

EMC Technologies Pty Ltd

ABN 82 057 105 549 176 Harrick Road Keilor Park Victoria Australia 3042

Ph: + 613 9365 1000 Fax: + 613 9331 7455 email: melb@emctech.com.au

SAR Test Report

Report Number: M080425_ CERT_AR5BHB92 _SAR_5.6

Test Sample: Portable Tablet Computer

Radio Modules: WLAN AR5BHB92

Host PC Model Number: T5010

Tested For: Fujitsu Australia Pty Ltd

HOST PC FCC ID: EJE-WL0020 HOST PC IC: 337J-WL0020

Date of Issue: 26th November 2009

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.

CONTENTS

1.0	GEN	ERAL IN	NFORMATION	. 3
2.0	INTR	ODUCT	TON	. 4
3.0	SAM	PLE TE	CHNICAL INFORMATION	. 4
			AN) Details	
		`	lotebook PC) Details	
			mple Accessories	
			ery Types	
4.0	4.1		AL, FREQUENCY AND OUTPUT POWERStatus	
5.0			TEST LABORATORY	
3.0	5.1		n	
	5.2		itations	
	5.3	Environ	nmental Factors	. 8
6.0	DES	CRIPTIC	ON OF SAR MEASUREMENT SYSTEM	. 9
	6.1	Probe F	Positioning System	. 9
	6.2		Probe Type and Performance	
	6.3		cquisition Electronics	
	6.4 <i>6.4.1</i>		ionlation Results @ 5GHz	
	6.4.2	Devia	ation from reference validation values	10
	6.4.3		d Depth 15cm	
	6.5		m Properties (Size, Shape, Shell Thickness)	
	6.6		Material Properties	
	<i>6.6.1</i> 6.7		d Temperature and Humidity	
	6.8		ted Tissue Composition Used for SAR Test	
7.0			JREMENT PROCEDURE USING DASY4	
8.0			ENT UNCERTAINTY	
9.0			LIST AND CALIBRATION DETAILS	
			TIN 65 – SUPPLEMENT C TEST METHOD	
10.0			7S	
			let" Position Definition (0mm spacing)	
			e On" Position	
			All Test Cases (Antenna In/Out, Test Frequencies, User Modes)	
			F Exposure Limits for Occupational/ Controlled Exposure	
			F Exposure Limits for Un-controlled/Non-occupational	
11.0			JREMENT RESULTS	
40.0			Band SAR Results	
			CE STATEMENT	
			ST SAMPLE PHOTOGRAPHS	
			ST SAMPLE PHOTOGRAPHS	
			ST SAMPLE PHOTOGRAPHS	
			ST SETUP PHOTOGRAPHS	
APP	ENDI		ST SAMPLE PHOTOGRAPHS	
APP	ENDI	ХВ	PLOTS OF THE SAR MEASUREMENTS	28
APP	ENDI	хс	CALIBRATION DOCUMENTS	47

SAR TEST REPORT

Report Number: M080425_ CERT_AR5BHB92 _SAR_5.6 HOST PC FCC ID: EJE-WL0020 HOST PC IC: 337J-WL0020

1.0 GENERAL INFORMATION

Test Sample: Portable Tablet Computer

Model Name: T5010

Radio Modules: WLAN AR5BHB92
Interface Type: Mini-PCI Module
Device Category: Portable Transmitter
Test Device: Pre-Production Unit
FCC ID: EJE-WL0020

HOST PC IC: 337J-WL0020

RF exposure Category: Manufacturer:General Population/Uncontrolled
Fujitsu Limited

Test Standard/s:1. Evaluating Compliance with FCC Guidelines For Human Exposure to

Radiofrequency Electromagnetic Fields

Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01)

2. Radio Frequency Exposure Compliance of Radiocommunication

Apparatus (All Frequency Bands) RSS-102 Issue 2 November 2005

Statement Of Compliance: The Fujitsu TABLET Computer T5010 with Wireless LAN model

AR5BHB92 complied* with the FCC General public/uncontrolled RF exposure limits of 1.6mW/g per requirements of 47CFR2.1093(d). It also complied with IC RSS-102 requirements.

*. Refer to compliance statement section 9.

Test Dates: 12th to 21st April 2008

Tested for: Fujitsu Australia Pty Ltd

Address: 1230 Nepean Highway, Cheltenham VIC 3192

 Contact:
 Praveen Rao

 Phone:
 +61 3 9265 0210

 Fax:
 +61 3 9265 0656

E-mail: Praveen.rao@au.fujitsu.com

Peter Jakubiec

Authorised Signature: Peter Jakubiec

Test Officer:

SAR TEST REPORT Portable Tablet Computer Model: T5010

Report Number: M080425_ CERT_AR5BHB92 _SAR_5.6

2.0 INTRODUCTION

Testing was performed on the Fujitsu Tablet PC, Model:T5010 with INTEL Mini-PCI Wireless LAN Module (HB92 802.11a/b/g/n), Model: AR5BHB92. The HB92 module is an OEM product. The Mini-PCI Wireless LAN (WLAN) was tested in the dedicated host – LIFEBOOK T SERIES, Model T5010.

