

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for Grant of Equipment Authorization

FCC Part 15 Subpart C

Models: 7265D2W and 7265D2W AN

FCC ID: PD97265D2

APPLICANT:	Intel Mobile Communications 100 Center Point Circle, Suite 200 Columbia, SC 29210, USA
TEST SITE(S):	National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-3; 2845B-4, 2845B-5, 2845B-7
REPORT DATE:	July 8, 2014
FINAL TEST DATES:	June 5 through June 20, 2014
TOTAL NUMBER OF PAGES:	210

PROGRAM MGR / TECHNICAL REVIEWER:

Bar

David W. Bare Chief Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	July 8, 2014	First release	

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	12
ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	12
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	14
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	18
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	21
APPENDIX B TEST DATA	24
END OF REPORT	210

SCOPE

An electromagnetic emissions test has been performed on the Intel Mobile Communications model 7265D2W, pursuant to the following rules:

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2009 FCC DTS Measurement Guidance KDB558074

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Testing was performed only on model 7265D2W. This model was considered representative of the following models:

7265D2W and 7265D2W AN

STATEMENT OF COMPLIANCE

The tested sample of Intel Mobile Communications model 7265D2W complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Mobile Communications model 7265D2W and therefore apply only to the tested sample. The sample was selected and prepared by Steven Hackett of Intel Mobile Communications.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS	(2400 – 2483.5MHz)
------------------------------	--------------------

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	10.04 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	b mode: 18.3 dBm g mode: 20.4 dBm n20 mode: 22.8 dBm n40 mode: 21.8 dBm BLE mode: 3.5 dBm EIRP = 0.400 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	1.3 dBm / 3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All spurious emissions < -20dBc	< -20dBc Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.5 dBµ V/m @ 2390.0 MHz (-0.5 dB)	15.207 in restricted bands, all others < -20dBc	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unique iPex-4 connector	Unique or integral antenna required	Complies
15.207	RSS GEN Table 4	AC Conducted Emissions	62.0 dBµ V @ 0.152 MHz (-3.9 dB)	Refer to page 17	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to SAR report and RSS 102 declaration and User Manual statements	Refer to OET 65, FCC Part 1 and RSS 102	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Redicted omission (field strength)	dBu\//m	25 to 1000 MHz	± 3.6 dB
Radiated emission (field strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Mobile Communications models 7265D2W and 7265D2W AN are 2x2 Wi-Fi and Bluetooth radio modules which support 802.11abgnac in 2x2 (MIMO) and 1x1 (SISO) modes & BT 4.0 (Basic rate, EDR and BLE modes). Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.3 VDC.

The sample was received on June 5, 2014 and tested on June 5 through June 20, 2014. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC and Canada IDs
Intel Mobile Communications	7265D2W	M.2 Card form factor Bluetooth / IEEE 802.11a/b/g/n/ac wireless network adapter	00:15:00:F1:5B:5D or 00:15:00:F1:5B:3A	PD97265D2 1000M-7265D2

ANTENNA SYSTEM

The EUT antenna is a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. One or both antennas are used for WiFi operation and one for Bluetooth operation. For Bluetooth: Tx is chain B, Rx is chain B. For WiFi, only Chain A is used for transmit in the 2.4GHz band when Bluetooth is active, both chains can be used in 5GHz bands.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	DCCY	Desktop computer	BJYN64J	-
Hanns G	HX191DPBUFLF6	LCD monitor	017GR3XY00286	-
Logitech	5680157	Mouse	LNA20956449	-
Intel	NGFF Extension REV 01	Extension Board	4164912-200	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)			
T OIL	Connected 10	Description	Shielded or Unshielded	Length(m)	
Antenna (x2)	Antenna	RF cable	Shielded	0.3	
Desktop Mini PCIe Slot	Extension Board	Ribbon	Unshielded	0.8	
Desktop USB	Extension Board	Multiwire	Unshielded	1.2	
Desktop AC power supply	AC Main	power cable	Unshielded	2.3	
Power (test fixture)	Computer	Multiwire	Unshielded	1.5	
Desktop USB	Keyboard	Multiwire	Shielded	1.0	
Desktop USB	Mouse	Multiwire	Shielded	1.0	
Desktop Display	Monitor	Multiwire	Shielded	1.0	

EUT OPERATION

During emissions testing the EUT was transmitting on the frequency & at the power level selected in the proprietary DRTU control software.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Registration Numbers		Location
Sile	FCC	Canada	Location
Chamber 3	US0027	2845B-3	41000 Reves Read
Chamber 4	US0027	2845B-4	41039 Boyce Road
Chamber 5	US0027	2845B-5	Fremont, CA 94538-2435
Chamber 7	US0027	2845B-7	CA 94536-2455

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

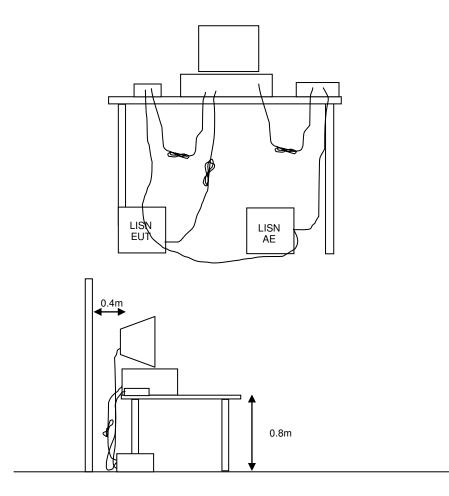
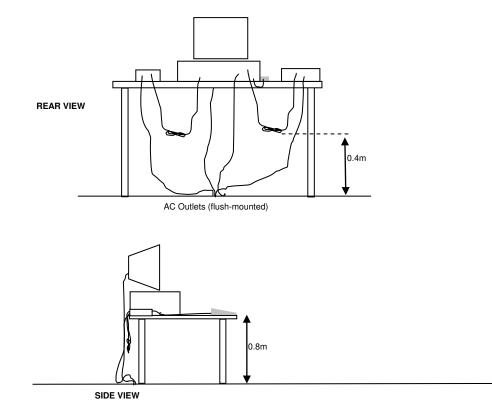
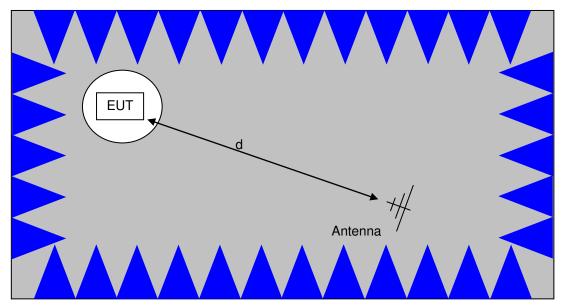


Figure 1 Typical Conducted Emissions Test Configuration

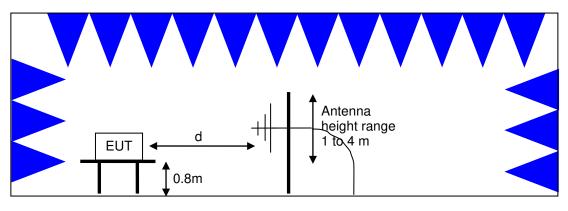

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

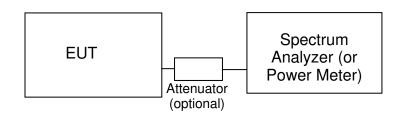
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range	Limit	Limit
(MHz)	(uV/m @ 3m)	(dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \underline{1000000 \sqrt{30 P}} \text{ microvolts per meter}$

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

	Power and Spurious Emissions), (05-Jun-14		
<u>Manufacturer</u> Rohde & Schwarz	Description EMI Test Receiver, 20 Hz-7 GHz	<u>Model</u> ESIB7	<u>Asset #</u> 1538	<u>Cal Due</u> 12/14/2014
Ronde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESID/	1030	12/14/2014
	nissions, Bandedges, 2.4 GHz, 06			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/23/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
Radiated Spurious En	nissions, Bandedges, 2.4 GHz, 09	-Jun-14		
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/23/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
Radiated Spurious En	nissions, Bandedges, 2.4 GHz, 10	-Jun-14		
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/23/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
Radiated Spurious En	nissions, 1000 - 25,000 MHz, 11-Ju	un-14		
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/23/2014
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	5/6/2015
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	11/26/2014
Micro-Tronics	Band Reject Filter, 2400-2500	BRM50702-02	2249	10/3/2014
	MHz			
	1,000 - 6,500 MHz and 18,000 - 26,	000MHz, 12-Jun-14		
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	5/6/2015
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	7/12/2014
Hewlett Packard	Head (Inc flex cable, (1742,1743) Blue)	84125C	1620	5/6/2015
Hewlett Packard	HF Amplifier, 45 MHz -50 GHz (with 1620)	83051A (84125C)	1742	5/6/2015
Hewlett Packard	HF Amplifier, 45 MHz -50 GHz	83051A (84125C)	1743	5/6/2015
A. H. Systems	(with 1620) Purple System Horn, 18-40GHz	SAS-574, p/n: 2581	2160	6/28/2014

Radiated Emissions, Manufacturer	1,000 - 26,000 MHz, 16-Jun-14 Description	Model	Asset #	Cal Due
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non- Program	8563E	284	2/26/2015
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-	3115 8449B	786 870	12/20/2015 2/20/2015
Micro-Tronics	26.5GHz Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/2/2014
	1,000 - 6,000 MHz, 16-Jun-14	Madal	A + #	
<u>Manufacturer</u> EMCO	<u>Description</u> Antenna, Horn, 1-18 GHz	<u>Model</u> 3115	<u>Asset #</u> 786	<u>Cal Due</u> 12/20/2015
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
	1,000 - 18,000 MHz, 16-Jun-14		A 1 //	
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> SpecAn 9 KHz-26.5 GHz, Non- Program	<u>Model</u> 8563E	<u>Asset #</u> 284	<u>Cal Due</u> 2/26/2015
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/20/2015
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	2/20/2015
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/2/2014
Radiated Emissions,	18,000 - 26,500 MHz, 17-Jun-14			
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	5/6/2015
Hewlett Packard	HF Amplifier, 45 MHz -50 GHz (with 1620)	83051A (84125C)	1742	5/6/2015
Hewlett Packard	HF Amplifier, 45 MHz -50 GHz (with 1620)	83051A (84125C)	1743	5/6/2015
A. H. Systems	Purple System Horn, 18-40GHz	SAS-574, p/n: 2581	2160	6/28/2014
	Power and Spurious Emissions), [•]	17-Jun-14		
Manufacturer	<u>Description</u>	Model	<u>Asset #</u>	Cal Due
Agilent Technologies	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	4/8/2015
Agilent Technologies	USB Average Power Sensor	U2001A	2442	12/19/2014
	Power and Spurious Emissions), [•]	18-Jun-14		
Manufacturer	Description	Model	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1422	1/24/2015
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts use with 20dB attenuator sn:1031.6959.00 only	NRV-Z32	1423	9/17/2014
Agilent Technologies	PSA, Spectrum Analyzer,	E4446A	2139	4/8/2015
g	(installed options, 111, 115, 123, 1DS, B7J, HYX,			

Radio Antenna Port (Power and Spurious Emissions), 19-Jun-14						
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due		
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	1070	6/6/2015		
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1071	3/24/2015		
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts use with 20dB attenuator sn:1031.6959.00 only	NRV-Z32	1423	9/17/2014		
Agilent Technologies	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	4/8/2015		
Radio Antenna Port (Power and Spurious Emissions), 2	20-Jun-14				
Radio Antenna Port (<u>Manufacturer</u>	Power and Spurious Emissions), Description	20-Jun-14 <u>Model</u>	Asset #	Cal Due		
	•		<u>Asset #</u> 1071	<u>Cal Due</u> 3/24/2015		
Manufacturer	Description	Model				

Appendix B Test Data

T95471 Pages 25 – 166 T95472 Pages 167 - 209

EMC Test Data

WE ENGINEER S	UCCESS		
Client:	Intel Corporation	Job Number:	J94914
Product	7265D2W	T-Log Number:	T95471
		Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Emissions Standard(s):	FCC Part 15.247, 15.407, RSS-210	Class:	В
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Intel Corporation

Product

7265D2W

Date of Last Test: 7/10/2014

EMC Test Data

EMC Test			C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95471
woder.		Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Power vs. Data Rate

In normal operating modes the card uses power settings stored on EEPROM to set the output power. For a given nominal output power the actual transmit power normally is redcued as the data rate increases, therefore testing was performed at the data rate in the mode wiht highest power to determine compliance with the requirements.

The following power measurements were made using a GATED average power meter and with the device configured in a continuous transmit mode on Chain 1 at the various data rates in each mode to verify the highest power mode:

Sample Notes

MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11 BT Address: 001500F15B61 DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

> Date of Test: 6/5/2014 Test Engineer: John Caizzi Test Location: Lab 4

Insertion loss of cable = .4 dB at 2.4 GHz.

Mode	Data Rate Power (dBm)		Power setting
	1	9.7	
802.11b	2	9.6	7.0
	5.5	9.5	7.0
	11	9.4	
	6	4.6	
	9	4.5	-
	12	4.5	-
900 11a	18	4.4	7.0
802.11g	24	4.3	7.0
	36	4.3	-
	48	4.2]
	54	4.2	

ent: Intel Corporation			Job	Number:	J94914
	70050.004			Number:	T95471
del: 7265D2W			Project N	lanager:	Christine Krebill
act: Steve Hackett			Project Coo		
ard: FCC Part 15.247, 15.407	, RSS-210			Class:	N/A
Mode	Data Rate	Power (dBm)	Power setting		
	HT0	4.6	_		
	HT1	4.5			
000.11m	HT2	4.5	-		
802.11n 20MHz	HT3	4.4	7.0		
ZUIVIEZ	HT4 HT5	4.2	-		
	HT6	4.1	-		
	HT7	4.2	-		
	HT0	4.4			
	HT1	4.3			
	HT2	4.2			
802.11n/ac	HT3	4.1	7.0		
40MHz	HT4	4.0	7.0		
	HT5	3.9			
	HT6	3.9			
	HT7	3.9			
: Power setting - the softwa			Telefende only.		

EMC Test Data

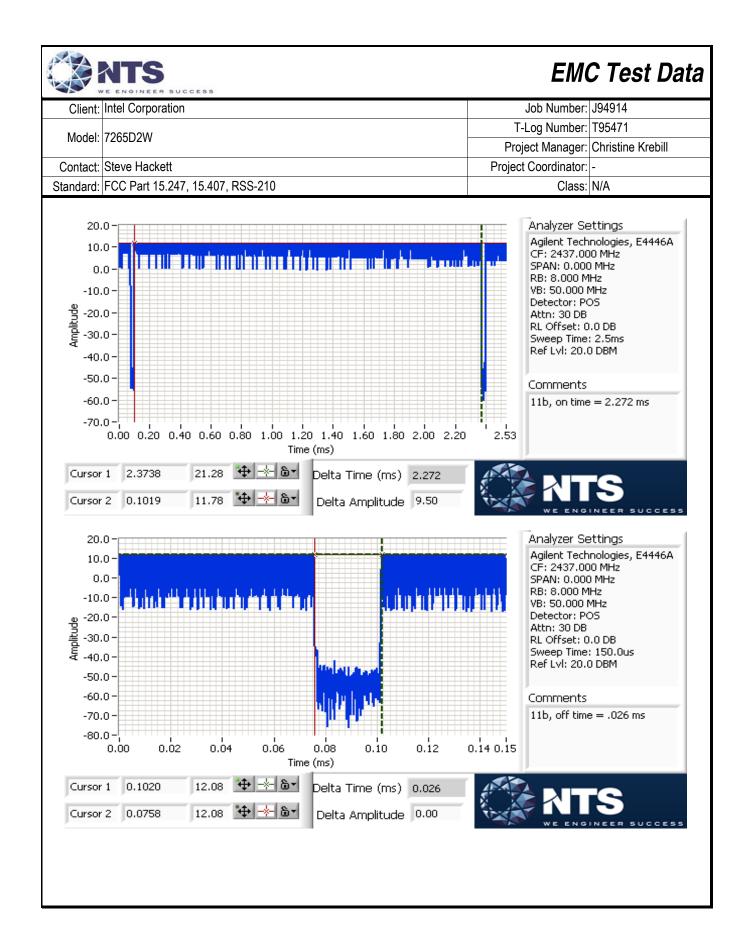
	E ENGINEER SUCCESS		
Client:	Intel Corporation	Job Number:	J94914
Model	7265D2W	T-Log Number:	T95471
Model.	72050210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

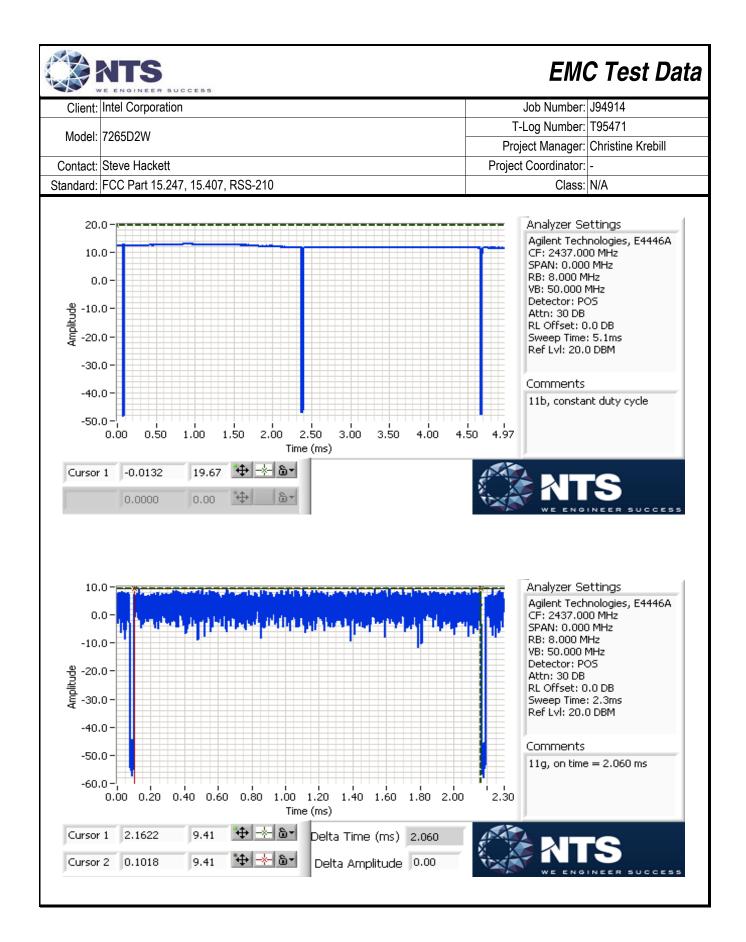
Duty Cycle

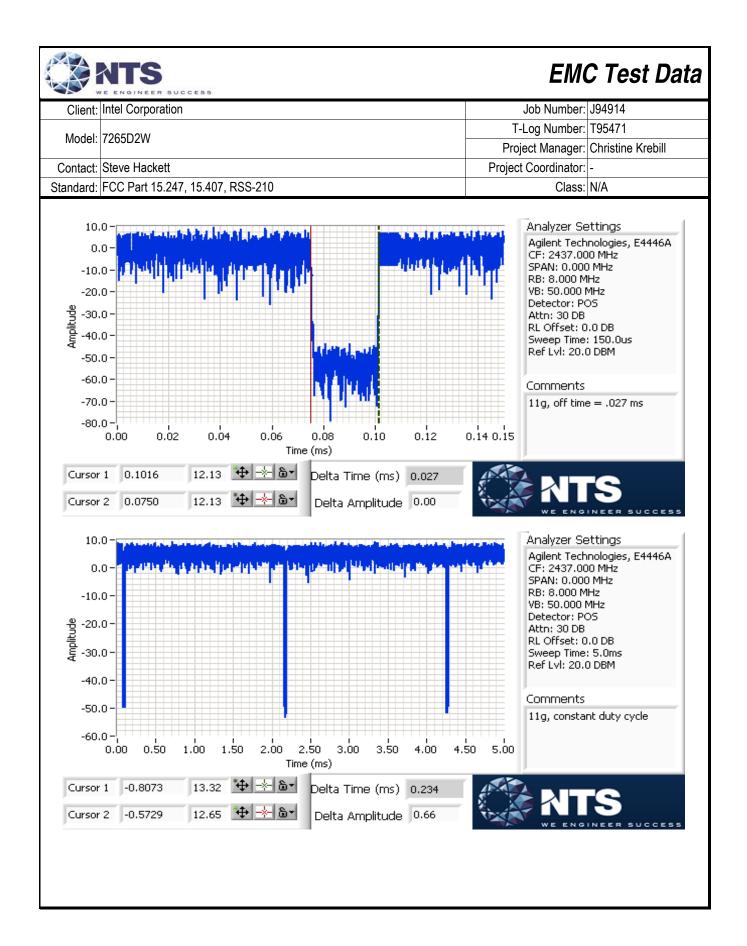
Date of Test: 6/5/14 & 6/12/14 Test Engineer: John Caizzi Test Location: Lab 4 / Chamber 7

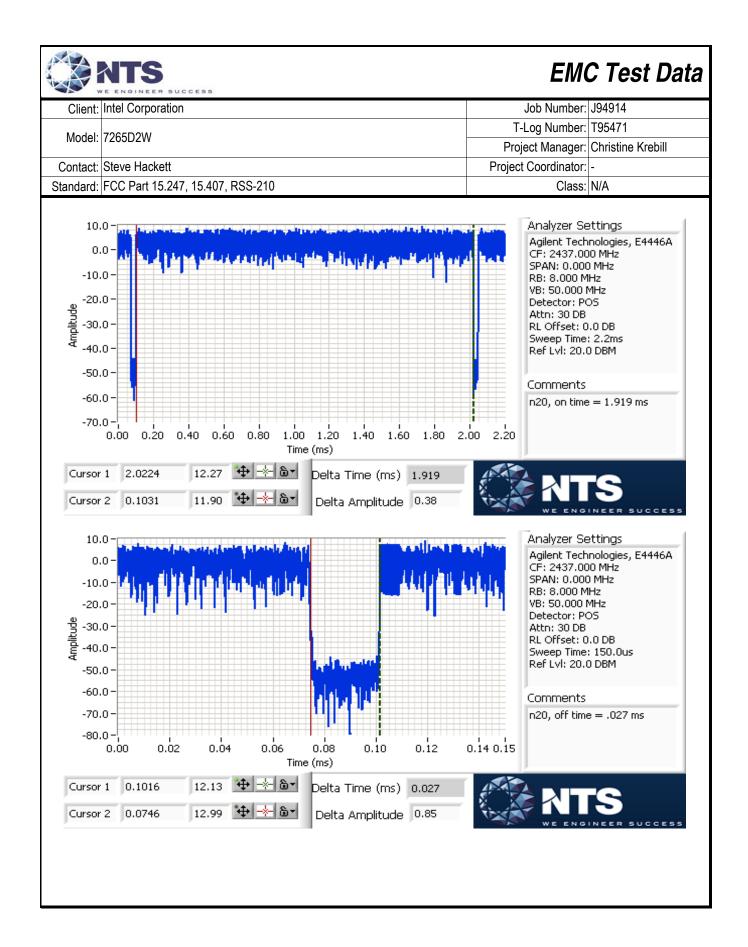
NTS

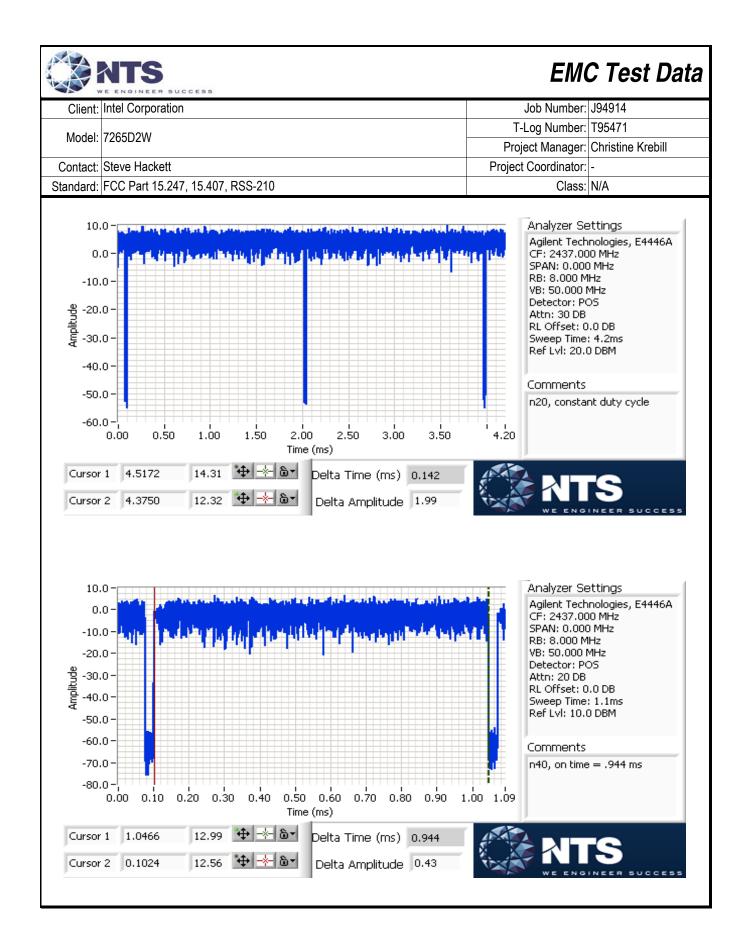
Duty cycle measurements performed on the worse case data rate for power.

