

 Test report No.
 :
 25HE0105-HO-4

 Page
 :
 1 of 127

 Issued date
 :
 June 16, 2005

 FCC ID
 :
 EJE-WL0033

SAR EVALUATION REPORT

25HE0105-HO-4

_		
Applicant	:	FUJITSU LIMITED
Type of Equipment	:	Personal Computer
Model No.	:	P1510
FCC ID	:	EJE-WL0033
Test standard	:	FCC47CFR 2.1093 FCC OET Bulletin 65, Supplement C
Test Result	:	Complied(IEEE 802.11a)
Max SAR Measured		
(5150-5350MHz Band)	:	1.35 W/kg(Body,5320MHz)
(5725-5850MHz Band)	:	0.794W/kg(Body,5745MHz)

Report No. :

1. This test report shall not be reproduced except full or partial, without the written approval of UL Apex Co., Ltd.

2. The results in this report apply only to the sample tested.

3. This equipment is in compliance with above regulation. We hereby certify that the data contain a true representation of the SAR profile.

4. The test results in this test report are traceable to the national or international standards.

Date of test

April 25-29, 2005

Tested by

Miyo Ikuta EMC Lab.Head Office

Approved by

Tetsuo Maeno Site Manager of Head Office EMC Lab.

UL Apex Co., Ltd. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

CONTENTS

SECTION 1 : Client information	
SECTION 2 : Equipment under test	4
SECTION 3 : Requirements for compliance testing defined by the FCC	6
SECTION 4 : Dosimetry assessment setup	6
SECTION 5 : Test system specifications	10
SECTION 6 : Test setup of EUT	11
SECTION 7 : Measurement uncertainty	16
SECTION 8 : Simulated tissue liquid parameter	17
SECTION 9 : System validation data	19
SECTION 10 : Evaluation procedure	20
SECTION 11 : Exposure limit	21
SECTION 12 : SAR Measurement results (5150-5350MHz)	22
SECTION 13 : SAR Measurement results (5725-5850MHz)	26
SECTION 13 : Equipment & calibration information	
SECTION 14 : References	31
APPENDIX 1 : Photographs of test setup	
APPENDIX 2 : SAR Measurement data (5150-5350MHz)	
APPENDIX 3 : SAR Measurement data (5725-5850MHz)	
APPENDIX 4: Validation Measurement data	
APPENDIX 5 : System Validation Dipole (D5GHzV2,S/N: 1020)	
APPENDIX 6 : Dosimetric E-field Probe Calibration (EX3DV4, S/N:3540)	
APPENDIX 7 : The 5-6GHz Extension (SPEAG information)	
APPENDIX 8 : Power drift measurement	

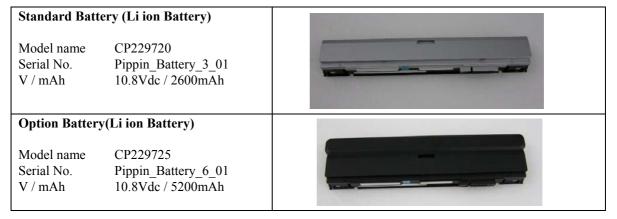
 Test report No.
 :
 25HE0105-HO-4

 Page
 :
 3 of 127

 Issued date
 :
 June 16, 2005

 FCC ID
 :
 EJE-WL0033

<u>SECTION 1 : Client information</u>


Company Name	:	FUJITSU LIMITED
Brand Name	:	FUJITSU
Address	:	1405 Ohmaru, Inagishi, Tokyo 206-8503,Japan
Telephone Number	:	81-42-370-7630
Facsimile Number	:	81-42-370-7588
Contact Person	:	Tsuyoshi Uchihara

Test report No.:25HE0105-HO-4Page:4 of 127Issued date:June 16, 2005FCC ID:EJE-WL0033

SECTION 2 : Equipment under test

2.1 Identification of EUT

Applicant	:	FUJITSU LIMITED
Type of Equipment	:	Personal Computer
Model No.	:	P1510
Serial No.	:	R5100030
Country of Manufacture	:	Japan
Receipt Date of Sample	:	April 03, 2005
Condition of EUT	:	Engineering prototype (Not for sale: This sample is equivalent to mass-produced items.)
Size of EUT(L*W*H)	:	230*160*35
Category Identified	:	Portable device
Supply	:	DC16.0V / 2.5A
Battery	:	This PC (model : P1510) has two types.

Photo of EUT

Antenna Gain

2.2 Product description of Wireless LAN module

This EUT has the Wireless LAN module of IEEE.802.11a/b/g. The description only of the IEEE.802.11a mode is shown below.

Tx Frequency	: 5180-5320MHz(5150-5250MHz & 5250-5350MHz Band) 5745-5825MHz(5725-5850MHz Band)
Modulation	: OFDM
Rating	: DC3.3V
Max.Output Power Tested (5260MHz)	: 15.87 dBm Peak Conducted
Max.Output Power Tested (5825MHz)	: 20.06 dBm Peak Conducted
2.3 Product description of Ante	enna
Antenna Type	: Monopole Antenna(M/N:YCE-5008)
Antenna Connector	: U.FL

: 2.4GHz(Max.) Main -4.78dBi, Aux -1.49dBi

Main 0.90dBi, Aux -0.97dBi

(These antenna gains are values in which antenna were mounted to the PC.)

5GHz(Max.)

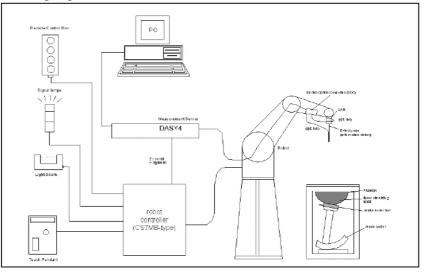
Test report No.	:	25НЕ0105-НО-4
Page	:	6 of 127
Issued date	:	June 16, 2005
FCC ID	:	EJE-WL0033

SECTION 3 : Requirements for compliance testing defined by the FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at

maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

1 Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).


