

APPENDIX C CALIBRATION DOCUMENTS

1. SN: 3563 Probe Calibration Certificate
2. SN: D5GHzV2 1008 Dipole Calibration Certificate

EX3DV4 SN:3563

July 14, 2008

Probe EX3DV4

SN:3563

Manufactured: February 14, 2005
Last calibrated: July 13, 2007
Recalibrated: July 14, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3563_Jul08

Page 3 of 9

This document must not be copied or reproduced, except with the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full.
www.emctech.com.au

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
S Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **EMC Technologies**

Certificate No: **EX3-3563_Jul08**

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3563**

Calibration procedure(s) **QA CAL-01.v6, QA CAL-14.v3 and QA CAL-23.v3
Calibration procedure for dosimetric E-field probes**

Calibration date: **July 14, 2008**

28/07/08 P-5

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	1-Jul-08 (No. 217-00865)	Jul-09
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	1-Jul-08 (No. 217-00866)	Jul-09
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013_Jan08)	Jan-09
DAE4	SN: 660	3-Sep-07 (No. DAE4-660_Sep07)	Sep-08

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07)	In house check: Oct-08

Calibrated by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Approved by:	Name	Function	Signature
	Niels Kuster	Quality Manager	

Issued: July 14, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **EX3-3563_Jul08**

Page 1 of 9

This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full.
www.emctech.com.au

Accreditation No. 5292

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization ϕ	ϕ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORM $x,y,z$$: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM $x,y,z$$ are only intermediate values, i.e., the uncertainties of $NORM $x,y,z$$ does not effect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORM $x,y,z * frequency_response$$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- *ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM $x,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.$
- *Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- *Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV4 SN:3563

July 14, 2008

DASY - Parameters of Probe: EX3DV4 SN:3563

Sensitivity in Free Space^A

NormX	0.39 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormY	0.38 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	0.47 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression^B

DCP X	88 mV
DCP Y	84 mV
DCP Z	88 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL **900 MHz** **Typical SAR gradient: 5 % per mm**

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%] Without Correction Algorithm	6.8	3.4
SAR _{be} [%] With Correction Algorithm	0.8	0.6

TSL **1810 MHz** **Typical SAR gradient: 10 % per mm**

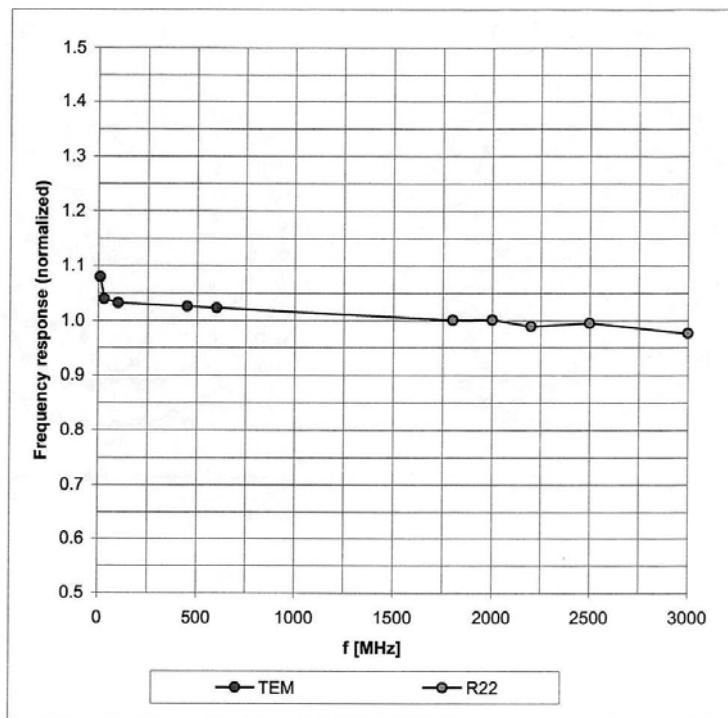
Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%] Without Correction Algorithm	5.9	3.1
SAR _{be} [%] With Correction Algorithm	0.5	0.1

Sensor Offset

Probe Tip to Sensor Center **1.0 mm**

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).


^B Numerical linearization parameter: uncertainty not required.