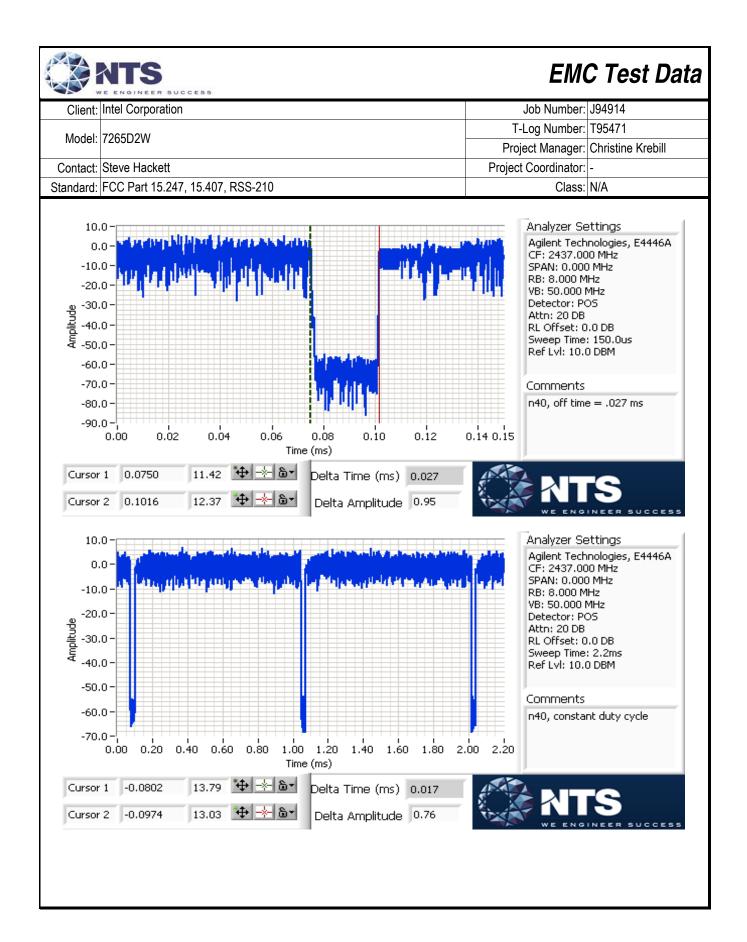

Notes: Measurements taken with maximum RBW/VBW settings allowed.

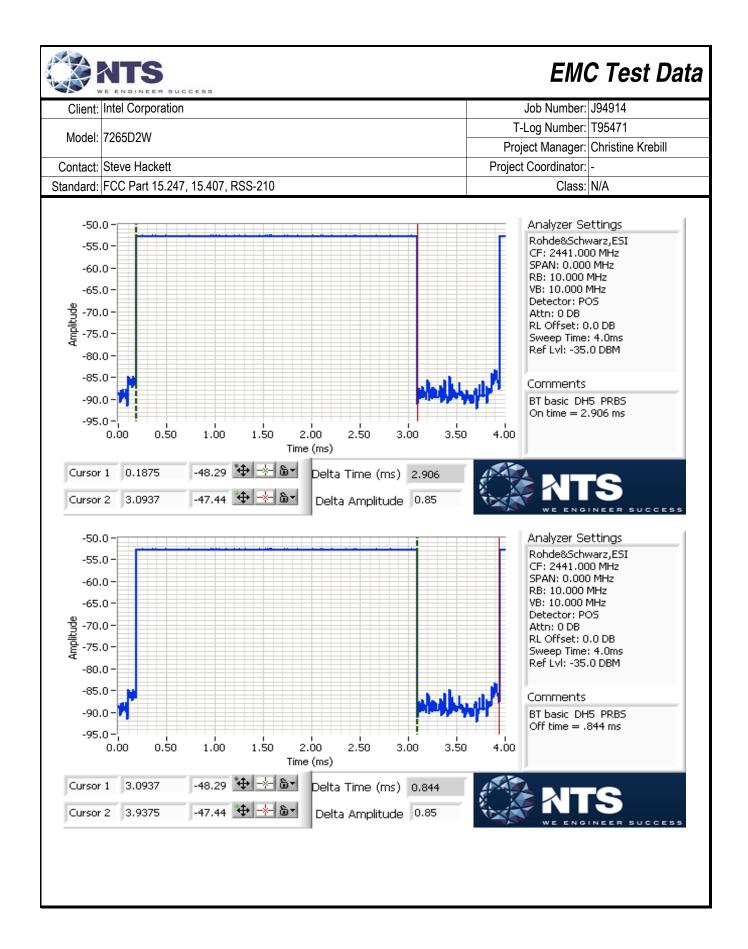

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1	0.99	Yes	2.272	0.0	0.0	440
11g	6	0.99	Yes	2.06	0.0	0.0	485
n20	HT0	0.99	Yes	1.919	0.0	0.0	521
n40	HT0	0.97	Yes	0.944	0.1	0.2	1059
BT basic	-	0.77	Yes	2.906	1.1	2.2	344
BT EDR	-	0.77	Yes	2.885	1.1	2.3	347
BTLE	-	0.63	Yes	0.391	2.0	3.9	2558

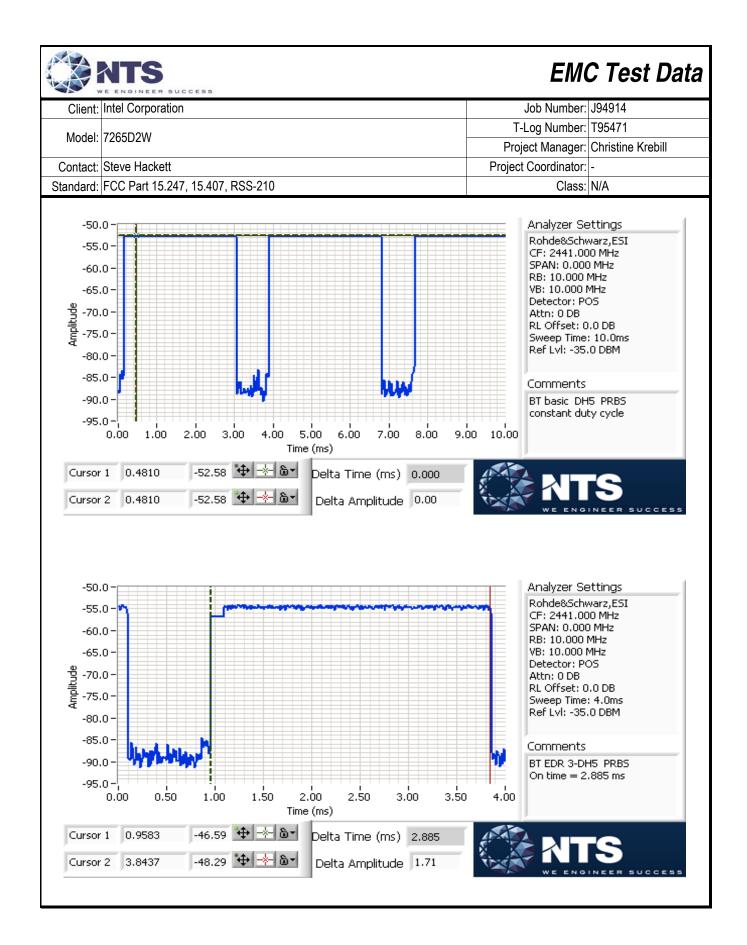

* Correction factor when using RMS/Power averaging - 10*log(1/x)

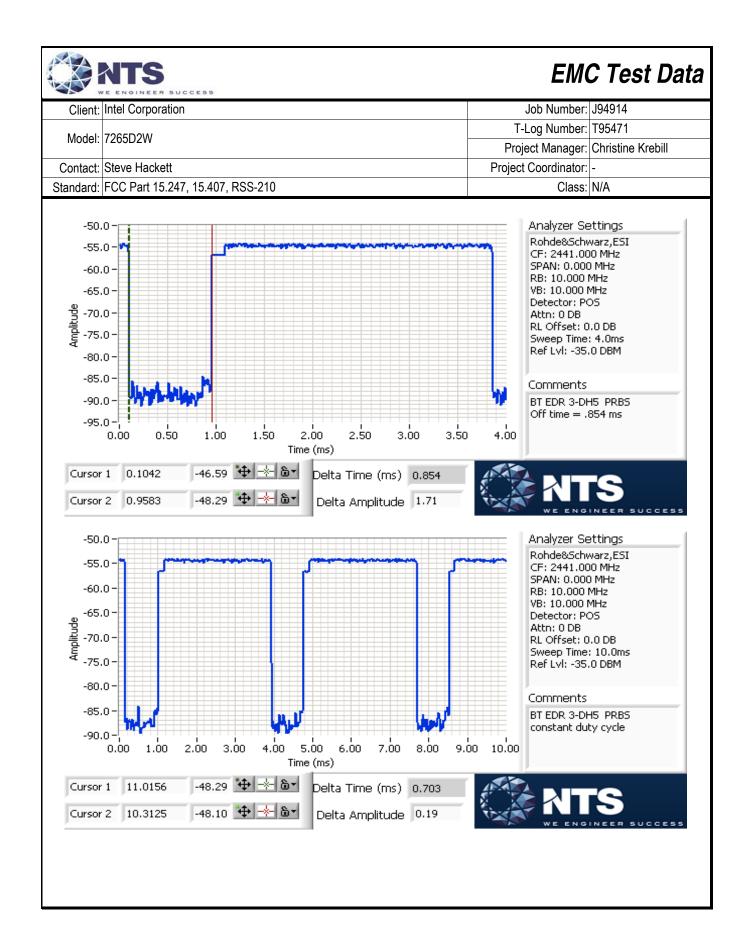

** Correction factor when using linear voltage average - 20*log(1/x)

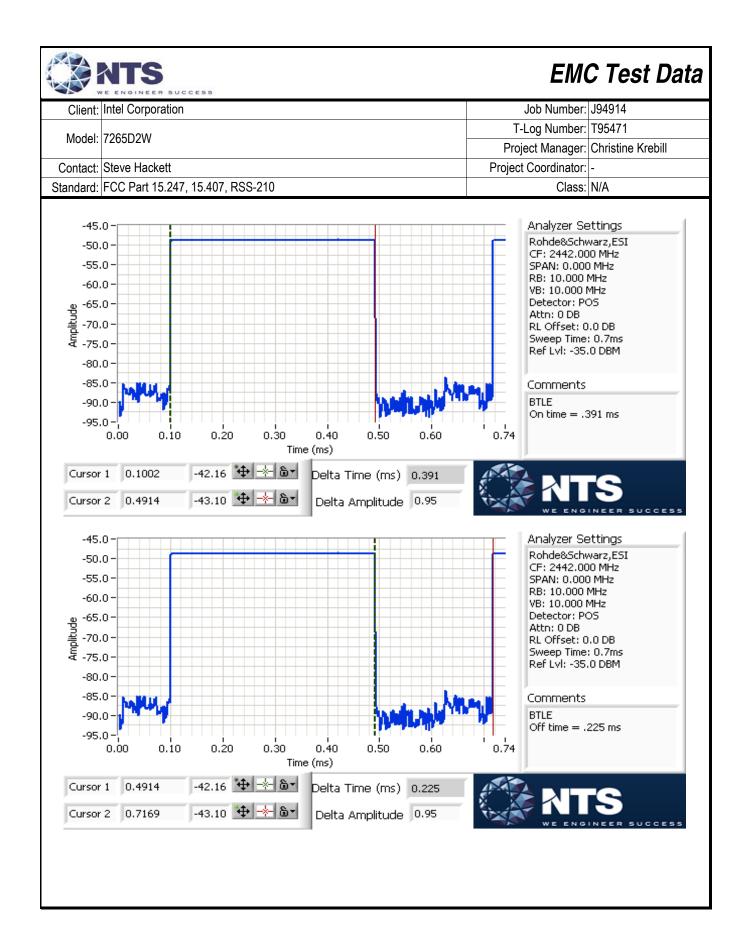

T = Minimum transmission duration

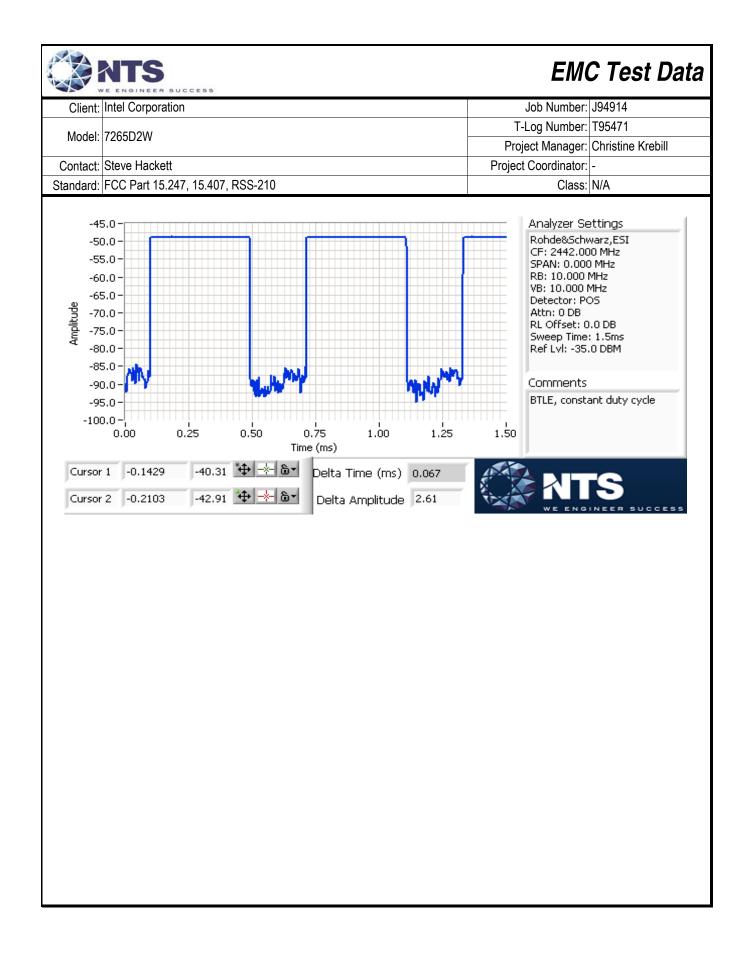










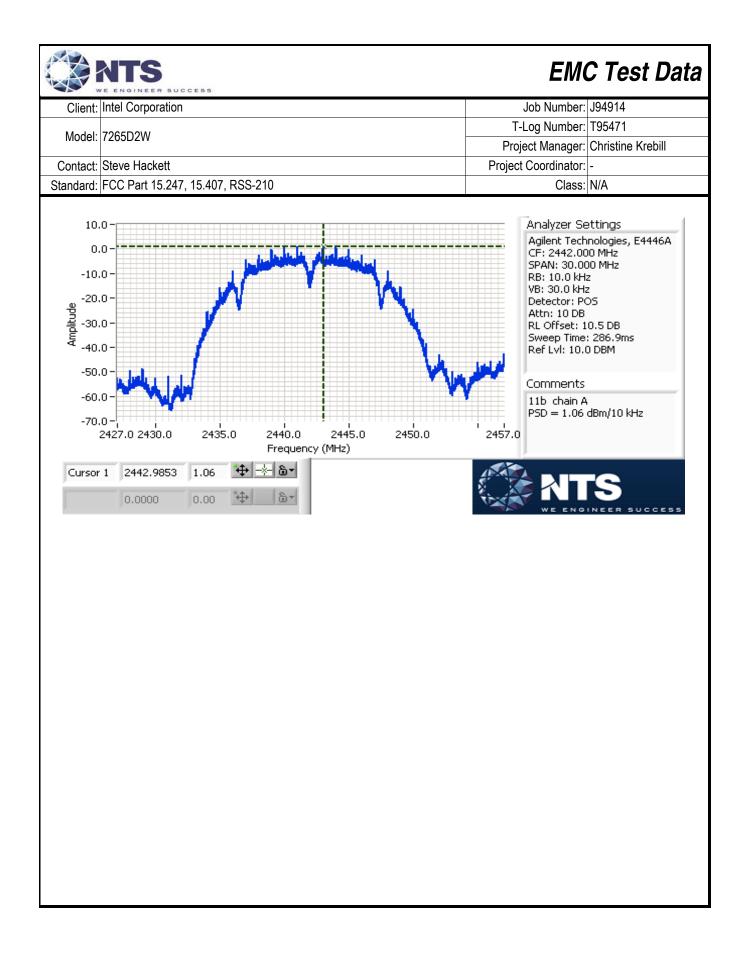


Client	: Intel Corporatio	1			Job Number:	
Model	: 7265D2W				T-Log Number:	
				P	roject Manager:	Christine Krebill
Contact	: Steve Hackett			Proje	ect Coordinator:	-
Standard	: FCC Part 15.24	7, 15.407,	RSS-210		Class:	N/A
	RS		nd FCC 15.247 (DTS) Ant ower, PSD, Bandwidth and S			3
est Spe	cific Details					
	Objective. The		of this test session is to perform final isted above.	qualification testing c	of the EUT with r	espect to the
				nfig. Used: 1		
	Date of Test: 6/1	8/2014	Co	ing. 0300. j		
	Date of Test: 6/1 est Engineer: Joh			g Change: none		
Ti T Teneral The EUT chain.	est Engineer: Joł est Location: Lat Test Configui was connected t	hn Caizzi / b 4A r ation to the spec	Jack Liu Conf	g Change: none T Voltage: 3.3Vdc table attenuator. All	measurements	were made on a sing
Ti eneral ¹ The EUT chain. All measu mbient	est Engineer: Joh fest Location: Lat Test Configur was connected t urements have be Conditions:	hn Caizzi / b 4A r ation to the spec	Jack Liu Conf EL trum analyzer or power meter via a su	g Change: none T Voltage: 3.3Vdc table attenuator. All s used.	measurements	were made on a sing
T eneral [°] The EUT chain. All meas mbient ummar	est Engineer: Joh est Location: Lat Test Configur was connected t urements have be Conditions: y of Results	hn Caizzi / b 4A ration to the spec een correc	Jack Liu Conf EL trum analyzer or power meter via a su ted to allow for the external attenuator Temperature: 18-20 ° Rel. Humidity: 30-35 %	g Change: none T Voltage: 3.3Vdc table attenuator. All s used.		
Ti eneral ¹ The EUT chain. All measu mbient	est Engineer: Joh est Location: Lat Test Configur was connected t urements have be Conditions: y of Results	hn Caizzi / b 4A r ation to the spec	Jack Liu Conf EL trum analyzer or power meter via a su ted to allow for the external attenuator Temperature: 18-20 °	g Change: none T Voltage: 3.3Vdc table attenuator. All s used.	measurements	Result / Margin
Ti eneral The EUT chain. All meas mbient ummar Run #	est Engineer: Joh est Location: Lat Test Configur was connected t urements have be Conditions: y of Results	hn Caizzi / b 4A ration to the spec een correc	Jack Liu Conf EL trum analyzer or power meter via a su ted to allow for the external attenuator Temperature: 18-20 ° Rel. Humidity: 30-35 %	g Change: none T Voltage: 3.3Vdc table attenuator. All s used. C	Pass / Fail	
Ti Teneral The EUT chain. All meas nbient	est Engineer: Joh est Location: Lat Test Configur was connected t urements have be Conditions: y of Results	hn Caizzi / b 4A ration to the spec een correc	Jack Liu Conf EL trum analyzer or power meter via a su ted to allow for the external attenuator Temperature: 18-20 ° Rel. Humidity: 30-35 %	g Change: none T Voltage: 3.3Vdc table attenuator. All s used.		Result / Margin b mode: 18.2 dBn g mode: 20.4 dBn
Ti Eeneral The EUT chain. All meas mbient Immar Run #	est Engineer: Joh est Location: Lat Test Configur was connected t urements have be Conditions: y of Results	hn Caizzi / b 4A ration to the spec een correc	Jack Liu Conf EL trum analyzer or power meter via a su ted to allow for the external attenuator Temperature: 18-20 ° Rel. Humidity: 30-35 % Test Performed Output Power	g Change: none T Voltage: 3.3Vdc table attenuator. All s used. C Limit 15.247(b)	Pass / Fail	Result / Margin b mode: 18.2 dBr g mode: 20.4 dBr n20 mode: 21.2 dE n40 mode: 20.6 dE
Ti eneral ¹ The EUT chain. All meas mbient ummar Run # 1	est Engineer: Joh est Location: Lat Test Configur was connected t urements have be Conditions: y of Results	hn Caizzi / b 4A ration to the spec een correc	Jack Liu Conf EL trum analyzer or power meter via a su ted to allow for the external attenuator Temperature: 18-20 ° Rel. Humidity: 30-35 % Test Performed Output Power Power spectral Density (PSD)	g Change: none T Voltage: 3.3Vdc table attenuator. All s used. C Limit 15.247(b) 15.247(d)	Pass / Fail Pass Pass	Result / Margin b mode: 18.2 dBn g mode: 20.4 dBn n20 mode: 21.2 dB n40 mode: 20.6 dB 1.1 dBm/10kHz
Ti eneral ^T The EUT chain. All meas mbient mbient <u>Run #</u> 1 <u>2</u> 3	est Engineer: Joh est Location: Lat Test Configur was connected t urements have be Conditions: y of Results	hn Caizzi / b 4A ration to the spec een correc	Jack Liu Conf EL trum analyzer or power meter via a su ted to allow for the external attenuator Temperature: 18-20 ° Rel. Humidity: 30-35 % Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth	g Change: none T Voltage: 3.3Vdc table attenuator. All s used. C Limit 15.247(b) 15.247(d) 15.247(a)	Pass / Fail Pass Pass Pass Pass	Result / Margin b mode: 18.2 dBn g mode: 20.4 dBn n20 mode: 21.2 dB n40 mode: 20.6 dB 1.1 dBm/10kHz 10.043 MHz
Ti eneral ¹ The EUT chain. All meas mbient mbient Run # 1	est Engineer: Joh est Location: Lat Test Configur was connected t urements have be Conditions: y of Results	hn Caizzi / b 4A ration to the spec een correc	Jack Liu Conf EL trum analyzer or power meter via a su ted to allow for the external attenuator Temperature: 18-20 ° Rel. Humidity: 30-35 % Test Performed Output Power Power spectral Density (PSD)	g Change: none T Voltage: 3.3Vdc table attenuator. All s used. C Limit 15.247(b) 15.247(d)	Pass / Fail Pass Pass	Result / Margin b mode: 18.2 dBn g mode: 20.4 dBn n20 mode: 21.2 dB n40 mode: 20.6 dB 1.1 dBm/10kHz

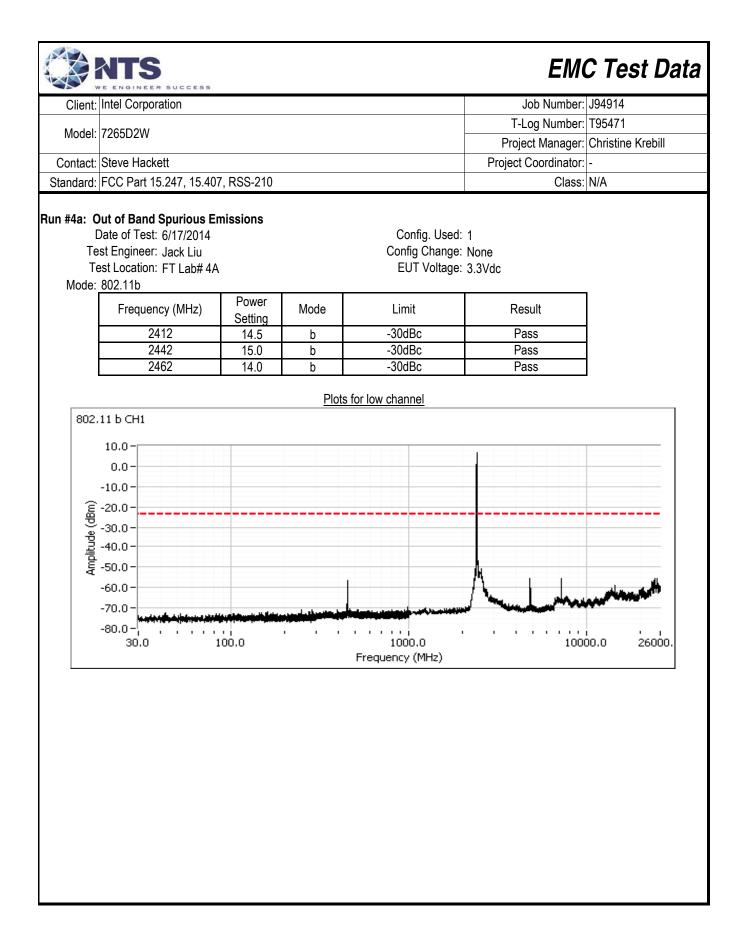
Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

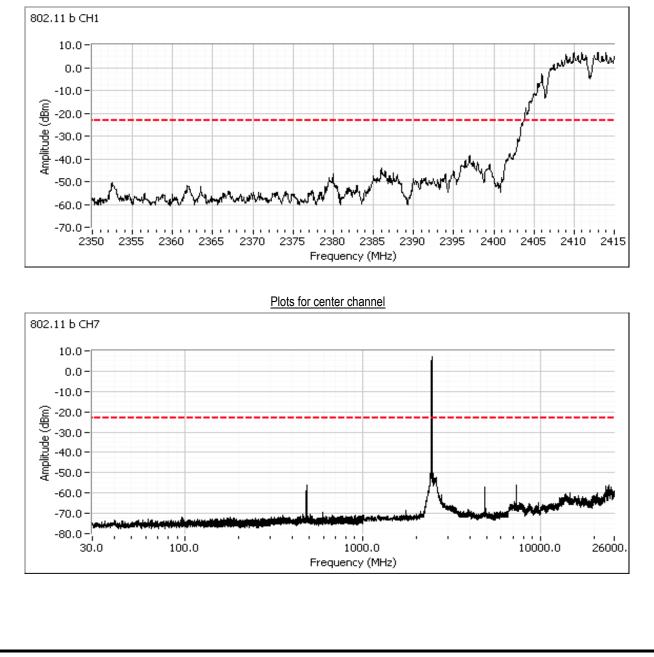
	E ENGINEER SUCCESS	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madalı	7265D2W	T-Log Number:	T95471
woder.	72030277	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