The measurement test results mentioned hereon only apply to the 5GHz frequency band; an additional report titled "M080425_ CERT_AR5BHB92 _SAR_2.4" applies to the 2450MHz frequency range.

3.0 SAMPLE TECHNICAL INFORMATION

(Information supplied by the client)

3.1 EUT (WLAN) Details

Transmitter: Mini-Card Wireless LAN Module

FCC ID: EJE-WL0020 **IC**: 337J-WL0020

Wireless Module: HB92 (802.11a/b/g/n)

Model Number: AR5BHB92
Manufacturer: Intel Corporation
DSSS for 802.11b
OFDM for 802.11g
OFDM for 802.11a

OFDM for 802.11a OFDM for 802.11n

2.4 GHz (802.11b/g/n): CCK, DQPSK, DBPSK, 16QAM, 64QAM

5 GHz (802.11a/n): BPSK, QPSK, 16QAM, 64QAM

Maximum Data Rate: 802.11b = 11 Mbps, 802.11g and 802.11a = 54 Mbps

802.11n = 300 Mbps

Frequency Ranges: 2.412–2.462 GHz for 11b/g/n

 $5.18-5.32~\mathrm{GHz},\,5.500-5.700~\mathrm{GHz}$ and $5.745-5.825~\mathrm{GHz}$ for 11a/n

Number of Channels: 11 channels for 11b/g/n with 20MHz Bandwidth 24 channels for 11a/n with 20MHz Bandwidth

24 channels for 11a/n with 20MHz Bandwidth 18 channels for 11n with 40MHz Bandwidth

Antenna Types: Nissei Electric Inverted F Antenna

Model: refer to WLAN antenna data Location: Top edge of LCD screen

Power Supply: Please refer antenna data provided separately

3.3 VDC from PCI Express bus

Channels and Output power setting:

Channel and Mode	Frequency MHz	Average Output Power dBm	
802.11b/g mode			
Channels 1, 6 and 11	2412, 2437 and 2462	14.0	
802.11a mode			
Channels 36	5180	8.5	
Channels 48	5240	13.0	
Channels 64	5320	13.0	
Channels 100	5500	14.0	
Channels 120	5600	14.0	
Channels 140	5700	14.0	
Channels 149	5745	14.0	
Channels 157	5785	14.0	
Channels 165	5825	14.0	
802.11n mode with 20MHz Bandwidth			
Channels 1 & 6	2412 & 2437	14.0	
Channels 11	2462	12.5	
Channels 36	5180	10.0	
Channels 48	5240	13.5	
Channels 64	5320	13.5	
Channels 100	5500	14.0	
Channels 120	5600	14.0	
Channels 140	5700	14.0	
Channels 149	5745	14.0	
Channels 157	5785	14.0	
Channels 165	5825	14.0	
802.11n mode with 40MHz Bandwidth			
Channels 3	2412	12.0	
Channels 6	2437	14.0	
Channels 9	2462	10.5	
Channels 38	5190	12.5	
Channels 54	5270	14.0	
Channels 62	5310	14.0	
Channels 102	5510	14.0	
Channels 118	5590	14.0	
Channels 134	5670	14.0	
Channels 151	5755	14.0	
Channels 159	5795	14.0	

NOTE: For 2450 MHz SAR results refer to report titled "M080425_ CERT_AR5BHB92 _SAR_2.4".

3.2 EUT (Notebook PC) Details

EUT: LIFEBOOK T SERIES

Model Name T5010

Serial Number: Pre-production Sample Manufacturer: FUJITSU LIMITED

CPU Type and Speed: Core2 Duo T9600 2.8GHz

LCD 13.3"WXGA (LED)

Wired LAN: Intel 82567LM: 10 Base-T/100 Base-TX/1000Base-T

Modem: Agere MDC1.5 modem Model: D40

Port Replicator Model: FPCPR85

AC Adapter Model: SEC100P2-19.0(Sanken) / SEC100P3-19.0(Sanken, 3pin) /

ADP-80NB A(Delta) / SED100P2-19.0(Sanken)

 Voltage:
 19 V

 Current Specs:
 4.22A

 Watts:
 80W

3.3 Test sample Accessories

3.3.1 Battery Types

One type of Fujitsu Lithium Ion Battery is used to power the Portable Tablet Computer Wireless LAN Model: AR5BHB92. SAR measurements were performed with the battery as shown below.

