APPENDIX C CALIBRATION DOCUMENTS

- 1. SN: 3563 Probe Calibration Certificate
- 2. SN: D5GHzV2 Dipole Calibration Certificate
- 3. SN: 442 DAE3 Data Acquisition Electronics Calibration Certificate

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuri	ry of ch, Switzerland	BC MRA BC MRA BC MRA BC BRATO S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredit The Swiss Accreditation Servic Multilateral Agreement for the I	ce is one of the signatories	s to the EA	Io.: SCS 108
Client EMC Technold	ogles	Certificate No:	EX3-3563_Jun12
CALIBRATION	CERTIFICATE	.	
Object	EX3DV4 - SN:35	63	
Calibration procedure(s)		A CAL-14.v3, QA CAL-23.v4, QA dure for dosimetric E-field probes	CAL-25.v4
Calibration date:	June 21, 2012		
All calibrations have been condu		y facility: environment temperature (22 ± 3)°C a	and humidity < 70%.
		y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508)	and humidity < 70%. Scheduled Calibration Apr-13 Apr-13
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	TE critical for calibration) ID GB41293874 MY41496087 SN: S5054 (3c)	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531)	Scheduled Calibration Apr-13 Apr-13 Apr-13
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01529)	Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	TE critical for calibration) ID GB41293874 MY41496087 SN: S5054 (3c)	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531)	Scheduled Calibration Apr-13 Apr-13 Apr-13
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01529) 27-Mar-12 (No. 217-01532)	Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01529) 27-Mar-12 (No. 217-01532) 29-Dec-11 (No. ES3-3013_Dec11)	Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-12
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55066 (20b) SN: 55129 (30b) SN: 3013 SN: 660	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01532) 27-Mar-12 (No. 217-01532) 29-Dec-11 (No. ES3-3013_Dec11) 10-Jan-12 (No. DAE4-660_Jan12)	Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-12 Jan-13
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID GB41293874 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: \$313 SN: \$600 ID ID	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01529) 27-Mar-12 (No. 217-01522) 29-Dec-11 (No. ES3-3013_Dec11) 10-Jan-12 (No. DAE4-660_Jan12) Check Date (in house)	Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-12 Jan-13 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293874 MY41498087 SN: \$5054 (3c) SN: \$5056 (20b) SN: \$5129 (30b) SN: 660 ID US3642U01700	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01529) 27-Mar-12 (No. 217-01532) 29-Dec-11 (No. ES3-3013_Dec11) 10-Jan-12 (No. DAE4-660_Jan12) Check Date (in house) 4-Aug-99 (in house check Apr-11)	Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Dec-12 Jan-13 Scheduled Check In house check: Apr-13
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Jeton Kastrati Katja Pokovic	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01529) 27-Mar-12 (No. 217-01532) 29-Dec-11 (No. ES3-3013_Dec11) 10-Jan-12 (No. DAE4-660_Jan12) Check Date (in house) 4-Aug-99 (in house check Apr-11) 18-Oct-01 (in house check Oct-11) Function Laboratory Technician	Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-12 Jan-13 Scheduled Check In house check: Apr-13 In house check: Oct-12
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Jeton Kastrati Katja Pokovic	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01529) 27-Mar-12 (No. 217-01532) 29-Dec-11 (No. ES3-3013_Dec11) 10-Jan-12 (No. DAE4-660_Jan12) Check Date (in house) 4-Aug-99 (in house check Apr-11) 18-Oct-01 (in house check Oct-11) Function Laboratory Technician Technical Manager	Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Dec-12 Jan-13 Scheduled Check In house check: Apr-13 In house check: Oct-12 Signature