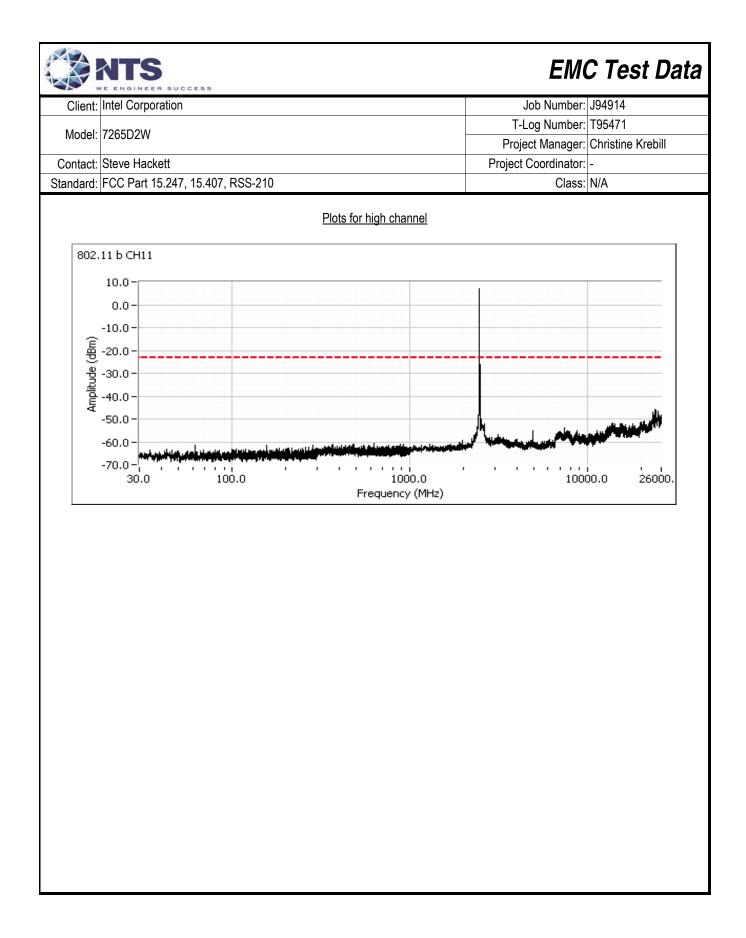

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1	0.99	Yes	2.272	0.0	0.0	440
11g	6	0.99	Yes	2.06	0.0	0.0	485
n20	HT0	0.99	Yes	1.919	0.0	0.0	521
n40	HT0	0.97	Yes	0.944	0.1	0.2	1059

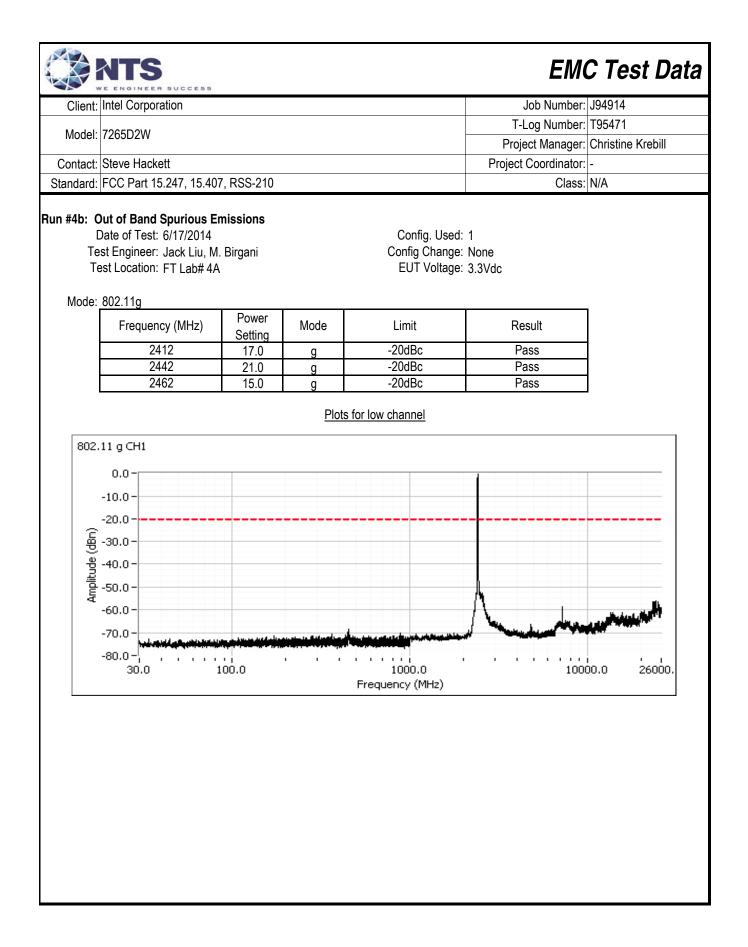
Sample Notes

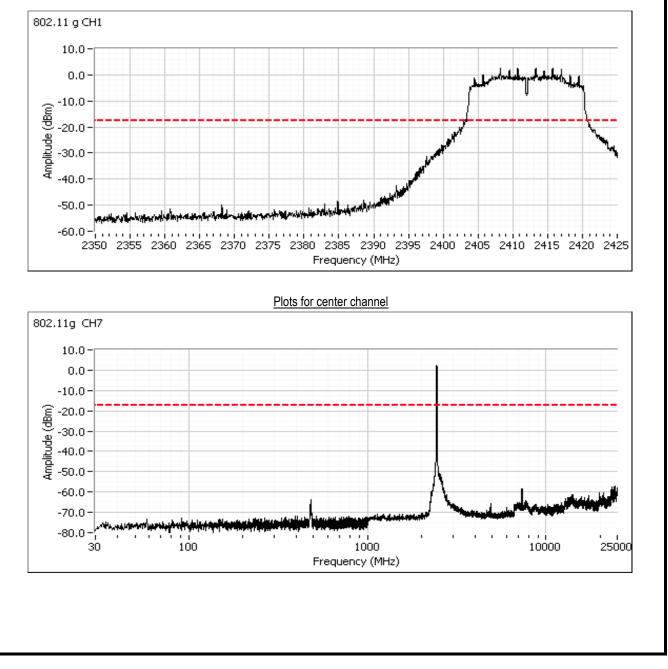

MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

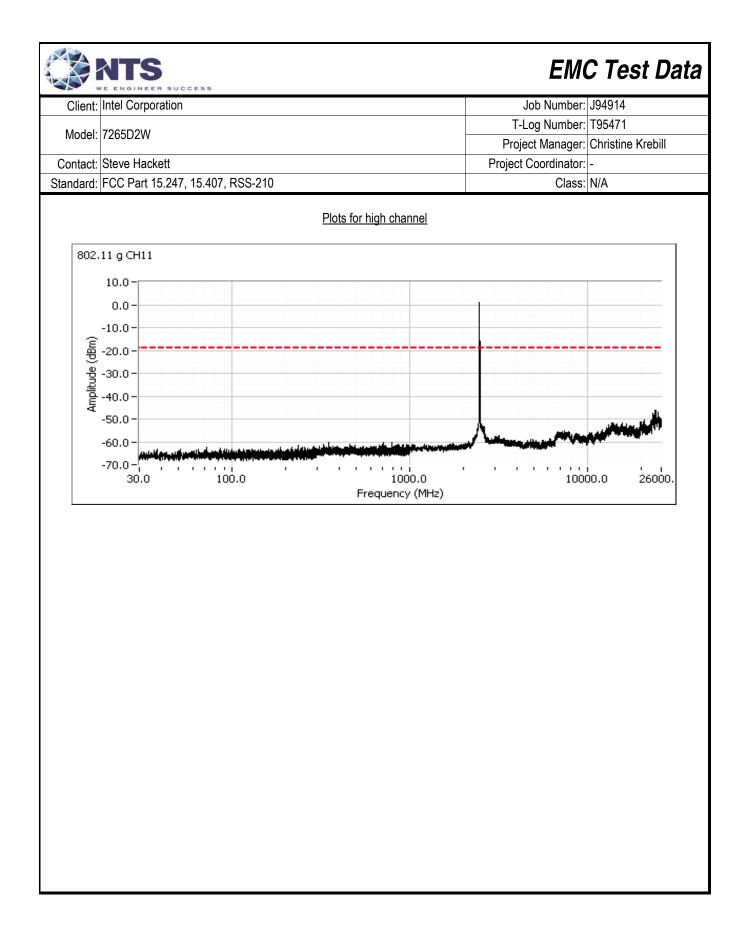
Client	Intel Corporation						Job Number:	J94914	
								: T95471	
Model:	7265D2W						0		ehill
Contact	Steve Hackett	Project Manager: Christine Krebil Project Coordinator: -					0011		
	FCC Part 15.247, 15.40	7 DCC 210				Појесі	Class:		
	· ·	7,100-210					01855.	IN/A	
Run #1: 0	utput Power								
Node:	11b	<u>.</u>		<u> </u>					
Power	Frequency (MHz)		Power	Antenna	Result	El	RP	Output	Power
Setting ²		(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
14.5	2412	17.6	57.5	3.2	Pass	20.8	0.120	16.8	47.9
15.0	2442	18.2	66.1	3.2	Pass	21.4	0.138	17.3	53.7
14.0	2462	17.5	56.2	3.2	Pass	20.7	0.117	16.7	46.8
Node:	11g								
Power	Frequency (MHz)	Output	Power	Antenna	Result	El	RP	Output	Power
Setting ²		(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
17.0	2412	17.1	51.3	3.2	Pass	20.3	0.107	14.2	26.3
21.0	2442	20.4	109.6	3.2	Pass	23.6	0.229	17.5	56.2
15.0	2462	15.5	35.5	3.2	Pass	18.7	0.074	12.8	19.1
Mode:	n20								
Power		Output	Power	Antenna		El	RP	Output Power	
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
17.0	2412	17.1	51.3	3.2	Pass	20.3	0.107	14.1	25.7
22.0	2442	21.2	131.8	3.2	Pass	24.4	0.275	17.7	58.9
15.0	2462	15.5	35.5	3.2	Pass	18.7	0.074	12.6	18.2
	n40	<u>.</u>		<u>. </u>					
		Output	Power	Antenna		FI	RP	Output Powe	
Mode:		Uuuuu			Result		W		
lode: Power	Frequency (MHz)		mW	Gain (dBi)	rtooun	dBm	VV	(dBm) ^o	mW
Mode: Power Setting ²	,	(dBm) ¹	mW 36.3	Gain (dBi) 3.2		dBm 18.8		(dBm) ³ 13.5	mW 22.4
/lode: Power	Frequency (MHz) 2422 2437		mW 36.3 114.8	Gain (dBi) 3.2 3.2	Pass	dBm 18.8 23.8	0.076	(dBm) ³ 13.5 16.7	mW 22.4 46.8

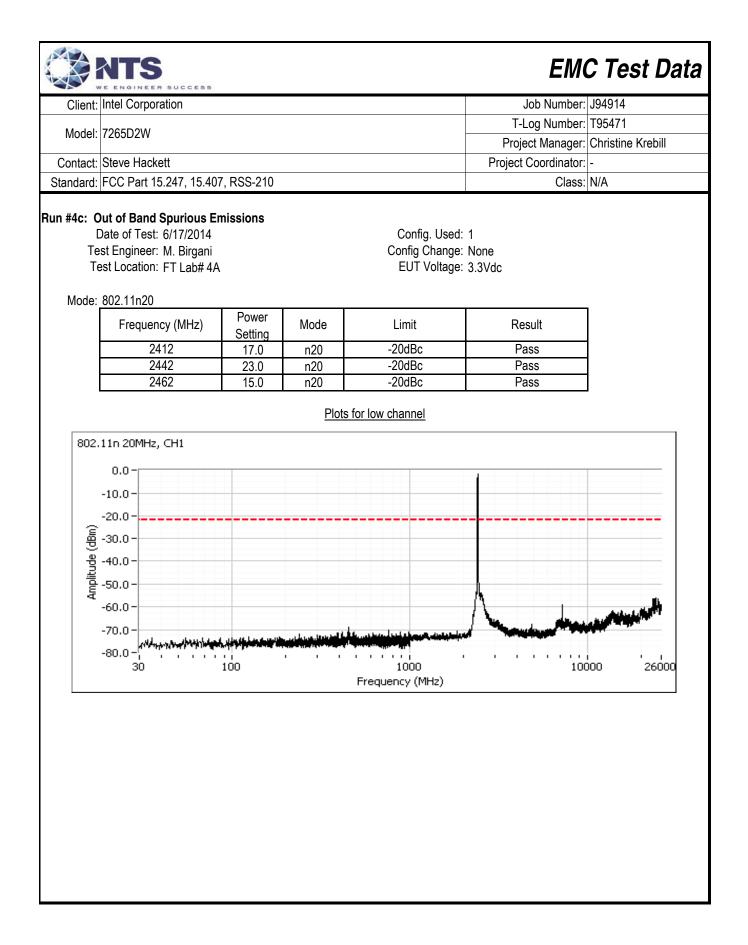

Client	WE ENGINEER SUCCESS				EMC Test I
Client	Intel Corporation				Job Number: J94914
Model	7265D2W				T-Log Number: T95471
				Project Manager: Christine Kreb	
Contact	Steve Hackett				Project Coordinator: -
Standard:	FCC Part 15.247, 15.40	7, RSS-210			Class: N/A
Run #2: Po	ower spectral Density				
Mode:	11b				
Power		PSD	Limit	Result	
Setting	Frequency (MHz)	(dBm/10kHz) ^{Note 1}	dBm/3kHz		
14.5	2412	0.5	8.0	Pass	
15.0	2442	1.1	8.0	Pass	
14.0	2462	0.2	8.0	Pass	
M - 4-	44				
Mode: Power	11g	PSD	Limit	Result	
Setting	Frequency (MHz)		dBm/3kHz		
17.0	2412	(dBm/10kHz) ^{Note 1} -5.3	8.0	Pass	
21.0	2412	-2.4	8.0	Pass	
15.0	2462	-8.5	8.0	Pass	
		0.0	0.0		
	n20		•	· · · · · · · · ·	
		PSD	Limit	Result	
Power	Frequency (MHz)				
Power Setting	Frequency (MHz)	(dBm/10kHz) ^{Note 1}	dBm/3kHz		
Power Setting 17.0	2412	(dBm/10kHz) ^{Note 1} -5.2	8.0	Pass	
Power Setting 17.0 23.0	2412 2442	(dBm/10kHz) ^{Note 1} -5.2 -1.0	8.0 8.0	Pass	
Power Setting 17.0	2412	(dBm/10kHz) ^{Note 1} -5.2	8.0		
Setting 17.0 23.0 15.0	2412 2442 2462	(dBm/10kHz) ^{Note 1} -5.2 -1.0	8.0 8.0	Pass	
Power Setting 17.0 23.0 15.0 Mode:	2412 2442 2462 n40	(dBm/10kHz) ^{Note 1} -5.2 -1.0 -8.1	8.0 8.0 8.0	Pass Pass	
Power Setting 17.0 23.0 15.0 Mode: Power	2412 2442 2462	(dBm/10kHz) ^{Note 1} -5.2 -1.0 -8.1 PSD	8.0 8.0 8.0 Limit	Pass Pass Result	
Power Setting 17.0 23.0 15.0 Mode:	2412 2442 2462 n40	(dBm/10kHz) ^{Note 1} -5.2 -1.0 -8.1 PSD (dBm/10kHz) ^{Note 1}	8.0 8.0 8.0	Pass Pass Result	
Power Setting 17.0 23.0 15.0 Mode: Power Setting	2412 2442 2462 n40 Frequency (MHz)	(dBm/10kHz) ^{Note 1} -5.2 -1.0 -8.1 PSD	8.0 8.0 8.0 Limit dBm/3kHz	Pass Pass Result	