EX3DV4 SN:3563

July 14, 2008

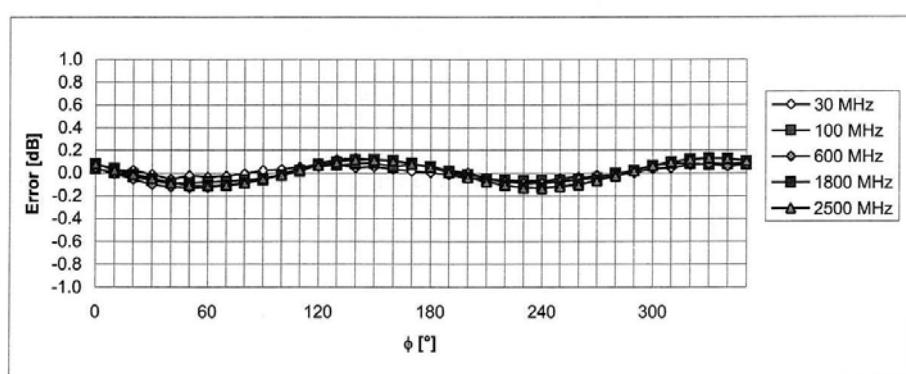
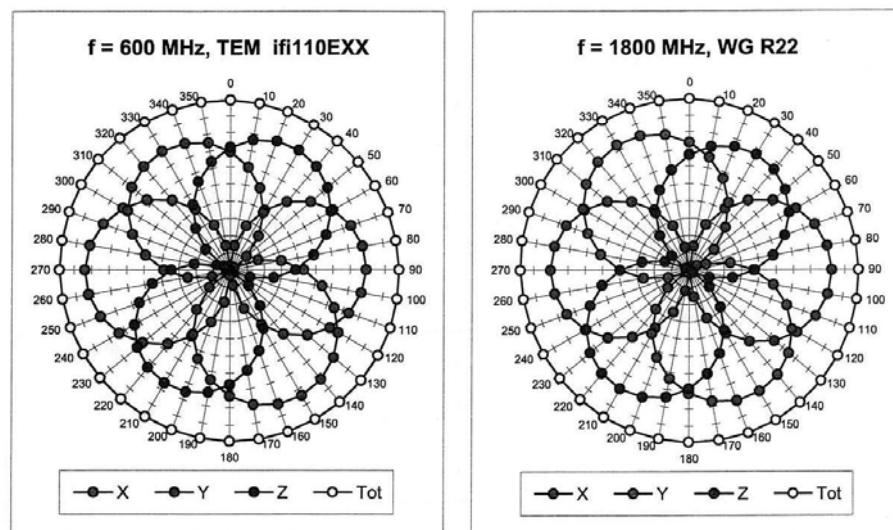
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

Certificate No: EX3-3563_Jul08

Page 5 of 9

This document must not be copied or reproduced, except in the manner permitted by the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full.
www.emctech.com.au