Hac MRA

NAT/

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

Schmid & Enginee		IDC MRA	SNISS C. C. Z. Pr/BRATO	 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
The Swiss Ac	he Swiss Accreditation Service (SAS) creditation Service is one of the sign preement for the recognition of calib			Accreditation No.: SCS 108
Glossary	Teles	ation certificates		
TSL	tissue simulating lic	quid		
NORMx,y,z	sensitivity in free sp			
ConvF	sensitivity in TSL /			
DCP CF	diode compression	_cycle) of the RF sigr	hal	
A, B, C		lent linearization para		
Polarization				
Polarization			lane normal to prob	e axis (at measurement center),
	i.e., ୬ = 0 is norma			
Mathada				
 NO. 		olarization $\vartheta = 0$ (f ≤ 9	900 MHz in TEM-ce	
 NO NO unc 		olarization $\vartheta = 0$ (f $\leq \vartheta$ alues, i.e., the uncert ConvF).	900 MHz in TEM-ce ainties of NORMx,	
 NO NO unc NO imp in th 	RMx,y,z: Assessed for E-field p RMx,y,z are only intermediate v ertainty inside TSL (see below (RM(f)x,y,z = NORMx,y,z * frequ lemented in DASY4 software ve le stated uncertainty of ConvF.	olarization $\vartheta = 0$ (f $\leq \S$ alues, i.e., the uncert <i>ConvF</i>). <i>ency_response</i> (see ersions later than 4.2.	900 MHz in TEM-ce ainties of NORMx, Frequency Respor The uncertainty of	y,z does not affect the E ² -field use Chart). This linearization is the frequency response is include
NO. NOI unc NO. imp in th DC. sign	RMx, y, z: Assessed for E-field p RMx, y, z are only intermediate v ertainty inside TSL (see below (RM(f)x, y, z = NORMx, y, z * frequilemented in DASY4 software vele stated uncertainty of ConvF.Px, y, z: DCP are numerical linearal (no uncertainty required). DC	olarization $\vartheta = 0$ (f ≤ 1 alues, i.e., the uncert <i>ConvF</i>). <i>ency_response</i> (see ersions later than 4.2. rization parameters a <i>CP</i> does not depend of	000 MHz in TEM-ce ainties of NORMx, Frequency Respor The uncertainty of assessed based on on frequency nor m	y,z does not affect the E ² -field use Chart). This linearization is the frequency response is include the data of power sweep with CW edia.
 NO. NO unc NO. imp in th DC. sign PAI chai 	RMx, y, z: Assessed for E-field p RMx, y, z are only intermediate v ertainty inside TSL (see below (RM(f)x, y, z = NORMx, y, z * frequilemented in DASY4 software ver-te stated uncertainty of ConvF.Px, y, z: DCP are numerical linearal (no uncertainty required). DCR: PAR is the Peak to Average Iracteristics	olarization $\vartheta = 0$ (f $\leq \vartheta$ alues, i.e., the uncert <i>ConvF</i>). <i>Tency_response</i> (see ersions later than 4.2. rization parameters a CP does not depend of Ratio that is not calibri	200 MHz in TEM-ce ainties of NORMx, Frequency Respor The uncertainty of assessed based on on frequency nor m rated but determine	y,z does not affect the E ² -field use Chart). This linearization is the frequency response is include the data of power sweep with CW edia. Ind based on the signal
 NO, NO unc NO, imp in th DCI sign PAI cha Ax, pov 	RMx, y, z: Assessed for E-field p RMx, y, z are only intermediate v ertainty inside TSL (see below (RM(f)x, y, z = NORMx, y, z * frequ lemented in DASY4 software ve le stated uncertainty of ConvF. Px, y, z: DCP are numerical linea lal (no uncertainty required). DC R: PAR is the Peak to Average I racteristics /, z; Bx, y, z; Cx, y, z, VRx, y, z: A, E	olarization $\vartheta = 0$ (f $\leq \vartheta$ alues, i.e., the uncert <i>ConvF</i>). <i>ency_response</i> (see ersions later than 4.2. rization parameters a CP does not depend of Ratio that is not calibu 3, <i>C</i> are numerical lin n signal. The parameters	200 MHz in TEM-ce ainties of NORMx, Frequency Respor The uncertainty of assessed based on on frequency nor m rated but determine earization paramete eters do not depend	y,z does not affect the E ² -field use Chart). This linearization is the frequency response is include the data of power sweep with CW edia.
 NO, NO unc NO, imp in th DCI sign PAI cha Ax, pov max Cor Sta mex Cor Sta mex bou use to N 	RMx, y, z: Assessed for E-field pi RMx, y, z are only intermediate v ertainty inside TSL (see below (RM(f)x, y, z = NORMx, y, z * frequi lemented in DASY4 software ve the stated uncertainty of ConvF. Px, y, z: DCP are numerical linear al (no uncertainty required). DC R: PAR is the Peak to Average I racteristics Y, z; Bx, y, z; Cx, y, z, VRx, y, z; A, B,er sweep for specific modulationtimum calibration range expressthe rand Boundary Effect Paraminandard for f ≤ 800 MHz) and insideasurements for f > 800 MHz. Thendary compensation (alpha, ded in DASY4 software to improve(DRMx, y, z * ConvF whereby thetwo F is used in DASY version 4.4	olarization $\vartheta = 0$ (f $\leq \vartheta$ alues, i.e., the uncert <i>ConvF</i>). <i>ency_response</i> (see ersions later than 4.2. rization parameters a CP does not depend of Ratio that is not calibu 3, <i>C</i> are