2 IEEE/ANSI Std. C95.1-1992 limits are used to determine compliance with FCC ET Docket 93-62.

SECTION 4 : Dosimetry assessment setup

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than +/-0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probe ET3DV6, SN: 1684 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [2] with accuracy of better than +/-10%. The spherical isotropy was evaluated with the procedure described in [3] and found to be better than +/-0.25 dB. The phantom used was the

SAM Twin Phantom as described in FCC supplement C, IEEE P1528 and CENELEC EN50361.

4.1 Configuration and peripherals

The DASY4 system for performing compliance tests consist of the following items:

1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

3. A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows 2000.
- 8. DASY4 software.
- 9. Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

Test report No.:25HE0105-HO-4Page:8 of 127Issued date:June 16, 2005FCC ID:EJE-WL0033

4.2 System components

4.2.1 ET3DV6 Probe Specification

Construction:

Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycol ether)

Calibration:

Basic Broad Band calibration in air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz, 1.8 GHz and 2.45GHz (accuracy +/-8%)

Frequency:

10 MHz to 3GHz; Linearity: +/-0.2 dB (30 MHz to 3 GHz)

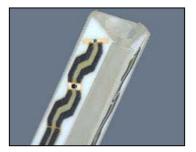
Directivity: +/-0.2 dB in brain tissue (rotation around probe axis) +/-0.4 dB in brain tissue (rotation normal probe axis)

Dynamic Range: 5 mW/g to > 100 mW/g;Linearity: +/-0.2 dB

Optical Surface Detection:

+/-0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces.

Dimensions:


Overall length: 330 mm (Tip: 16 mm) Tip length: 16 mm Body diameter: 12 mm (Body: 12 mm)

Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm

Application:

General dosimetric up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

ET3DV6 E-field Probe

Test report No.: 25HE0105-HO-4Page: 9 of 127Issued date: June 16, 2005FCC ID: EJE-WL0033

4.2.2 SAM Phantom

Construction:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC EN 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness:

2 +/-0.2 mm Filling Volume: Approx. 25 liters

Dimensions:

(H x L x W): 810 x 1000 x 500 mm

4.2.3 Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device enables the rotation of the mounted transmitter

in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

* Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations.

To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Device holder couldn't be used at this SAR measurement.

SAM Phantom

Device Holder

Test report No.:25HE0105-HO-4Page:10 of 127Issued date:June 16, 2005FCC ID:EJE-WL0033

SECTION 5 : Test system specifications

Robot RX60L				
Number of Axes	:	6		
Payload	:	1.6 kg		
Reach	:	800mm		
Repeatability	:	+/-0.025mm		
Control Unit	:	CS7M		
Programming Language	:	V+		
Manuafacture	:	Stäubli Unimation Corp. Robot Model: RX60		
DASY4 Measurement server Features	:	166MHz low power Pentium MMX		
reatures	•	32MB chipdisk and 64MB RAM Serial link to DAE (with watchdog supervision)		
		16 Bit A/D converter for surface detection system		
		Two serial links to robot (one for real-time communication which is supervised by		
		watchdog)		
		Ethernet link to PC (with watchdog supervision)		
		Emergency stop relay for robot safety chainTwo expansion slots for future		
		applications		
Manufacture	:	Schimid & Partner Engineering AG		
Data Acquisition Electronic (DA Features	<u> (11)</u>	Signal amplifier, multiplexer, A/D converter and control logic		
reatures	•	Signal amplifier, multiplexer, A/D converter and control logic Serial optical link for communication with DASY4 embedded system (fully remote		
		controlled) 2 step probe touch detector for mechanical surface detection and		
		emergency robot stop (not in -R version)		
Measurement Range	:	1 μ V to > 200 mV (16 bit resolution and two range settings: 4mV,		
		400mV)		
Input Offset voltage	:	$< 1 \mu V$ (with auto zero)		
Input Resistance	:	200 ΜΩ		
Battery Power	:	> 10 h of operation (with two 9 V battery)		
Dimension	:	60 x 60 x 68 mm		
Manufacture	:	Schimid & Partner Engineering AG		
Software				
Item	:	Dosimetric Assesment System DASY4		
Type No.	:	SD 000 401A, SD 000 402A		
Software version No.	:	4.5		
Manufacture / Origin	:	Schimid & Partner Engineering AG		
E-Field Probe				
Model	:	EX3DV3		
Serial No.	:	3507		
Construction	:	Symmetrical design with triangular core		
Frequency	:	10 MHz to 6 GHz		
Linearity	:	+/-0.2 dB (30 MHz to 3 GHz)		
Manufacture	:	Schimid & Partner Engineering AG		
Phantom				
Туре	:	SAM Twin Phantom V4.0		
Shell Material	:	Fiberglass		
Thickness	•	2.0 + -0.2 mm		
Volume	:	Approx. 25 liters		
volume Manufacture	•	Schimid & Partner Engineering AG		
Manufacture		ochund og Pariner Engineering ACI		

UL Apex Co., Ltd. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

SECTION 6 : Test setup of EUT

6.1 Photographs of test setup

When users operate or carry this EUT, it could be considered to touch or get close to their bodies. This EUT can be used also as a Tablet PC. In order to assume these situations, we performed the test at the following positions. Please refer to "APPENDIX 1" for more details.

1.Main Front : The test was performed in touch with main front to the flat section of SAM phantom.

2.Aux Front : The test was performed in touch with aux front to the flat section of SAM phantom.

3.Main Back : The test was performed in distanced 15mm with main back to the flat section of SAM phantom.

4.Aux Back : The test was performed in distanced 15mm with aux back to the flat section of SAM phantom.

5.Main Bottom: The test was performed in touch with main bottom to the flat section of SAM phantom.