EX3DV4 SN:3563

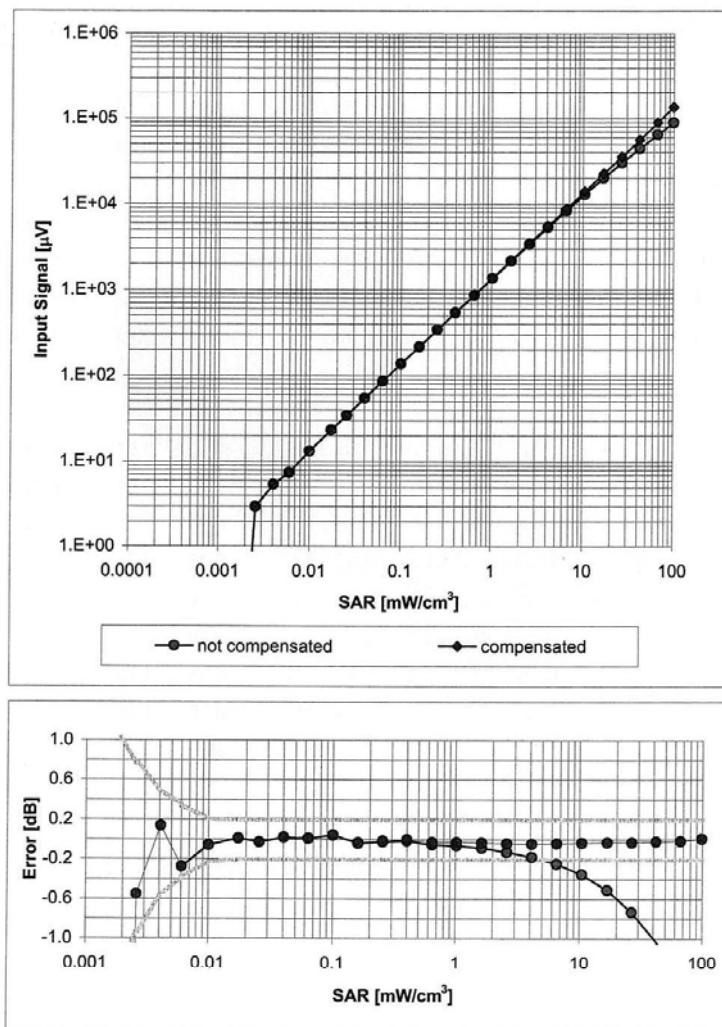
July 14, 2008

Receiving Pattern (ϕ), $\theta = 0^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Certificate No: EX3-3563_Jul08

Page 6 of 9


This document must not be copied or reproduced, except in the manner permitted by the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full.
www.emctech.com.au

EX3DV4 SN:3563

July 14, 2008

Dynamic Range $f(\text{SAR}_{\text{head}})$ (Waveguide R22, $f = 1800$ MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Certificate No: EX3-3563_Jul08

Page 7 of 9

This document must not be copied or reproduced, except in the manner permitted by the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full.
www.emctech.com.au

EX3DV4 SN:3563

July 14, 2008

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	$\pm 50 / \pm 100$	Head	41.5 \pm 5%	0.97 \pm 5%	0.85	0.57	8.30	$\pm 11.0\% (k=2)$
1810	$\pm 50 / \pm 100$	Head	40.0 \pm 5%	1.40 \pm 5%	0.65	0.59	7.29	$\pm 11.0\% (k=2)$
1950	$\pm 50 / \pm 100$	Head	40.0 \pm 5%	1.40 \pm 5%	0.53	0.58	7.01	$\pm 11.0\% (k=2)$
2450	$\pm 50 / \pm 100$	Head	39.2 \pm 5%	1.80 \pm 5%	0.54	0.67	6.56	$\pm 11.0\% (k=2)$
3500	$\pm 50 / \pm 100$	Head	37.9 \pm 5%	2.91 \pm 5%	0.30	1.30	6.16	$\pm 13.1\% (k=2)$
5200	$\pm 50 / \pm 100$	Head	36.0 \pm 5%	4.66 \pm 5%	0.38	1.75	4.30	$\pm 13.1\% (k=2)$
5600	$\pm 50 / \pm 100$	Head	35.5 \pm 5%	5.07 \pm 5%	0.38	1.75	4.00	$\pm 13.1\% (k=2)$
5800	$\pm 50 / \pm 100$	Head	35.3 \pm 5%	5.27 \pm 5%	0.40	1.75	3.87	$\pm 13.1\% (k=2)$
900	$\pm 50 / \pm 100$	Body	55.0 \pm 5%	1.05 \pm 5%	0.73	0.67	8.38	$\pm 11.0\% (k=2)$
1810	$\pm 50 / \pm 100$	Body	53.3 \pm 5%	1.52 \pm 5%	0.65	0.61	7.12	$\pm 11.0\% (k=2)$
1950	$\pm 50 / \pm 100$	Body	53.3 \pm 5%	1.52 \pm 5%	0.50	0.60	7.06	$\pm 11.0\% (k=2)$
2450	$\pm 50 / \pm 100$	Body	52.7 \pm 5%	1.95 \pm 5%	0.48	0.76	6.46	$\pm 11.0\% (k=2)$
3500	$\pm 50 / \pm 100$	Body	51.3 \pm 5%	3.31 \pm 5%	0.20	1.50	5.04	$\pm 13.1\% (k=2)$
5200	$\pm 50 / \pm 100$	Body	49.0 \pm 5%	5.30 \pm 5%	0.40	1.75	3.72	$\pm 13.1\% (k=2)$
5600	$\pm 50 / \pm 100$	Body	48.5 \pm 5%	5.77 \pm 5%	0.28	1.70	3.75	$\pm 13.1\% (k=2)$
5800	$\pm 50 / \pm 100$	Body	48.2 \pm 5%	6.00 \pm 5%	0.35	1.75	3.71	$\pm 13.1\% (k=2)$

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.