numerical lin an signal. The parameters and in RMS voltage a <i>teters:</i> Assessed in flad de waveguide using a le same setups are us pth) of which typical u e probe accuracy close e uncertainty corresp	200 MHz in TEM-ce ainties of NORMx, Frequency Respor The uncertainty of assessed based on on frequency nor m rated but determine earization paramete teters do not depend cross the diode. at phantom using E analytical field distri sed for assessment uncertainty values a se to the boundary, onds to that given f	y,z does not affect the E ² -field use Chart). This linearization is the frequency response is include the data of power sweep with CW edia. In d based on the signal ers assessed based on the data o d on frequency nor media. VR is the -field (or Temperature Transfer butions based on power
 NO, NO unc NO, imp in th DC, sign PAI, cha Ax, pov max Cor Sta me: bou use to A Cor Sta Cor Sta MH Spt exp 	RMx, y, z: Assessed for E-field pi RMx, y, z are only intermediate v ertainty inside TSL (see below (RM(f)x, y, z = NORMx, y, z * frequi lemented in DASY4 software ve the stated uncertainty of ConvF. Px, y, z: DCP are numerical linear all (no uncertainty required). DC R: PAR is the Peak to Average I racteristics 7, z; Bx, y, z; Cx, y, z, VRx, y, z: A, B rer sweep for specific modulation immun calibration range express the final Boundary Effect Parameter andard for f ≤ 800 MHz) and inside asurements for f > 800 MHz. The ndary compensation (alpha, de d in DASY4 software to improve (DRMx, y, z * ConvF whereby the the fis used in DASY version 4.4 z. the ficial isotropy (3D deviation free osed by a patch antenna.	olarization $\vartheta = 0$ (f $\leq \vartheta$ alues, i.e., the uncert <i>ConvF</i>). ency_response (see ersions later than 4.2. rization parameters a CP does not depend of Ratio that is not calibut 3, <i>C</i> are numerical lin on signal. The parameters and in RMS voltage a beters: Assessed in flad de waveguide using a le same setups are us pth) of which typical us e probe accuracy clos e uncertainty corresp and higher which all om isotropy): in a field	200 MHz in TEM-ce ainties of NORMx, Frequency Respor The uncertainty of assessed based on on frequency nor m rated but determine earization paramete ters do not depend cross the diode. at phantom using E analytical field distri- sed for assessment uncertainty values a se to the boundary. onds to that given f lows extending the I of low gradients re	y,z does not affect the E ² -field ase Chart). This linearization is the frequency response is include the data of power sweep with CW edia. ad based on the signal ers assessed based on the data of d on frequency nor media. VR is the -field (or Temperature Transfer butions based on power t of the parameters applied for are given. These parameters are The sensitivity in TSL correspond or <i>ConvF</i> . A frequency dependen validity from ± 50 MHz to ± 100 ealized using a flat phantom
 NO, NO unc NO, imp in tf DCl sigr PAI cha Ax, pow max Cor Sta mea bou use to N Cor MH Spl exp Ser 	RMx, y, z: Assessed for E-field pi RMx, y, z are only intermediate v ertainty inside TSL (see below (RM(f)x, y, z = NORMx, y, z * frequi lemented in DASY4 software ve the stated uncertainty of ConvF. Px, y, z: DCP are numerical linear all (no uncertainty required). DC R: PAR is the Peak to Average I racteristics 7, z; Bx, y, z; Cx, y, z, VRx, y, z: A, B rer sweep for specific modulation immun calibration range express the final Boundary Effect Parameter andard for f ≤ 800 MHz) and inside asurements for f > 800 MHz. The ndary compensation (alpha, de d in DASY4 software to improve (DRMx, y, z * ConvF whereby the the fis used in DASY version 4.4 z. the ficial isotropy (3D deviation free osed by a patch antenna.	olarization $\vartheta = 0$ (f $\leq \vartheta$ alues, i.e., the uncert <i>ConvF</i>). ency_response (see ersions later than 4.2. rization parameters a CP does not depend of Ratio that is not calibi- alian signal. The parame- sed in RMS voltage a seters: Assessed in fla- de waveguide using a testers: Assessed in fla- de waveguid	200 MHz in TEM-ce ainties of NORMx, Frequency Respor The uncertainty of assessed based on on frequency nor m rated but determine earization paramete ters do not depend cross the diode. at phantom using E analytical field distri- sed for assessment uncertainty values a se to the boundary. onds to that given f lows extending the I of low gradients re	y,z does not affect the E ² -field ase Chart). This linearization is the frequency response is include the data of power sweep with CW edia. ad based on the signal ers assessed based on the data of d on frequency nor media. <i>VR</i> is th -field (or Temperature Transfer butions based on power t of the parameters applied for are given. These parameters are The sensitivity in TSL correspond or <i>ConvF</i> . A frequency dependen validity from ± 50 MHz to ± 100

