Corporate Certification

Environmental Labs CCEL

Radiated Emissions Class B Emissions Compliance Test Report for Product: iMOTE 1

Oregon Certification & Environmental Lab (OCEL)

5200 NE Elam Young Parkway Hillsboro, OR 97124

Report Number: 07OR001 February 5, 2007

iMOTE 1

Contents

1 EQUIPMENT UNDER TEST	9
1.1Condition of EUT upon Laboratory Receipt 1.2Applicable Model Numbers	9
1.3System Modification	9
2 TEST CONFIGURATION	11
2.1Adapters/ Peripherals/ I/O Devices	11
3 RADIATED EMISSIONS TEST	13
3.1 Test Procedure	13
3.2Test Instruments	14
3.3Radiated Emissions Test Data	15
3.4Radiated Emissions Test Setup Photos	17

Supplemental Information

Contents	2
Supplemental Information	3
Background	3
Signatures	4
Applicant Information	4
acility Accreditation and Authorization	5
Disclaimer	6
Regulatory Compliance Statement	7
Compliance Summary	8

Background

This test report documents the results of the electromagnetic compatibility testing performed by Intel Corporation, Oregon Environmental Laboratory. The results contained within this test report pertain only to the equipment under test.

Details and results of testing performed on 01/10/07 are contained within.

Signatures

To ensure the quality and accuracy of this documentation, the contents and test data have been thoroughly reviewed by the following qualified personnel from the Intel Oregon Environmental Lab.

Written By:

Heidi Dayoob Technical Writer Signature:

Alidi Dayool

Reviewed/ Approved By: Pete Berquist EMC Engineer Signature:

Applicant Information

Intel Corporation
Intel Corporation
5200 NE Elam young Parkway Hillsboro, OR 97124
Bluetooth Sensor
iMOTE 1

Facility Accreditation and Authorization

American Association for Laboratory Accreditation (A2LA)

The Intel Corporation OCEL (Oregon Certification and Environmental Lab) is accredited for emissions and immunity testing. The scope of this accreditation is in adherence to the requirements of ISO/IEC 17025: 2005. A2LA Lab Code: 110083,

CERT # 1130-01

Federal Communication Commission (FCC)

The 3 & 10 meter Open Area Test Site and conducted measurement facilities have been fully described in reports filed with the Federal Communication Commission, and accepted by the FCC in a letter dated May 2002. Registration number: 90687.

The Voluntary Control Council for Interference (VCCI)

The Intel Corporation OCEL has been accepted as an Associate Member to the VCCI (Voluntary Control Counsel for Interference). The 3 & 10 meter Open Area Test Site radiated measurement facility and conducted measurement facility have been registered in accordance with Regulations for Voluntary Control Measures. Registration numbers: R-484, C-500, and T-119.

NEMKO

The Intel Corporation OCEL is authorized by NEMKO under the test by manufacturer scheme with Laboratory Authorization number 361 as re-stated in a letter dated December 2005. Registration number: TBM-EMC 361.

The data produced by TBM-361 is accepted into the Territory of the Russian Federation. The certificate of accreditation, dated Sept. 10, 1998, was issued by the Certification Body of information, instrumental, medical & electrical equipment on behalf of the Russian Goststandart (GOST R) organization. Through MRA between NEMKO and the current Russian Organization of Certified Bodies, acceptance of data by TBM-361 remains valid for a scope, which includes GOST R 51318.22 and GOST R 50628-95.

APEC Conformity Assessment of Telecommunications Equipment

This laboratory (identifier# US0069) participates in the NIST phase-1 Laboratory CAB designation for the following economies.

Chinese - Taipei BSMI Accreditation # SL2-IN-E-1023

Korea – MIC's Radio Research Lab

The CAB status' remains in effect while the Laboratory's A2LA scope of accreditation is valid.

Disclaimer

THIS TEST REPORT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by the sale of Intel products. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel retains the right to make changes to its test specifications at any time, without notice.

The hardware vendor remains solely responsible for the design, sale and functionality of its product, including any liability arising from product infringement or product warranty.