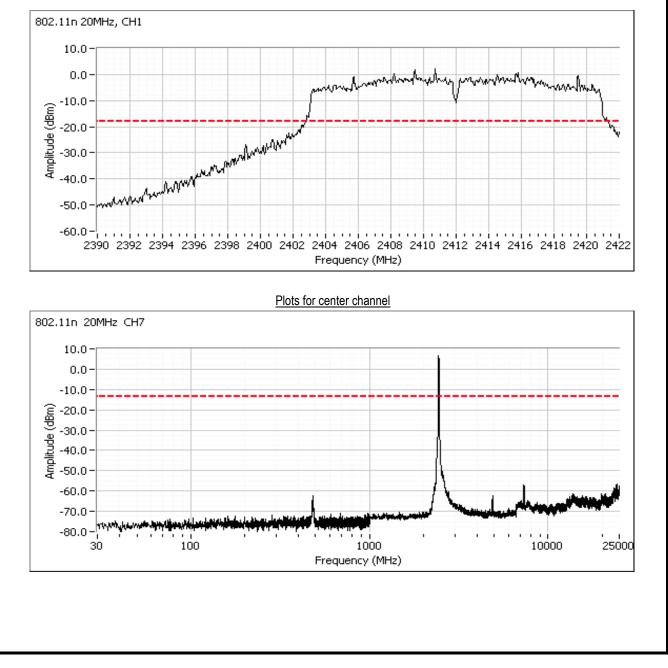


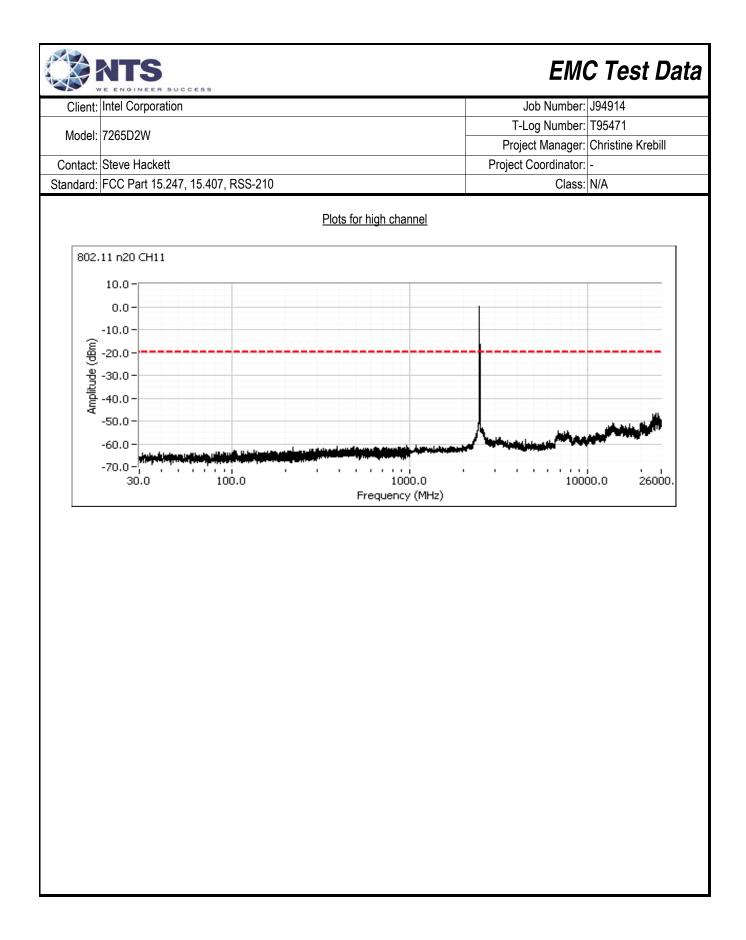

Model: T-Log Number: T95471 Model: 7265D2W Project Manager: Christine Krebil Contact: Steve Hackett Project Coordinator: - Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Class: N/A Mode: 1b Project Manager: Class: N/A Mode: 1b Power GdB 99% 6dB 99% 15.0 2442 10.043 12.43 100 300 Mode: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 20.5 2442 15.135 16.81 100 300 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 21.0 2442 15.125 18.17 100 300 300 Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 17.5 2442 <t< th=""><th>T-Log Number: T95471 T-Log Number: T95471 Project Manager: Christine Krebill Contact: Steve Hackett Project Coordinator: Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Mode: 11b Class: N/A Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) 6dB 99% 6dB 99% 15.0 2442 10.043 12.43 100 300 Mode: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting (MHz) 20.5 2442 15.135 16.81 100 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting (MHz) 21.0 2442 15.125 18.17 100 300 Mode: n40 Dever Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99%</th><th>Clier</th><th>nt: Intel Corpora</th><th>ation</th><th></th><th></th><th></th><th></th><th>Job Number:</th><th>J94914</th></t<>	T-Log Number: T95471 T-Log Number: T95471 Project Manager: Christine Krebill Contact: Steve Hackett Project Coordinator: Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Mode: 11b Class: N/A Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) 6dB 99% 6dB 99% 15.0 2442 10.043 12.43 100 300 Mode: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting (MHz) 20.5 2442 15.135 16.81 100 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting (MHz) 21.0 2442 15.125 18.17 100 300 Mode: n40 Dever Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99%	Clier	nt: Intel Corpora	ation					Job Number:	J94914
Model: $7265D2W$ Project Manager: Orbitation Christine KrebilContact:Steve HackettProject Coordinator: -Standard:FCC Part 15.247, 15.407, RSS-210Class: N/ARun #3:Signal BandwidthNode:1bPowerFrequency (MHz)Bandwidth (MHz)SettingFrequency (MHz)6dB99%6dB99%15.0244210.04312.43100Mode:11gPowerFrequency (MHz)6dB99%6dB99%20.5244215.13516.81100300Mode:n20PowerFrequency (MHz)6dB99%21.0244215.12518.17100300Mode:n40PowerFrequency (MHz)6dB99%6dB99%17.5244235.13236.16100470	Model: $\frac{1265D2W}{2}$ Project Manager:Christine KrebillContact:Steve HackettProject Coordinator:-Standard:FCC Part 15.247, 15.407, RSS-210Class:N/ARun #3: Signal BandwidthWode:11bPower SettingFrequency (MHz)Bandwidth (MHz) GdBRBW Setting (kHz) (bdB99% GdBWode:11gPower SettingFrequency (MHz)Bandwidth (MHz) GdBRBW Setting (MHz) (MHz)RBW Setting (MHz) (MHz)Wode:11gPower SettingFrequency (MHz)Bandwidth (MHz) GdBRBW Setting (MHz) (MHz)RBW Setting (MHz) (MHz)Wode:10Power SettingFrequency (MHz)Bandwidth (MHz) GdBRBW Setting (MHz) (MHz)Wode:n20Power SettingFrequency (MHz)Bandwidth (MHz) GdBRBW Setting (MHz) (MHz)Wode:n40Power SettingFrequency (MHz) GdBBandwidth (MHz) GdBRBW Setting (MHz) (MHz)Nucle 1:DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.									
Contact:Steve HackettProject Coordinator:Standard:FCC Part 15.247, 15.407, RSS-210Class:N/ARun #3:Signal BandwidthNode:1bPower SettingFrequency (MHz)SettingFrequency (MHz)Bandwidth (MHz) GdBRBW Setting (KHz) 6dBSolution15.0244210.043Node:11gPowerFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBSettingFrequency (MHz)6dB99% 6dB20.5244215.13516.81100Node:n20Node:n20PowerFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBSettingFrequency (MHz)Bandwidth (MHz) 6dBn200Node:n40N4215.12518.17Node:n40Name SettingFrequency (MHz) 6dBBandwidth (MHz) 6dBPowerFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBNode:n40Name NameName NameNode:17.5244235.13236.16Node:10Tros244235.132Node:1DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	Contact:Steve HackettProject Coordinator:Standard:FCC Part 15.247, 15.407, RSS-210Class:N/ARun #3: Signal BandwidthMode:11b $Power$ Setting 15.0Frequency (MHz)Bandwidth (MHz) 6dBRBW Setting (kHz) 6dBSettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (kHz) 99%SettingFrequency (MHz)Bandwidth (MHz) 6dB99%SettingFrequency (MHz)Bandwidth (MHz) 6dB99%SettingFrequency (MHz)Bandwidth (MHz) 6dB99%20.5244215.13516.81100Mode:n20n20244215.12518.17Mode:n20n20244215.12518.17Mode:n20n406dB99% 6dB99% 6dBMode:n40n40Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBSettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBNote 1:DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	Mode	el: 7265D2W						-	
Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) A Node: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) A Node: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) A Setting Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) A A Node: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) A Setting Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) A A Node: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) A Node: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) A Node: n40 Power Setting Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz)	Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Mode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) 6dB 99% 15.0 2442 10.043 12.43 100 300 Mode: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 20.5 2442 15.135 16.81 100 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 21.0 2442 15.125 18.17 100 300 Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 17.5 2442 35.132 36.16 100 470	Contac	ct: Steve Hacke	ett				-	-	-
Indel: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) 6dB 99% 6dB 99% 15.0 2442 10.043 12.43 100 300 Indel: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 20.5 2442 15.135 16.81 100 300 Node: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 21.0 2442 15.125 18.17 100 300 Node: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 17.5 2442 35.132 36.16 100 470 Intert DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time. 100 100	Mode:11b $Power$ Setting $Frequency (MHz)$ $Bandwidth (MHz)$ $6dB$ RBW Setting (KHz) $6dB$ Mode:11g $Power$ Setting $Frequency (MHz)$ $Bandwidth (MHz)$ $6dB$ RBW Setting (MHz) $6dB$ 20.5 244215.13516.81Mode:nono 100 Mode:no $no100110$	Standar	d: FCC Part 15	.247, 15.407, RSS-210						N/A
Indel: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) 6dB 99% 6dB 99% 15.0 2442 10.043 12.43 100 300 Indel: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 20.5 2442 15.135 16.81 100 300 Node: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 21.0 2442 15.125 18.17 100 300 Node: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 17.5 2442 35.132 36.16 100 470 Intert DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time. 100 100	Wode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) 6dB 99% 6dB 99% 15.0 2442 10.043 12.43 100 300 Mode: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Bandwidth (MHz) Setting Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 300 Mode: n2 15.135 16.81 100 300 Mode: n2 15.125 18.17 100 300 Mode: n2 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 21.0 2442 15.125 18.17 100 300 Mode: n40 1 17.5 2442 35.132 36.16 100 470 Note 1: DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time. 100 300 470	Run #3• (Signal Bandwi	dth				l		
Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (kHz) 6dB15.0244210.04312.43100300Mode:11gPower SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB99%20.5244215.13516.81100300Mode:n20Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBPower SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 99%Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 99%Mode:n40DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (kHz) 6dB15.0244210.04312.43100300Mode:11gPower SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB99%20.5244215.13516.81100300Mode:n20Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBPower SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 300Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 300Mode:n40DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.		•							
SettingFrequency (MHz)6dB99%6dB99%15.0244210.04312.43100300Mode:11gPowerFrequency (MHz)Bandwidth (MHz)RBW Setting (MHz)SettingFrequency (MHz)6dB99%6dB99%20.5244215.13516.81100300Mode:n20PowerFrequency (MHz)Bandwidth (MHz)RBW Setting (MHz)SettingFrequency (MHz)6dB99%6dB99%21.0244215.12518.17100300Mode:n40PowerFrequency (MHz)Bandwidth (MHz)RBW Setting (MHz)SettingFrequency (MHz)6dB99%6dB99%17.5244235.13236.16100Iote 1:DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	SettingFrequency (MHz)6dB99%6dB99%15.0244210.04312.43100300Mode:11g $Power$ Frequency (MHz)Bandwidth (MHz)RBW Setting (MHz)SettingFrequency (MHz)6dB99%20.5244215.13516.81100Mode:n20 $Power$ Frequency (MHz)Bandwidth (MHz)RBW Setting (MHz)SettingFrequency (MHz)6dB99%21.0244215.12518.17100Mode:n40 $Power$ Frequency (MHz)Bandwidth (MHz)RBW Setting (MHz)SettingFrequency (MHz)6dB99%17.5244235.13236.16100Note 1:DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	vioue:			Bandwid	th (MHz)	RBW Set	tina (kHz)	1	
Index15.0244210.04312.43100300Node:11gPower SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB99%20.5244215.13516.81100300Node:n20Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB99% 99%21.0244215.12518.17100300Node:n40Power SettingFrequency (MHz) 6dBBandwidth (MHz) 6dBRBW Setting (MHz) 6dB99% 99% 6dBNode:n40DTS BW:RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	InstructionInstructionInstructionMode:InstructionInstructionInstructionImage: Power Setting Power Setting Power Setting Power Setting Power InstructionFrequency (MHz)Bandwidth (MHz) RBW Setting (MHz)Image: Setting Power Setting Power Setting Power Setting Power Setting Power InstructionFrequency (MHz)Bandwidth (MHz) RBW Setting (MHz)Image: Setting Power Setting Power Power Setting Power Power Power Power InstructionFrequency (MHz)Bandwidth (MHz) RBW Setting (MHz)Image: Mode: Power Setting Power Po			Frequency (MHz)						
Power Setting Frequency (MHz) Bandwidth (MHz) 6dB RBW Setting (MHz) 20.5 2442 15.135 16.81 100 300 Node: n20 Power Setting Frequency (MHz) Bandwidth (MHz) 6dB RBW Setting (MHz) GMZ 21.0 2442 15.125 18.17 100 300 Node: n40 Power Setting Frequency (MHz) Bandwidth (MHz) 6dB RBW Setting (MHz) 300 MHz) Node: n40 Discrete Discrete Bandwidth (MHz) 6dB 99% 6dB 99% 99% 17.5 2442 35.132 36.16 100 470	Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB20.5244215.13516.81100300Mode:n20Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB99%21.0244215.12518.17100300Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 99%SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 99%Node:n40DTS BW:RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.			2442						
Power Setting Frequency (MHz) Bandwidth (MHz) 6dB RBW Setting (MHz) 20.5 2442 15.135 16.81 100 300 Node: n20 Power Setting Frequency (MHz) Bandwidth (MHz) 6dB RBW Setting (MHz) GMZ 21.0 2442 15.125 18.17 100 300 Node: n40 Power Setting Frequency (MHz) Bandwidth (MHz) 6dB RBW Setting (MHz) 300 MHz) 800 Node: n40 Distribution Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 99% 99% 6dB 99% 99% 17.5 2442 35.132 36.16 100 470	Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB20.5244215.13516.81100300Mode:n20Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB99%21.0244215.12518.17100300Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 99%17.5244235.13236.16100470	Node:	11g							
Setting $1.4 \times 1.4 \times 1.5$ $6dB$ 99% $6dB$ 99% 20.5 2442 15.135 16.81 100 300 Node: $n20$ Power SettingFrequency (MHz)Bandwidth (MHz) $6dB$ RBW Setting (MHz) $6dB$ 99% 21.0 2442 15.125 18.17 100 300 Node: $n40$ Power SettingFrequency (MHz) $6dB$ Bandwidth (MHz) $6dB$ RBW Setting (MHz) $6dB$ 99% 17.5 2442 35.132 36.16 100 470 Note 1:DTS BW: RBW=100kHz, VBW $\ge 3^*$ RBW, peak detector, max hold, auto sweep time.	Setting $1.1 \times 1.4 \times 1$ $6dB$ 99% $6dB$ 99% 20.5 2442 15.135 16.81 100 300 Mode: $n20$ $\begin{array}{ c c c c }\hline Power & Frequency (MHz) & Bandwidth (MHz) & RBW Setting (MHz) & 6dB & 99\% & 6dB & 99\% & 21.0 & 2442 & 15.125 & 18.17 & 100 & 300$			Frequency (MHz)						
Node:n20Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB21.0244215.12518.17Node:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBNode:n40Display="block">Image: n40Display="block">Image: n40Display="block">Image: n40Display="block">Image: n40Display="block">Image: n40Display="block">Image: n40Display="block">Image: n40Display="block">Image: n40Display="block">Image: n40Display="block">Image: n40Image: n40Display="block">Image: n40Image: n40Image: n40Image: n40Display="block">Image: n40Image: n40 <td>Mode:n20Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB21.0244215.12518.17Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBPower SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBNote 1:DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.</td> <td></td> <td></td> <td> ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Mode:n20Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB21.0244215.12518.17Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBPower SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBNote 1:DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.			,						
Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB21.0244215.12518.17100300Indee:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB99%17.5244235.13236.16100470Inter 1:DTS BW: RBW=100kHz, VBW \geq 3*RBW, peak detector, max hold, auto sweep time.	Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB21.0244215.12518.17100300Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB99%17.5244235.13236.16100470Note 1:		20.5	2442	15.135	16.81	100	300	J	
Setting Frequency (MH2) 6dB 99% 6dB 99% 21.0 2442 15.125 18.17 100 300 Node: n40 Power Setting Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 17.5 2442 35.132 36.16 100 470 470	Setting Frequency (MH2) 6dB 99% 6dB 99% 21.0 2442 15.125 18.17 100 300 Mode: n40 Power Setting Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 17.5 2442 35.132 36.16 100 470	Mode:	n20						_	
Setting Correction 6dB 99% 6dB 99% 21.0 2442 15.125 18.17 100 300 Inde: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 17.5 2442 35.132 36.16 100 470 Intent: DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	Setting Gob			Frequency (MHz)						
Node:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB17.5244235.13236.16100470Inter 1:DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz)RBW Setting (MHz)6dB99%6dB99%17.5244235.13236.16100Note 1:DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.									
Power SettingFrequency (MHz)Bandwidth (MHz) $6dB$ RBW Setting (MHz) $6dB$ 17.5244235.13236.16100470Inter 1:DTS BW: RBW=100kHz, VBW \geq 3*RBW, peak detector, max hold, auto sweep time.	Power SettingFrequency (MHz)Bandwidth (MHz) $6dB$ RBW Setting (MHz) $6dB$ 99%17.5244235.13236.16100470Note 1:		21.0	2442	15.125	18.17	100	300	l	
SettingFrequency (MH2)6dB99%6dB99%17.5244235.13236.16100470Intent:DTS BW: RBW=100kHz, VBW \geq 3*RBW, peak detector, max hold, auto sweep time.	SettingFrequency (MH2)6dB99%6dB99%17.5244235.13236.16100470Note 1:DTS BW: RBW=100kHz, VBW \geq 3*RBW, peak detector, max hold, auto sweep time.	Node:	<u>n40</u>		-		-			
Setting 60B 99% 60B 99% 17.5 2442 35.132 36.16 100 470 DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	Setting 6dB 99% 6dB 99% 17.5 2442 35.132 36.16 100 470 Note 1:			Frequency (MHz)						
DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	Note 1: DTS BW: RBW=100kHz, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.									
			17.5	2442	35.132	36.16	100	470		
99% BW: RBW=1-5% of of 99%BW, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.	[99% BW: RBW=1-5% of of 99%BW, VBW ≥ 3*RBW, peak detector, max hold, auto sweep time.					tector max	hald auto au	veep time.		
		lote 1.	DTS BW: R	BW=100kHz, VBW ≥ 3*F	RBW, peak de	steetoi, max	noid, auto sv	teep ame.		
		ote 1:							eep time.	
		ote 1:							eep time.	
		ote 1:							eep time.	
		ote 1:							eep time.	
		lote 1:							eep time.	
		Note 1:							eep time.	
		Note 1:							eep time.	
		Note 1:							eep time.	
		Note 1:							eep time.	
		Note 1:							eep time.	
		Note 1:							eep time.	
		Note 1:							eep time.	
		Note 1:							eep time.	
		Note 1:							eep time.	

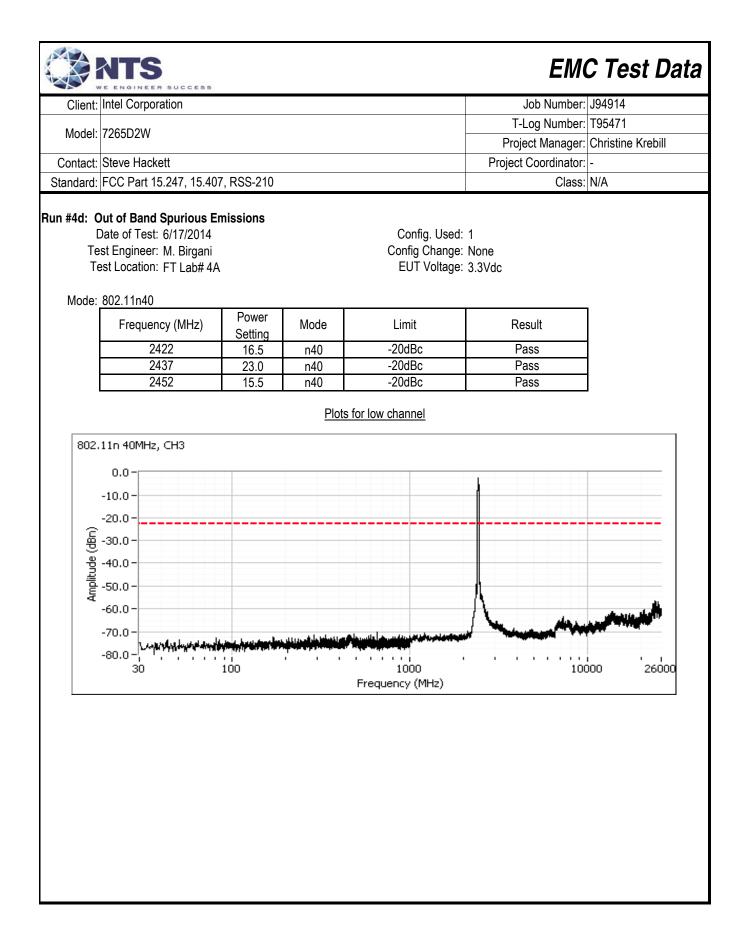

	E ENGINEER BUCCESS	EMC Test Data
Client:	Intel Corporation	Job Number: J94914
Madalı	7265D2W	T-Log Number: T95471
MODEI.	7205D2W	Project Manager: Christine Krebill
Contact:	Steve Hackett	Project Coordinator: -
Standard:	FCC Part 15.247, 15.407, RSS-210	Class: N/A

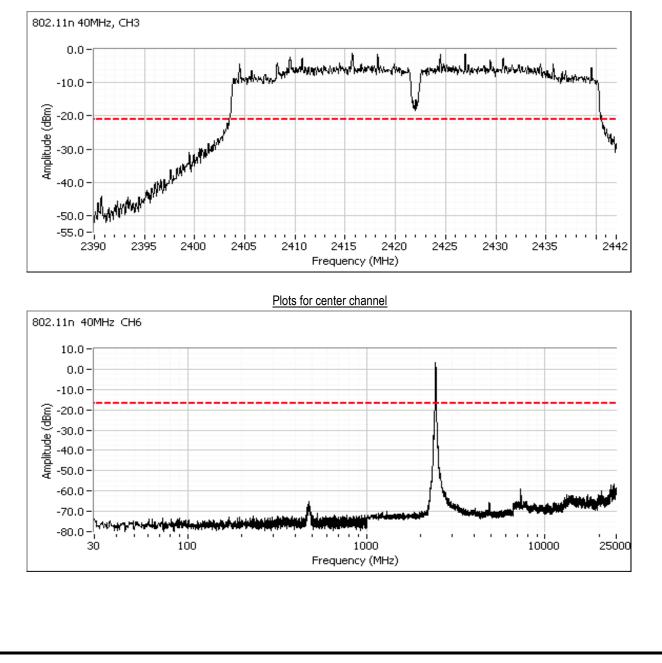


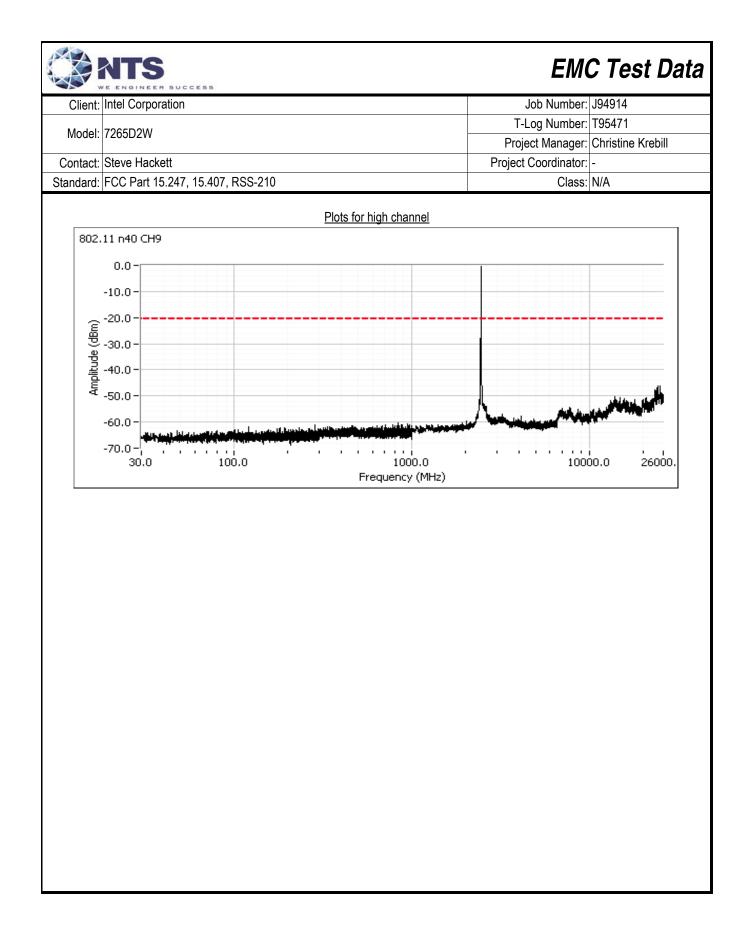



	E ENGINEER BUCCESS	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95471
woder.	7205D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A






	NTS	EM	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madalı	7265D2W	T-Log Number:	T95471
woder.	1205D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A



	E ENGINEER SUCCESS	EM	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madalı	72650210/	T-Log Number:	T95471
woder.	7265D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

EMC Test Data

	NTS				EM	C Test Data	
Client	Intel Corpora	ation			Job Number		
					T-Log Number		
Model:	7265D2W				-	: Christine Krebill	
Contact:	Steve Hacke	ett			Project Coordinator		
	FCC Part 15		RSS-210		Class		
	F		and FCC 15.247 (DTS) Power, PSD, Bandwidth ar			is	
Test Spe	cific Detail						
		The objective specification	e of this test session is to perform listed above.	final qualification	testing of the EUT with	respect to the	
Τe	Date of Test: 6/18/2014Config. Used: 1Test Engineer: John Caizzi / Jack LiuConfig Change: noneTest Location: Lab 4AEUT Voltage: 3.3Vdc						
The EUT wa chain. All measure Ambient	ments have b	to the spectro been correcte S: Te Re	um analyzer or power meter via a d to allow for the external attenua emperature: 24 °C I. Humidity: 38 %		or. All measurements v	vere made on a single	
	/ of Result		Test Derformed	Lin		Decult / Margin	
Run #	Pwr setting	Avg Pwr	Test Performed Output Power	Lin 15.24		Result / Margin b mode: 18.3 dBm g mode: 20.2 dBm n20 mode: 20.8 dBm n40 mode: 19.7 dBm	
2			Power spectral Density (PSD)			1.3 dBm/10kHz	
3			Minimum 6dB Bandwidth	15.24		10.043 MHz	
3			99% Bandwidth	RSS		36.33 MHz	
No modifica Deviatio r	is From Th	ade to the EU	T during testing	15.24	7(b) Pass	All emissions < -20 dBc	

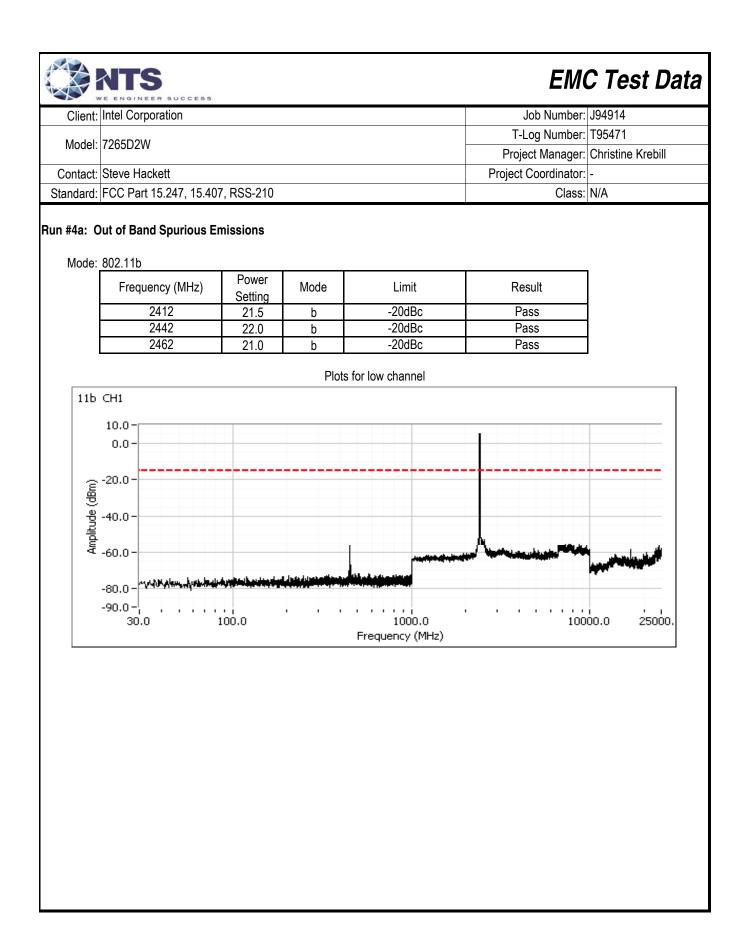
	NTS	EM	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madalı	7265D2W	T-Log Number:	T95471
woder.	1205D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Procedure Comments:

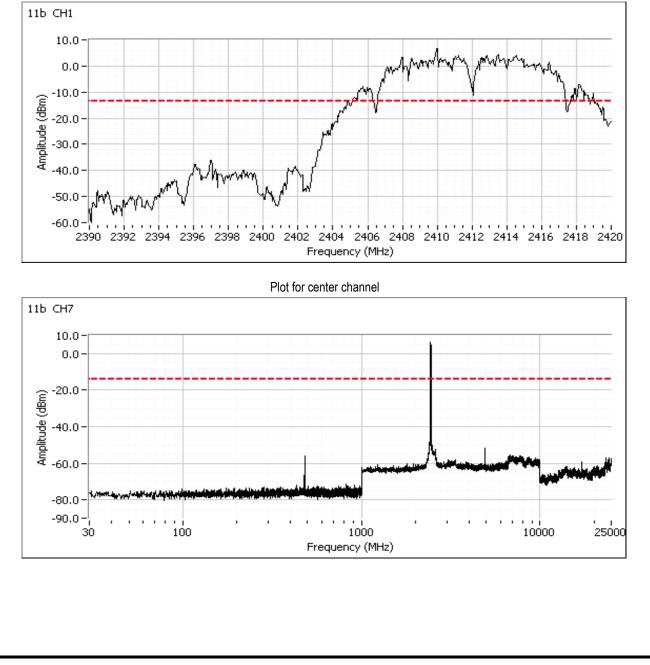
Measurements performed in accordance with FCC KDB 558074

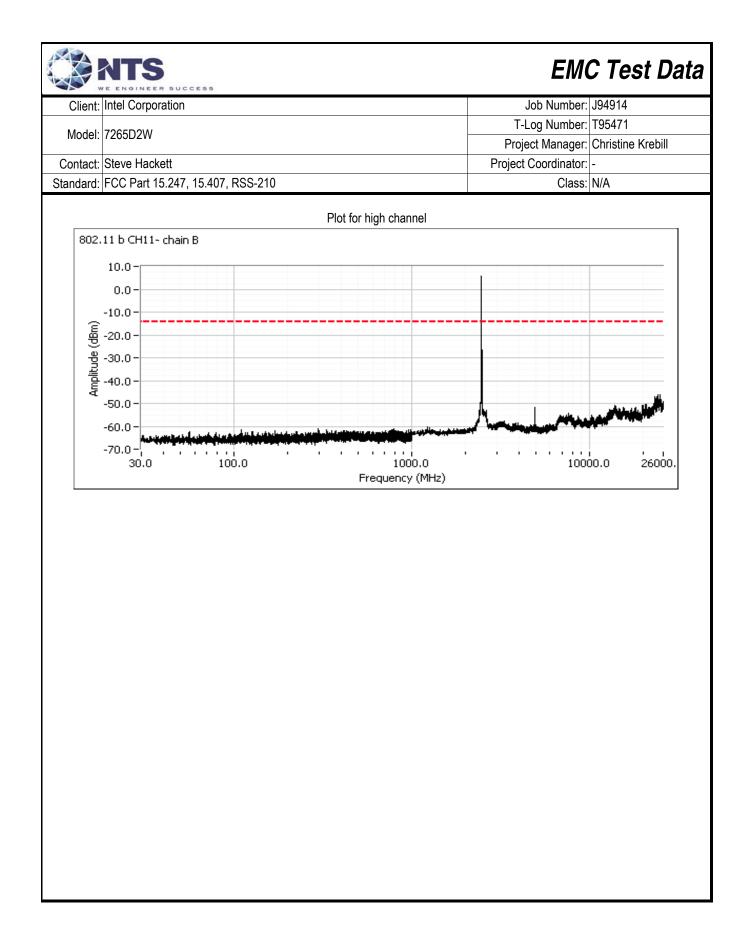
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1	0.99	Yes	2.272	0.0	0.0	440
11g	6	0.99	Yes	2.06	0.0	0.0	485
n20	HT0	0.99	Yes	1.919	0.0	0.0	521
n40	HT0	0.97	Yes	0.944	0.1	0.2	1059

