Avail I Measurem est value of e nducted to d dulations, da vas (were) se	etermine the ta rates and a elected for the able Channel 0 to 74 ent: each mode, b etermine the ta rates and a elected for the ilable Channel	e final test	rts (if EUT with anter as listed below. Tested Channel 0 ludes spectrum plot e mode from all pose orts (if EUT with anter as listed below. Tested Channel	nna diversity architecture Modulation Type GFSK of worst value of each sible combinations enna diversity architecture Modulation Type					
 Pre-Scan h between av Following c EUT Config - 	as been co ailable moo hannel(s) w ure Mode Conducted cludes all to as been co railable moo hannel(s) w gure Mode	nducted to d dulations, dat vas (were) se Avail I Measurem est value of e nducted to d dulations, da vas (were) se	etermine the ta rates and a elected for the lable Channel 0 to 74 ent: each mode, b etermine the ta rates and a elected for the ilable Channel 0 to 74	e final test	rts (if EUT with anter as listed below. Tested Channel 0 ludes spectrum plot e mode from all pose orts (if EUT with anter as listed below. Tested Channel	nna diversity architecture Modulation Type GFSK of worst value of each sible combinations enna diversity architecture Modulation Type					
 Pre-Scan h between av Following c EUT Config - Intenna Port This item in mode. Pre-Scan h between av Following c EUT Config - 	as been co ailable moo hannel(s) w ure Mode Conducted cludes all to as been co railable moo hannel(s) w gure Mode	nducted to d dulations, dat vas (were) se Avail I Measurem est value of e nducted to d dulations, da vas (were) se Ava	etermine the ta rates and a elected for the able Channel 0 to 74 ent: each mode, b etermine the ta rates and a elected for the ilable Channel 0 to 74 al Conditions	antenna po e final test out only inc worst-cas antenna po e final test	orts (if EUT with anter as listed below. Tested Channel 0 ludes spectrum plot e mode from all poss orts (if EUT with anter as listed below. Tested Channel 0	nna diversity architecture Modulation Type GFSK of worst value of each sible combinations enna diversity architecture Modulation Type GFSK					

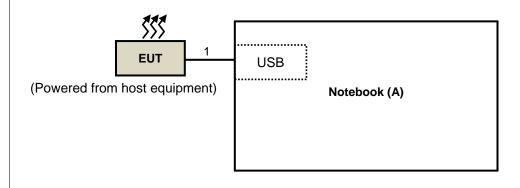
Applicable To	Environmental Conditions	Input Power	Tested By	
RE≥1G	20deg. C, 70%RH	120Vac, 60Hz (System)	Jed Wu	
RE<1G	20deg. C, 70%RH	120Vac, 60Hz (System)	Jed Wu	
PLC	25deg. C, 75%RH	120Vac, 60Hz (System)	Ian Chang	
APCM	25deg. C, 76%RH	120Vac, 60Hz (System)	Dalen Dai	

3.3 Duty Cycle of Test Signal

Marker	11:59 AM May 19, 2021 TRACE 2 3 4 5 6 TYPE WWWWWWW DET P P N N N N		g Type: Pwr	#Avg	SENSE: Trig: Free Ru	PNO: Fast ←	50 Ω AC 7400 ms			r Mar
Select Marker 3	r3 1.074 ms 0.18 dB	ΔMkr3			#Atten: 10 dE	IFGain:Low	06.99 dBµV	Ref	3/div	10 d
Norm										.0g 97.0 87.0 77.0
Del	y ^u whonywaraha	ushangipatha my ^k	et versional and the solution	4 Ingungerlahare	indu fillensetting	entigetatetatetate		liquig:	internet by the	
Fixed										
c	Span 0 Hz ms (1001 pts) FUNCTION VALUE		Swee	FUNCTION	50 MHz		000 GHz .07 MHz ×	dB)	BW (- 10de Tr	les
	ms (1001 pts)			FUNCTION		#VB 147.0 μs (Δ 420.0 μs 1.074 ms (Δ 420.0 μs	.07 MHz ×	SCL t t	BW (-	ес икя 1 2
C Properties Mo 1 of	ms (1001 pts)			FUNCTION	γ 0.17 dB 45.46 dBμV 0.18 dB	147.0 µs (∆ 420.0 µs 1.074 ms (∆	.07 MHz ×	SCL t t	BW (-1 10DE TR Δ2 1 F 1 Δ4 1	4KR 1 2 3 4 5

20 log(Duty cycle) = 20 log(0.147 ms / 1.074 ms) = -17.20dB

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	-										
ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks					
Α.	Notebook PC Lenovo		80WG	YD01YRC9	NA	Provided by Lab					
Note: /	Note: All power cords of the above support units are non-shielded (1.8m).										