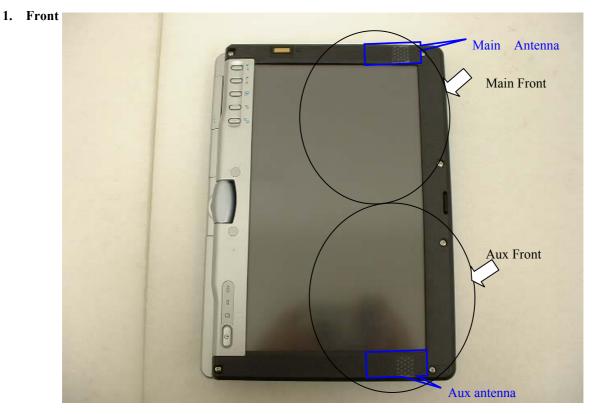
6.Aux Bottom: The test was performed in touch with aux bottom to the flat section of SAM phantom.

7.Main Side : The test was performed in touch with main side to the flat section of SAM phantom.

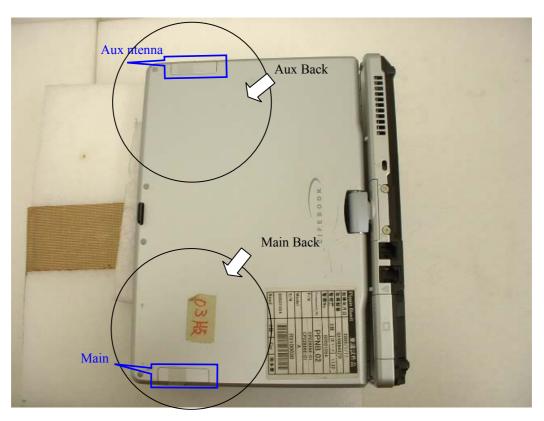
8.Aux Side : The test was performed in touch with aux side to the flat section of SAM phantom.

"Front" and "Side" positions are assumed when users operate in the tablet type use.

When users operate or carry this EUT, it is can be touched to the user's Body. Therfore,"Front"and "Side" positions were tested in the touch to the phantom.


However, "Back" position is assumed when users operate in the note type use. Therefore "Back" position was tested in the distance15mm from the phantom.

 Test report No.
 :
 25HE0105-HO-4


 Page
 :
 12 of 127

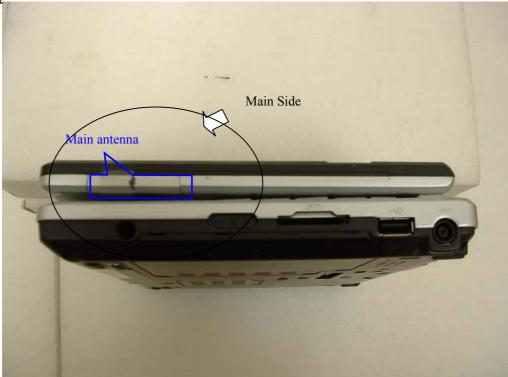
 Issued date
 :
 June 16, 2005

 FCC ID
 :
 EJE-WL0033

2. Back

UL Apex Co., Ltd. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

 Test report No.
 : 25HE0105-HO-4


 Page
 : 13 of 127

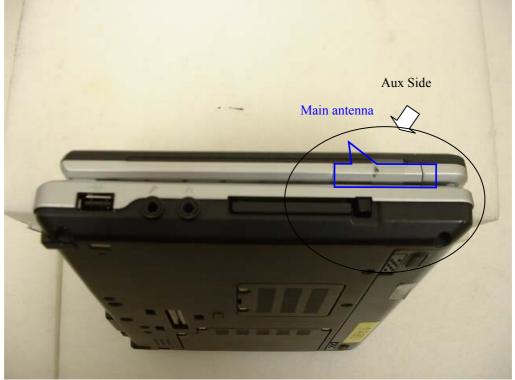
 Issued date
 : June 16, 2005

 FCC ID
 : EJE-WL0033

3. Bottom

4. Main Side

UL Apex Co., Ltd. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124


 Test report No.
 :
 25HE0105-HO-4

 Page
 :
 14 of 127

 Issued date
 :
 June 16, 2005

 FCC ID
 :
 EJE-WL0033

5. Aux Side

6.2 EUT Tune-up procedure

The Wireless LAN module has IEEE.802.11a/b/g. The frequency range and the modulation used in the testing of IEEE.802.11a are shown as a following.

IEEE 802.11a mode

Frequency band	: 5150-5350MHz
Channel	: 36ch(5180MHz),48ch(5240MHz),52ch(5260MHz),64ch(5320MHz)
Modulation	: OFDM(BPSK,QPSK,16QAM,64QAM)
Crest factor	: 1
Frequency band	: 5725-5850MHz
Channel number	: 149ch(5745MHz),157ch(5785MHz),165ch(5825MHz)
Modulation	: OFDM(BPSK,QPSK,16QAM,64QAM)
Crest factor	: 1

6.3 Method of measurement

- Step1. The data rate in the higher peak power of each modulation was decided, then the worst modulation was searched in the SAR testing.
- Step2. The changing of the option Battery The test was performed at worst modulation of Step1.
- Step3. The searching of the worst position This test was performed at the worst modulation of Step1.
- Step4. The changing of the frequency This test was performed at the worst conditions of Step3.

Distance between PC and Phantom

The measurement was performed with the distance 5mm and 10mm to check if the distance 0mm may not have the worst value st the conditions of the highest SAR value of this EUT. As result, the distance 0mm had the worst value.

Test report No.:25HE0105-HO-4Page:16 of 127Issued date:June 16, 2005FCC ID:EJE-WL0033

SECTION 7 : Measurement uncertainty

7.1 Uncertainty of 802.11a modes testing

The uncertainty budget has been determined for the DASY4 measurement system according to the APPENDIX 8 documents and is given in the following Table.