Standard Battery

 Model
 FPCBP155
 FPCBP155

 V/mAh
 10.8V 5200mAh
 10.8V 5200mAh

 Part No.:
 CP293420-01
 CP293420-01

 Lot No.:
 X01A-6412
 X01A-6607

4.0 TEST SIGNAL, FREQUENCY AND OUTPUT POWER

INTEL's CRTU test tool was used to configure the WLAN for testing. The Portable Tablet Computer Wireless LAN had a total of 11 channels within the 2412 to 2462 MHz frequency band and 17 channels within the frequency range 5180 – 5825 MHz. In The frequency range 2412 MHz to 2462 MHz the device operates in 2 modes, OFDM and DSSS. Within the 5180 – 5825 MHz frequency range the device operates in OFDM mode only. For the SAR measurements the device was operating in continuous transmit mode using programming codes supplied by Fujitsu. The fixed frequency channels used in the testing are shown in Table Below.

The test results mentioned in this report only apply to the 5200/5800MHz frequency range. An additional report titled "M080425_ CERT_AR5BHB92 _SAR_2.4" is specific to the 2450MHz range.

The WLAN modules can be configured in a number of different data rates. It was found that the highest source based time averaged power was measured when using the lowest data rates available in each mode. This lowest data rate corresponds to 6Mbps in OFDM mode and 1Mbps in DSSS mode. It was found that OFDM using data rate HT0 with 40MHz bandwidth produced the highest SAR level and thus only the results with this modulation is incorporate into the report as the other modulations were tested with different power settings.

The frequency span of the 2450 MHz range and 5600MHz Bands was more than 10MHz consequently; the SAR levels of the test sample were measured for lowest, centre and highest channels in the applicable modes. The EUT is capable of using two antennas transmitting simultaneously (HT8 DATA mode) the power level is 3dB lower (50%) than if a single antenna was transmitting. There were no wires or other connections to the Portable Tablet Computer during the SAR measurements.

At the beginning and at the completion of the SAR tests, the conducted power of the device was measured after temporary modification of antenna connector inside the device's TX RX compartment. Measurements were performed with a calibrated Power Meter.

4.1 Battery Status

The device battery was fully charged prior to commencement of measurement. Each SAR test was completed within 30 minutes. The battery condition was monitored by measuring the RF field at a defined position inside the phantom before the commencement of each test and again after the completion of the test. It was not possible to perform conducted power measurements at the output of the device, at the beginning and end of each scan due to lack of a suitable antenna port. The uncertainty associated with the power drift was less than 12% and was assessed in the uncertainty budget.

5.0 DETAILS OF TEST LABORATORY

5.1 Location

EMC Technologies Pty Ltd 176 Harrick Road Keilor Park, (Melbourne) Victoria Australia 3042

Telephone: +61 3 9365 1000 Facsimile: +61 3 9331 7455 email: melb@emctech.com.au www.emctech.com.au

5.2 Accreditations

EMC Technologies Pty. Ltd. is accredited by the National Association of Testing Authorities, Australia (NATA). **NATA Accredited Laboratory Number: 5292**

EMC Technologies Pty Ltd is NATA accredited for the following standards: **AS/NZS 2772.1:** RF and microwave radiation hazard measurement

ACA: Radio communications (Electromagnetic Radiation - Human Exposure) Standard 2003

FCC: Guidelines for Human Exposure to RF Electromagnetic Field OET65C 01/01

Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz – 3 GHz)

EN 50361: 2001 Basic standard for the measurement of Specific Absorption Rate related to human

exposure to electromagnetic fields from mobile phones (300MHz – 3GHz)

IEEE 1528: 2003 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption

Rate (SAR) in the Human Head Due to Wireless Communications Devices: Measurement

Techniques.

Refer to NATA website www.nata.asn.au for the full scope of accreditation.

5.3 Environmental Factors

The measurements were performed in a shielded room with no background RF signals. The temperature in the laboratory was controlled to within 21±1°C, the humidity was in the range 48% to 54%. The liquid parameters are measured daily prior to the commencement of each test. Tests were performed to check that reflections within the environment did not influence the SAR measurements. The noise floor of the DASY4 SAR measurement system using the SN3563 probe was less than 5µV in both air and liquid mediums.

