ſ		BUREAU VERITAS
		FCC Test Report
	Report No.:	RF191104D13
	FCC ID:	EMJDGPJ110
	Test Model:	GPJ110
	Received Date:	Nov. 4, 2019
	Test Date:	Nov. 5 to 13, 2019
	Issued Date:	Dec. 5, 2019
	Address:	No. 669, Ruey Kuang Road, Neihu, Taipei, Taiwan, R.O.C.
	Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
	Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
	FCC Registration / Designation Number:	198487 / TW2021
		Testing Laboratory 2021
·	only with our prior written permission. Th report are not indicative or representative unless specifically and expressly noted. provided to us. You have 60 days from however, that such notice shall be in writt shall constitute your unqualified acceptan mention, the uncertainty of measurement	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ng and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time ce of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to declare the compliance or non-compliance to the specification. The report oduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	elease	e Control Record	3
1	C	Certificate of Conformity	4
2	S	Summary of Test Results	. 5
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	General Information	6
	3.1 3.2 3.2.1 3.3 3.3.1 3.4	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test General Description of Applied Standards	. 7 . 8 10 10 10
4	Т	est Types and Results	11
	$\begin{array}{c} 4.1.2 \\ 4.1.3 \\ 4.1.4 \\ 4.1.5 \\ 4.1.6 \\ 4.1.7 \\ 4.2 \\ 4.2.1 \\ 4.2.2 \\ 4.2.3 \\ 4.2.4 \\ 4.2.5 \\ 4.2.6 \end{array}$	Radiated Emission and Bandedge Measurement. Imits of Radiated Emission and Bandedge Measurement Test Instruments Imits of Radiated Emission and Bandedge Measurement Test Instruments Imits of Radiated Emission and Bandedge Measurement Test Instruments Imits of Radiated Emission and Bandedge Measurement Test Instruments Imits of Radiated Emission and Bandedge Measurement Test Procedures Imits of Radiated Emission and Bandedge Measurement Deviation from Test Standard Imits of Radiated Emission EUT Operating Conditions Imits of Results Channel Bandwidth Imits of Results Test Setup Imits of Results Test Instruments Imits of Results Deviation from Test Standard Imits of Results Test Results Imits of Results	11 12 13 13 14 15 16 26 26 26 26 26 26 27
5		Pictures of Test Arrangements	
Α	ppend	lix – Information of the Testing Laboratories	29

Release Control Record

Issue No.	Description	Date Issued
RF191104D13	Original release.	Dec. 5, 2019

Certificate of Conformity 1

Product:	Dongle
Brand:	Google
Test Model:	GPJ110
Sample Status:	Engineering sample
Applicant:	PRIMAX ELECTRONICS LTD.
Test Date:	Nov. 5 to 13, 2019
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.249)
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

nie Chang, Date: Dec. 5, 2019

Annie Chang / Senior Specialist

Approved by :

Date: Dec. 5, 2019

Rex Lai / Associate Technical Manager

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (SECTION 15.249)							
FCC Clause	Test Item	Result	Remarks					
15.207	15.207 AC Power Conducted Emission		Meet the requirement of limit. Minimum passing margin is -13.39dB at 0.16172MHz.					
15.215	Channel Bandwidth Measurement	-						
15.209 15.249 15.249 (d)	Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -10.78dB at 2400.00MHz.					
15.203	Antenna Requirement	PASS	No antenna connector is used.					

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	3.01 dB
Dedicted Emissions up to 1 CHz	9kHz ~ 30MHz	2.38 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1000MHz	5.43 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.42 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Dongle
Brand	Google
Test Model	GPJ110
Status of EUT	Engineering sample
Power Supply Rating	5Vdc from USB interface
Modulation Type	GFSK
Operating Frequency	2402MHz ~2479MHz
Number of Channel	78
Antenna Type	Chip antenna with 2.5dBi gain
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note: The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

78 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460		
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