Error Description	Uncertainty	Probability	divisor	(ci)	Standard	vi
	value $\pm \%$	distribution		1g	Uncertainty	or
					(1g)	veff
Measurement System						
Probe calibration	± 4.8	Normal	1	1	±4.8	∞
Axial isotropy of the probe	±4.7	Rectangular	$\sqrt{3}$	$(1-cp)^{1/2}$	±1.9	∞
Spherical isotropy of the probe	±9.6	Rectangular	$\sqrt{3}$	$(c_p)^{1/2}$	±3.9	∞
Boundary effects	±1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Probe linearity	±4.7	Rectangular	$\sqrt{3}$	1	±2.7	∞
Detection limit	±1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Readout electronics	±1.0	Normal	1	1	±1.0	∞
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	±0.5	∞
Integration time	±2.6	Rectangular	$\sqrt{3}$	1	±1.5	∞
RF ambient conditions	±3.0	Rectangular	$\sqrt{3}$	1	±1.7	∞
Mech. constraints of robot	±0.4	Rectangular	$\sqrt{3}$	1	±0.2	∞
Probe positioning	±2.9	Rectangular	$\sqrt{3}$	1	±1.7	∞
Extrap. and integration	±1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Test Sample Related						
Device positioning	±2.9	Rectangular	$\sqrt{3}$	1	±2.9	36
Device holder uncertainty	±3.6	Rectangular	$\sqrt{3}$	1	±3.6	18
Power drift	±10.0	Rectangular	$\sqrt{3}$	1	±5.8	∞
Phantom and Setup						
Phantom uncertainty	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid conductivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid conductivity (meas.)	±5.0	Rectangular	1	0.64	±2.2	∞
Liquid permittivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid permittivity (meas.)	±5.0	Rectangular	1	0.6	±2.5	∞
Combined Standard Uncertaint	y				±13.89	
Expanded Uncertainty (k=2)					±27.8	

The test result shows that the power drift exceeded 5%. Therefore, the uncertainty of power drift expanded to 10%. (Refer to the APPENDIX 8) However, the extended uncertainty (k=2) of a test is less than 30%.

Test report No.: 25HE0105-HO-4Page: 17 of 127Issued date: June 16, 2005FCC ID: EJE-WL0033

SECTION 8 : Simulated tissue liquid parameter

8.1 Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the HP85070D dielectric probe kit. The dielectric parameters measurement are reported in each correspondent section.

8.1.1 Muscle 5GHz

Type of liquid	:	Muscle 5GHz
Ambient temperature (deg.c.)	:	24.5 (April 25), 25.0(April 26,28,29)
Relative Humidity (%)	:	56(April 25), 50(April 26,28), 55 (April 29)
Liquid depth (cm)	:	15.2

				Measure	ed By :	Miyo Ikuta			
	DIELECTRIC PARAMETERS MEASUREMENT RESULTS								
Date	Frequency	Liquid Ten	np [deg.c]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	
Date	[MHz]	Before	After						
25-Apr	5200	23.2	23.2	Relative Permittivity Er	49.0	46.6	-4.9	+/-5	
2 5- Api	5200	23.2	23.2	Coductivity σ [mho/m]	5.30	5.54	4.5	+/-5	
28-Apr	5200	23.9	23.9	Relative Permittivity Er	49.0	47.0	-4.1	+/-5	
20-Api	5200	23.9	23.9	Coductivity σ [mho/m]	5.30	5.45	2.8	+/-5	
26-Apr	5800	24.2	24.2	Relative Permittivity Er	48.2	46.2	-4.1	+/-5	
20-Api	3800	24.2	24.2	Coductivity σ [mho/m]	6.00	6.25	4.2	+/-5	
29-Apr	5800	24.2	24.2	Relative Permittivity Er	48.2	46.5	-3.5	+/-5	
2 <i>7-</i> Api	5000	27.2	27.2	Coductivity σ [mho/m]	6.00	6.25	4.2	+/-5	

8.2 Simulated Tissues Composition of 5GHz

Ingredient	MiXTURE(%)						
	Head 5GHz	Muscle 5GHz					
Water	64.0	78.0					
Mineral Oil	18.0	11.0					
Emulsifiers	15.0	9.0					
Additives and salt	3.0	2.0					

8.3 Decision on Simulated Tissues of 5200MHz

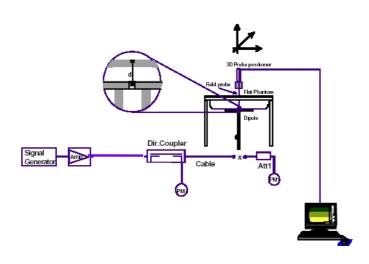
In the current standards (e.g., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given at 3000MHz and 5800MHz. As an intermediate solution, dielectric parameters for the frequencies between 5000to 5800 MHz were obtained using linear interpolation.

Therefore the dielectric parameters of 5200MHz were decided as following.

(5200MHz Body Tissue/ Relative Permittivity ϵ r: **49.0**, Conductivity σ : **5.30**)

f (MHz)	Head	Tissue	Body	Tissue	Reference
	εr	σ [mho/m]	εr	σ [mho/m]	
3000	38.5	2.40	52.0	2.73	Standard
5800	35.3	5.27	48.2	6.00	Standard
5000	36.2	4.45	49.3	5.07	Interpolated
5100	36.1	4.55	49.1	5.18	Interpolated
5200	36.0	4.66	49.0	5.30	Interpolated
5300	35.9	4.76	48.9	5.42	Interpolated
5400	35.8	4.86	48.7	5.53	Interpolated
5500	35.6	4.96	48.6	5.65	Interpolated
5600	35.5	5.07	48.5	5.77	Interpolated
5700	35.4	5.17	48.3	5.88	Interpolated

Standard and interpolated dielectric parameters for head and body tissue simulating liquidin the frequency range 3000 to 5800MHz.