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB cable	1	1.0	Y	0	Provided by Lab

Note: The core(s) is(are) originally attached to the cable(s).

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 18, 2021	Feb. 17, 2022
HP Preamplifier	8449B	3008A01201	Feb. 19, 2021	Feb. 18, 2022
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 18, 2021	Feb. 17, 2022
Agilent TEST RECEIVER	N9038A	MY51210129	Mar. 12, 2021	Mar. 11, 2022
Schwarzbeck Antenna	VULB 9168	139	Nov. 6, 2020	Nov. 5, 2021
Schwarzbeck Antenna	VHBA 9123	480	Jun. 3, 2019	Jun. 2, 2021
Schwarzbeck Horn Antenna	BBHA-9170	212	Nov. 22, 2020	Nov. 21, 2021
EMCO Horn Antenna	3115	00027024	Nov. 22, 2020	Nov.21, 2021
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.5	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF102	Cable-CH6-01	Jul. 9, 2020	Jul. 8, 2021
EMEC RF cable With 3/4dB PAD	EM102-KMKM	01	Aug. 21, 2020	Aug. 20, 2021
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	Jun. 16, 2020	Jun. 15, 2021
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Jul. 22, 2020	Jul. 21, 2021
Loop Antenna EMCI	LPA600	270	Aug. 23, 2019	Aug. 22, 2021
EMCO Horn Antenna	3115	00028257	Nov. 22, 2020	Nov. 21, 2021
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 8, 2020	Sep. 7, 2021
Anritsu Power Sensor	MA2411B	1207333	Jan. 5, 2021	Jan. 4, 2022
Anritsu Power Meter	ML2495A	1232003	Jan. 5, 2021	Jan. 4, 2022

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

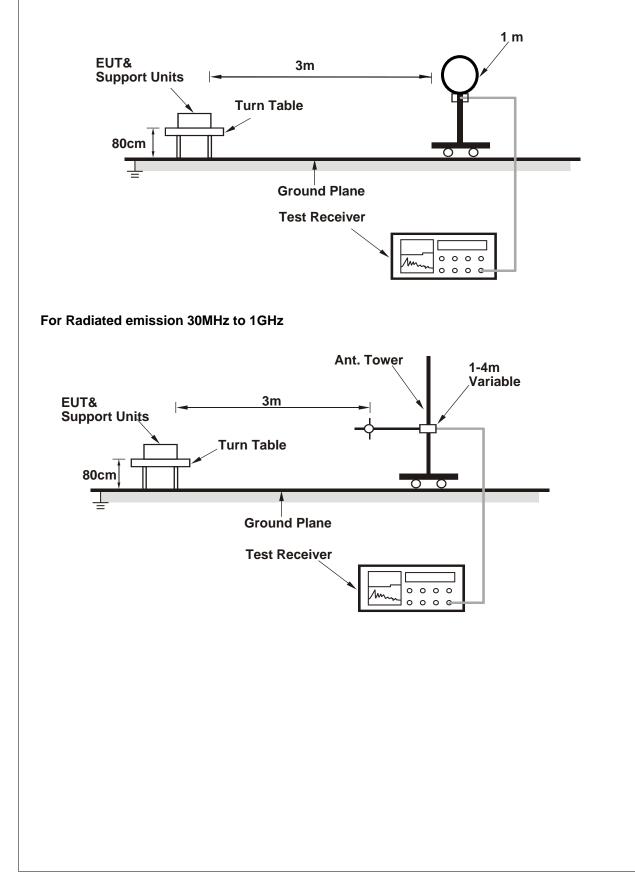
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

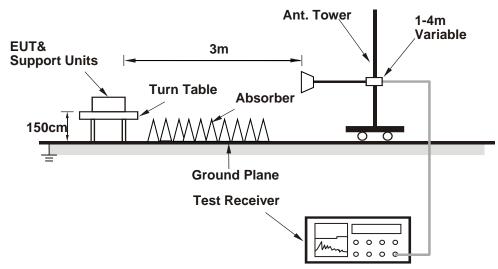
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection at frequency above 1GHz. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty factor. The duty factor refer to Chapter 3.3 of this report.
- 3. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard

No deviation.