Intel, Celeron, Itanium, Pentium, and Xeon are a trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

^{*}Other product and corporate names may be trademarks of other companies and are used only for explanation and to the owners' benefit, without intent to infringe.

Copyright © Intel Corporation 2007

Regulatory Compliance Statement

This device, Intel Model: iMOTE 1 complies with the following regulatory standards:

FCC 47 CFR Part 15, Subpart B

This device, Intel Model: iMOTE 1, complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference.

(2) this device must accept any interference received, including interference that may cause undesired operation.

Intel Corporation 5200 Elam Young Parkway Hillsboro, Oregon 97124 (503) 696-5257

In addition to the above information, the following text should be placed in the instructions to the user: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

NOTE: Consult the dealer or an experienced radio/TV technician for help.

Compliance Summary

Laboratory Receipt Date Of Sample: 01/10/07

The results contained within this test report pertain only to the equipment under test (EUT).

07-0049-OR		
01/10/07		
Passed by 8.6 dBµV		AFR X
Line 1		All long and
Pete Berquist	Signature:	O
	07-0049-OR 01/10/07 Passed by 8.6 dBμV Line 1 Pete Berquist	07-0049-OR 01/10/07 Passed by 8.6 dBμV Line 1 Pete Berquist Signature:

1 Equipment Under Test

The EUT is an Intel® Bluetooth transmitter model iMOTE 1.

1.1 Condition of EUT upon Laboratory Receipt

The laboratory received the EUT in an operational condition.

1.2 Applicable Model Numbers

Additional model numbers encompassed by the findings documented in this report:

• N/A

1.3 System Modification

Use of EMI suppression devices was not required to achieve regulatory compliance therefore; the EUT was tested as received.

Description	Manufacturer	Model Number	Serial Number
Imote USB/UART board	Intel	N/A	N/A
6MHz xtal	N/A	CSTCR6M00G	N/A
Dual USB UART IC	N/A	FT2232C	N/A
LVDO regulator	N/A	LTC1844-3.3	N/A
Imote A3 BT board	Intel	N/A	N/A
12MHz 20ppm Xtal	N/A	ECS-120-CD-0330	N/A
Bluetooth IC	Zeevo	TC2001	N/A
Sw. Reg IC	Torex	6377A303SR	N/A
AC-DC USB adapter	Dynex	DX-IPAC	DynexGWKS 6J06

Table 1. Hardware Internal to the EUT

2 Test Configuration

Pre-scans of the EUT were performed in a 3 meter semi-anechoic chamber to investigate the worst case of cable placement, video resolution and refresh rate. All test data in this report refers to the established worst-case configuration.

2.1 Adapters/ Peripherals/ I/O Devices

The peripheral devices and cables (external of the EUT) used during testing are reflected in the table and diagram below.

Diagram	Description	Manufacturer	Model Number	Serial Number	Cable Description
В	AC-DC-USB Adapter	Dynex	DX-IPAC	GWKS 6J06	No Cable
С	USB to mini- USB Adapter				No Cable
S	LAN Hub	LinkSys	SD2008	REE105600 0965	6.0m unshielded LAN cable w/o ferrite.
Т	Client PC	IBM	T30	78-FDAP2	1.0m unshielded LAN cable w/o ferrite.

Table 2. Peripherals and I/O Cables External of the EUT

3 Radiated Emissions Test

The radiated emissions data was taken with the test methodologies stated in FCC.

No modifications or deviations from the test methods were implemented to achieve regulatory compliance.

3.1 Test Procedure

The data contained in section 4.2 Radiated Emissions Test Summary, lists the significant emission frequencies, antenna height and polarity, turntable azimuth, corrected reading, and the limit. The frequency range investigated was 30 MHz to 18 GHz.

NOTE: Explanation of the corrected readings is given in 5.1.2 "Field Strength Calculation".