SECTION 9 : System validation data

The target values of 5GHz were not defied by IEEE 1528. So, the target values were made into the calibration values of SPEAG. And each of the validation results of 5200MHz and 5800MHz checked (Evaluation of muscle) that it was within \pm -10% as compared with the calibration values of SPEAG. The validation results are tabulated below. Please refer to APPENDIX 3

Type of liquid	:	Muscle 5GHz
Ambient temperature (deg.c.)	:	24.5 (April 25), 25.0(April 26,28,29)
Relative Humidity (%)	:	56(April 25), 50(April 26,28), 55 (April 29)
Dipole	:	D5GHzV2 SN:1020
Power	:	250mW

				Measure	d By	: Miyo Il	cuta				
	SYSTEM PERFORMANCE CHECK										
	Liquid (Muscle 5100-5800 MHz) System dipole validation target & measured										
				Relative P	ermittivity	Condu	activity			Deviation	Limit
		Liquid Ter	np [deg.c.]	٤	r	σ[m	ho/m]	SAR 1g [W/kg]		[%]	[%]
Date	Frequency	Before	After	Target	Measured	Target	Measured	Target	Measured		
25-Apr	5200	23.2	23.2	49.0	46.6	5.30	5.54	20.5	22.1	7.8	+/-10
28-Apr	5200	23.8	23.8	48.2	47.0	6.00	5.45	20.5	19.2	-6.3	+/-10
26-Apr	5800	24.3	24.3	49.0	46.2	5.30	6.25	19.6	19.6	0.0	+/-10
29-Apr	5800	24.2	24.2	48.2	46.5	6.00	6.25	19.6	20.1	2.6	+/-10

Note: Please refer to Attachment for the result representation in plot forma

5100-5800MHz Systemperformance check setup

Test system for the system performance check setup diagram

 Test report No.
 : 25HE0105-HO-4

 Page
 : 20 of 127

 Issued date
 : June 16, 2005

 FCC ID
 : EJE-WL0033

SECTION 10 : Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the wireless LAN antenna and the horizontal grid spacing was 10mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30mm x 30mm x 21mm was assessed by measuring 7 x 7 x 8 points. And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

1. The data at the surface were extrapolated, since the center of the dipoles is 1 mm mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

SECTION 11 : Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average	Spatial Peak	Spatial Peak
(averaged over the whole body)	(averaged over any 1g of tissue)	(hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average	Spatial Peak	Spatial Peak
(averaged over the whole body	(averaged over any 1g of tissue)	(hands/wrists/feet/ankles averaged over 10g)
0.08	1.6	

Occupational/Controlled Environments: are defined as locations where there is exposure

that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1g of tissue) LIMIT 1.6 W/kg

SECTION 12 : SAR Measurement results (5150-5350MHz)

12.1 Main Antenna

12.1.1 Conducted power of Main antenna

[IEEE802.11a : Main Antenna(by the data rate) 5260MHz]									
Modulation	Data rate	S/A	Cable Atten.		Result	Converted			
		Reading	Loss						
	[Mbps]	[dBm]	[dB]	[dB]	[dBm]	[mW]			
BPSK	6	4.76	1.11	10.00	15.87	38.64			
DISK	9	4.64	1.11	10.00	15.75	37.58			
QPSK	12	4.67	1.11	10.00	15.78	37.84			
QLOK	18	4.62	1.11	10.00	15.73	37.41			
16QAM	24	4.60	1.11	10.00	15.71	37.24			
TOQAM	36	3.55	1.11	10.00	14.66	29.24			
	48	3.49	1.11	10.00	14.60	28.84			
64QAM	54	1.66	1.11	10.00	12.77	18.92			

[IEEE802.1	[IEEE802.11a 5150-5350MHz: Main Antenna(6Mbps)]										
Ch	Freq.	S/A	Cable	Atten.	Result	Converted					
		Reading	Loss								
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]					
36	5180.0	-0.15	0.94	10.00	10.79	12.01					
48	5240.0	0.31	1.11	10.00	11.42	13.87					
52	5260.0	4.76	1.11	10.00	15.87	38.59					
64	5320.0	3.67	1.04	10.00	14.71	29.57					

[IEEE802.11a 5150-5350MHz: Main Antenna(54Mbps)]										
Ch	Freq.	S/A	Cable	Atten.	Result	Converted				
		Reading	Loss							
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
36	5180.0	-0.35	0.94	10.00	10.59	11.47				
48	5240.0	0.16	1.11	10.00	11.27	13.40				
52	5260.0	1.66	1.11	10.00	12.77	18.90				
64	5320.0	0.73	1.04	10.00	11.77	15.03				

Test report No.:25HE0105-HO-4Page:23 of 127Issued date:June 16, 2005FCC ID:EJE-WL0033

12.1.2 Body 5150-5350MHz SAR of Main antenna

Liquid Depth (cm)	:	15.2	Model	:	P1510
Parameters	:	εr = 46.6 σ = 5.54	Serial No.	:	R5100030
Ambient temperature (deg.c.)	:	24.5	Modulation	:	DSSS
Relative Humidity (%)	:	56	Crest factor	:	1

							Dat Me	te asured	By	: April 25,2005 : Miyo Ikuta
BODY SAR MEASUREMENT RESULTS OF MAIN ANTENNA(IEEE802.11a 5150-5350MHz)										
Frequency			Modulation	Phantom Section	EUT Set-uj	p Conditions		Liquid Temp.[o	deg.c]	SAR(1g) [W/kg]
Band	Channel	[MHz]			Antenna	Position	Separation [mm]	Before	After	Maximum value of multi-peak
5150-5350MHz	step1 Mo	dulation s	search							
	52	5260	BPSK(6Mbps)	Flat	Main	Main side	0	22.2	22.2	1.25
	52	5260	QPSK(12Mbps)	Flat	Main	Main side	0	22.2	22.2	1.22
	52	5260	16QAM(24Mbps)	Flat	Main	Main side	0	22.2	22.2	0.934
	52	5260	64QAM(48Mbps)	Flat	Main	Main side	0	22.2	22.2	0.618
	Step2 Bat	tery chan	ge (option battery)	*1						
	52	5260	BPSK(6Mbps)	Flat	Main	Main side	0	22.8	22.8	1.19
	Step3 Pos	ition sear	ch							
	52	5260	BPSK(6Mbps)	Flat	Main	Main Front	0	23.0	23.0	0.683
	52	5260	BPSK(6Mbps)	Flat	Main	Main Back	15	23.0	23.0	0.052
	52	5260	BPSK(6Mbps)	Flat	Main	Main Bottom	0	23.0	23.0	0.026
	Step4 Fre	quency C	hange							
	48	1	BPSK(6Mbps)	Flat	Main	Main side	0	22.8	22.8	0.415
	36	5180	BPSK(6Mbps)	Flat	Main	Main side	0	22.6	22.6	0.385
	64	5320	BPSK(6Mbps)	Flat	Main	Main side	0	22.2	22.2	0.914
ANSI / IEEE C	95.1 1992 -	SAFETY	LIMIT					Body S.	AR: 1.6 \	W/kg
Spatial Peak U	ncontrolled	Exposur	e / General Populat	tion				(averag	ged over	1 gram)