6.0 DESCRIPTION OF SAR MEASUREMENT SYSTEM

Applicable Head Configurations	: None
Applicable Body Configurations	: Tablet Position
	: Edge On Position

6.1 Probe Positioning System

The measurements were performed with the state-of-the-art automated near-field scanning system **DASY4 V4.7 Build 53** from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision 6-axis robot (working range greater that 1.1m), which positions the SAR measurement probes with a positional repeatability of better than ± 0.02 mm. The DASY4 fully complies with the OET65 C (01-01), IEEE 1528 and EN50361 SAR measurement requirements.

6.2 E-Field Probe Type and Performance

The SAR measurements were conducted with SPEAG dosimetric probe EX3DV4 Serial: 3563 (5.6 GHz) designed in the classical triangular configuration and optimised for dosimetric evaluation. The probe has been calibrated and found to be accurate to better than ± 0.25 dB. The probe is suitable for measurements close to material discontinuity at the surface of the phantom. The sensors of the probe are directly loaded with Schottky diodes and connected via highly resistive lines (length = 300 mm) to the data acquisition unit.

6.3 Data Acquisition Electronics

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer-grade preamplifier with autozeroing, a channel and gain switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. The input impedance of the DAE3 box is 200 M Ω ; the inputs are symmetrical and floating. Common mode rejection is above 80dB. Transmission to the PC-card is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe-mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

6.4 Validation

6.4.1 Validation Results @ 5GHz

The following table lists the dielectric properties of the tissue simulating liquid measured prior to SAR validation. The results of the validation are listed in columns 4 and 5. The forward power into the reference dipole for SAR validation was adjusted to 250 mW.

Table: Validation Results (Dipole: SPEAG D5GHzV2 SN: 1008)

1. Validation Date	2. ∈r (measured)	3. σ (mho/m) (measured)	4. Measured SAR 1g (mW/g)	5. Measured SAR 10g (mW/g)
12 th April 08	35.9	4.57	19.5	5.53
17 th April 08	35.8	4.60	19.8	5.63
18 th April 08	35.1	5.11	21.6	6.12
21 st April 08	33.9	5.33	20.6	5.83

6.4.2 Deviation from reference validation values

Currently no IEEE Std 1528-2003 SAR reference values are available in 5.6 GHz band, as a consequence all validation results were compared against the SPEAG calibration reference SAR values.

The SPEAG calibration reference SAR value is the SAR validation result obtained in a specific dielectric liquid using the validation dipole (D5GHzV2) during calibration. The measured one-gram SAR should be within 10% of the expected target reference values shown in below.

Table: Deviation from reference validation values in 5.6 GHz band.

Frequency and Date	Measured SAR 1g (mW/g)	Measured SAR 1g (Normalized to 1W)	SPEAG Calibration reference SAR Value 1g (mW/g)	Deviation From SPEAG Reference (1g)
5200MHz 12 th April 08	19.5	78.0	77.6	0.52
5200MHz 17 th April 08	19.8	79.2	77.6	2.06
5500MHz 18 th April 08	21.6	86.4	79.8	8.27
5800MHz 21 st April 08	20.6	82.4	76.3	7.99

NOTE: All reference validation values are referenced to 1W input power.

6.4.3 Liquid Depth 15cm

During the SAR measurement process the liquid level was maintained to a level of a least 15cm with a tolerance of 0.5cm.

Photo of liquid Depth in Flat Phantom

6.5 Phantom Properties (Size, Shape, Shell Thickness)

The phantom used during the validations was the SAM Phantom model: TP - 1060 from SPEAG. It is a phantom with a single thickness of 2 mm and was filled with the required tissue simulating liquid. The SAM phantom support structures were all non-metallic and spaced more than one device width away in transverse directions.

For SAR testing in the body worn positions an AndreT Flat phantom P 10.1 was used. The phantom thickness is 2.0mm+/-0.2 mm and was filled with the required tissue simulating liquid. Table below provides a summary of the measured phantom properties. Refer to Appendix C Part 4, for details of P 10.1 phantom dielectric properties and loss tangent.

Table: Phantom Properties

Phantom Properties	Required
Thickness of flat section	2.0mm ± 0.2mm (bottom section)
Dielectric Constant	<5.0
Loss Tangent	<0.05

Depth of Phantom 200mm
Length of Flat Section 620mm
Width of Flat Section 540mm

P 10.1 Flat Phantom

6.6 Tissue Material Properties

The dielectric parameters of the brain simulating liquid were measured prior to SAR assessment using the HP85070A dielectric probe kit and HP8753ES Network Analyser. The actual dielectric parameters are shown in the following table.