Unless otherwise designated, radiated emissions testing was performed at the following antenna to EUT distance:

• 3 meters for FCC measurements 30 MHz to 18 GHz

NOTE: Final measurements were performed on the suspect frequencies that were found to be the closest to the limit. A complete spectral scan of the EUT emissions was performed at the final measurement site.

3.1.1 Field Strength Calculation

The field strength was calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading.

The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AGwhere FS = Field StrengthRA = Receiver AmplitudeAF = Antenna FactorCF = Cable Attenuation FactorAG = Amplifier Gain

Assume a receiver reading of 52.5 dB μ V is obtained. The Antenna Factor of 7.4 and a Cable Factor of 1.1 is added. The Amplifier Gain of 29 dB is subtracted, giving a corrected field strength reading of 32 dB μ V/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 dB\mu V/m$ (corrected field strength reading) The 32 dB\mu V/m value can be mathematically converted to its corresponding level in $\mu V/m$.

Level in $\mu V/m = 10^{[(32 dB\mu V/m)/20]=} 39.8 \mu V/m$

3.2 Test Instruments

The following table contains detailed information of the lab test equipment utilized during radiated emissions testing.

Equipment	Manufacturer/ Model Number	Serial Number	Calibration Due
EMI Receiver	Rohde & Schwarz/ESI40	100204	10-16-2007
Temperature & Humidity Meter	HTAB-176	40635	11-20-2007
Bilog Antenna	Schaffner-Chase/CBL6111C	2792	10-12-2007
Preamplifier	Com-Power/PA-122	2121	03-01-2007
Horn Antenna	ETS/3117	51797	11-27-2007

Table 3.	Radiated	Emissions	Test	Equipment
----------	----------	-----------	------	-----------

3.3 Radiated Emissions Test Data

3.3.1 FCC Class B Measured Data

EUT Input Power for Test:	120VAC/60Hz
Test Method:	ANSI C63.4
Specification Limits:	FCC, Class B
Judgment:	Passed by – 5.1dB(uV/m)

Table 4. 3 Meter 30 MHz to 1 GHz Data

Test Location: Intel Corporation •5200 NE Elam Young Pkwy • Hillsboro OR 97124 • 503-696-5257

Customer:	Juha Junkkarinen		
Specification:	FCC B RADIATED		
Work Order #:	07-0049-OR	Date:	1/10/2007
Test Type:	Maximized Emissions	Time:	12:48:17
Equipment:		Sequence#:	1
Manufacturer:		Tested By:	Test Engineer

Test Conditions / Notes: Search 30 MHz to 18 GHz--iMote on AC adapter

Transducer Legend:

T1=pa-122 5337	T2=Storm 3 Meter 003 10-4-07
T3=CBL6111C-2792 Due 10-12-07	T4=3117-51797 11-14-07

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	\$	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	625.853M	15.0	+0.0	+6.0	+19.9	+0.0	+0.0	40.9	46.0	-5.1	Horiz
	QP						156				162
2	722.138M	13.3	+0.0	+6.2	+20.6	+0.0	+0.0	40.1	46.0	-5.9	Horiz
	QP						144				146
3	601.784M	13.8	+0.0	+6.0	+19.8	+0.0	+0.0	39.6	46.0	-6.4	Horiz
	QP						274				194
4	673.999M	12.0	+0.0	+6.1	+19.8	+0.0	+0.0	37.9	46.0	-8.1	Horiz
	QP						275				156
5	529.569M	7.5	+0.0	+5.8	+18.4	+0.0	+0.0	31.7	46.0	-14.3	Horiz
	QP						160				241
6	409.214M	7.3	+0.0	+5.5	+16.3	+0.0	+0.0	29.1	46.0	-16.9	Vert
	QP						220				275
7	4285.875M	15.0	+28.9	+8.1	+0.0	+34.2	+0.0	28.4	54.0	-25.6	Vert
	Ave						18				102
^	4285.875M	28.6	+28.9	+8.1	+0.0	+34.2	+0.0	42.0	54.0	-12.0	Vert
							18				102

3.4 Radiated Emissions Test Setup Photos

iMOTE 1

Test Setup, Rear View