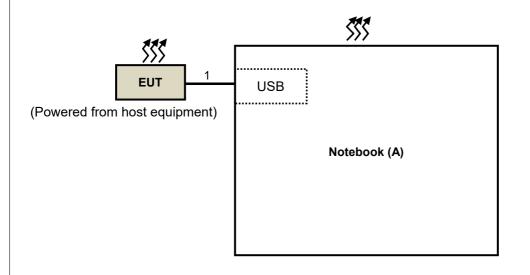
T Configure		Applica	able To			Description
Mode	RE≥1G	RE<1G	PLC	APCM		Description
-	\checkmark		\checkmark	\checkmark	-	
ere Bande	G: Radiated Em edge Measurem Power Line Cor	ent	RE		ed Emission below 1GH	
E: The EUT H diated Em Pre-Scan	nad been pre-te nission Test has been co	sted on the pos (Above 1GI onducted to c	itioned of each 3 <u>1z):</u> determine the	axis. The wo	orst case was found who	en positioned on X-plane . ssible combinations
architectu	,	was (were) s	elected for th	e final test	as listed below.	
	figure Mode		able Channel		Tested Channel	Modulation Type
	-		0 to 77		0, 39, 77	GFSK
-	. ,		s (were) selected for the fina Available Channel		as listed below.	
	. ,		(were) selected for the final test a			
EUT Configure Mode		Avail	able Channel		Tested Channel	Modulation Type
	figure Mode - Conducted E		0 to 77		Tested Channel 0	Modulation Type GFSK
wer Line (Pre-Scan between a architectu	- Conducted E has been co available moo re).	Emission Te onducted to o dulations, da	0 to 77 est: determine the ata rates and	worst-cas antenna po	0	GFSK ssible combinations
Pre-Scan between a architectu Following	- Conducted E has been co available moo re).	Emission Te onducted to o dulations, da was (were) s	0 to 77 est: determine the ata rates and	worst-cas antenna po e final test	0 e mode from all po orts (if EUT with an	GFSK ssible combinations
Pre-Scan between a architectu Following	- Conducted E has been co available mod re). channel(s) v	Emission Te onducted to o dulations, da was (were) s Availa	0 to 77 est: determine the ata rates and elected for th	worst-cas antenna po e final test	0 e mode from all po orts (if EUT with an as listed below.	GFSK ssible combinations tenna diversity
Pre-Scan between a architectu Following EUT Confi tenna Por This item mode. Pre-Scan between a architectu	- Conducted E has been co available mod re). channel(s) v gure Mode - t Conducted includes all t has been co available mod re).	Emission Te onducted to o dulations, da was (were) s Availa d Measurem test value of onducted to o dulations, da	0 to 77 est: determine the ata rates and a elected for th ble Channel 0 to 77 each mode, the determine the ata rates and a	worst-cas antenna po e final test 	0 e mode from all po orts (if EUT with an as listed below. Tested Channel 0 cludes spectrum pla e mode from all po orts (if EUT with an	GFSK Ssible combinations tenna diversity Modulation Type GFSK Ot of worst value of each ssible combinations
Pre-Scan between a architectu Following EUT Confi his item mode. Pre-Scan between a architectu Following	- Conducted E has been co available mod re). channel(s) v gure Mode - t Conducted includes all t has been co available mod re). channel(s) v	Emission Te onducted to o dulations, da was (were) s Availa d Measurem est value of onducted to o dulations, da was (were) s	0 to 77 est: determine the ata rates and elected for th ble Channel 0 to 77 each mode, b determine the ata rates and elected for th	worst-cas antenna po e final test put only ind worst-cas antenna po e final test	0 e mode from all po orts (if EUT with an as listed below. Tested Channel 0 cludes spectrum pla e mode from all po orts (if EUT with an as listed below.	GFSK Ssible combinations tenna diversity Modulation Type GFSK Ot of worst value of each ssible combinations tenna diversity
Pre-Scan between a architectu Following EUT Confi tenna Por This item mode. Pre-Scan between a architectu Following	- Conducted E has been co available mod re). channel(s) v gure Mode - t Conducted includes all t has been co available mod re).	Emission Te onducted to o dulations, da was (were) s Availa d Measurem est value of onducted to o dulations, da was (were) s	0 to 77 est: determine the ata rates and a elected for th ble Channel 0 to 77 each mode, the determine the ata rates and a	worst-cas antenna po e final test put only ind worst-cas antenna po e final test	0 e mode from all po orts (if EUT with an as listed below. Tested Channel 0 cludes spectrum pla e mode from all po orts (if EUT with an	GFSK Ssible combinations tenna diversity Modulation Type GFSK Ot of worst value of each ssible combinations

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By	
RE≥1G	25deg. C, 76%RH	120Vac, 60Hz (System)	Dalen Dai	
RE<1G	25deg. C, 76%RH	120Vac, 60Hz (System)	Dalen Dai	
PLC	25deg. C, 75%RH	120Vac, 60Hz (System)	Starltaly Wu	
APCM	25deg. C, 76%RH	120Vac, 60Hz (System)	Saxon Lee	

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks				
Α.	Notebook PC	Lenovo	80WG	YD01YRC9	N/A	Provided by Lab				
Note: /	Note: All nower cords of the above support units are non-shielded (1.8m)									

Note: All power cords of the above support units are non-shielded (1.8m).