Table: Measured Brain Simulating Liquid Dielectric Values for Validations

Frequency Band	∈r (measured range)	∈r (target)	σ (mho/m) (measured range)	σ (target)	ρ kg/m ³
5200 MHz Brain	35.8	36.0 ±5% (34.2 to 37.8)	4.57	4.76 ±5% (4.43 to 4.90)	1000
5500 MHz Brain	35.1	35.6 ±5% (33.8 to 37.4)	5.09	4.96 ±5% (4.71 to 5.21)	1000
5800 MHz Brain	33.9	35.3 ±5% (33.5 to 37.1)	5.33	5.27 ±5% (5.01 to 5.53)	1000

NOTE: The brain liquid parameters were within the required tolerances of $\pm 5\%$.

Table: Measured Body Simulating Liquid Dielectric Values for 5200MHz range

rabio modeared Deay emidianing Enquire Diction values for electric Lange					
Frequency Band	∈r (measured range)	∈r (target)	σ (mho/m) (measured range)	σ (target)	ρ kg/m ³
5190	48.5	49.0 ±10% (44.1 to 53.9)	5.17	5.3 ±10% (4.77 to 5.83)	1000
5260	47.3	48.9 ±10% (44.01 to 53.8)	5.22	5.4 ±10% (4.86 to 5.94)	1000
5270	48.3	48.8 ±10% (43.9 to 55.3)	5.34	5.4 ±10% (4.86 to 5.94)	1000

Table: Measured Body Simulating Liquid Dielectric Values for 5600MHz range

Frequency Band	∈r (measured range)	∈r (target)	σ (mho/m) (measured range)	σ (target)	ρ kg/m³
5510	46.3	48.6 ±10% (43.7 to 53.4)	5.81	5.6 ±10% (5.04 to 6.16)	1000
5590	45.9	48.5 ±10% (43.8 to 53.5)	5.98	5.77 ±10% (5.20 to 6.34)	1000
5670	45.8	48.4 ±10% (43.6 to 53.2)	6.12	5.9 ±10% (5.31 to 6.49)	1000

Table: Measured Body Simulating Liquid Dielectric Values for 5800MHz range

Frequency Band	∈r (measured range)	∈r (target)	σ (mho/m) (measured range)	ਰ (target)	ρ kg/m ³
5755 MHz Muscle	45.4	48.3 ±10% (43.47 to 53.13)	6.09	5.9 ±10% (5.31 to 6.49)	1000
5785 MHz Muscle	45.3	48.2 ±10% (43.38 to 53.02)	6.15	6.0 ±10% (5.4 to 6.60)	1000
5795 MHz Muscle	45.3	48.2 ±10% (43.38 to 53.02)	6.17	6.0 ±10% (5.4 to 6.60)	1000

NOTE: The muscle liquid parameters were within the required tolerances of $\pm 10\%$.

6.6.1 Liquid Temperature and Humidity

The humidity and dielectric/ambient temperatures were recorded during the assessment of the tissue material dielectric parameters. The difference between the ambient temperature of the liquid during the dielectric measurement and the temperature during tests was less than |2|°C.

Table: Temperature and Humidity recorded for each day

Date	Ambient Temperature (°C)	Liquid Temperature (°C)	Humidity (%)
12 th April 08	21.4	21.1	54.0
17 th April 08	20.5	20.2	53.0
18 th April 08	21.0	20.9	53.0
21 st April 08	20.8	20.7	51.0

6.7 Simulated Tissue Composition Used for SAR Test

A low loss clamp was used to position the Tablet underneath the phantom surface. Small pieces of foam were then used to press the Tablet flush against the phantom surface.

Table: Tissue Type: Muscle @ 5600MHz

Volume of Liquid: 60 Litres

EMCT Liquid

Composition
Distilled Water
Salt
Triton X-100

6.8 Device Holder for Laptops and P 10.1 Phantom

A low loss clamp was used to position the Laptop underneath the phantom surface. Small pieces of foam were then used to press the laptop flush against the phantom surface.

Refer to Appendix A for photographs of device positioning

7.0 SAR MEASUREMENT PROCEDURE USING DASY4

The SAR evaluation was performed with the SPEAG DASY4 system. A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.0 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. The actual Area Scan has dimensions of 150mm x 210mm surrounding the test device. Based on this data, the area of the maximum absorption is determined by Spline interpolation.
- c) Around this point, a volume of 24 mm x 24 mm x 20 mm is assessed by measuring 7 x 7 x 9 points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:
 - (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.0 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 2.0 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
 - (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
 - (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
 - (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

8.0 MEASUREMENT UNCERTAINTY

The uncertainty analysis is based on the template listed in the IEEE Std 1528-2003 for both Handset SAR tests and Validation uncertainty. The measurement uncertainty of a specific device is evaluated independently.