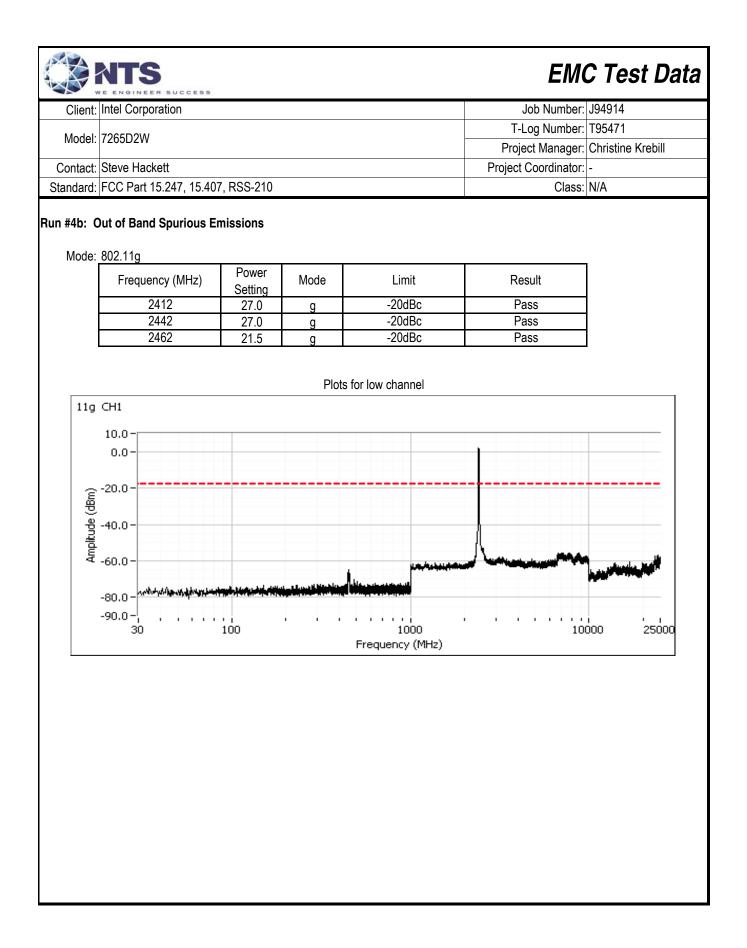
Sample Notes

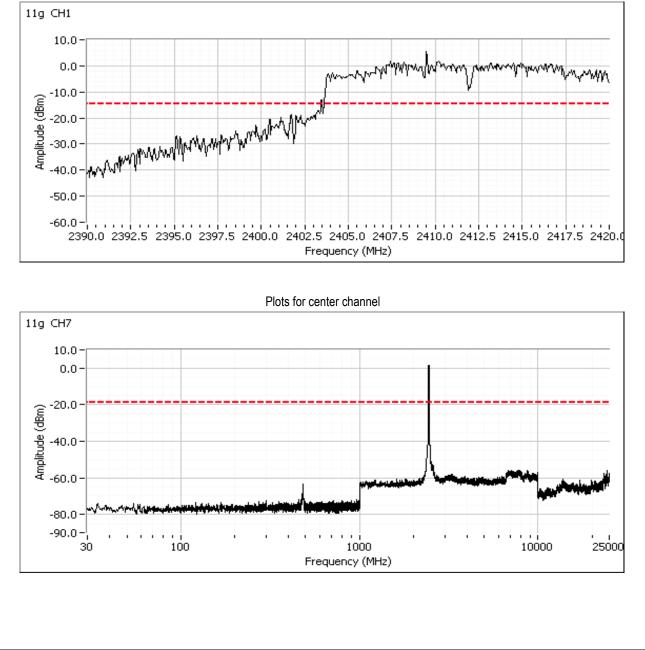

MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

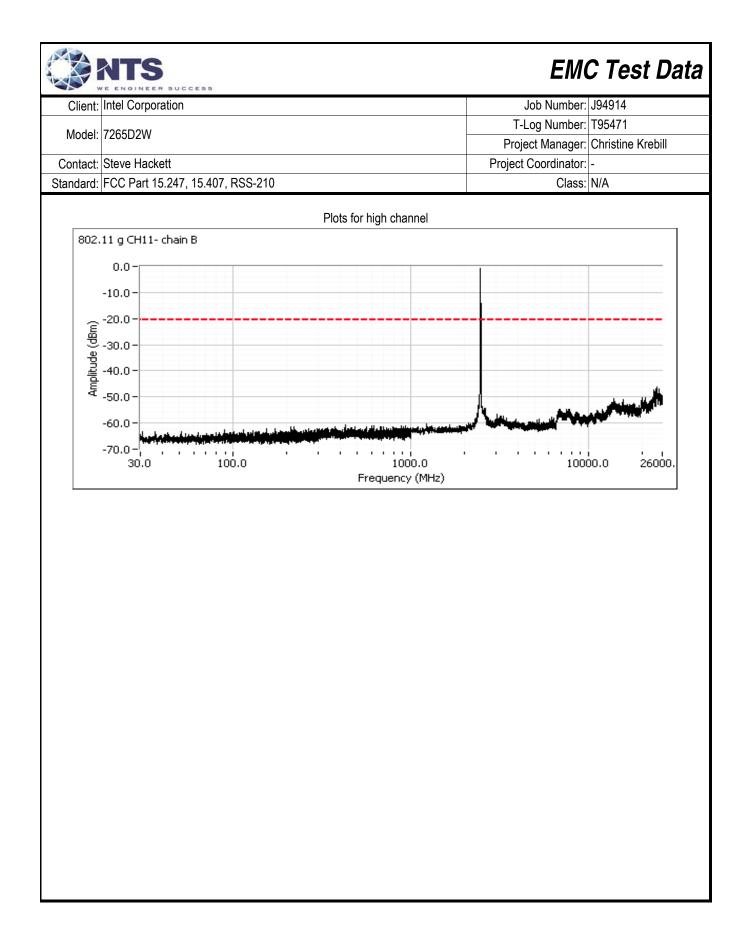
Olianti	Intel Corporation						Job Number:	10/01/	
Client:									
Model:	I: 7265D2W						og Number:		
								Christine Kr	ebill
Contact:	st: Steve Hackett					Project	Coordinator:	-	
Standard:	FCC Part 15.247, 15.40	7, RSS-210					Class:	N/A	
Run #1: O	utput Power 11b								
Power		Output	Power	Antenna		EIRP		Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	w	(dBm) ³	mW
21.5	2412	18.3	67.6	3.2	Pass	21.5	0.141	16.6	45.7
22.0	2442	18.2	66.1	3.2	Pass	21.3	0.138	17.7	58.9
21.0	2462	17.8	60.3	3.2	Pass	21.4	0.126	16.6	45.7
ode: Power Setting ²	11g Frequency (MHz)	Output (dBm) ¹	Power mW	Antenna Gain (dBi)	Result	EI dBm	RP W	Output (dBm) ³	Power mW
24.0	2412	(dBill) 18.2	66.1	3.2	Pass	21.4	0.138	(dBill) 14.6	28.8
27.0	2442	20.2	104.7	3.2	Pass	23.4	0.219	17.3	53.7
	0.100						0.074		
21.5	2462	15.5	35.5	3.2	Pass	18.7	0.074	12.4	17.4
21.5 Iode: Power	n20 Frequency (MHz)	Output	Power	Antenna	Pass	EI	RP	Output	Power
21.5 ode: Power Setting ²	n20 Frequency (MHz)	Output (dBm) ¹	Power mW	Antenna Gain (dBi)	Result	EI dBm	RP W	Output (dBm) ³	: Power mW
21.5 ode: Power Setting ² 24.0	n20 Frequency (MHz) 2412	Output (dBm) ¹ 18.3	Power mW 67.6	Antenna Gain (dBi) 3.2	Result Pass	EI dBm 21.5	RP W 0.141	Output (dBm) ³ 14.8	Power mW 30.2
21.5 Iode: Power Setting ²	n20 Frequency (MHz)	Output (dBm) ¹	Power mW	Antenna Gain (dBi)	Result	EI dBm	RP W	Output (dBm) ³	: Power mW 30.2 55.0
21.5 Power Setting ² 24.0 29.0 22.0	n20 Frequency (MHz) 2412 2442	Output (dBm) ¹ 18.3 20.8 16.1	Power mW 67.6 120.2 40.7	Antenna Gain (dBi) 3.2 3.2 3.2 3.2	Result Pass Pass	El dBm 21.5 24.0 19.3	RP W 0.141 0.251 0.085	Output (dBm) ³ 14.8 17.4 12.8	: Power mW 30.2 55.0 19.1
21.5 Power Setting ² 24.0 29.0 22.0 lode: Power	n20 Frequency (MHz) 2412 2442 2462	Output (dBm) ¹ 18.3 20.8 16.1 Output	Power mW 67.6 120.2 40.7 Power	Antenna Gain (dBi) 3.2 3.2 3.2 3.2 Antenna	Result Pass Pass	El dBm 21.5 24.0 19.3 El	RP W 0.141 0.251 0.085	Output (dBm) ³ 14.8 17.4 12.8 Output	Power mW 30.2 55.0 19.1
21.5 Power Setting ² 24.0 29.0 22.0 Ode: Power Setting ²	n20 Frequency (MHz) 2412 2442 2462 n40 Frequency (MHz)	Output (dBm) ¹ 18.3 20.8 16.1 Output (dBm) ¹	Power mW 67.6 120.2 40.7 Power mW	Antenna Gain (dBi) 3.2 3.2 3.2 3.2 Antenna Gain (dBi)	Result Pass Pass Pass Result	EI dBm 21.5 24.0 19.3 EI dBm	RP 0.141 0.251 0.085 RP W	Output (dBm) ³ 14.8 17.4 12.8 Output (dBm) ³	Power mW 30.2 55.0 19.1 Power mW
21.5 Power Setting ² 24.0 29.0 22.0 Iode: Power Setting ² 21.5	n20 Frequency (MHz) 2412 2442 2462 n40 Frequency (MHz) 2422	Output (dBm) ¹ 18.3 20.8 16.1 Output (dBm) ¹ 14.7	Power mW 67.6 120.2 40.7 Power mW 29.5	Antenna Gain (dBi) 3.2 3.2 3.2 3.2 Antenna Gain (dBi) 3.2	Result Pass Pass Pass Result Pass	El dBm 21.5 24.0 19.3 El dBm 17.9	RP 0.141 0.251 0.085 RP W 0.062	Output (dBm) ³ 14.8 17.4 12.8 Output (dBm) ³ 13.5	: Power mW 30.2 55.0 19.1
21.5 ode: Power <u>24.0</u> 29.0 22.0 ode: Power <u>Setting²</u> 21.5 25.0	n20 Frequency (MHz) 2412 2442 2462 n40 Frequency (MHz) 2422 2442	Output (dBm) ¹ 18.3 20.8 16.1 Output (dBm) ¹ 14.7 19.5	Power mW 67.6 120.2 40.7 Power mW 29.5 89.1	Antenna Gain (dBi) 3.2 3.2 3.2 3.2 Antenna Gain (dBi) 3.2 3.2	Result Pass Pass Pass Result Pass Pass	El dBm 21.5 24.0 19.3 El dBm 17.9 22.7	RP 0.141 0.251 0.085 RP W 0.062 0.186	Output (dBm) ³ 14.8 17.4 12.8 Output (dBm) ³ 13.5 15.2	Power mW 30.2 55.0 19.1 Power mW 22.4 33.1
21.5 ode: Power Setting ² 24.0 29.0 22.0 ode: Power Setting ² 21.5	n20 Frequency (MHz) 2412 2442 2462 n40 Frequency (MHz) 2422	Output (dBm) ¹ 18.3 20.8 16.1 Output (dBm) ¹ 14.7	Power mW 67.6 120.2 40.7 Power mW 29.5	Antenna Gain (dBi) 3.2 3.2 3.2 3.2 Antenna Gain (dBi) 3.2	Result Pass Pass Pass Result Pass	El dBm 21.5 24.0 19.3 El dBm 17.9	RP 0.141 0.251 0.085 RP W 0.062	Output (dBm) ³ 14.8 17.4 12.8 Output (dBm) ³ 13.5	Power mW 30.2 55.0 19.1 Power mW
21.5 Power Setting ² 24.0 29.0 22.0 22.0 ode: Power Setting ² 21.5 25.0 20.5	n20 Frequency (MHz) 2412 2442 2442 2462 n40 Frequency (MHz) 2422 2442 2442 2452	Output (dBm) ¹ 18.3 20.8 16.1 0utput (dBm) ¹ 14.7 19.5 14.1	Power mW 67.6 120.2 40.7 Power mW 29.5 89.1 25.7	Antenna Gain (dBi) 3.2 3.2 3.2 3.2 Antenna Gain (dBi) 3.2 3.2 3.2 3.2	Result Pass Pass Pass Result Pass Pass Pass	El dBm 21.5 24.0 19.3 El dBm 17.9 22.7 17.3	RP 0.141 0.251 0.085 RP W 0.062 0.186	Output (dBm) ³ 14.8 17.4 12.8 Output (dBm) ³ 13.5 15.2	Power mW 30.2 55.0 19.1 Power mW 22.4 33.1
21.5 Power Setting ² 24.0 29.0 22.0 lode: Power Setting ² 21.5 25.0	n20 Frequency (MHz) 2412 2442 2462 n40 Frequency (MHz) 2422 2442	Output (dBm) ¹ 18.3 20.8 16.1 0utput (dBm) ¹ 14.7 19.5 14.1 using a peal	Power mW 67.6 120.2 40.7 Power mW 29.5 89.1 25.7 c power met	Antenna Gain (dBi) 3.2 3.2 3.2 3.2 Antenna Gain (dBi) 3.2 3.2 3.2 a.2 er, spurious lir	Result Pass Pass Pass Result Pass Pass Pass Pass Pass Pass Pass Pas	El dBm 21.5 24.0 19.3 El dBm 17.9 22.7 17.3	RP 0.141 0.251 0.085 RP W 0.062 0.186 0.054	Output (dBm) ³ 14.8 17.4 12.8 Output (dBm) ³ 13.5 15.2	Power mW 30.2 55.0 19.1 Power mW 22.4 33.1

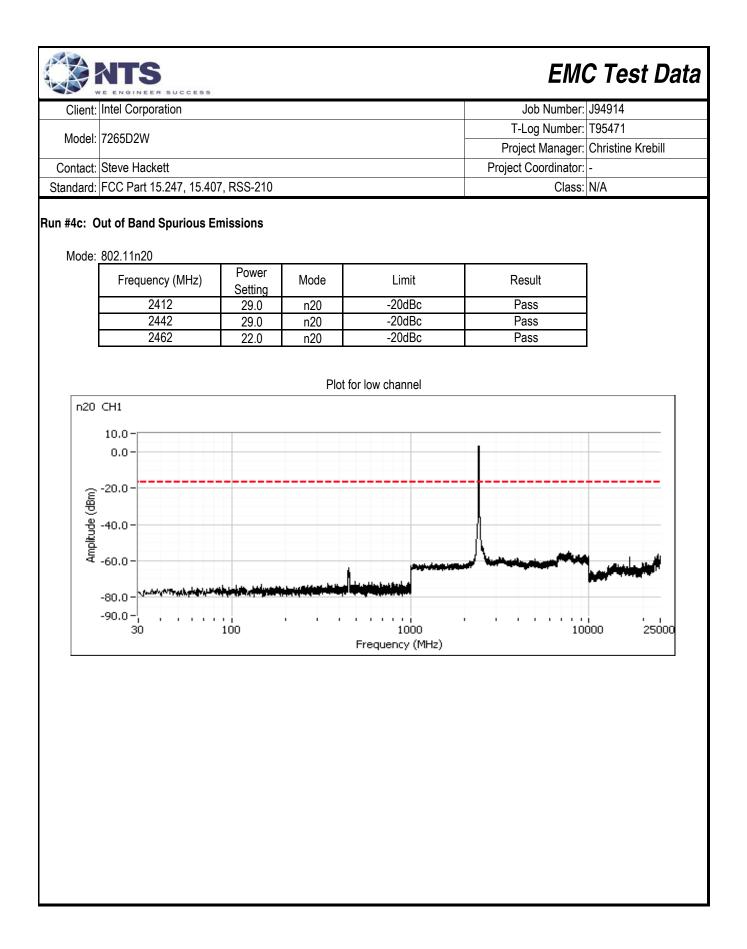

					Job Number: J94914	
Model	Intel Corporation				T-Log Number: T95471	
	7265D2W			_	Project Manager: Christine	n Krah
Contact	Steve Hackett				Project Coordinator: -	
	FCC Part 15.247, 15.407	7 DCC 210			Class: N/A	
	ower spectral Density					
Mode:	_11b		T			
Power	Frequency (MHz)	PSD Note 1	Limit	Result		
Setting		(dBm/10kHz) Note 1	dBm/3kHz			
21.5	2412	1.3	8.0	Pass		
22.0	2442	1.2	8.0	Pass		
21.0	2462	0.5	8.0	Pass		
lode:	11g					
Power		PSD	Limit	Result		
Setting	Frequency (MHz)	(dBm/10kHz) ^{Note 1}	dBm/3kHz	rtooun		
24.0	2412	-4.4	8.0	Pass		
27.0	2442	-3.2	8.0	Pass		
21.5	2462	-7.1	8.0	Pass		
20		1.1	0.0	1 400		
lode:	n20					
		PSD	Limit	Result		
Power	Eroquonov (MHz)					
Power Setting	Frequency (MHz)	(dBm/10kHz) Note 1	dBm/3kHz			
Setting 24.0	2412	-5.1	dBm/3kHz 8.0	Pass		
Setting 24.0 29.0	2412 2442	-5.1 -1.7	8.0 8.0	Pass		
Setting 24.0	2412	-5.1	8.0			
Setting 24.0 29.0	2412 2442	-5.1 -1.7 -7.7	8.0 8.0	Pass Pass		
Setting 24.0 29.0 22.0 Mode: Power	2412 2442 2462 n40	-5.1 -1.7 -7.7 PSD	8.0 8.0 8.0	Pass		
Setting 24.0 29.0 22.0 Aode: Power Setting	2412 2442 2462 n40 Frequency (MHz)	-5.1 -1.7 -7.7 PSD (dBm/10kHz) ^{Note 1}	8.0 8.0 8.0 Limit dBm/3kHz	Pass Pass Result		
Setting 24.0 29.0 22.0 Mode: Power Setting 21.5	2412 2442 2462 n40 Frequency (MHz) 2422	-5.1 -1.7 -7.7 PSD (dBm/10kHz) ^{Note 1} -9.3	8.0 8.0 8.0 Limit dBm/3kHz 8.0	Pass Pass Result Pass		
Setting 24.0 29.0 22.0 Mode: Power Setting	2412 2442 2462 n40 Frequency (MHz)	-5.1 -1.7 -7.7 PSD (dBm/10kHz) ^{Note 1}	8.0 8.0 8.0 Limit dBm/3kHz	Pass Pass Result		

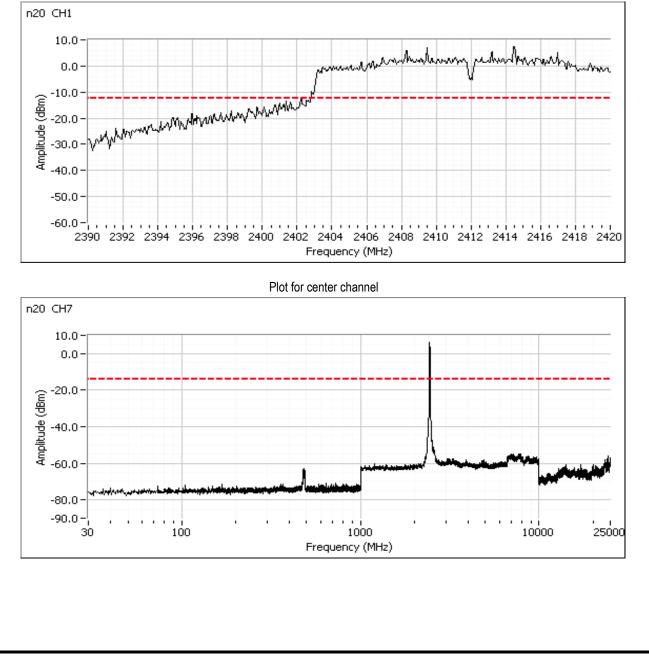


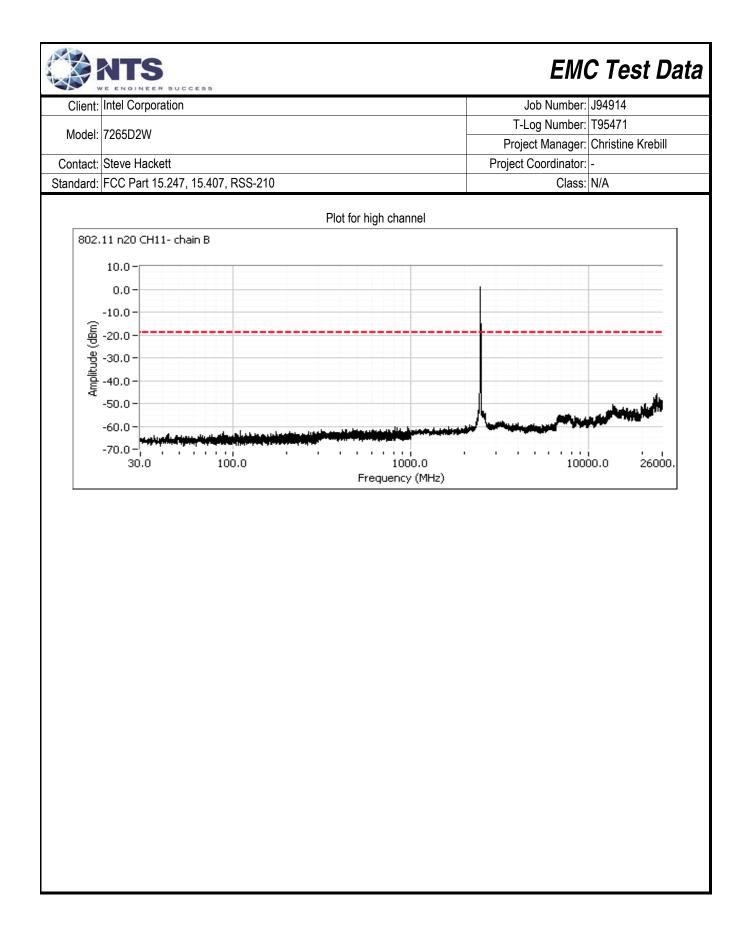

Mode:11b $Power$ SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (kHz) 6dB22.0244210.04312.47100300Mode:11g $Power$ Setting 27.0Frequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 99%Mode:100Mode:100Node:100Node:100Node:100Power Setting 29.0Frequency (MHz)Bandwidth 6dB99% 6dB99% 29.06dB99% 29.06dB99% 29.06dB99% 28.06dB99% 28.06dB99% 28.06dB99% 28.06dB99% 28.06dB99% 28.0DTS RW:Rew 28WDTS RW:Rew 28WPower 28.028W 28WPower 28.028W 28.028	Model: 7265D2W T-Log Number: T95471 Contact: Steve Hackett Project Manager: Christine Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Mode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) 99% 22.0 2442 10.043 12.47 100 300 300 Mode: 11g Endwidth (MHz) RBW Setting (MHz) Bandwidth (MHz) RBW Setting (MHz) 100 300	Krebill
Model: /265D2W Project Manager: Christine Krebill Contact: Steve Hackett Project Coordinator: - Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Class: N/A Wode: 11b Class: N/A Mode: 11b Bandwidth (MHz) RBW Setting (KHz) Setting Frequency (MHz) 6dB 99% 22.0 2442 10.043 12.47 100 Mode: 11g Power Frequency (MHz) 6dB 99% 27.0 2442 15.125 16.92 100 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 300 Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 28.0 2442 35.078 36.33 100 510	Model: 7265D2W Project Manager: Christine Contact: Steve Hackett Project Coordinator: - Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Mode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) Setting Frequency (MHz) 6dB 99% 22.0 2442 10.043 12.47 100 300 Mode: 11g Power Randwidth (MHz) RBW Setting (MHz) RBW Setting (MHz)	Krebill
Contact: Steve Hackett Project Coordinator: - Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Mode: 11b Class: N/A Mode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) 6dB 99% 22.0 2442 10.043 12.47 100 300 Mode: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 27.0 2442 15.125 16.92 100 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 29.0 2442 15.125 19.15 100 300 Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 28.0 2442 35.078 36.33 100 510	Contact: Steve Hackett Project Coordinator: - Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Mode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 22.0 2442 10.043 12.47 100 300 Mode: 11g Power Randwidth (MHz) RBW Setting (MHz) RBW Setting (MHz)	
Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Mode: 11b Class: N/A Mode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) 99% 22.0 2442 10.043 12.47 100 300 Mode: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 27.0 2442 15.125 16.92 100 300 Mode: n20 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 29.0 2442 15.125 19.15 100 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 29.0 2442 15.125 19.15 100 300 300 Mode: n40 Exeting Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 28.0	Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #3: Signal Bandwidth Mode: 11b RBW Setting (kHz) Setting Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) Settin	
Run #3: Signal Bandwidth Mode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) Setting Frequency (MHz) 6dB 99% 22.0 2442 10.043 12.47 100 300 Mode: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 27.0 2442 15.125 16.92 100 300 Mode: n20 Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 29.0 2442 15.125 19.15 100 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 29.0 2442 15.125 19.15 100 300 300 Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 28.0 2442 35.078 36.33 100 510 510	Run #3: Signal Bandwidth Mode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) Setting Frequency (MHz) 6dB 99% 22.0 2442 10.043 12.47 100 300 Mode: 11g Rewer Rewer Rewer Rewer Rewer	
Mode:11b $Power$ SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (kHz) 6dB22.0244210.04312.47100300Mode:11g $Power$ Setting 27.0Frequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 99%Mode:10Node:10Node:10Node:10Node:10Node:10Power SettingFrequency (MHz) 6dBBandwidth (MHz) 6dBRBW Setting (MHz) 99%Node:10Node:10Node:10Node:10Node:10DIS BW:PBW=100kHzDIS BW:PBW=100kHzDIS BW:PBW=100kHzNode:10Node:10Setting 28.0Constrained 28.0DIS BW:PBW=100kHzPBW=100kHzNode:10Node:10Setting 28.0PBW=100kHzNode:Node:Node:PDISPBW=100kHzNode:Node:Node:Setting 28.0PBW=100kHzPBW=100kHzPBW=100kHzPBW=100kHzPBW=100kHzPBW=100kHzPBW=100kHzPBW=100kHzPBW=100kHzPBW=100kHzPBWPBW=100kHzPBWPBWPBW <tr< td=""><td>Mode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) Setting Frequency (MHz) 6dB 99% 22.0 2442 10.043 12.47 100 300 Mode: 11g Randwidth (MHz) RBW Setting (MHz)</td><td></td></tr<>	Mode: 11b Power Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) Setting Frequency (MHz) 6dB 99% 22.0 2442 10.043 12.47 100 300 Mode: 11g Randwidth (MHz) RBW Setting (MHz)	
Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (kHz) 6dB22.0244210.04312.47100300Wode:11gPower SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB99%27.0244215.12516.92100300Wode:n20Power SettingFrequency (MHz) 6dBBandwidth (MHz) 6dBRBW Setting (MHz) 6dBPower SettingFrequency (MHz) 6dBBandwidth (MHz) 6dBRBW Setting (MHz) 6dBWode:n40Power SettingFrequency (MHz) 6dBBandwidth (MHz) 6dBRBW Setting (MHz) 6dBPower SettingFrequency (MHz) 6dBBandwidth (MHz) 6dBRBW Setting (MHz) 6dBPower SettingFrequency (MHz) 6dBBandwidth (MHz) 6dBRBW Setting (MHz) 6dBDTS BW:BBW RBW=100kHz23*BBW reak detectorRadia auto sween time	Power Setting Frequency (MHz) Bandwidth (MHz) RBW Setting (kHz) 6dB 99% 6dB 99% 22.0 2442 10.043 12.47 100 300 Mode: 11g Bandwidth (MHz) RBW Setting (MHz) RBW Setting (MHz)	
Setting Frequency (MHz) 6dB 99% 6dB 99% 22.0 2442 10.043 12.47 100 300 Mode: 11g Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 27.0 2442 15.125 16.92 100 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 29.0 2442 15.125 19.15 100 300 Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 28.0 2442 35.078 36.33 100 510	Setting Frequency (MHz) 6dB 99% 6dB 99% 22.0 2442 10.043 12.47 100 300	
Setting11 </td <td>Setting 6dB 99% 6dB 99% 22.0 2442 10.043 12.47 100 300</td> <td></td>	Setting 6dB 99% 6dB 99% 22.0 2442 10.043 12.47 100 300	
Mode:11g $Power$ SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB 27.0 244215.12516.92100300Mode:n20 $Power$ 	Mode: 11g	
Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB27.0244215.12516.92100Mode:n20Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB29.0244215.12519.15100Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 99%Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 99%28.0244235.07836.33100DTS BW: RBW=100kHzVBW > 3*PBW, peak detector, max hold, auto sweep time	Power Bandwidth (MHz) PBW Satting (MHz)	
Setting Frequency (MHz) 6dB 99% 6dB 99% 27.0 2442 15.125 16.92 100 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 29.0 2442 15.125 19.15 100 300 Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 28.0 2442 35.078 36.33 100 510	Power Bandwidth (MHz) RBW/ Setting (MHz)	
Setting Interview odB 99% odB 99% 27.0 2442 15.125 16.92 100 300 Mode: n20 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 29.0 2442 15.125 19.15 100 300 Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) GdB 99% 28.0 2442 35.078 36.33 100 510		
Mode:n20Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB29.0244215.12519.15Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBPower SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dBDIS BW:RBW=100kHzVBW > 3*RBW 28.0peak detector 2442max hold auto sween time	Setting 6dB 99% 6dB 99%	
Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB29.0244215.12519.15100Mode:n40Power SettingFrequency (MHz)Bandwidth (MHz) 6dBRBW Setting (MHz) 6dB28.0244235.07836.33100DTS BW:RBW=100kHz V/BW > 3*RBW, neak detector, max hold, auto sweep time		
Setting Frequency (MHz) 6dB 99% 6dB 99% 29.0 2442 15.125 19.15 100 300 Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 28.0 2442 35.078 36.33 100 510		
Setting 0dB 99% 6dB 99% 29.0 2442 15.125 19.15 100 300 Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 28.0 2442 35.078 36.33 100 510		
Mode: n40 Power Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) Setting Frequency (MHz) 6dB 99% 6dB 99% 28.0 2442 35.078 36.33 100 510	Setting 6dB 99% 6dB 99%	
Power Setting Frequency (MHz) Bandwidth (MHz) RBW Setting (MHz) 6dB 99% 6dB 99% 28.0 2442 35.078 36.33 100 510	29.0 2442 15.125 19.15 100 300	
Setting Frequency (NFI2) 6dB 99% 6dB 99% 28.0 2442 35.078 36.33 100 510		
Setting 6dB 99% 6dB 99% 28.0 2442 35.078 36.33 100 510		
DTS BW: $BBW=100kHz$ VBW > 3*BBW, neak detector, max hold, auto sweep time	Setting 6dB 99% 6dB 99%	
DTS RW/ RRW-100kHz VRW > 3*RRW neak detector may hold auto sween time	28.0 2442 35.078 36.33 100 510	
Note 1: 99% BW: RBW=1-5% of of 99%BW, VBW \geq 3*RBW, peak detector, max hold, auto sweep time.	Note 1: DTS BW: RBW=100kHz, VBW \geq 3*RBW, peak detector, max hold, auto sweep time. 99% BW: RBW=1-5% of of 99%BW, VBW \geq 3*RBW, peak detector, max hold, auto sweep time.	