*1

This EUT has two types of batteries.(The same voltage, only difference of capacity)

The comparison test was performed in the same conditions (Main side / Mid ch / worst modulation) on two types of batteries. As a result, the SAR value of a standard battery was a little higher than the SAR value of the option battery. Therefore, the other tests were performed with a standard battery.

 Test report No.
 :
 25HE0105-HO-4

 Page
 :
 24 of 127

 Issued date
 :
 June 16, 2005

 FCC ID
 :
 EJE-WL0033

12.2 Aux Antenna

12.2.1 Conducted power of Aux Antenna

[IEEE802.	[IEEE802.11a : Aux Antenna (by the data rate)[5260MHz]]									
Modulation	Data rate	S/A	Cable	Atten.	Result	Converted				
		Reading	Loss							
	[Mbps]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
BPSK	6	4.57	1.11	10.00	15.68	36.98				
DI SK	9	4.51	1.11	10.00	15.62	36.48				
QPSK	12	4.50	1.11	10.00	15.61	36.39				
QISK	18	4.47	1.11	10.00	15.58	36.14				
16QAM	24	4.50	1.11	10.00	15.61	36.39				
IUQAM	36	3.36	1.11	10.00	14.47	27.99				
640AM	48	3.30	1.11	10.00	14.41	27.61				
04QAM	54	1.38	1.11	10.00	12.49	17.74				

[IEEE802.	[IEEE802.11a 5150-5350MHz:Main Antenna(6Mbps)]										
Ch	Freq.	S/A	Cable	Atten.	Result	Converted					
		Reading	Loss								
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]					
36	5180.0	-1.49	0.94	10.00	9.45	8.82					
48	5240.0	-0.29	1.11	10.00	10.82	12.08					
52	5260.0	4.57	1.11	10.00	15.68	36.94					
64	5320.0	4.34	1.04	10.00	15.38	34.50					

[IEEE802.	[IEEE802.11a 5150-5350MHz: Main Antenna(54Mbps)]										
Ch	Freq.	S/A	Cable	Atten.	Result	Converted					
		Reading	Loss								
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]					
36	5180.0	-1.68	0.94	10.00	9.26	8.44					
48	5240.0	-0.46	1.11	10.00	10.65	11.61					
52	5260.0	1.38	1.11	10.00	12.49	17.72					
64	5320.0	1.43	1.04	10.00	12.47	17.65					

 Test report No.
 :
 25HE0105-HO-4

 Page
 :
 25 of 127

 Issued date
 :
 June 16, 2005

 FCC ID
 :
 EJE-WL0033

12.2.2 Body 5150-5350MHz SAR of Aux antenna

Liquid Depth (cm)	:	15.2	Model	:	P1510
Parameters	:	εr =47, σ = 5.45	Serial No.	:	R5100030
Ambient temperature (deg.c.)	:	25.0	Modulation	:	OFDM
Relative Humidity (%)	:	50	Crest factor	:	1

							Dat	te		: April 28, 2003
							Me	asured	By	: Miyo Ikuta
	BODY	SAR ME	ASUREMENT RE	SULTS C	OF AUX AI	NTENNA(IEB	E802.11a 5	5150-535	50MHz)	
Frequency			Modulation			EUT Set-up Conditions		Liquid Temp.[deg.c]		SAR(1g) [W/kg]
Band	Channel	[MHz]			Antenna	Position	Separation [mm]	Before	After	Maximum value of multi-peak
5150-5350MHz	z Step1 Mo	dulation	search							
	52	5260	BPSK(6Mbps)	Flat	Aux	Aux Side	0	23.8	23.8	1.09
	52	5260	QPSK(12Mbps)	Flat	Aux	Aux Side	0	23.8	23.9	1.05
	52	5260	16QAM(24Mbps)	Flat	Aux	Aux Side	0	23.9	23.9	0.898
	52	5260	64QAM(48Mbps)	Flat	Aux	Aux Side	0	23.9	23.8	0.832
	Step3 Pos	ition sear	ch							
	52	5260	BPSK(6Mbps)	Flat	Aux	Aux Front	0	23.8	23.8	0.496
	52	5260	BPSK(6Mbps)	Flat	Aux	Aux Back	15	23.8	23.8	0.045
	52	5260	BPSK(6Mbps)	Flat	Aux	Aux Bottom	0	23.8	23.8	0.015
	Step4 Fre	quency C	hange							
	48	5240	BPSK(6Mbps)	Flat	Aux	Aux Side	0	23.2	23.2	0.267
	36	5180	BPSK(6Mbps)	Flat	Aux	Aux Side	0	23.5	23.3	0.256
	64	5320	BPSK(6Mbps)	Flat	Aux	Aux Side	0	23.8	23.8	1.35
	Separatio	n change								
	64	5320	BPSK(6Mbps)	Flat	Aux	Aux Side	5	23.6	23.6	0.500
	64	5320	BPSK(6Mbps)	Flat	Aux	Aux Side	10	23.6	23.6	0.144
ANSI / IEEE O	295.1 1992 -	SAFETY	LIMIT					Body SAR: 1.6 W/kg		
Spatial Peak U	ncontrolled	Exposur	e / General Populat	tion				(averaged over 1 gram)		