Table: Uncertainty Budget for DASY4 Version V4.7 Build 53 – EUT SAR test 5GHz

а	b	С	d	e= f(d,k)	f	g	h=cxf/e	i=cxg/e	k
Uncertainty Component	Sec.	Tol. (%)	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g u _i (%)	10g u _i (%)	Vi
Measurement System									
Probe Calibration (k=1) (numerical calibration)	E.2.1	6.8	N	1	1	1	6.8	6.8	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	2	R	1.73	1	1	1.2	1.2	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	1	N	1	1	1	1.0	1.0	~
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	~
Integration Time	E.2.8	2.6	R	1.73	1	1	1.5	1.5	∞
RF Ambient Conditions	E.6.1	0.075	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.73	1	1	0.5	0.5	8
Probe Positioning with respect to Phantom Shell	E.6.3	5.7	R	1.73	1	1	3.3	3.3	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E.5	4	R	1.73	1	1	2.3	2.3	8
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	N	1	1	1	2.9	2.9	11
Device Holder Uncertainty	E.4.1	3.6	N	1	1	1	3.6	3.6	7
Output Power Variation – SAR Drift Measurement	6.6.2	11.61	R	1.73	1	1	6.7	6.7	8
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and thickness tolerances)	E.3.1	4	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity – Deviation from target values	E.3.2	10	R	1.73	0.64	0.43	3.7	2.5	∞
Liquid Conductivity – Measurement uncertainty	E.3.3	2.5	N	1	0.64	0.43	1.6	1.1	5
Liquid Permittivity – Deviation from target values	E.3.2	10	R	1.73	0.6	0.49	3.5	2.8	∞
Liquid Permittivity – Measurement uncertainty	E.3.3	2.5	N	1	0.6	0.49	1.5	1.2	5
Combined standard Uncertainty			RSS				14.0	13.5	154
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				28.0	27.03	

Estimated total measurement uncertainty for the DASY4 measurement system was $\pm 14.0\%$. The extended uncertainty (K = 2) was assessed to be $\pm 28.0\%$ based on 95% confidence level. The uncertainty is not added to the measurement result.

Table: Uncertainty Budget for DASY4 Version V4.7 Build 53 – Validation 5GHz

а	b	С	d	e= f(d,k)	f	g	h=cxf/e	i=cxg/e	k
Uncertainty Component	Sec.	Tol. (%)	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g u _i (%)	10g u _i (%)	Vi
Measurement System									
Probe Calibration (k=1) (standard calibration)	E.2.1	6.6	N	1	1	1	6.6	6.6	8
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	8
Hemispherical Isotropy	E.2.2	0	R	1.73	1	1	0.0	0.0	8
Boundary Effect	E.2.3	2	R	1.73	1	1	1.2	1.2	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	1	N	1	1	1	1.0	1.0	8
Response Time	E.2.7	0	R	1.73	1	1	0.0	0.0	8
Integration Time	E.2.8	0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions	E.6.1	0.075	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.73	1	1	0.5	0.5	8
Probe Positioning with respect to Phantom Shell	E.6.3	5.7	R	1.73	1	1	3.3	3.3	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation Test Sample Related	E.5	4	R	1.73	1	1	2.3	2.3	8
	F 4 2	2	NI	1	1	1	2.0	2.0	11
Dipole Axis to Liquid distance	E.4.2	2	N	1	1	1	2.0	2.0	11
Output Power Variation – SAR Drift Measurement	6.6.2	4.7	R	1.73	1	1	2.7	2.7	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and thickness tolerances)	E.3.1	4	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity – Deviation from target values	E.3.2	5	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity – Measurement uncertainty	E.3.3	2.5	N	1	0.64	0.43	1.6	1.1	5
Liquid Permittivity – Deviation from target values	E.3.2	5	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity – Measurement uncertainty	E.3.3	2.5	N	1	0.6	0.49	1.5	1.2	5
Combined standard Uncertainty			RSS				10.3	10.0	154
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				20.5	20.02	

Estimated total measurement uncertainty for the DASY4 measurement system was $\pm 10.3\%$. The extended uncertainty (K = 2) was assessed to be $\pm 20.5\%$ based on 95% confidence level. The uncertainty is not added to the measurement result.