N	lo.	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/ No)	Cores (Qty.)	Remarks
1	1.	USB cable	1	1	Y	0	Provided by Lab

NOTE: The core(s) is(are) originally attached to the cable(s).

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 20, 2019	Feb. 19, 2020
HP Preamplifier	8449B	3008A01201	Feb. 21, 2019	Feb. 20, 2020
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 20, 2019	Feb. 19, 2020
Agilent TEST RECEIVER	N9038A	MY51210129	Mar. 05, 2019	Mar. 04, 2020
Schwarzbeck Antenna	VULB 9168	139	Nov. 26, 2018	Nov. 25, 2019
Schwarzbeck Antenna	VHBA 9123	480	Jun. 3, 2019	Jun. 2, 2021
Schwarzbeck Horn Antenna	BBHA-9170	212	Nov. 25, 2018	Nov. 24, 2019
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Nov. 25, 2018	Nov. 24, 2019
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.5	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF102	Cable-CH6-01	Jul. 10, 2019	Jul. 9, 2020
SUHNER RF cable With 3/4dB PAD	SF102	Cable-CH8-3.6m	Jul. 10, 2019	Jul. 9, 2020
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	Jun. 11, 2019	Jun. 10, 2020
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Jul. 30, 2019	Jul. 29, 2020
Loop Antenna EMCI	LPA600	270	Aug. 23, 2019	Aug. 22, 2021
EMCO Horn Antenna	3115	00028257	Nov. 25, 2018	Nov. 24, 2019
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 23, 2019	Sep. 22, 2020
Anritsu Power Sensor	MA2411B	0738404	Apr. 16, 2019	Apr. 15, 2020
Anritsu Power Meter	ML2495A	0842014	Apr. 16, 2019	Apr. 15, 2020

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

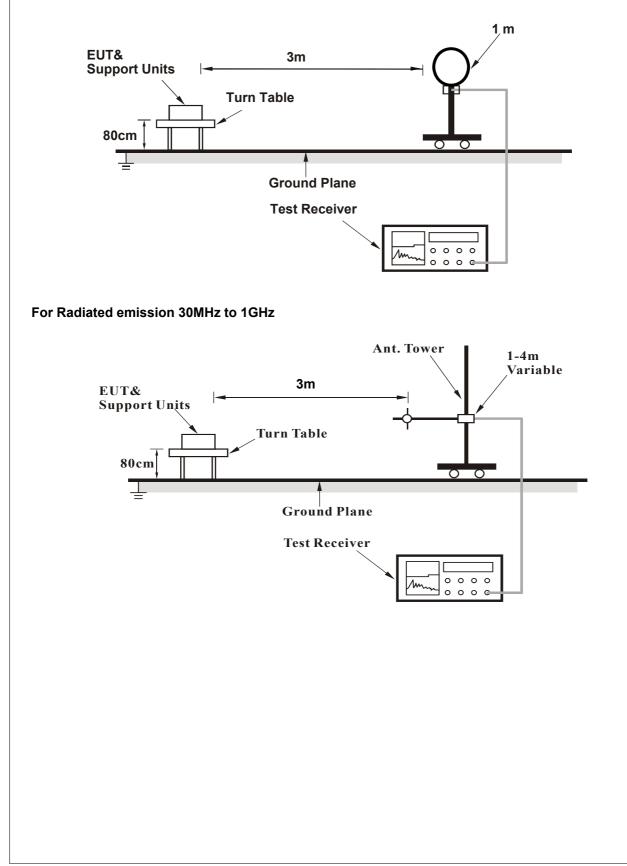
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

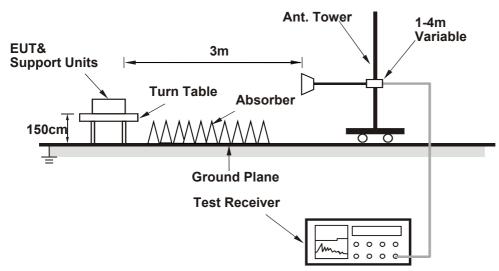
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.