4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data

RF Mode	TX BT_GFSK	Channel	CH 0:2402 MHz	
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)	

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	61.58 PK	74.00	-12.42	3.45 H	257	59.70	1.88	
2	2390.00	40.15 AV	54.00	-13.85	3.45 H	257	38.27	1.88	
3	2400.00	57.28 PK	74.00	-16.72	3.45 H	257	55.34	1.94	
4	2400.00	40.08 AV	54.00	-13.92	3.45 H	257	38.14	1.94	
5	*2402.00	97.21 PK	114.00	-16.79	3.45 H	257	95.27	1.94	
6	*2402.00	80.01 AV	94.00	-13.99	3.45 H	257	78.07	1.94	
7	4804.00	50.55 PK	74.00	-23.45	1.17 H	36	40.32	10.23	
8	4804.00	33.35 AV	54.00	-20.65	1.17 H	36	23.12	10.23	

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	65.74 PK	74.00	-8.26	1.17 V	197	63.86	1.88
2	2390.00	48.54 AV	54.00	-5.46	1.17 V	197	46.66	1.88
3	2400.00	60.98 PK	74.00	-13.02	1.17 V	197	59.04	1.94
4	2400.00	43.78 AV	54.00	-10.22	1.17 V	197	41.84	1.94
5	*2402.00	100.84 PK	114.00	-13.16	1.17 V	197	98.90	1.94
6	*2402.00	83.64 AV	94.00	-10.36	1.17 V	197	81.70	1.94
7	4804.00	50.74 PK	74.00	-23.26	2.43 V	152	40.51	10.23
8	4804.00	33.54 AV	54.00	-20.46	2.43 V	152	23.31	10.23

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the Duty factor is calculated from following formula:

20 log(Duty cycle) = 20 log(0.147 ms / 1.074 ms) = -17.20dB

Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_GFSK	Channel	CH 40:2442 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2442.00	95.60 PK	114.00	-18.40	3.49 H	249	93.57	2.03		
2	*2442.00	78.40 AV	94.00	-15.60	3.49 H	249	76.37	2.03		
3	4884.00	50.37 PK	74.00	-23.63	1.24 H	85	40.21	10.16		
4	4884.00	33.17 AV	54.00	-20.83	1.24 H	85	23.01	10.16		

	Antenna Polarity & Test Distance : Vertical at 3 m									
N	lo	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
	1	*2442.00	100.09 PK	114.00	-13.91	1.01 V	198	98.06	2.03	
	2	*2442.00	82.89 AV	94.00	-11.11	1.01 V	198	80.86	2.03	

-23.37

-20.57

Remarks:

3

4

4884.00

4884.00

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

2.51 V

2.51 V

182

182

40.47

23.27

10.16

10.16

3. Margin value = Emission Level - Limit value

50.63 PK

33.43 AV

4. The other emission levels were very low against the limit.

74.00

54.00

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the Duty factor is calculated from following formula:
20 log(Duty cycle) = 20 log(0.147 ms / 1.074 ms) = -17.20dB

Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_GFSK	Channel	CH 74:2476 MHz	
Fragueney Bango	1GHz ~ 25GHz	Detector Function	Peak (PK)	
Frequency Range		Delector Function	Average (AV)	

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2476.00	96.42 PK	114.00	-17.58	3.41 H	354	94.24	2.18	
2	*2476.00	79.22 AV	94.00	-14.78	3.41 H	354	77.04	2.18	
3	2483.50	60.93 PK	74.00	-13.07	3.41 H	354	58.70	2.23	
4	2483.50	39.90 AV	54.00	-14.10	3.41 H	354	37.67	2.23	
5	4952.00	50.64 PK	74.00	-23.36	1.53 H	114	40.36	10.28	
6	4952.00	33.44 AV	54.00	-20.56	1.53 H	114	23.16	10.28	
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m			