9.0 QUIPMENT LIST AND CALIBRATION DETAILS

Table: SPEAG DASY4 Version V4.7 Build 53

Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due	Used For this Test?	
Robot - Six Axes	Staubli	RX90BL	N/A	Not applicable	✓	
Robot Remote Control	SPEAG	CS7MB	RX90B	Not applicable	✓	
SAM Phantom	SPEAG	N/A	1260	Not applicable	✓	
SAM Phantom	SPEAG	N/A	1060	Not applicable		
Flat Phantom	AndreT	10.1	P 10.1	Not Applicable	✓	
Flat Phantom	AndreT	9.1	P 9.1	Not Applicable		
Flat Phantom	SPEAG	PO1A 6mm	1003	Not Applicable		
Data Acquisition Electronics	SPEAG	DAE3 V1	359	03-July-2008		
Data Acquisition Electronics	SPEAG	DAE3 V1	442	26-Feb-09	✓	
Probe E-Field - Dummy	SPEAG	DP1	N/A	Not applicable		
Probe E-Field	SPEAG	ET3DV6	1380	18-Dec-2008		
Probe E-Field	SPEAG	ET3DV6	1377	09-July-2008		
Probe E-Field	SPEAG	ES3DV6	3029	Not Used		
Probe E-Field	SPEAG	EX3DV4	3563	13-July-2008	✓	
Antenna Dipole 300 MHz	SPEAG	D300V2	1005	14-Dec-2009		
Antenna Dipole 450 MHz	SPEAG	D450V2	1009	14-Dec-2008		
Antenna Dipole 900 MHz	SPEAG	D900V2	047	6-July-2008		
Antenna Dipole 1640 MHz	SPEAG	D1640V2	314	30-June-2008		
Antenna Dipole 1800 MHz	SPEAG	D1800V2	242	3-July-2008		
Antenna Dipole 1950 MHz	SPEAG	D1950V3	1113	5-March-2009		
Antenna Dipole 3500 MHz	SPEAG	D3500V2	1002	06-July-2008		
Antenna Dipole 2450 MHz	SPEAG	D2450V2	724	13-Dec-2008		
Antenna Dipole 5600 MHz	SPEAG	D5GHzV2	1008	07-Dec-2009	✓	
RF Amplifier	EIN	603L	N/A	Not applicable		
RF Amplifier	Mini-Circuits	ZHL-42	N/A	Not applicable		
RF Amplifier	Mini-Circuits	ZVE-8G	N/A	Not applicable	✓	
Synthesized signal generator	Hewlett Packard	ESG-D3000A	GB3742023 8	*In test	✓	
RF Power Meter Dual	Hewlett Packard	437B	3125012786	30-May-2008	✓	
RF Power Sensor 0.01 - 18 GHz	Hewlett Packard	8481H	1545A0163 4	30-May-2008	✓	
RF Power Meter Dual	Gigatronics	8542B	1830125	11-May-2008	✓	
RF Power Sensor	Gigatronics	80301A	1828805	11-May-2008	✓	
RF Power Meter Dual	Hewlett Packard	435A	1733A0584 7	*In test	✓	
RF Power Sensor	Hewlett Packard	8482A	2349A1011 4	*In test	✓	
Network Analyser	Hewlett Packard	8714B	GB3510035	06-Sept-2008		
Network Analyser	Hewlett Packard	8753ES	JP39240130	02 Oct-2008	✓	
Dual Directional Coupler	Hewlett Packard	778D	1144 04700	*In test		
Dual Directional Coupler	NARDA	3022	75453	*In test	✓	

^{*} Calibrated during the test for the relevant parameters.

10.0 OET BULLETIN 65 – SUPPLEMENT C TEST METHOD

Notebooks should be evaluated in normal use positions, typical for lap-held bottom-face only. However the number of positions will depend on the number of configurations the laptop can be operated in. The "LifeBook T series" can be used in either a conventional laptop position (see Appendix A1) or a Tablet configuration. The antenna location in the "LifeBook T series" is closest to the top of the screen when used in a conventional laptop configuration and due to the separation distances involved between the phantom and the laptop antenna, testing is not required in this position.

10.1 Positions

10.1.1 "Tablet" Position Definition (0mm spacing)

The device was tested in the 2.00 mm flat section of the AndreT Flat phantom P 10.1 for the "Tablet" position. The Transceiver was placed at the bottom of the phantom and suspended in such way that the back of the device was touching the phantom. This device orientation simulates the PC's normal use – being held on the lap of the user. A spacing of 0mm ensures that the SAR results are conservative and represent a worst-case position.

10.1.2 "Edge On" Position

The device was tested in the (2.00 mm) flat section of the AndreT phantom for the "Edge On" position. The Antenna edge of the Transceiver was placed underneath the flat section of the phantom and suspended until the edge touched the phantom. Refer to Appendix A for photos of measurement positions.

10.2 List of All Test Cases (Antenna In/Out, Test Frequencies, User Modes)

The device has a fixed antenna. Depending on the measured SAR level up to three test channels with the test sample operating at maximum power, as specified in section 4.0 were recorded. The following table represents the matrix used to determine what testing was required.