SECTION 13 : SAR Measurement results (5725-5850MHz)

13.1 Main Antenna

13.1.1 Conducted power of Main antenna

[IEEE802.1	1a : Mair	n Antenna (by	y the data	rate)[5785	[MHz]]	
Modulation	Data rate	S/A	Cable	Atten.	Result	Converted
		Reading	Loss			
	[Mbps]	[dBm]	[dB]	[dB]	[dBm]	[mW]
BPSK	6	8.36	1.16	10.00	19.52	89.58
DISK	9	8.28	1.16	10.00	19.44	87.95
QPSK	12	8.02	1.16	10.00	19.18	82.84
QISK	18	7.99	1.16	10.00	19.15	82.27
16QAM	24	8.64	1.16	10.00	19.80	95.55
TOQAM	36	7.33	1.16	10.00	18.49	70.67
64QAM	48	7.29	1.16	10.00	18.45	70.02
04QAM	54	5.71	1.16	10.00	16.87	48.67

[The Worst data rate in SAR result]

[IEEE802.1	[IEEE802.11a: Main Antenna(12Mbps)]											
Ch	Freq.	S/A	Cable	Atten.	Result	Converted						
		Reading	Loss									
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]						
149	5745.0	8.02	1.20	10.00	19.22	83.54						
157	5785.0	8.02	1.16	10.00	19.18	82.84						
165	5825.0	8.07	1.19	10.00	19.26	84.37						

[IEEE802.]	[IEEE802.11a: Main Antenna (24Mbps)]										
Ch	Freq.	S/A	Cable	Atten.	Result	Converted					
		Reading	Loss								
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]					
149	5745.0	8.74	1.20	10.00	19.94	98.61					
157	5785.0	8.64	1.16	10.00	19.80	95.55					
165	5825.0	8.87	1.19	10.00	20.06	101.44					

[IEEE802.11a: Main Antenna (54Mbps)]											
Ch	Freq.	S/A	Cable	Atten.	Result	Converted					
		Reading	Loss								
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]					
149	5745.0	6.51	1.20	10.00	17.71	59.01					
157	5785.0	5.71	1.16	10.00	16.87	48.67					
165	5825.0	5.95	1.19	10.00	17.14	51.78					

Test report No.:25HE0105-HO-4Page:27 of 127Issued date:June 16, 2005FCC ID:EJE-WL0033

13.1.2 Body 5725-5850MHz SAR of Main antenna

Liquid Depth (cm)	:	15.2	Model	:	P1510
Parameters	:	εr = 46.5 , σ = 6.25	Serial No.	:	R5100030
Ambient temperature (deg.c.)	:	25.0	Modulation	:	OFDM
Relative Humidity (%)	:	55	Crest factor	:	1

							Dat Me	te asured	By	: April 29,2005 : Miyo Ikuta
	BODY	SAR ME	ASUREMENT RES	SULTS O	F MAIN A	NTENNA(IE	EE802.11a	5150-53	50MHz)	
Frequency			Modulation	Phantom Section	EUT Set-u	p Conditions		Liquid Temp.[o	leg.c]	SAR(1g) [W/kg]
Band	Channel	[MHz]			Antenna	Position	Separation [mm]	Before	After	Maximum value of multi-peak
5725-5850MH	z Step1 Mo	dulation	search							
	157	5785	BPSK(6Mbps)	Flat	Main	Main side	0	24.0	24.0	0.318
	157	5785	QPSK(12Mbps)	Flat	Main	Main side	0	23.8	23.8	0.326
	157	5785	16QAM(24Mbps)	Flat	Main	Main side	0	23.8	23.8	0.324
	157	5785	64QAM(48Mbps)	Flat	Main	Main side	0	23.8	23.8	0.241
	Step2 Bat	tterv ch	ange (option battery	v)*1						
	157	5785	BPSK(12Mbps)	Flat	Main	Main side	0	24.0	24.0	0.325
	157	·	· · · · · · ·		•	•	•			
	157	5785	BPSK(12Mbps)	Flat	Main	Main Front	0	24.0	24.0	0.309
	157	5785	BPSK(12Mbps)	Flat	Main	Main Back	15	24.0	24.0	0.037
	157	5785	BPSK(12Mbps)	Flat	Main	Main Bottom	0	24.0	24.0	0.028
	Step4 Fre	equency C	hange							
	149	5745	BPSK(12Mbps)	Flat	Main	Main side	0	23.8	23.8	0.342
	165	5825	BPSK(12Mbps)	Flat	Main	Main side	0	24.0	24.0	0.273
ANSI / IEEE (C95.1 1992 -	SAFETY	LIMIT					Body S.	AR: 1.6	W/kg
Spatial Peak U	ncontrolled	l Exposur	e / General Populat	tion				(averag	ged over	1 gram)

13.2 Aux Antenna

13.2.1 Conducted power of Aux Antenna

Power by the data rate

[IEEE802.11a : Main Antenna (by the data rate) [5785MHz]]										
Modulation	Data rate	S/A	Cable	Atten.	Result	Converted				
		Reading	Loss							
	[Mbps]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
BPSK	6	8.01	1.16	10.00	19.17	82.65				
DISK	9	7.97	1.16	10.00	19.13	81.89				
QPSK	12	7.57	1.16	10.00	18.73	74.68				
QLOK	18	7.71	1.16	10.00	18.87	77.13				
16QAM	24	8.53	1.16	10.00	19.69	93.16				
TOQAM	36	7.06	1.16	10.00	18.22	66.41				
640AM	48	6.99	1.16	10.00	18.15	65.35				
64QAM	54	5.64	1.16	10.00	16.80	47.89				

[The Worst data rate in SAR result]