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2476.00	101.11 PK	114.00	-12.89	1.00 V	195	98.93	2.18
2	*2476.00	83.91 AV	94.00	-10.09	1.00 V	195	81.73	2.18
3	2483.50	66.83 PK	74.00	-7.17	1.00 V	195	64.60	2.23
4	2483.50	45.39 AV	54.00	-8.61	1.00 V	195	43.16	2.23
5	4952.00	51.11 PK	74.00	-22.89	2.46 V	167	40.83	10.28
6	4952.00	33.91 AV	54.00	-20.09	2.46 V	167	23.63	10.28

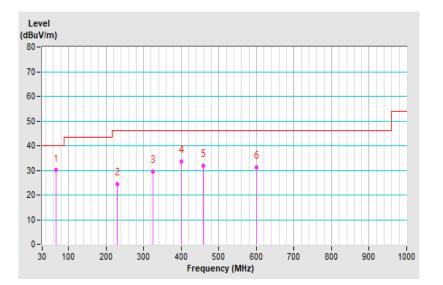
Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the Duty factor is calculated from following formula: 20 log(Duty cycle) = 20 log(0.147 ms / 1.074 ms) = -17.20dB

Please refer to the plotted duty (see section 3.3)


BELOW 1GHz WORST-CASE DATA

RF Mode	TX GFSK	Channel	CH 0:2402 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	66.57	30.08 QP	40.00	-9.92	2.35 H	133	38.46	-8.38			
2	229.29	24.38 QP	46.00	-21.62	2.62 H	93	32.88	-8.50			
3	324.06	29.50 QP	46.00	-16.50	1.88 H	153	32.93	-3.43			
4	400.01	33.48 QP	46.00	-12.52	1.64 H	90	35.63	-2.15			
5	458.50	31.86 QP	46.00	-14.14	1.27 H	56	32.33	-0.47			
6	600.02	31.31 QP	46.00	-14.69	1.52 H	63	28.96	2.35			

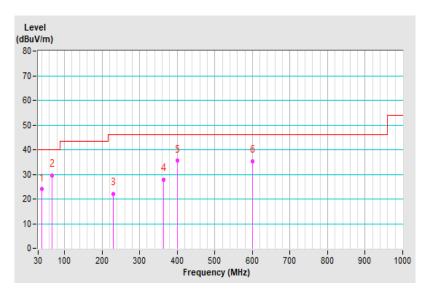
Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX GFSK	Channel	CH 0:2402 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	38.73	23.90 QP	40.00	-16.10	1.48 V	3	31.70	-7.80			
2	66.62	29.66 QP	40.00	-10.34	1.63 V	193	38.04	-8.38			
3	229.24	22.17 QP	46.00	-23.83	1.95 V	272	30.67	-8.50			
4	363.44	27.81 QP	46.00	-18.19	1.81 V	118	30.73	-2.92			
5	400.01	35.46 QP	46.00	-10.54	2.03 V	147	37.61	-2.15			
6	600.02	35.18 QP	46.00	-10.82	2.48 V	128	32.83	2.35			

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

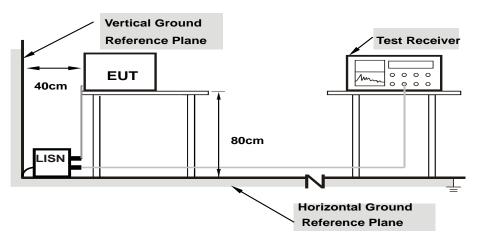
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
ROHDE & SCHWARZ TEST RECEIVER	ESR3	102412	Jan. 29, 2021	Jan. 28, 2022
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ENV216	101197	Jun. 10, 2020	Jun. 9, 2021
LISN With Adapter (for EUT)	101197	NA	Jun. 10, 2020	Jun. 9, 2021
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100218	Dec. 2, 2020	Dec. 1, 2021
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK8129	8129229	May 20, 2021	May 19, 2022
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK 8121	8121-808	Apr. 18, 2021	Apr. 17, 2022
Software	Cond_V7.3.7.4	NA	NA	NA
RF cable (JYEBAO) With 10dB PAD	5D-FB	Cable-C10.01	Feb. 10, 2021	Feb. 9, 2022
LYNICS Terminator (For ROHDE & SCHWARZ LISN)	0900510	E1-011484	May 25, 2021	May 24, 2022

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 10. (Conduction 10)

3. The VCCI Site Registration No. C-11852.

4. Tested Date: May 26, 2021


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation From Test Standard

No deviation.