NATA

No. 1017

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

EX3DV4 - SN:3563

June 21, 2012

Probe EX3DV4

SN:3563

Manufactured: Calibrated:

February 14, 2005 June 21, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3563_Jun12

Page 3 of 11

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

EX3DV4- SN:3563

June 21, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3563

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	$m (\mu V/(V/m)^2)^A$ 0.38		0.45	± 10.1 %	
DCP (mV) ^B	97.0	94.8	95.8		

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	0.00 X 0.00	0.00	0.00	1.00	187.8	±2.2 %
			Y	0.00	0.00	1.00	143.7	
			Z	0.00	0.00	1.00	192.8	4

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3563_Jun12

Page 4 of 11

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

EX3DV4- SN:3563

June 21, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3563

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
900	41.5	0.97	8.42	8.42	8.42	0.50	0.67	± 12.0 %
1810	40.0	1.40	7.33	7.33	7.33	0.60	0.65	± 12.0 %
1950	40.0	1.40	7.07	7.07	7.07	0.70	0.60	± 12.0 %
2450	39.2	1.80	6.53	6.53	6.53	0.34	0.85	± 12.0 %
2600	39.0	1.96	6.30	6.30	6.30	0.43	0.74	± 12.0 %
5200	36.0	4.66	4.36	4.36	4.36	0.25	1.80	± 13.1 %
5600	35.5	5.07	3.86	3.86	3.86	0.35	1.80	± 13.1 %
5800	35.3	5.27	3.75	3.75	3.75	0.35	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3563_Jun12