4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	2390.00	46.55 PK	74.00	-27.45	1.00 H	119	45.97	0.58			
2	2390.00	36.29 AV	54.00	-17.71	1.00 H	119	35.71	0.58			
3	2400.00	59.57 PK	74.00	-14.43	1.00 H	119	58.96	0.61			
4	2400.00	37.34 AV	54.00	-16.66	1.00 H	119	36.73	0.61			
5	*2402.00	92.14 PK	114.00	-21.86	1.00 H	119	91.53	0.61			
6	*2402.00	76.84 AV	94.00	-17.16	1.00 H	119	76.23	0.61			
7	4804.00	53.18 PK	74.00	-20.82	3.74 H	2	44.92	8.26			
8	4804.00	37.88 AV	54.00	-16.12	3.74 H	2	29.62	8.26			
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	2390.00	51.31 PK	74.00	-22.69	1.00 V	188	50.73	0.58			
2	2390.00	42.56 AV	54.00	-11.44	1.00 V	188	41.98	0.58			
3	2400.00	63.22 PK	74.00	-10.78	1.00 V	188	62.61	0.61			
4	2400.00	39.41 AV	54.00	-14.59	1.00 V	188	38.80	0.61			
5	*2402.00	96.06 PK	114.00	-17.94	1.00 V	188	95.45	0.61			
6	*2402.00	80.76 AV	94.00	-13.24	1.00 V	188	80.15	0.61			
7	4804.00	52.39 PK	74.00	-21.61	1.29 V	163	44.13	8.26			
8	4804.00	37.09 AV	54.00	-16.91	1.29 V	163	28.83	8.26			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

3. Margin value = Emission Level – Limit value

- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(0.176 ms / 1.023 ms) = -15.3 dB

Please see page 19 for plotted duty.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	*2441.00	92.03 PK	114.00	-21.97	1.00 H	113	91.29	0.74				
2	*2441.00	76.73 AV	94.00	-17.27	1.00 H	113	75.99	0.74				
3	4882.00	53.35 PK	74.00	-20.65	3.66 H	357	44.67	8.68				
4	4882.00	38.05 AV	54.00	-15.95	3.66 H	357	29.37	8.68				
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М					
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	*2441.00	96.01 PK	114.00	-17.99	1.03 V	194	95.27	0.74				
2	*2441.00	80.71 AV	94.00	-13.29	1.03 V	194	79.97	0.74				
3	4882.00	52.73 PK	74.00	-21.27	1.40 V	169	44.05	8.68				
4	4882.00	37.43 AV	54.00	-16.57	1.40 V	169	28.75	8.68				

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log(Duty cycle) = 20 log(0.176 ms / 1.023 ms) = -15.3 dB

Please see page 19 for plotted duty.

CHANNEL	TX Channel 77	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	*2479.00	92.30 PK	114.00	-21.70	1.02 H	123	91.38	0.92				
2	*2479.00	77.00 AV	94.00	-17.00	1.02 H	123	76.08	0.92				
3	2483.50	47.48 PK	74.00	-26.52	1.02 H	123	46.52	0.96				
4	2483.50	32.21 AV	54.00	-21.79	1.02 H	123	31.25	0.96				
5	4958.00	53.43 PK	74.00	-20.57	3.70 H	5	44.73	8.70				
6	4958.00	38.13 AV	54.00	-15.87	3.70 H	5	29.43	8.70				
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М					

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2479.00	96.29 PK	114.00	-17.71	1.11 V	192	95.37	0.92
2	*2479.00	80.99 AV	94.00	-13.01	1.11 V	192	80.07	0.92
3	2483.50	50.12 PK	74.00	-23.88	1.11 V	192	49.16	0.96
4	2483.50	33.25 AV	54.00	-20.75	1.11 V	192	32.29	0.96
5	4958.00	52.78 PK	74.00	-21.22	1.36 V	160	44.08	8.70
6	4958.00	37.48 AV	54.00	-16.52	1.36 V	160	28.78	8.70

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

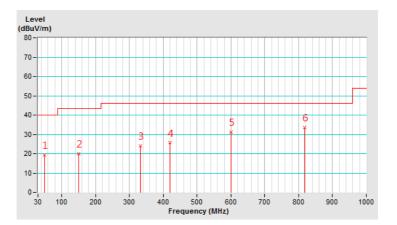
20 log(Duty cycle) = 20 log(0.176 ms / 1.023 ms) = -15.3 dB

Please see page 19 for plotted duty.