Table: Testing configurations

Phantom	*Device Mode	Antenna	Test Configurations				
Configuration			Channel (Low)	Channel (Middle)	Channel (High)		
Tablet	OFDM 5GHz	Α		X			
	All Bands	В		X			
Edge On	OFDM 5GHz	Α		X			
	All Bands	В		Χ			

Legend X	Testing Required in this configuration
	Testing required in this configuration only if SAR of middle channel is more than 3dB below the SAR limit or it is the worst case.

10.3 FCC RF Exposure Limits for Occupational/ Controlled Exposure

Spatial Peak SAR Limits For:	
Partial-Body:	8.0 mW/g (averaged over any 1g cube of tissue)
Hands, Wrists, Feet and Ankles:	20.0 mW/g (averaged over 10g cube of tissue)

10.4 FCC RF Exposure Limits for Un-controlled/Non-occupational

10.4 FCC RF Exposure Limits for On-controlled/Non-occupational							
Spatial Peak SAR Limits For:							
Partial-Body:	1.6 mW/g (averaged over any 1g cube of tissue)						
Hands, Wrists, Feet and Ankles:	4.0 mW/g (averaged over 10g cube of tissue)						

11.0 SAR MEASUREMENT RESULTS

The SAR values averaged over 1g tissue masses were determined for the sample device for all test configurations listed in section 7.2.

11.1 5 GHz Band SAR Results

Table: SAR MEASUREMENT RESULTS Lower Band - OFDM Mode

Test Positio n	Plot No.	Ant	Bit rate Mode (Mbps)	Channel Bandwidth (MHz)	Test Channel	Test Freq (MHz)	Measured 1g SAR Results (mW/g)	Measured Drift (dB)
Tablet	1	Aux	HT0	40	54	5270	0.034	-0.107
Table	2	Main	HT0	40	54	5270	0.009	0.180
Edge On Side	3	Aux	HT0	40	54	5270	0.019	0.055

NOTE: The measurement uncertainty of 28.0% for 5GHz testing is not added to the result.

The highest SAR level recorded in the 5.2 GHz band was 0.034 mW/g as evaluated in a 1g cube of averaging mass. This value was obtained in Tablet position in OFDM mode, utilizing channel 54 (5270MHz) and antenna Aux.

Table: SAR MEASUREMENT RESULTS Middle Band - OFDM Mode

Test Position	Plot No.	Ant	Bit rate Mode (Mbps)	Channel Bandwidth (MHz)	Test Channel	Test Freq (MHz)	Measured 1g SAR Results (mW/g)	Measured Drift (dB)
Tablet	4	Aux	HT0	40	118	5590	0.035	0.408
Tablet	5	Main	HT0	40	118	5590	0.012	0.209
Edge On Side	6	Aux	HT0	40	118	5590	0.021	-0.304

NOTE: The measurement uncertainty of 28.0% for 5GHz testing is not added to the result.

The highest SAR level recorded in the 5.6 GHz band was 0.035 mW/g as evaluated in a 1g cube of averaging mass. This value was obtained in Tablet position in OFDM mode, utilizing channel 118 (5590MHz) and antenna Aux.

Table: SAR MEASUREMENT RESULTS Upper Band - OFDM Mode

Test	Plot	Ant	Bit	Channel	Test	Test Freq	Measured	Measured
Position	No.	Air	rate Mode (Mbps)	Bandwidth (MHz)	Channel	(MHz)	1g SAR Results (mW/g)	Drift (dB)
Tablet	7	Aux	HT0	40	159	5795	0.030	0.360
Tablet	8	Main	HT0	40	159	5795	0.005	0.477
Edge On Side	9	Aux	HT0	40	159	5795	0.012	-0.105

NOTE: The measurement uncertainty of 28.0% for 5GHz testing is not added to the result.

*This plot was used for identifying the "hotspot" only.

The highest SAR level recorded in the 5.8 GHz band was 0.030 mW/g as evaluated in a 1g cube of averaging mass. This value was obtained in Tablet position in OFDM mode, utilizing channel 40 (5795MHz) and antenna Aux.

12.0 COMPLIANCE STATEMENT

The Fujitsu TABLET PC, Model: T5010 with INTEL Mini-PCI Wireless LAN Module (HB92 802.11a/b/g/n), Model: AR5BHB92 was found to comply with the FCC and RSS-102 SAR requirements.

The highest SAR level recorded was 0.035 mW/g for a 1g cube. This value was measured at 5590 MHz (channel 118) in the Tablet position in OFDM modulation mode at the antenna Aux. This was below the limit of 1.6 mW/g for uncontrolled exposure, even taking into account the measurement uncertainty of 28.0 %.