[IEEE802.	[IEEE802.11a: Main Antenna(18Mbps)]											
Ch	Freq.	S/A	Cable	Atten.	Result	Converted						
		Reading	Loss									
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]						
149	5745.0	8.02	1.20	10.00	19.22	83.54						
157	5785.0	7.71	1.16	10.00	18.87	77.13						
165	5825.0	8.11	1.19	10.00	19.30	85.15						

[IEEE802.11a: Main Antenna(24Mbps)]										
Ch	Freq.	S/A	Cable	Atten.	Result	Converted				
		Reading	Loss							
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]				
149	5745.0	8.70	1.20	10.00	19.90	97.70				
157	5785.0	8.53	1.16	10.00	19.69	93.16				
165	5825.0	8.79	1.19	10.00	19.98	99.58				

[IEEE802.11a: Main Antenna(54Mbps)]									
Ch	Freq.	S/A	Cable	Atten.	Result	Converted			
		Reading	Loss						
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]			
149	5745.0	6.20	1.20	10.00	17.40	54.94			
157	5785.0	5.64	1.16	10.00	16.80	47.89			
165	5825.0	5.86	1.19	10.00	17.05	50.72			

 Test report No.
 :
 25HE0105-HO-4

 Page
 :
 29 of 127

 Issued date
 :
 June 16, 2005

 FCC ID
 :
 EJE-WL0033

13.2.2 Body 5725-5850MHz SAR of Aux antenna

Liquid Depth (cm)	:	15.2	Model	:	P1510
Parameters	:	εr = 46.2 σ = 6.25	Serial No.	:	R5100030
Ambient temperature (deg.c.)	:	25.0	Modulation	:	OFDM
Relative Humidity (%)	:	50	Crest factor	:	1

							Dat Me	e asured	By	: April 26, 2005 : Miyo Ikuta
BODY SAR MEASUREMENT RESULTS OF AUX ANTENNA(IEEE802.11a 5150-5350MHz)										
Frequency			Modulation	Phantom Section	EUT Set-up Conditions			Liquid Temp.[deg.c]		SAR(1g) [W/kg]
Band	Channel	[MHz]			Antenna	Position	Separation [mm]	Before	After	Maximum value of multi-peak
5725-5850MHz Step 1 Modulation search										
	157	5785	BPSK(6Mbps)	Flat	Aux	Aux Side	0	23.3	23.4	0.410
	157	5785	QPSK(18Mbps)	Flat	Aux	Aux Side	0	23.4	23.4	0.421
	157	5785	16QAM(24Mbps)	Flat	Aux	Aux Side	0	23.5	23.7	0.419
	157	5785	64QAM(48Mbps)	Flat	Aux	Aux Side	0	23.7	23.7	0.295
Step 3 Position search										
	157	5785	QPSK(18Mbps)	Flat	Aux	Aux Front	0	23.7	23.7	0.295
	157	5785	QPSK(18Mbps)	Flat	Aux	Aux Back	15	23.8	23.8	0.052
	157	5785	QPSK(18Mbps)	Flat	Aux	Aux Bottom	0	23.8	23.8	0.020
	Step 4 Fre	equency (Change							
	149	5745	QPSK(18Mbps)	Flat	Aux	Aux Side	0	23.8	23.8	0.794
	165	5825	QPSK(18Mbps)	Flat	Aux	Aux Side	0	23.8	23.8	0.492
Separation change										
	149	5745	QPSK(18Mbps)	Flat	Aux	Aux Side	5	23.6	23.6	0.186
	149	5745	QPSK(18Mbps)	Flat	Aux	Aux Side	10	23.6	23.6	0.084
ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body S.	AR: 1.6 V	W/kg	
Spatial Peak Uncontrolled Exposure / General Population							(averag	ed over i	l gram)	

Test report No.:25HE0105-HO-4Page:30 of 127Issued date:June 16, 2005FCC ID:EJE-WL0033

Name of Equipment	Manufacture	Model number	Serial number	Calibration	
1.1.				Last Cal	due date
Power Meter	Agilent	E4417A	GB41290639	2004/11/09	2005/11/08
Power Sensor	Agilent	E9300B	US40010300	2004/11/15	2005/11/14
Power Sensor	Agilent	E9327A	US40440545	2004/11/23	2005/11/22
Spectrum Analyzer	Agilent	E4448A	MY44020357	2004/06/12	2005/06/11
S-Parameter Network Analyzer	Agilent	8753ES	US39174808	2003/10/23	2006/10/22
Signal Generator	Rohde&Schwarz	SML40	100023	2005/01/05	2006/01/04
RF Amplifier	TSJ	CBP02063033	-	2004/2/24	2005/2/23
Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	1020	2005/1/14	2006/1/13
Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE3	516	2005/3/10	2006/3/09
Robot,SAM Phantom	Schmid&Partner Engineering AG	DASY4	1021834	N/A	N/A
Attenuator	Agilent	US40010300	08498-60012	2004/12/16	2005/12/15
Attenuator	Orient Microwave	BX10-0476-00	-	2005/03/16	2006/03/15
Microwave Cable (Conducted cable)	Suhner	SUCOFLEX 104	233011/4	2005/02/03	2006/02/02
Microwave Cable (Conducted cable)	MItachi	U.FL-2LP-066-A- (200)	-	2004/07/22	2005/07/21
5GHz System Validation Dipole	Schmid&Partner Engineering AG	D5GHzV2	1020	2004/2/23	2005/2/22
Dual Directional Coupler	N/A	Narda	3702	N/A	N/A
Body 5800MHz	N/A	N/A	N/A	N/A	N/A
Ambient Noise <0.012W/kg	SAR room	-	-	2005/5/10 2005/5/11	-

SECTION 13 : Equipment & calibration information

SECTION 14 : References

- [1]ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [2] Katja Pokovic, Thomas Schmid, and Niels Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM '97, Dubrovnik, October 15-17, 1997, pp. 120-124.
- [4] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992.
- [6] Barry N. Taylor and Christ E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994.