Duty Cycle

Spectru	um	¥								E
Ref Le	vel 1	0.50 dBm	Offset 0.	50 dB 👄	RBW 10 MH:	2				
Att		20 dB	SWT	2 ms	VBW 10 MH:	z				
SGL										
1Pk Vie	W									
			D2			M	1[1]	1		-1.16 dBn
0.40		M	4				D	3		315.94 µ
0 dBm-						D	2[1]			4.25 di
-10 dBm-										176.81 µ
-10 000	× 1									
-20 dBm-	_								_	
-30 dBm-	-									-
-40 dBm-	-								-	-
				1					1	
osa damy	almost .	would	handhard	Handbard	of the start for start p	howed have	Manuff party	and the second s	Withater	truthunu
-60 dBm-						o				
-00 ubiii-										
-70 dBm-									_	
/ o upm										
-80 dBm-	_									
CF 2.40	2 GH	7	LI		691	nts			_	200.0 µs/
Marker		-								
	Ref	Trc	X-value	1	Y-value	Funct	tion	Fu	nction Resul	t
M1		1	315.9	4 µs	-1.16 dBr					
D2	M1	1	176.8		4.25 d	в				
D3	Μ1	1	1.02319	9 ms	3.15 d	в				
		(oody	ann	1 446	05.11.2019
		~~~			001. //	470	140	00	45.0 10	
		20	log(Duty of	cycle) :	= 20 log((	).176 ms	s / 1.0	23 ms) =	-15.3 dB	




#### **BELOW 1GHz WORST-CASE DATA**

CHANNEL	TX Channel 0	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

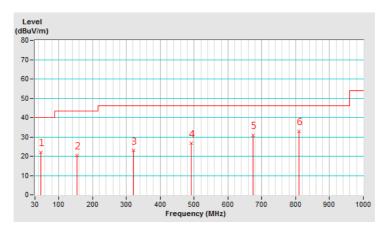
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	49.50	19.42 QP	40.00	-20.58	1.58 H	232	26.62	-7.20			
2	149.79	20.11 QP	43.50	-23.39	1.40 H	299	26.87	-6.76			
3	331.86	24.22 QP	46.00	-21.78	1.69 H	360	28.40	-4.18			
4	419.99	25.67 QP	46.00	-20.33	2.05 H	4	28.22	-2.55			
5	599.97	31.29 QP	46.00	-14.71	2.21 H	50	29.50	1.79			
6	817.64	33.70 QP	46.00	-12.30	1.94 H	261	28.01	5.69			

#### **REMARKS**:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	TX Channel 0	DETECTOR	Quasi-Peak (QP)	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION		


	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	47.46	21.98 QP	40.00	-18.02	1.65 V	295	29.23	-7.25				
2	154.60	20.36 QP	43.50	-23.14	1.43 V	316	27.02	-6.66				
3	320.85	22.94 QP	46.00	-23.06	1.79 V	140	27.31	-4.37				
4	491.67	26.67 QP	46.00	-19.33	2.01 V	137	27.50	-0.83				
5	673.79	30.91 QP	46.00	-15.09	2.17 V	351	27.97	2.94				
6	809.59	32.80 QP	46.00	-13.20	1.52 V	67	27.25	5.55				

#### **REMARKS:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





### 4.2 Conducted Emission Measurement

#### 4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)						
Frequency (MHz)	Quasi-peak	Average					
0.15 - 0.5	66 - 56	56 - 46					
0.50 - 5.0	56	46					
5.0 - 30.0	60	50					

Note: 1. The lower limit shall apply at the transition frequencies.

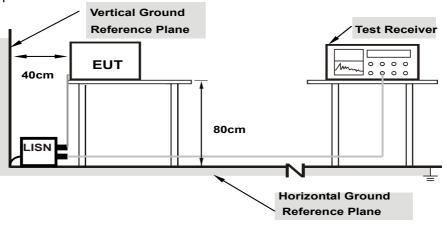
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### 4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
ROHDE &SCHWARZ TEST RECEIVER	ESCS 30	838251/021	Oct. 30, 2019	Oct. 29, 2020
ROHDE & SCHWARZ Artificial Mains Network (For EUT)	ENV216	101195	May 9, 2019	May 8, 2020
LISN With Adapter (for EUT)	101195	N/A	May 9, 2019	May 8, 2020
EMCO L.I.S.N. (For peripherals)	3825/2	9504-2359	Jul. 31, 2019	Jul. 30, 2020