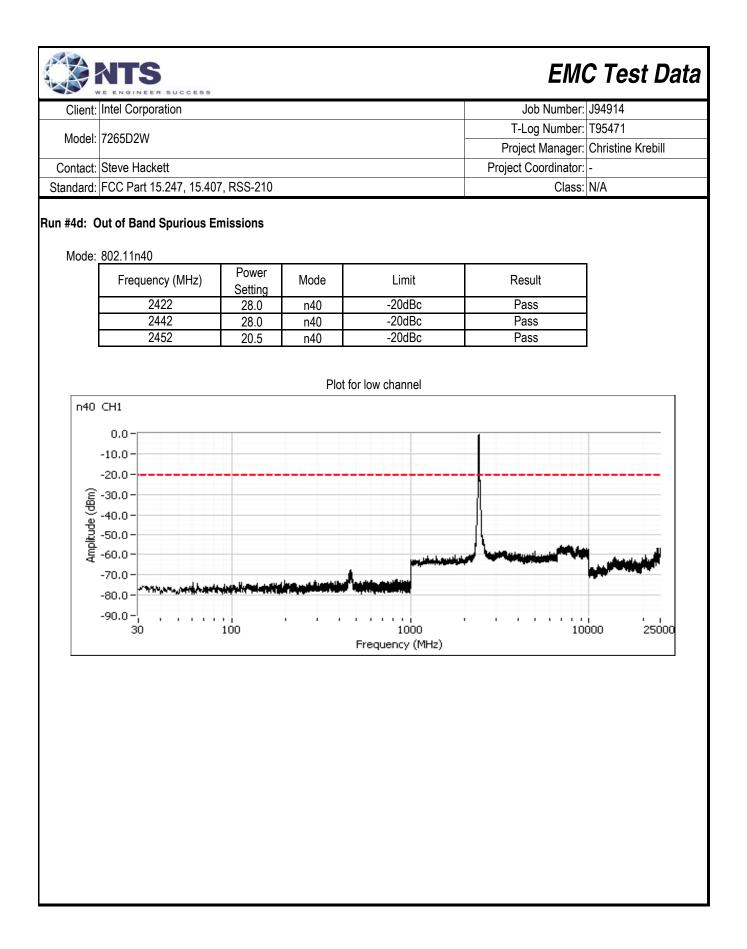

	E ENGINEER BUCCESS	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madalı	7265D2W	T-Log Number:	T95471
woder.	7203D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A



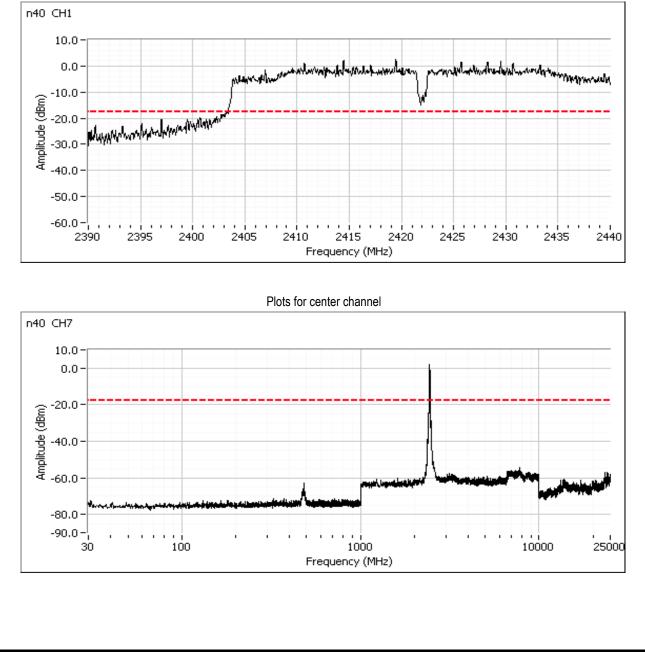


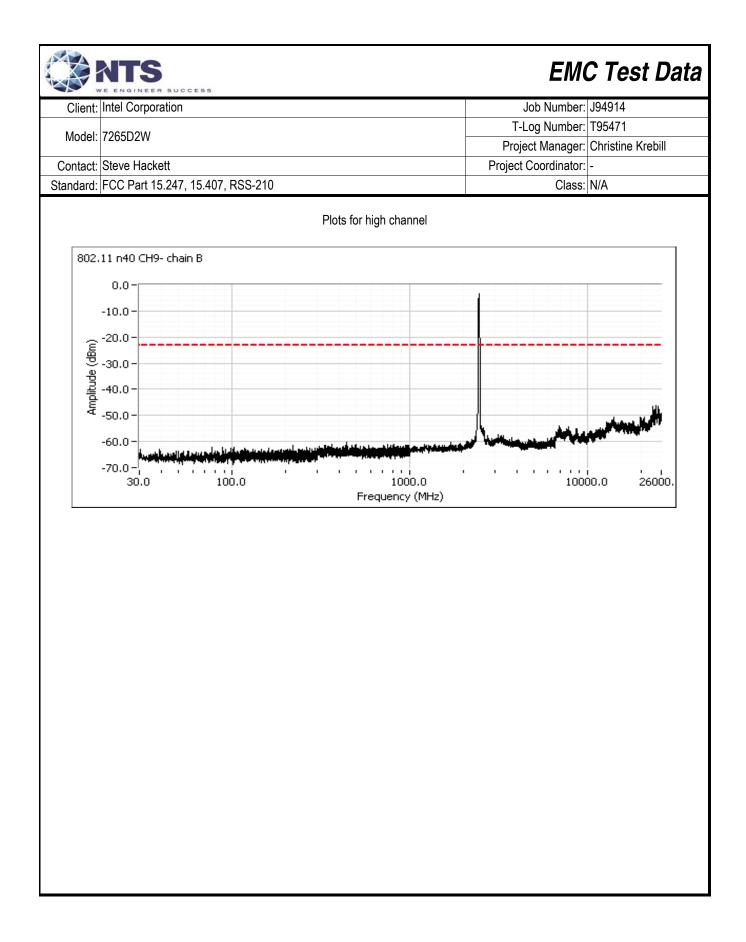

	E ENGINEER SUCCESS	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95471
woder.	7265D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A





	E ENGINEER BUCCESS	EMC Test Data		
Client:	Intel Corporation	Job Number:	J94914	
Madal	7265D2W	T-Log Number:	T95471	
	7205DZW	Project Manager:	Christine Krebill	
Contact:	Steve Hackett	Project Coordinator:	-	
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A	





	E ENGINEER BUCCESS	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madal	72650200	T-Log Number:	T95471
	7265D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

Client	WE ENGINEER	SUCCESS				C Test Data
5.010	: Intel Corpora	ation			Job Number:	
Model	: 7265D2W				T-Log Number:	
						Christine Krebill
Contact	: Steve Hacke	tt		Proje	ect Coordinator:	-
Standard	: FCC Part 15	.247, 15.407	, RSS-210		Class:	N/A
	F		and FCC 15.247 (DTS) Ar Power, PSD, Bandwidth and S			S
est Spe			e of this test session is to perform fina listed above.	al qualification testing o	f the EUT with r	respect to the
Т	Date of Test: est Engineer: est Location:	J. Liu, M. Birg	gani Co	Config. Used: 1 nfig Change: none EUT Voltage: 3.3Vdc		
Jenera	Test Config	juration				
The EUT chain.		·	ctrum analyzer or power meter via a steed to allow for the external attenuate		measurements	were made on a single
The EUT chain. All meas		e been correc	ted to allow for the external attenuat		measurements	were made on a single
The EUT chain. All meas	urements have	e been correc	ted to allow for the external attenuat Temperature: 24	ors used.	measurements	were made on a single
The EUT chain. All meas	urements have	e been correc	ted to allow for the external attenuat Temperature: 24	ors used. • °C	measurements	were made on a single
The EUT chain. All meas mbient	urements have Conditions y of Result	e been correc S:	ted to allow for the external attenuat Temperature: 24	ors used. • °C		
The EUT chain. All meas	urements have	e been correc	ted to allow for the external attenuat Temperature: 24 Rel. Humidity: 38	ors used. - °C - %	measurements Pass / Fail Pass	Result / Margin n20: 22.8 dBm n40: 21.8 dBm
The EUT chain. All meas mbient ummar Run #	urements have Conditions y of Result	e been correc S:	ted to allow for the external attenuate Temperature: 24 Rel. Humidity: 38 Test Performed Output Power Power spectral Density (PSD)	ors used. °C %	Pass / Fail	Result / Margin n20: 22.8 dBm n40: 21.8 dBm n20: 0.6dBm/10kHz
The EUT chain. All meas mbient cummar Run # 1 2 3	urements have Conditions y of Result	e been correc S:	ted to allow for the external attenuate Temperature: 24 Rel. Humidity: 38 Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth	ors used. °C % Limit 15.247(b) 15.247(d) 15.247(a)	Pass / Fail Pass	Result / Margin n20: 22.8 dBm n40: 21.8 dBm n20: 0.6dBm/10kH n40: -2.7 dBm/10kH These measurement
The EUT chain. All meas Ambient Cummar Run # 1 2 3 3	urements have Conditions y of Result	e been correc S:	ted to allow for the external attenuate Temperature: 24 Rel. Humidity: 38 Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth 99% Bandwidth	ors used. • °C • % Limit 15.247(b) 15.247(d) 15.247(a) RSS GEN	Pass / Fail Pass	Result / Margin n20: 22.8 dBm n40: 21.8 dBm n20: 0.6dBm/10kHz n40: -2.7 dBm/10kH These measurement are covered by the
The EUT chain. All meas Ambient Summar Run # 1 2 3	urements have Conditions y of Result	e been correc S:	ted to allow for the external attenuate Temperature: 24 Rel. Humidity: 38 Test Performed Output Power Power spectral Density (PSD) Minimum 6dB Bandwidth	ors used. °C % Limit 15.247(b) 15.247(d) 15.247(a)	Pass / Fail Pass	Result / Margin n20: 22.8 dBm n40: 21.8 dBm n20: 0.6dBm/10kHz n40: -2.7 dBm/10kH These measurement
The EUT chain. All meas Ambient Summar Run # 1 2 3 3 4 Modifica	urements have Conditions y of Results Pwr setting	e been correct S: Avg Pwr During Te	ted to allow for the external attenuate Temperature: 24 Rel. Humidity: 38 Test Performed Output Power Power spectral Density (PSD) <u>Minimum 6dB Bandwidth</u> 99% Bandwidth Spurious emissions	ors used. • °C • % Limit 15.247(b) 15.247(d) 15.247(a) RSS GEN	Pass / Fail Pass	Result / Margin n20: 22.8 dBm n40: 21.8 dBm n20: 0.6dBm/10kHz n40: -2.7 dBm/10kH These measurement are covered by the

		EMO	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madal	72650200	T-Log Number:	T95471
woder.	7265D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
n20	HT0	0.99	Yes	1.919	0.0	0.0	521
n40	HT0	0.97	Yes	0.944	0.1	0.2	1059

Sample Notes

MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

Antenna Gain Information

Image: Notes: Image: Notes: Image: Notes: Notes: Image: Notes: Notes: Notes: Image: Notes: Note: No	1 2 3 4 Legacy / Xpol (PWR) (PSD) 3.2 3.2 No No No Yes No 3.2 6.2 s that support CDD modes Min # of spatial streams: 1 Max # of spatial streams: 2 BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmissions, CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized or	Freq	A	Antenna Gain	ı (dBi) / Chaiı	n	RF	BF MultiChain	CDD	Sectorized	Dir G	Dir G
483.5 3.2 3.2 No No Yes No 3.2 or devices that support CDD modes Min # of spatial streams: 1 Max # of spatial streams: 2 Notes: BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmis CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations E based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different	s that support CDD modes Min # of spatial streams: 1 Max # of spatial streams: 2 BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmissions, CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized or cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations Both are based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the modes supported.	печ	1	2	3	4	Ы	Legacy	CDD	/ Xpol	(PWR)	(PSD)
Max # of spatial streams: 2 BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmis CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations E based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different	Min # of spatial streams: 1 Max # of spatial streams: 2 BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmissions, CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized or cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations Both are based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the	400- 483.5	3.2	3.2			No	No	Yes	No	3.2	6.2
Max # of spatial streams: 2 BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmis CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations E based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different	Max # of spatial streams: 2 BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmissions, CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized or cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations Both are based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the	or device	s that suppo	rt CDD mod	es							
Notes: BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmise Notes: BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmise CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations E Notes: based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different	BF = beamforming mode supported, Multichain Legacy = 802.11 legacy data rates supported for multichain transmissions, CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized or cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations Both are based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the		Min # of spa	tial streams:	1							
Notes: CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations E based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different	CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized or cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations Both are based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the		Max # of spat	tial streams:	2							
Notes: CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations E based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different	CDD = Cyclic Delay Diversity (or Cyclic Shift Diversity) modes supported, Sectorized / Xpol = antennas are sectorized or cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations Both are based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the											
cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations E Notes: based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different	cross polarized. Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations Both are based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the		BF = beamfo	orming mode	supported, N	Multichain Le	gacy = 802.	11 legacy dat	a rates supp	orted for mul	tichain trans	missions,
Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations E Notes: based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different	Dir G (PWR) = total gain (Gant + Array Gain) for power calculations; Dir G (PSD) = total gain for PSD calculations Both are based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the support of the transformation of transform			DIL D'								
Notes: based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different	based on FCC KDB 662911. Depending on the modes supported, the Array Gain value for power could be different from the	Notes:	CDD = Cycli	c Delay Dive	rsity (or Cycl	ic Shift Diver	sity) modes	supported, Se	ectorized / X	ipol = antenna	as are sector	rized or
		Notes:	cross polariz	zed.			• /					
	PSD value.	Notes:	cross polariz	zed.			• /					
PSD value.			cross polariz Dir G (PWR)	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both are
			cross polariz Dir G (PWR) based on FC	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both are
			cross polariz Dir G (PWR) based on FC	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both are
			cross polariz Dir G (PWR) based on FC	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both are
			cross polariz Dir G (PWR) based on FC	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both are
			cross polariz Dir G (PWR) based on FC	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both are
			cross polariz Dir G (PWR) based on FC	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both are
			cross polariz Dir G (PWR) based on FC	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both are
			cross polariz Dir G (PWR) based on FC	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both are
			cross polariz Dir G (PWR) based on FC	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both are
			cross polariz Dir G (PWR) based on FC	ed.) = total gain	(Gant + Arra	y Gain) for p	ower calcula	tions; Dir G (I	PSD) = tota	l gain for PSE	calculation	s Both ar

		SUCCESS					1		C Test	Data		
Client:	Intel Corpora	ation						ob Number:				
Model [.]	7265D2W							og Number:				
Model.	12000211						Projec	ct Manager:	Christine Kre	ebill		
Contact:	Steve Hacke	ett					Project Coordinator: -					
Standard:	FCC Part 15	5.247, 15.407	, RSS-210					Class:	N/A			
Run #1: Ou	itput Power	•	ating Mode: I Gain (dBi):	802.11n20 3.2								
Frequency	Chain	Software	Power ¹	Total	Power	Limit	Max Power	Result	Power eirp	Power		
(MHz)	Chain	Setting	dBm	mW	dBm	dBm	(W)	Result	(W)	(dBm) ²		
2412	1	16.0	14.3	62.4	18.0	30.0		Pass		12.0		
2712	2	21.5	15.5	02.4	10.0	00.0		1 0 3 3		12.2		
2442	1	23.0	19.5	191.5	22.8	30.0	0.191	0 191	0.191	Pass	0.400	17.3
	2	29.0	20.1				-			17.4		
2462	1	16.5 21.0	15.1 14.7	61.9	17.9	30.0		Pass		12.0 10.3		
Frequency (MHz)	Chain 1	Software Setting 14.0	Power ¹ dBm 11.5	mW	Power dBm	Limit dBm	Max Power (W)	Result	Power eirp (W)	Power (dBm) ² 9 7		
2422	2	14.0 19.5	11.5	27.0	14.3	30.0		Pass	<u>9.7</u> 9.6			
0.40-	1	23.0	18.8							16.7		
2437	2	28.0	18.8	151.7	21.8	30.0	0.152	Pass	0.317	16.7		
0450	1	13.5	11.7	00.0	14.0	20.0		Deee		9.4		
2452	2	19.5	11.5	28.9	14.6	30.0		Pass		9.4		
Note 1: Note 2:		er measured sured using a					3c. for reference o	nly.				

~	VE ENGINEER SUCCESS						L.L.NL	104044
Client:	Intel Corporation						Job Number:	
Model [.]	7265D2W						Log Number:	
						-	-	Christine Krebill
Contact:	Steve Hackett					Project	Coordinator:	-
Standard:	FCC Part 15.247, 15.407	′, RSS-210					Class:	N/A
Mode:	wer spectral Density							
Power	Frequency (MHz)		PSD	(dBm/10kHz)	Note 1		Limit	Result
Setting	,	Chain 1	Chain 2	Chain 3	Chain 4	Total	dBm/3kHz	
6.0 / 21.5	2412	-9.3	-7.5			-5.3	7.8	Pass
3.0 / 29.0	2442	-2.6	-2.2			0.6	7.8	Pass
6.5 / 21.0	2462	-8.7	-8.1			-5.4	7.8	Pass
Mode:	n40				Note 1		T T	1
Power	Frequency (MHz)			(dBm/10kHz)		- · ·	Limit	Result
Setting	,	Chain 1	Chain 2	Chain 3	Chain 4	Total	dBm/3kHz	
4.0 / 19.5	2422	-12.7	-14.3			-10.4	7.8	Pass
3.0 / 28.0 3.5 / 19.5	2437 2462	-5.2 -12.4	-6.4 -14.0			-2.7 -10.1	7.8 7.8	Pass Pass
	VBW=3*RBW, peak dete Power setting - if a single	e number the	same powe	r setting was	time, max h used for eac	<u>oid.</u> h chain. If r	nultiple numbe	ers the power set
lote 1: Note 2:	<u>VBW=3*RBW, peak dete</u> Power setting - if a single each chain is separated	e number the	same powe	r setting was	used for eac	h chain. If r		

Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95471
woder.	1205D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

SUCCESS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	25 °C
Rel. Humidity:	30 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
1	b	1 - 2412MHz	16.5	14.5	Restricted Band Edge (2390 MHz)		47.9 dBµV/m @ 2385.4 MHz (-6.1 dB)
I	U	11 - 2462MHz	16.5	14.0	Restricted Band Edge (2483.5 MHz)		48.6 dBµV/m @ 2488.8 MHz (-5.4 dB)
		1 - 2412MHz	14.0	17.0	Restricted Band Edge	FCC Part 15.209 /	47.8 dBµV/m @ 2390.0 MHz (-6.2 dB)
2	a	2 - 2417MHz	15.5	18.5	(2390 MHz)	15.247(c)	47.5 dBµV/m @ 2390.0 MHz (-6.5 dB)
۷	g	10 - 2457MHz	15.5	18.5	Restricted Band Edge		47.6 dBµV/m @ 2483.6 MHz (-6.4 dB)
		11 - 2462MHz	12.5	15.0	(2483.5 MHz)		45.3 dBµV/m @ 2483.5 MHz (-8.7 dB)
		1 - 2412MHz	14.0	17.0	Restricted Band Edge		48.2 dBµV/m @ 2390.0 MHz (-5.8 dB)
3	n20	2 - 2417MHz	15.5	19.0	(2390 MHz)	FCC Part 15.209 /	48.8 dBµV/m @ 2390.0 MHz (-5.2 dB)
5	1120	10 - 2457MHz	15.5	18.5	Restricted Band Edge	15.247(c)	48.9 dBµV/m @ 2483.9 MHz (-5.1 dB)
		11 - 2462MHz	12.5	15.0	(2483.5 MHz)		47.1 dBµV/m @ 2483.5 MHz (-6.9 dB)

		ER SUCCESS				EM	C Test Data
Client:	Intel Corpo	oration				Job Number:	J94914
Madalı	70050004					T-Log Number:	T95471
Model:	7265D2W					Project Manager:	Christine Krebill
Contact:	Steve Hac	kett				Project Coordinator:	-
Standard:	FCC Part	15.247, 15.407	, RSS-210			Class:	N/A
	n40	3 -	13.5	13.5	Restricted Band Edge		52.1 dBµV/m @ 2389.
	1140	2422MHz	10.0	10.0	(2390 MHz)		MHz (-1.9 dB)
	n40	4 -	14.5	14.4	Restricted Band Edge		51.5 dBµV/m @ 2483.
	1140	2427MHz -	14.5	14.4	(2483.5 MHz)		MHz (-2.5 dB)
4	n40	7 -	14.5	14.5	Restricted Band Edge	FCC Part 15.209 /	50.4 dBµV/m @ 2483.
7	1140	2442MHz	14.5	14.5	(2483.5 MHz)	15.247(c)	MHz (-3.6 dB)
	n40	8 -	13.5	13.7	Restricted Band Edge		52.4 dBµV/m @ 2483.
	1140	2447MHz	13.3	13.7	(2483.5 MHz)		MHz (-1.6 dB)
	n40	9 -	12.5	12.8	Restricted Band Edge		52.3 dBµV/m @ 2483.
	1140	2452MHz	12.0	12.0	(2483.5 MHz)		MHz (-1.7 dB)

Modifications Made During Testing No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

Antenna: Skycross WiMax/WLAN

Client:	Intel Corporation	Job Number:	J94914
Model	7265D2W	T-Log Number:	T95471
Model. 7	12030210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