Page 5 of 11

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

EX3DV4- SN:3563

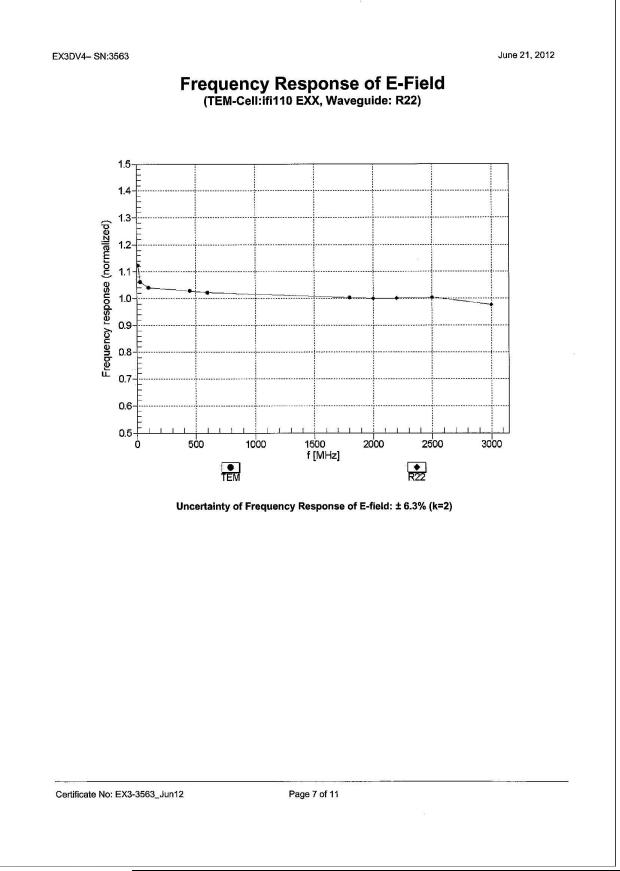
June 21, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3563

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
900	55.0	1.05	8.61	8.61	8.61	0.67	0.60	± 12.0 %
1810	53.3	1.52	7.14	7.14	7.14	0.52	0.74	± 12.0 %
1950	53.3	1.52	7.21	7.21	7.21	0.39	0. <u>78</u>	± 12.0 %
2450	52.7	1.95	6.60	6.60	6.60	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.45	6.45	6.45	0.51	0.50	± 12.0 %
5200	49.0	5.30	3.79	3.79	3.79	0.43	1.90	± 13.1 %
5600	48.5	5.77	3.40	3.40	3.40	0.40	1.90	± 13.1 %
5800	48.2	6.00	3.37	3.37	3.37	0.50	1.90	± 13.1 9

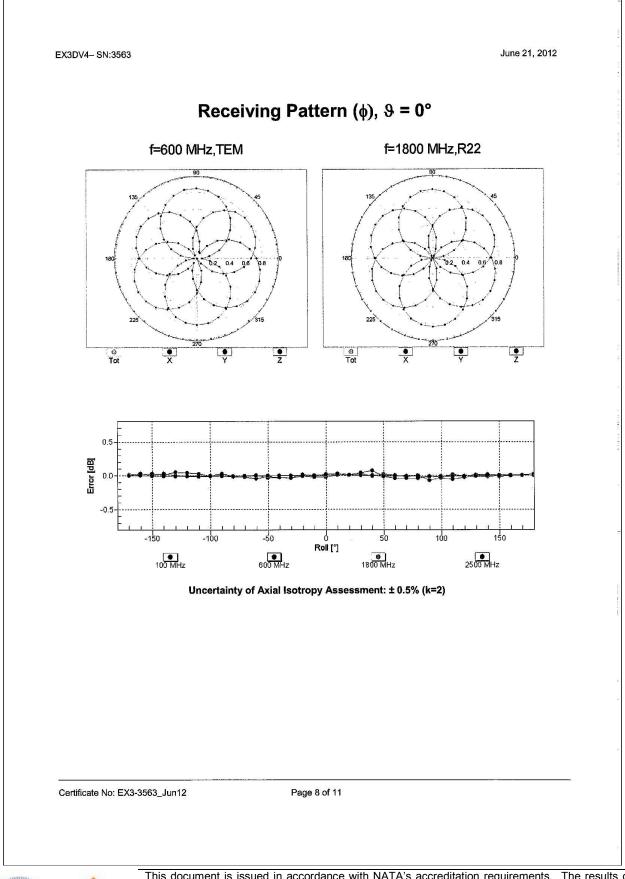
Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3563_Jun12

Page 6 of 11



This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.