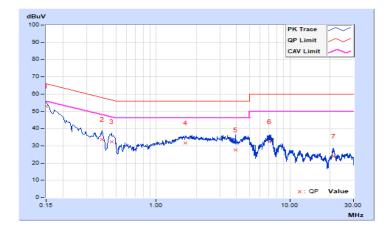
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as item 4.1.6.


4.2.7 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function	Quasi-Peak (QP) / Average (AV)
-----------------	----------------	-------------------	-----------------------------------

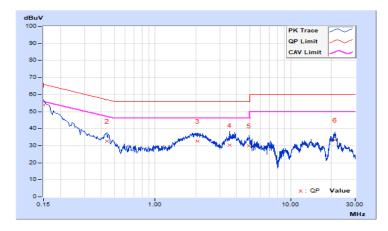
	Phase Of Power : Line (L)										
No	Frequency	Correction Factor		Reading Value (dBuV)		-		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	9.83	43.03	24.92	52.86	34.75	66.00	56.00	-13.14	-21.25	
2	0.39220	9.86	23.66	15.78	33.52	25.64	58.02	48.02	-24.50	-22.38	
3	0.46288	9.87	22.30	11.62	32.17	21.49	56.64	46.64	-24.47	-25.15	
4	1.66548	10.02	21.52	16.23	31.54	26.25	56.00	46.00	-24.46	-19.75	
5	3.91039	10.16	17.37	12.31	27.53	22.47	56.00	46.00	-28.47	-23.53	
6	7.06892	10.24	22.20	16.46	32.44	26.70	60.00	50.00	-27.56	-23.30	
7	21.23065	10.54	13.50	8.61	24.04	19.15	60.00	50.00	-35.96	-30.85	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Frequency Range 150kHz ~ 30MHz				De	tector Fund	ction	Quasi-P Average	eak (QP) (AV)	/	
			Pha	ase Of Po	ower : Ne	eutral (N)				
No	Frequency	Correction Factor	5							rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	ÁV.
1	0.15000	9.83	44.13	28.56	53.96	38.39	66.00	56.00	-12.04	-17.61
2	0.43925	9.85	22.74	13.91	32.59	23.76	57.08	47.08	-24.49	-23.32
3	2.04876	10.07	22.70	17.26	32.77	27.33	56.00	46.00	-23.23	-18.67
4	3.55449	10.15	20.31	14.19	30.46	24.34	56.00	46.00	-25.54	-21.66
5	4.93116	10.19	19.69	12.10	29.88	22.29	56.00	46.00	-26.12	-23.71
6	21.28540	10.58	22.79	17.84	33.37	28.42	60.00	50.00	-26.63	-21.58
7	15.91951	10.03	32.49	24.06	42.52	34.09	60.00	50.00	-17.48	-15.91

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

4.3 Channel Bandwidth

4.3.1 Test Setup

4.3.2 Test Instruments

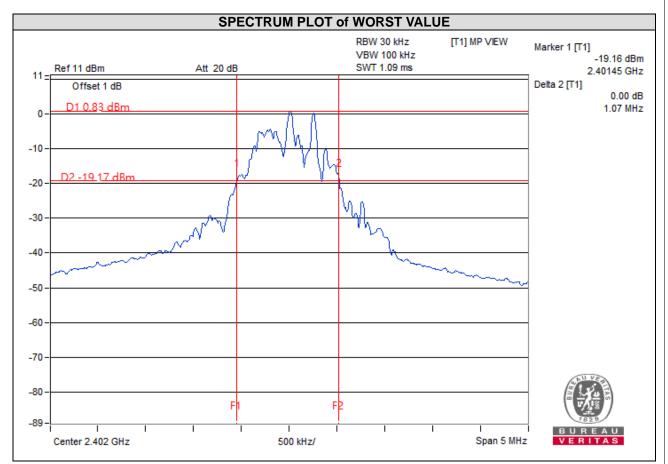
Refer to section 4.1.2 to get information of above instrument.

4.3.3 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.3.4 Deviation from Test Standard

No deviation.


4.3.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.3.6 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
0	2402	1.07
40	2442	1.07
74	2476	1.07

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180

Fax: 886-2-26052180

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---