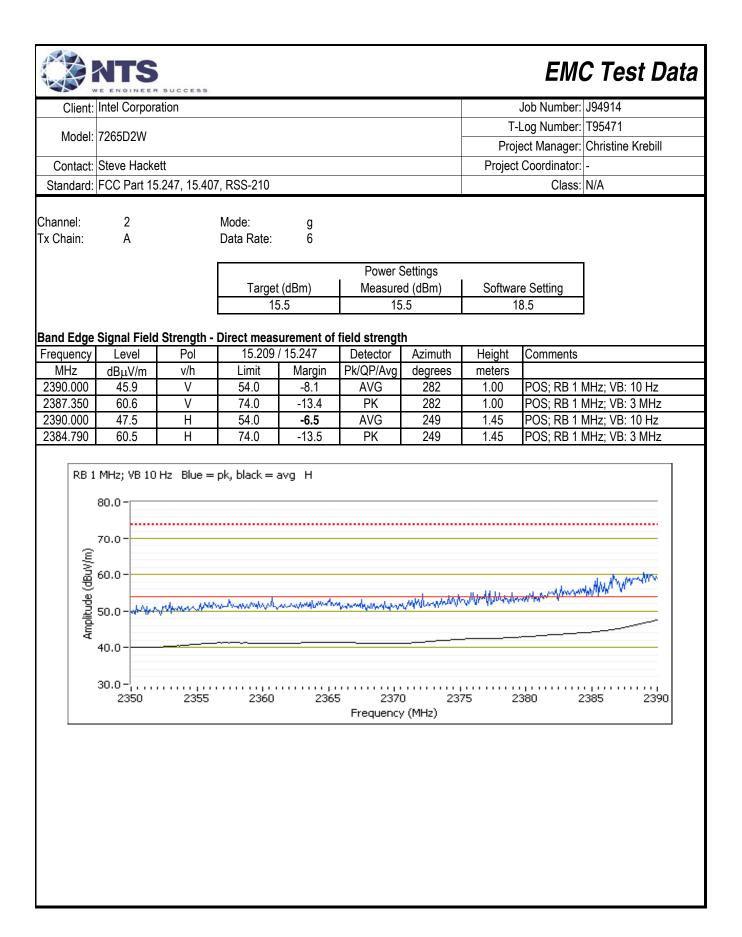
Procedure Comments:

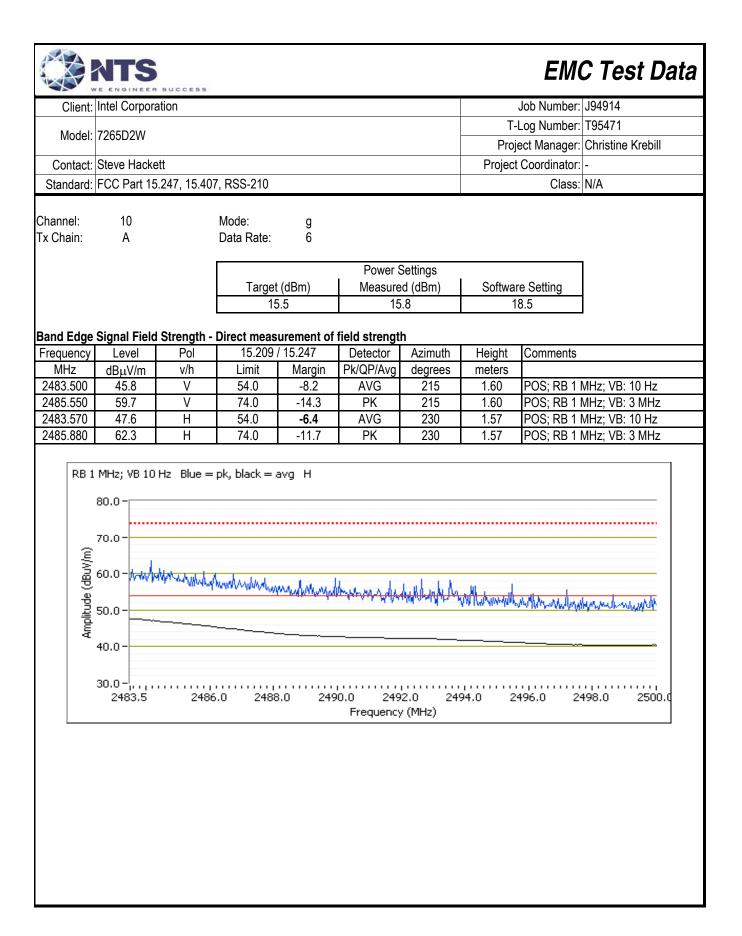
Measurements performed in accordance with FCC KDB 558074

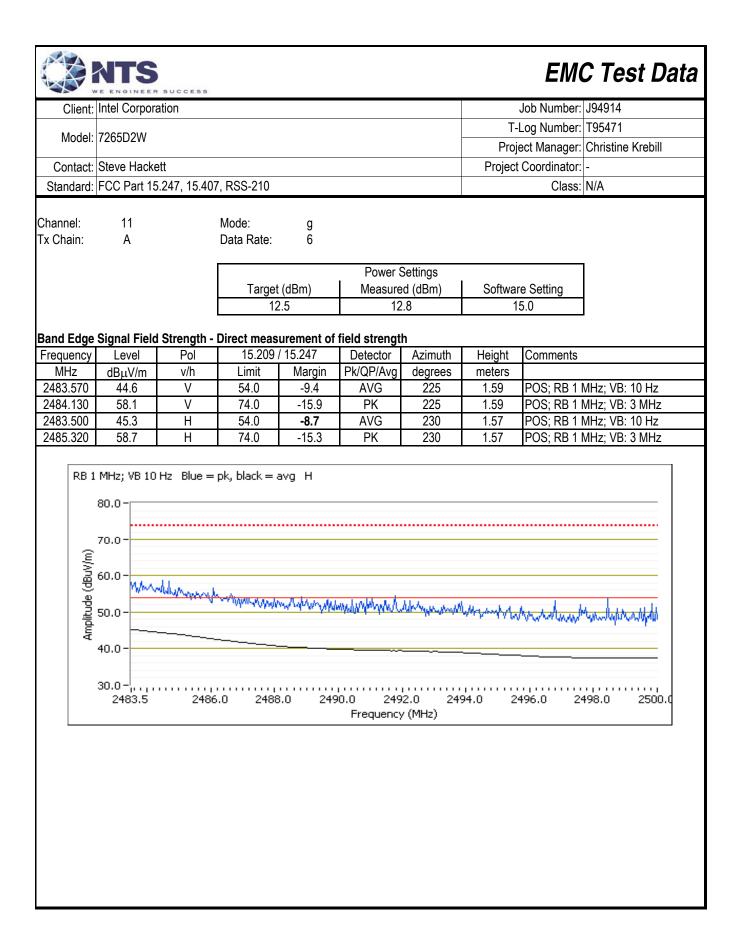
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

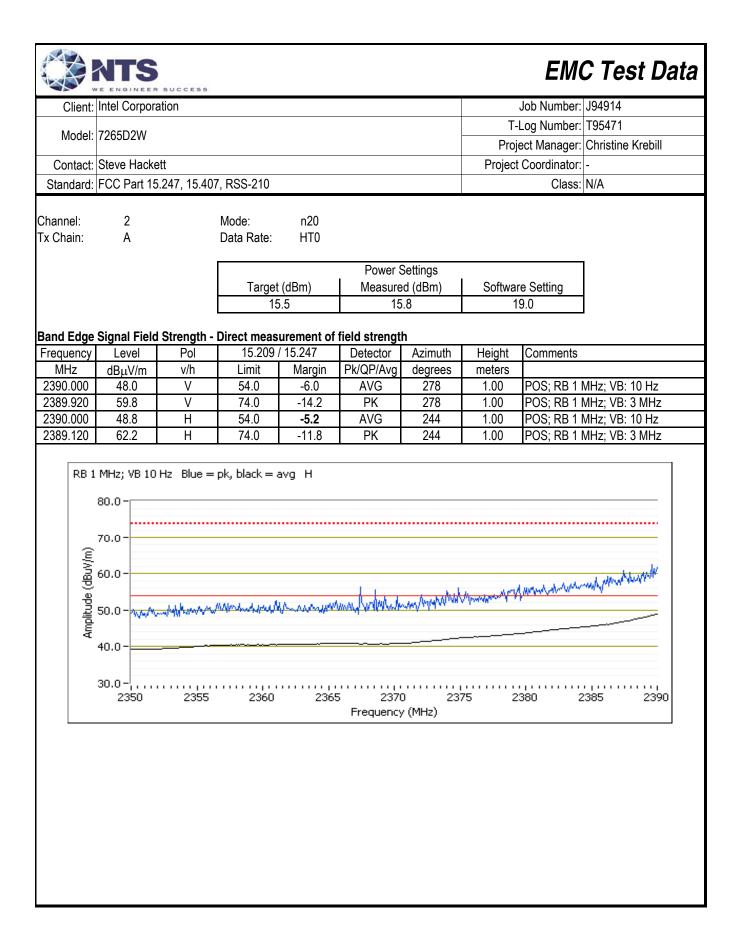
Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

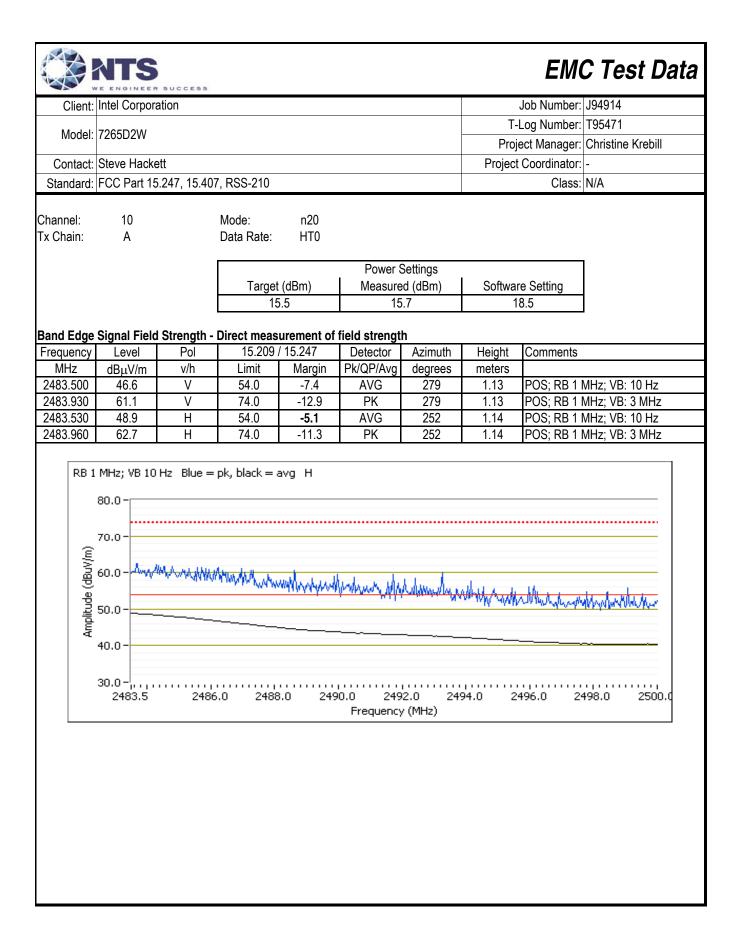
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1	0.99	Yes	2.272	0.0	0.0	440
11g	6	0.99	Yes	2.06	0.0	0.0	485
n20	HT0	0.99	Yes	1.919	0.0	0.0	521
n40	HT0	0.97	Yes	0.944	0.1	0.2	1059

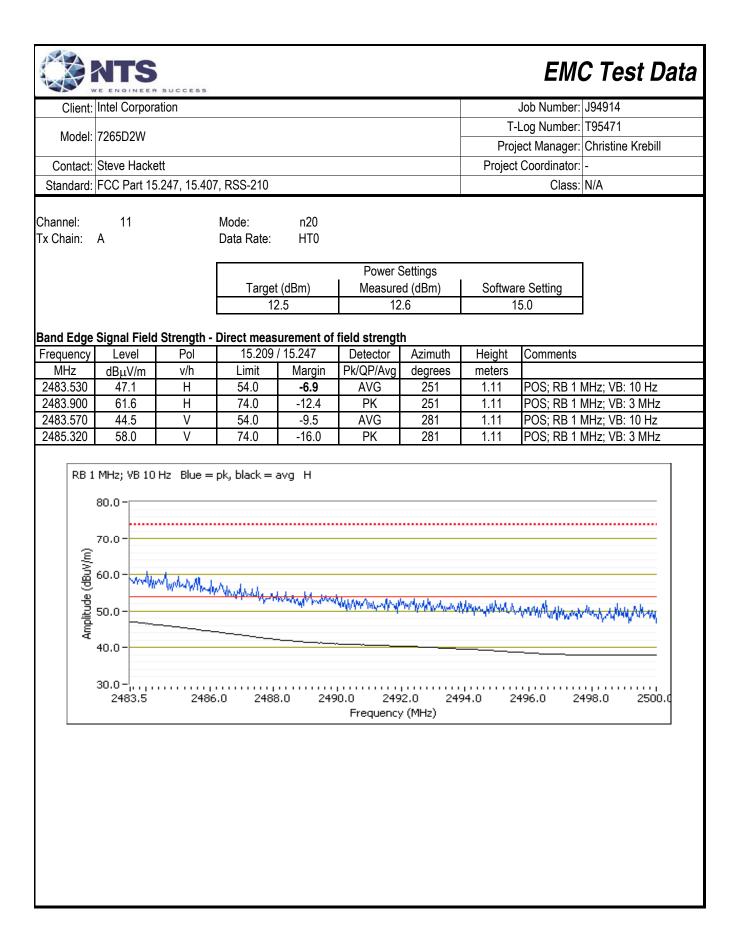

Measurement Specific Notes:

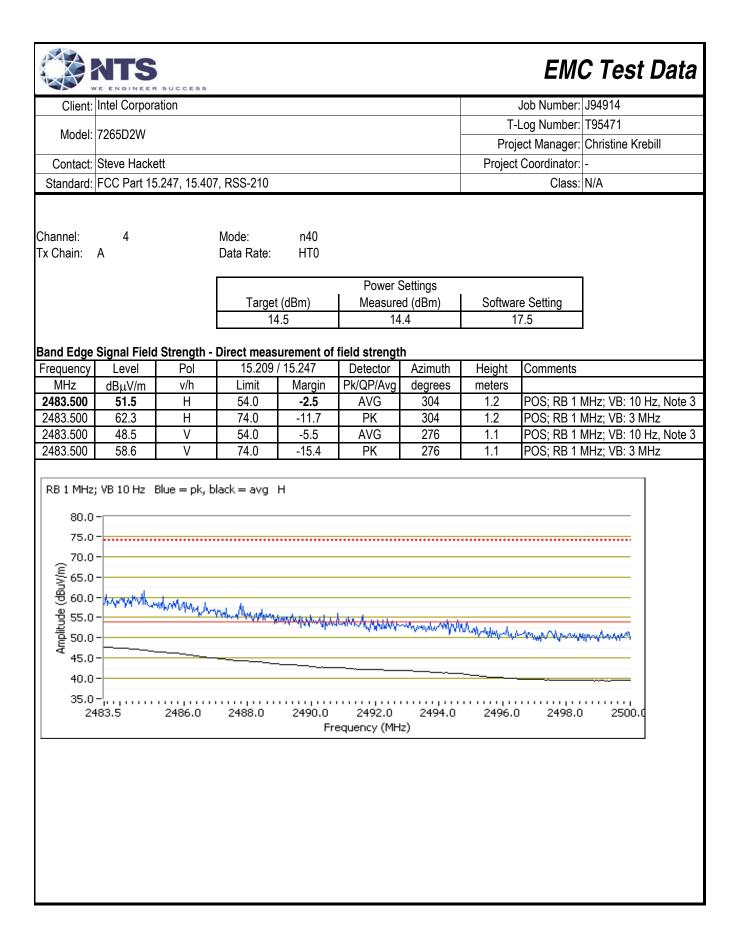

Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 20dB below the level of the fundamental and measured in 100kHz.
Note 3:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector,
NOLE J.	linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear Voltage correction factor
Note 4:	Plots of the average bandedge do not account for any duty cycle correction. Refer to the tabular results for final
NOLE 4.	measurements.

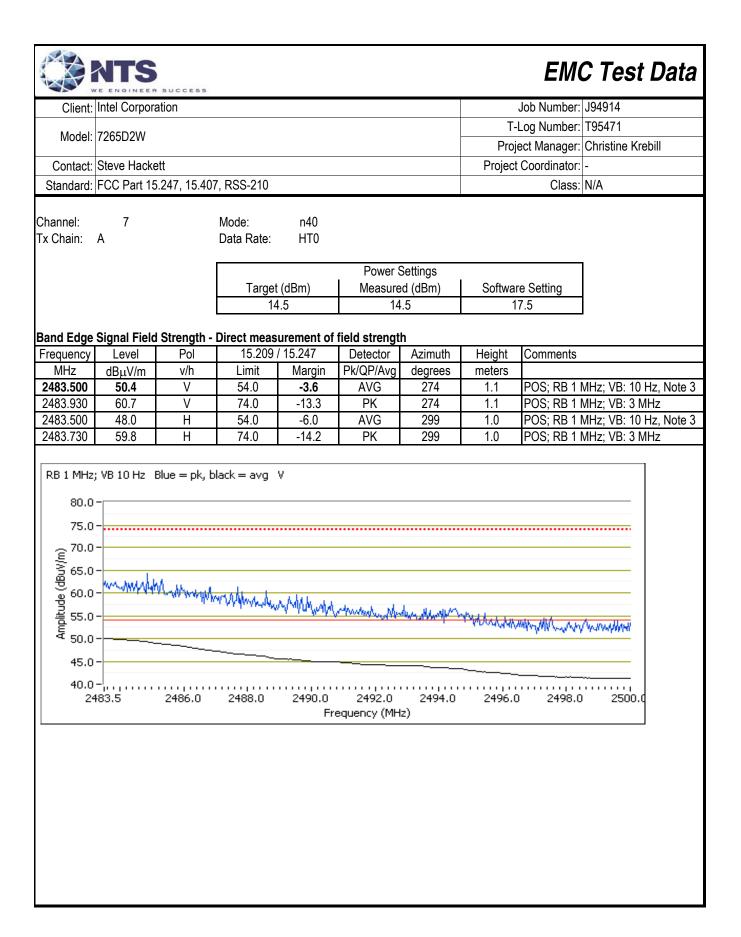

	ATS	SUCCESS						EMO	C Test Dat
Client:	Intel Corpora	ation						Job Number:	J94914
	70050014						T-I	Log Number:	T95471
Model:	7265D2W						Proje	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	.247, 15.407	, RSS-210				,	Class:	N/A
Run #1: Ra	diated Banc	ledge Meası	urements						
0	Date of Test:	6/6/2014 0:0	0		C	onfig. Used:	1		
	st Engineer:					fig Change:			
Te	est Location:	Chamber 7			E	UT Voltage:	3.3 VDC		
Channel:	1		Mode:	b					
x Chain:	A		Data Rate:	1					
		I			Power S	Settings			
			Target	(dBm)	Measure		Softwar	e Setting	
				6.5	16.8			4.5	
									1
					field strengt		-	•	
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2385.270 2379.820	47.1 52.9	V V	54.0 74.0	-6.9 -21.1	AVG PK	278 278	1.04 1.04		MHz; VB: 10 Hz MHz; VB: 3 MHz
2379.820	47.9	H	54.0	-21.1 -6.1	AVG	308	1.04		MHz; VB: 10 Hz
2385.510	53.8	H	74.0	-20.2	PK	308	1.00		MHz; VB: 3 MHz
RB 1	MHz; VB 10	Hz Blue =	pk, black = a	avg H					
	80.0-								
	70.0-								
	60.0-								
(m//wab							~		m and
de (dBuV/m)							Sur del antes	- Washington	
olitude (dBuV/m)	50.0-	make would	when.	setting to say a set	16	and a set of the set	And the second s	201.022	~ "
de (d	50.0-	~~h~w~~	White	manner	4 managen	www.www.	5	$\int_{M_{\rm m}}$	\sim
	50.0 - ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~	wh	and the second	de Constantine from the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			\sim
	herdowed	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		to a management	~	~	\sim	\sim
	40.0 -		~	·····	+/		~	\bigvee	
	40.0-	2355	2360	2365	5 2370	0 233	75 2	\bigvee	385 2390
	40.0 -	2355	2360	2365	5 237(Frequency	0 233	 75 2:	\bigvee	385 2390
	40.0 -	2355	2360	2365	5 2370	0 233	75 2:	\bigvee	385 2390
	40.0 -	2355	2360	2365	5 2370	0 233	 75 2:	\bigvee	385 2390
	40.0 -	2355	2360	2365	5 2370	0 233		\bigvee	385 2390

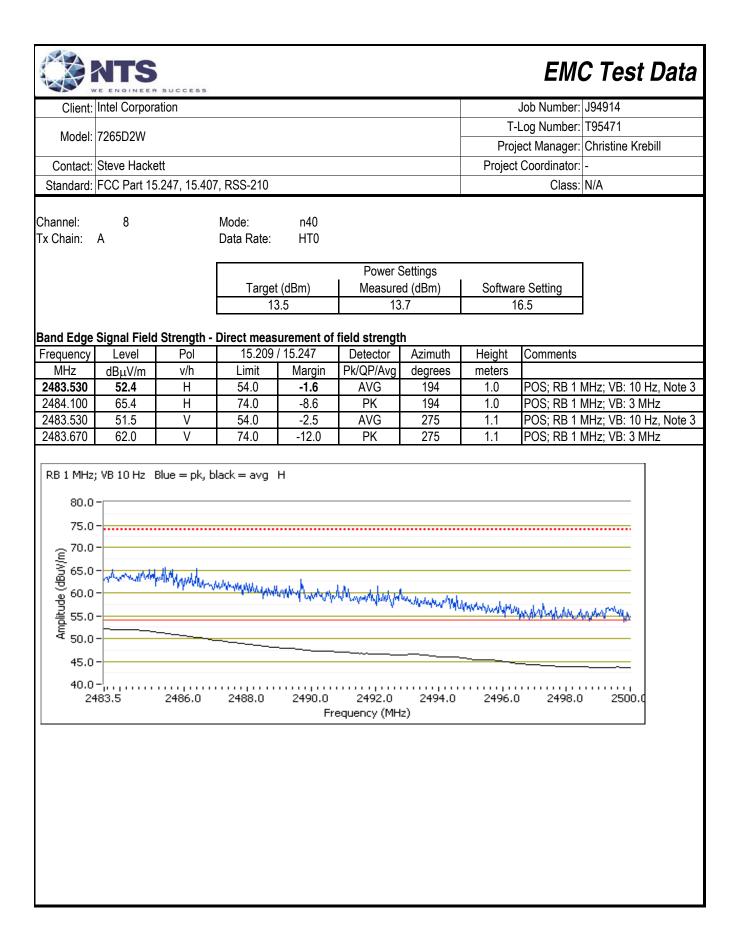

Client:	Intel Corpora	ation						Job Number: J94914		
	70050044						T-	Log Number: T95471		
Wodel:	7265D2W						Proj	ect Manager: Christine Kreb		
Contact:	Steve Hacke	ett					Project Coordinator: -			
Standard:	FCC Part 15	5.247, 15.407	, RSS-210					Class: N/A		
)	diated Band	ladaa Maaa	uromonto							
		-			0	ممانع المعطر	4			
	Date of Test: est Engineer:		10			onfig. Used: ifig Change:				
	est Location:					UT Voltage:				
					E		0.0 100			
Channel:	1		Mode:	g						
x Chain:	А		Data Rate:	6						
			[Dower (Sottings				
			Target	t (dBm)	Power S Measure	-	Softwar	e Setting		
			v	14.0		14.2		7.0		
							· ·			
Band Edge	Signal Field				field strengt		-			
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2390.000	46.2	V V	54.0	-7.8	AVG	282	1.00	POS; RB 1 MHz; VB: 10 Hz		
2389.280 2390.000	58.0 47.8	V H	74.0 54.0	-16.0 -6.2	PK AVG	282 249	1.00 1.46	POS; RB 1 MHz; VB: 3 MH POS; RB 1 MHz; VB: 10 Hz		
2389.920	59.9	H	74.0	-14.1	PK	249	1.46	POS; RB 1 MHz; VB: 3 MH		
						-	-	, , -		
RB 1	MHz; VB 10	Hz Blue =	pk, black = ·	avg H						
	80.0-									
	70.0-									
1 2	/0.0-									
Amplitude (dBuV/m)	60.0-									
9	00.0							1 h which a hard a hard and a free of the		
inde	50.0-		windowski Ale	ruhanarana	warmen	ANDroght	MAN WAY	the approximation and		
	00.0	to a de								
	40.0									
1	30.0-									
	2350	2355	2360	236				380 2385 23		
					Frequency	/ (MHz)				

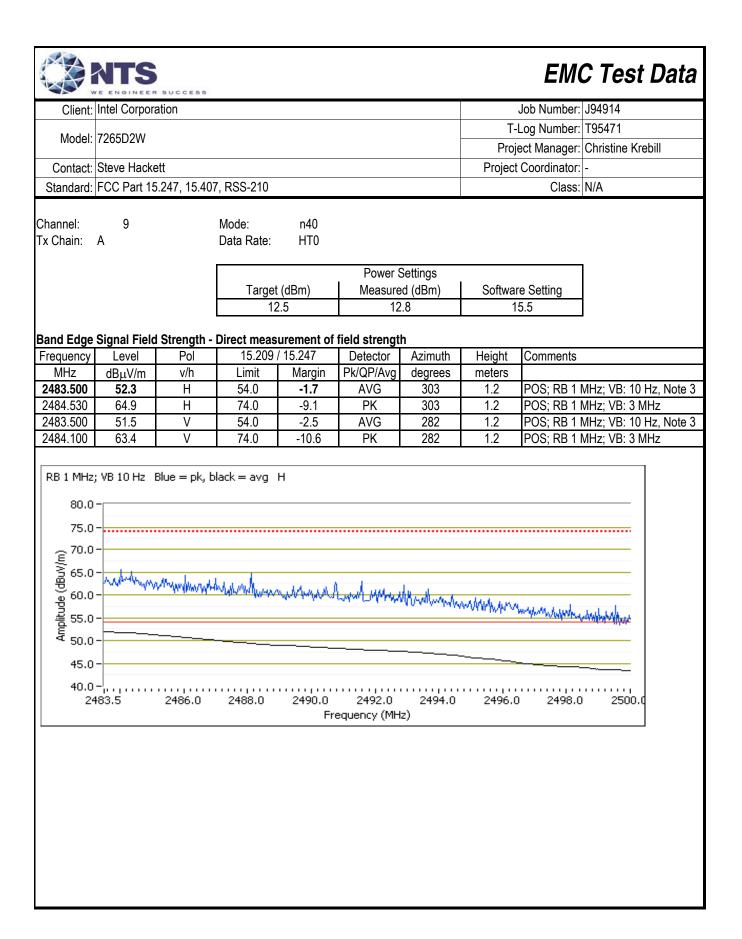





	ATS	SUCCESS						EM	C Test Dat
Client:	Intel Corpora	ation						Job Number:	J94914
	70050014						T-	Log Number:	T95471
Model:	7265D2W						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	5.247. 15.407	7. RSS-210				,	Class:	
[idiated Band Date of Test:	6/6/2014 0:0	00			onfig. Used:			
	st Engineer: est Location:					fig Change: UT Voltage:			
Channel: Tx Chain:	1 A		Mode: Data Rate:	n20 HT0					
					Power	Settings	_		
			_	: (dBm)	Measure	d (dBm)		e Setting	
			14	1.0	14	.1	1	7.0	
-					field strengt				
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2390.000	45.1	V V	54.0	-8.9	AVG PK	278	1.00		MHz; VB: 10 Hz
2384.630 2390.000	58.4 48.2	H	74.0 54.0	-15.6 -5.8	AVG	278 248	1.00 1.44		MHz; VB: 3 MHz MHz; VB: 10 Hz
2389.760	62.9	H	74.0	-11.1	PK	248	1.44		MHz; VB: 3 MHz
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 -	www.www.	pk, black = -		۸۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰)			MM/M/MMMM
					Frequency	(MHz)			