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK8129	8129229	May 14, 2019	May 13, 2020
Software	Cond_V7.3.7.4	NA	NA	NA
RF cable (JYEBAO) With10dB PAD	5D-FB	Cable-C03.01	Sep. 17, 2019	Sep. 16, 2020
LYNICS Terminator (For EMCO LISN)	0900510	E1-01-300	Jan. 25, 2019	Jan. 24, 2020
LYNICS Terminator (For EMCO LISN)	0900510	E1-01-301	Jan. 25, 2019	Jan. 24, 2020
ROHDE & SCHWARZ Artificial Mains Network (For TV EUT)	ESH3-Z5	100220	Nov. 21, 2018	Nov. 20, 2019
LISN With Adapter (for TV EUT)	100220	N/A	Nov. 21, 2018	Nov. 20, 2019

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 3.




#### 4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup



Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as item 4.1.6.



### 4.2.7 Test Results

(Actually and a second s	F	Phase	Line (L)	LIATACIAL FUNCTION	Quasi-Peak (QP) / Average (AV)
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---	-------	----------	--------------------	-----------------------------------

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor		Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16172	9.66	42.33	26.16	51.99	35.82	65.38	55.38	-13.39	-19.56	
2	0.45078	9.72	25.11	17.04	34.83	26.76	56.86	46.86	-22.03	-20.10	
3	1.92969	9.89	21.24	16.37	31.13	26.26	56.00	46.00	-24.87	-19.74	
4	3.62109	9.96	19.15	13.94	29.11	23.90	56.00	46.00	-26.89	-22.10	
5	4.77734	9.99	20.52	12.62	30.51	22.61	56.00	46.00	-25.49	-23.39	
6	20.92188	10.21	23.71	18.84	33.92	29.05	60.00	50.00	-26.08	-20.95	

#### **Remarks:**

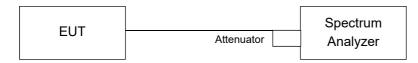
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value




Phase		Neutra	al (N)	Detector Func	tion	Quasi-Pe Average	· · · ·	
Phase Of Power : Neutral (N)								
Frequ	ency Cor	rection	Reading Value	Emission Level	Liı	mit	Margin	

No	Frequency	Factor	(dBuV)		(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.64	41.94	22.23	51.58	31.87	66.00	56.00	-14.42	-24.13
2	0.16172	9.64	40.85	27.02	50.49	36.66	65.38	55.38	-14.89	-18.72
3	0.38828	9.70	20.82	12.20	30.52	21.90	58.10	48.10	-27.58	-26.20
4	4.80469	9.96	20.42	14.20	30.38	24.16	56.00	46.00	-25.62	-21.84
5	7.23828	10.01	18.49	12.23	28.50	22.24	60.00	50.00	-31.50	-27.76
6	21.14063	10.22	15.48	10.18	25.70	20.40	60.00	50.00	-34.30	-29.60

#### **Remarks:**


- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value





#### 4.3 Channel Bandwidth

#### 4.3.1 Test Setup



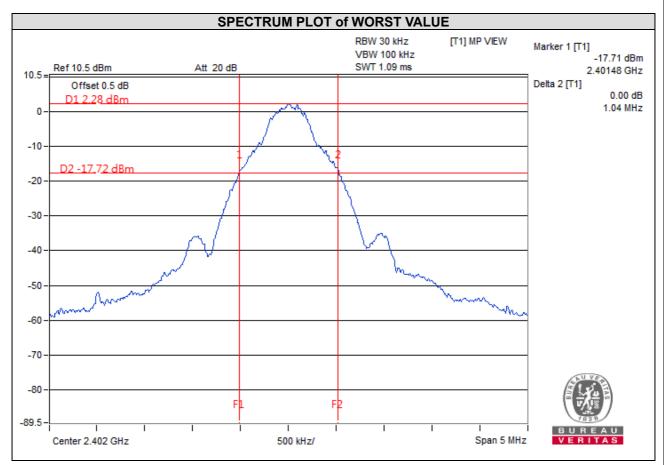
#### 4.3.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

#### 4.3.3 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.
- 4.3.4 Deviation from Test Standard

No deviation.


#### 4.3.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.



#### 4.3.6 Test Results

CHANNEL	FREQUENCY (MHz)	20dB BANDWIDTH (MHz)		
0	2402	1.04		
39	2441	1.04		
77	2479	1.02		





### 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



#### Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

# Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---