Client: Intel Corporation Job Number: J94914 Model: 7265D2W T-Log Number: T35471 Contact: Standard: Project Manager: Christine Krebill Contact: Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #4: Radiated Bandedge Measurements Date of Test: 6/6/2014 0.00 Config. Used: 1 Test Engineer: Joseph Catigal Config. Used: 1 Class: N/A Test Location: FT Chamber#7 EUT Voltage: 3.3 VDC Channel: 3 Mode:: n40 Tx Chain: A Data Rate: HTO Software Setting Software Setting Target (dBm) Measured (dBm) Software Setting Software Setting Software Setting Frequency Level Pol 15209/15247 Detector Azimuth Height Comments MHz dB _L /Vm v/h Limit Marging POS; RB 1 MHz; VB: 10 Hz, Note: 2389.400 12 POS; RB 1 MHz; VB: 3 MHz 2389.840 59.5 <t< th=""><th></th><th></th><th>SUCCESS</th><th></th><th></th><th></th><th></th><th></th><th>ЕМ</th><th>C Test Data</th></t<>			SUCCESS						ЕМ	C Test Data
Model: 22502/W Project Manager: Christine Krebill Contact: Steve Hackett Project Coordinator: - Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #4: Radiated Bandedge Measurements Config. Used: 1 Class: N/A Test Engineer: Joseph Cadigal Config. Config. Config. Config. Config. Change: none Test Location: FT Chamber#7 EUT Voltage: 3.3 VDC Channel: 3 Mode:: n40 Tx Chain: A Data Rate: HTO Eand Edge Signal Field Strength - Direct measurement of field strength Frequency Software Setting Trequency Level POI 15.209 / 15.247 Deteotor 2389.600 52.1 H 54.0 -1.9 AVG 304 1.2 POS; RB 1 MHz; VB: 10 Hz, Note: 2389.601 52.1 H 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 30 Hz,	Client:	Intel Corpora	ation						Job Number:	J94914
Project Manager Christine Krebill Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #4: Radiated Bandedge Measurements Class: N/A Aun #4: Radiated Bandedge Measurements Config. Used: 1 Class: N/A Test Engineer: Joseph Cadigal Config. Used: 1 Config. Used: 1 Config. Used: 1 Test Location: FT Chamber#7 EUT Voltage: 3.3 VDC N/A Channel: 3 Mode: n40 Tx Chain: A Data Rate: HTO Stand Edge Signal Field Strength - Direct measurement of field strength Frequency Level Pol Frequency Level Pol 15.209/15.247 Detector Azimuth Height Comments Mtz dB ₃ V/m vh Limit Margin Pk/OP/Avg degrees meters 2389.600 52.1 H 54.0 -1.9 AVG 304 1.2 POS; RB 1 MHz; VB: 30 Hz 238.880 59.5 V 74.0 -14.5 PK		70050014						T-Log Number: T95471		T95471
Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A Run #4: Radiated Bandedge Measurements Date of Test: 6/6/2014 0:00 Config. Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Engineer: Joseph Cadigal Test Location: FT Chamber#7 EUT Voltage: 3.3 VDC Channel: 3 Mode: n40 Discontract A Data Rate: HTO Stand Edge Signal Field Strength - Direct measurement of field strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBi _L V/m Vh Limit Margin PK/P/Avg degrees meters 2388.840 52.1 H 54.0 -5.7 AVG 204 1.2 POS; RB 1 MHz; VB: 10 Hz, Nbte : 2388.840 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz 2388.840 59.5 V 74.0 -14.5 PK	Model:	7265D2W						Proje	ect Manager:	Christine Krebill
Run #4: Radiated Bandedge Measurements Date of Test: 6/6/2014 0:00 Config. Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Location: FT Chamber#7 EUT Voltage: 3.3 VDC Channel: 3 Mode: n40 fx Chain: A Data Rate: HTO Image: Target (dBm) Measured (dBm) Software Setting 13.5 13.5 16.5 Sand Edge Signal Field Strength - Direct measurement of field strength Frequency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBu/Vm Vin Limit Margin degrees meters 2389.840 52.1 H 54.0 -1.9 AVG 304 1.2 POS; RB 1 MHz; VB: 10 Hz, Note 3 2389.840 52.1 H 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 30 Htz 2389.840 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 30 Htz 2388.800 59.5 <td< td=""><td>Contact:</td><td>Steve Hacke</td><td>ett</td><td></td><td></td><td></td><td></td><td>Project</td><td>Coordinator:</td><td>-</td></td<>	Contact:	Steve Hacke	ett					Project	Coordinator:	-
Date of Test:6/6/2014 0:00 Test Location:Config. Used: 1 Config. Change: none EUT Voltage: 3.3 VDCChannel:3Mode:n40 Data Rate:Mode:n40 Target (dBm) $Noter Settings$ Target (dBm)Sand Edge Signal Field Strength - Direct measurement of field strengthFrequencyLevelPolMHzdB _µ V/mVhLimitMarginPk/QP/Avgdegreesmeters2389.84052.1H54.0-1.9AVG3041.22389.84052.1H54.02389.84052.1H54.02389.84052.1H54.0-1.17PK3041.2POS; RB 1 MHz; VB: 10 Hz, Note 32389.84059.5V74.0-14.5PK2761.3POS; RB 1 MHz; VB: 3 MHz2389.86059.5V74.0-14.5PK2761.3POS; RB 1 MHz; VB: 3 MHzRB 1 MHz; VB 10 HzBlue = pk, black = avg H00000000010223502355236023652370237523802385239023952390239523602395236023952390239523902395	Standard:	FCC Part 15	5.247, 15.40	7, RSS-210					Class:	N/A
Test Engineer: Joseph Cadigal Test Location: FT Chamber#7 Config Change: none EUT Voltage: 3.3 VDC Channel: 3 Mode: n40 Data Rate: Target (dBm) Measured (dBm) Software Setting 13.5 Sand Edge Signal Field Strength - Direct measurement of field strength Power Settings 13.5 Software Setting Band Edge Signal Field Strength - Direct measurement of field strength Height Comments MHz dBjL//m Vh Limit MHz 2389.840 62.3 H 74.0 -11.7 Z389.840 62.3 H 74.0 -11.7 PK 204 1.2 POS; RB 1 MHz; VB: 10 Hz, Nbte : Z389.840 48.3 V 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 3 MHz Z389.800 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz Z380.600 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz Z380.600 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz g			-							
Test Location: FT Chamber#7 EUT Voltage: 3.3 VDC Channel: 3 Mode: n40 fx Chain: A Data Rate: HT0 Image: Chain Chain A Data Rate: HT0 Software Settings Target (dBm) Measured (dBm) Software Setting 3and Edge Signal Field Strength - Direct measurement of field strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz BlpLV/m V/m Limit Margin PK/QPA/gragerees meters MHz MLz DSI: 10 Hz, Note 3 2389.840 52.1 H 54.0 -5.7 AVG 304 1.2 POS; RB 1 MHz; VB: 10 Hz, Note 3 2389.840 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz RB 1 MHz; VB 10 Hz Blue = pk, black = avg H Image: Chain Margin										
Channel: 3 Mode: n40 Tx Chain: A Data Rate: HT0 Image: Channel: Pol 15.209/15.247 Detector Azimuth Height Comments Image: Channel: Vith Limit Margin Pk/QP/Avg degrees meters 2389.840 12.2 POS; RB 1 MHz; VB: 10 Hz, Note I 2389.840 48.3 V 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 3 MHz Z389.840 59.5 V 74.0 -14.5 PK 276 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Fx Chain: A Data Rate: HT0 Image: Image	IE	est Location:	FIChambe	er#7		E	UT voltage:	3.3 VDC		
Target (dBm) Measured (dBm) Software Setting 13.5 13.5 16.5 Band Edge Signal Field Strength - Direct measurement of field strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2389.840 52.1 H 54.0 -1.9 AVG 304 1.2 POS; RB 1 MHz; VB: 10 Hz, Note : 2389.840 62.3 H 74.0 -11.7 PK 304 1.2 POS; RB 1 MHz; VB: 30 Hz Note : 2389.840 48.3 V 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 10 Hz, Note : 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz RB 1 MHz; VB 10 Hz Blue = pk, black = avg H										
Target (dBm) Measured (dBm) Software Setting 13.5 13.5 16.5 Sand Edge Signal Field Strength - Direct measurement of field strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2389.840 52.1 H 54.0 -1.9 AVG 304 1.2 POS; RB 1 MHz; VB: 10 Hz, Note 3 2389.840 62.3 H 74.0 -11.7 PK 304 1.2 POS; RB 1 MHz; VB: 3 MHz 2389.840 48.3 V 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 3 MHz 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz 70.0 - - - 90 S; RB 1 MHz; VB: 3 MHz 90 S; RB 1 MHz; VB: 3 MHz 90 S; RB 1 MHz; VB: 3 MHz 99 50.0 - - - - - - -						Power S	Settings			
13.5 13.5 16.5 Band Edge Signal Field Strength - Direct measurement of field strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµLV/m v/h Limit Margin Pk/QP/Avg degrees meters 2389.840 52.1 H 54.0 -1.9 AVG 304 1.2 POS; RB 1 MHz; VB: 10 Hz, Note 2 2389.840 48.3 V 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 10 Hz, Note 2 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz 70.0				Target	(dBm)		-	Softwar	e Setting	
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2389.840 52.1 H 54.0 -1.9 AVG 304 1.2 POS; RB 1 MHz; VB: 10 Hz, Note 1 2389.600 62.3 H 74.0 -11.7 PK 304 1.2 POS; RB 1 MHz; VB: 3 MHz 2389.840 48.3 V 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 10 Hz, Note 1 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz RB 1 MHz; VB 10 Hz Blue = pk, black = avg H					· · ·			-		
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2389.840 52.1 H 54.0 -1.9 AVG 304 1.2 POS; RB 1 MHz; VB: 10 Hz, Note 2389.600 62.3 H 74.0 -11.7 PK 304 1.2 POS; RB 1 MHz; VB: 3 MHz 2389.840 48.3 V 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 10 Hz, Note 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz RB 1 MHz; VB 10 Hz Blue = pk, black = avg H				Dimention		Cold ature at	L			•
MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 2389.840 52.1 H 54.0 -1.9 AVG 304 1.2 POS; RB 1 MHz; VB: 10 Hz, Note 2389.600 62.3 H 74.0 -11.7 PK 304 1.2 POS; RB 1 MHz; VB: 3 MHz 2389.840 48.3 V 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 10 Hz, Note 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz RB 1 MHz; VB 10 Hz Blue = pk, black = avg H								Height	Comments	
2389.840 52.1 H 54.0 -1.9 AVG 304 1.2 POS; RB 1 MHz; VB: 10 Hz, Note 3 2389.600 62.3 H 74.0 -11.7 PK 304 1.2 POS; RB 1 MHz; VB: 3 MHz 2389.840 48.3 V 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 10 Hz, Note 3 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz RB 1 MHz; VB 10 Hz Blue = pk, black = avg H 90									Commenta	
2389.600 62.3 H 74.0 -11.7 PK 304 1.2 POS; RB 1 MHz; VB: 3 MHz 2389.840 48.3 V 54.0 -5.7 AVG 276 1.3 POS; RB 1 MHz; VB: 10 Hz, Note 2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz RB 1 MHz; VB 10 Hz Blue = pk, black = avg H 80.0 70.0 60.0 40.0 30.0 									POS; RB 1 I	MHz; VB: 10 Hz, Note
2388.880 59.5 V 74.0 -14.5 PK 276 1.3 POS; RB 1 MHz; VB: 3 MHz RB 1 MHz; VB 10 Hz Blue = pk, black = avg H 80.0- 70.0- 60.0- 9950.0- 40.0- 2350 2355 2360 2365 2370 2375 2380 2385 2390	2389.600	62.3	Н	74.0	-11.7	PK	304	1.2		
RB 1 MHz; VB 10 Hz Blue = pk, black = avg H 80.0 - - 70.0 - - 60.0 - - 900 - - 60.0 - - 900 - - 1000 - - 2350 2355 2360 2365 2370 2375 2380 2385 2390										
80.0 70.0 (0,0 60.0 50.0 40.0 30.0 2350 2355 2360 2365 2370 2375 2380 2385 2390	2388.880	59.5	V	74.0	-14.5	PK	276	1.3	POS; RB 1 I	NHz; VB: 3 MHz
	80.0 70.0 (w/\ngp 60.0 40.0 40.0 30.0	- - - - - - - - - - - - - - - - -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mundur uter w		2370	2375			
					Fr	equency (MH	z)			

	The Engineer booocebb										
Client:	Intel Corporation	Job Number:	J94914								
Model.	7265D2W	T-Log Number:	T95471								
woder.	1205D2W	Project Manager:	Christine Krebill								
Contact:	Steve Hackett	Project Coordinator:	-								
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A								

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

rs

SUCCESS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	25 °C
Rel. Humidity:	30 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
1	h	1 - 2412MHz	16.5	21.5	Restricted Band Edge (2390 MHz)		47.9 dBµV/m @ 2389.3 MHz (-6.1 dB)
I	1 b	11 - 2462MHz	16.5	21.0	Restricted Band Edge (2483.5 MHz)		47.1 dBµV/m @ 2488.8 MHz (-6.9 dB)
		1 - 2412MHz	14.5	24.0	Restricted Band Edge	FCC Part 15.209 /	48.0 dBµV/m @ 2390.0 MHz (-6.0 dB)
2	0	2 - 2417MHz	15.5	25.0	(2390 MHz)	15.247(c)	47.8 dBµV/m @ 2390.0 MHz (-6.2 dB)
2	2 g	10 - 2457MHz	15.5	25.0	Restricted Band Edge		46.2 dBµV/m @ 2483.5 MHz (-7.8 dB)
		11 - 2462MHz	12.5	21.5	(2483.5 MHz)		46.1 dBµV/m @ 2483.5 MHz (-7.9 dB)

EMC Test Data										
Client:	Intel Corpo	ration				Job Number: J94914				
Madal	70650004				T-Log Number:	T95471				
Model	7265D2W				Project Manager:	Christine Krebill				
Contact:	Steve Hack	ætt				Project Coordinator:	-			
Standard:	: FCC Part 15.247, 15.407, RSS-210					Class:	N/A			
		1 - 2412MHz	14.5	24.0	Restricted Band Edge		49.6 dBµV/m @ 2390.0 MHz (-4.4 dB)			
2	-20	2 - 2417MHz	15.5	25.0	(2390 MHz)		47.6 dBµV/m @ 2390.0 MHz (-6.4 dB)			
3	n20	10 - 2457MHz	15.5	25.5	Restricted Band Edge		47.2 dBµV/m @ 2483.6 MHz (-6.8 dB)			
		11 - 2462MHz	12.5	22.0	(2483.5 MHz)		46.7 dBµV/m @ 2483.5 MHz (-7.3 dB)			
		3 - 2422MHz	13.5	21.5	Restricted Band Edge	FCC Part 15.209 /	53.0 dBµV/m @ 2390.0 MHz (-1.0 dB)			
		4 - 2427MHz -	14.5	22.5	(2390 MHz)	15.247(c)	53.5 dBµV/m @ 2390.0 MHz (-0.5 dB)			
4	n40	6 - 2437MHz	16.5	25.0			53.4 dBµV/m @ 2483.5 MHz (-0.6 dB)			
4	1140	7 - 2442MHz	13.5	23.0	Restricted Band Edge		51.4 dBµV/m @ 2483.5 MHz (-2.6 dB)			
		8 - 2447MHz	12.5	22.0	(2483.5 MHz)		51.8 dBµV/m @ 2483.5 MHz (-2.2 dB)			
		9 - 2452MHz	11.5	20.5]		49.8 dBµV/m @ 2483.5 MHz (-4.2 dB)			

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

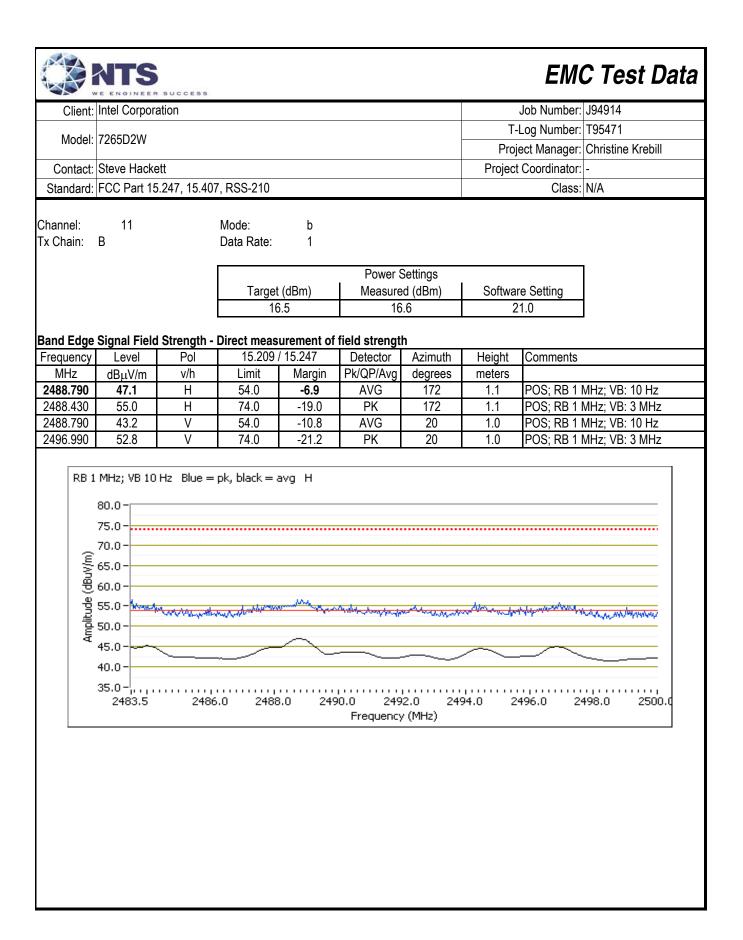
MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11 Antenna: Skycross WiMax/WLAN

	E ENGINEER SUCCESS		
Client:	Intel Corporation	Job Number:	J94914
Model.	7265D2W	T-Log Number:	T95471
MOUEI.	12030210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

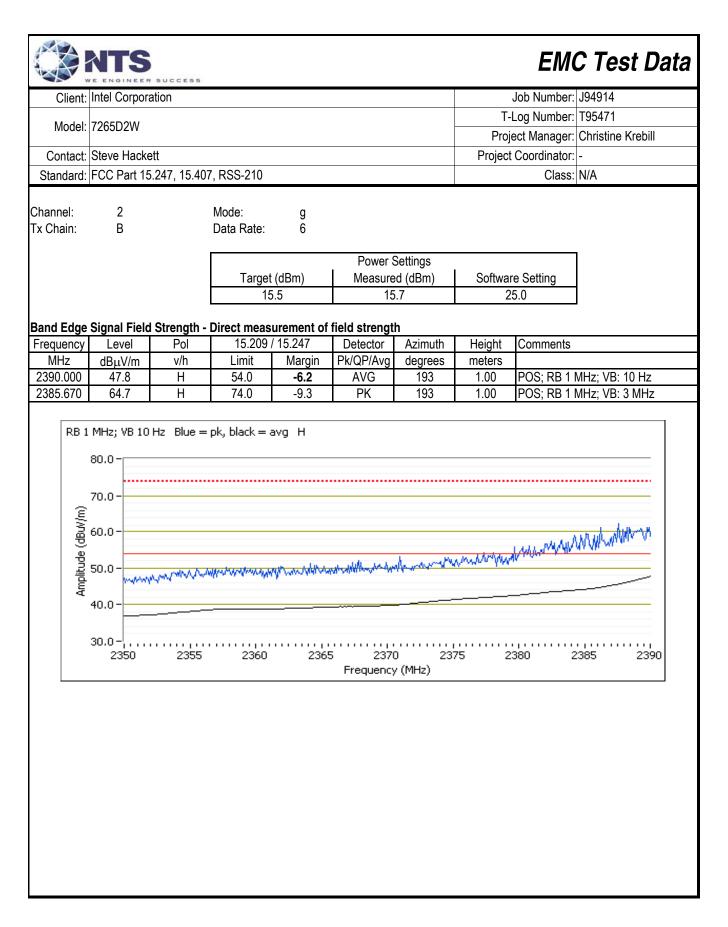
Procedure Comments:

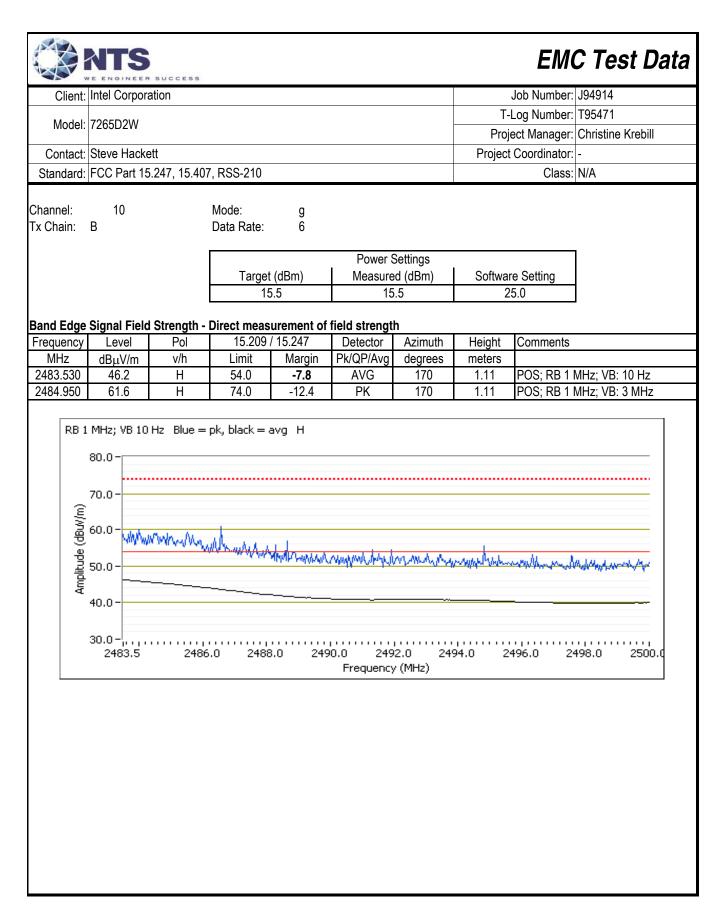
Measurements performed in accordance with FCC KDB 558074

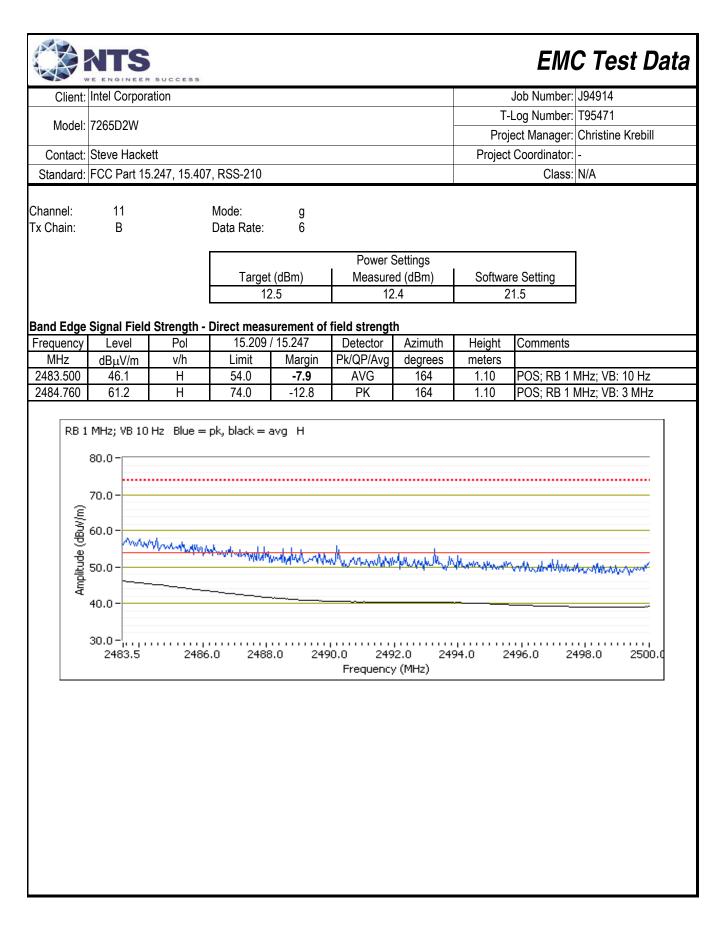
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

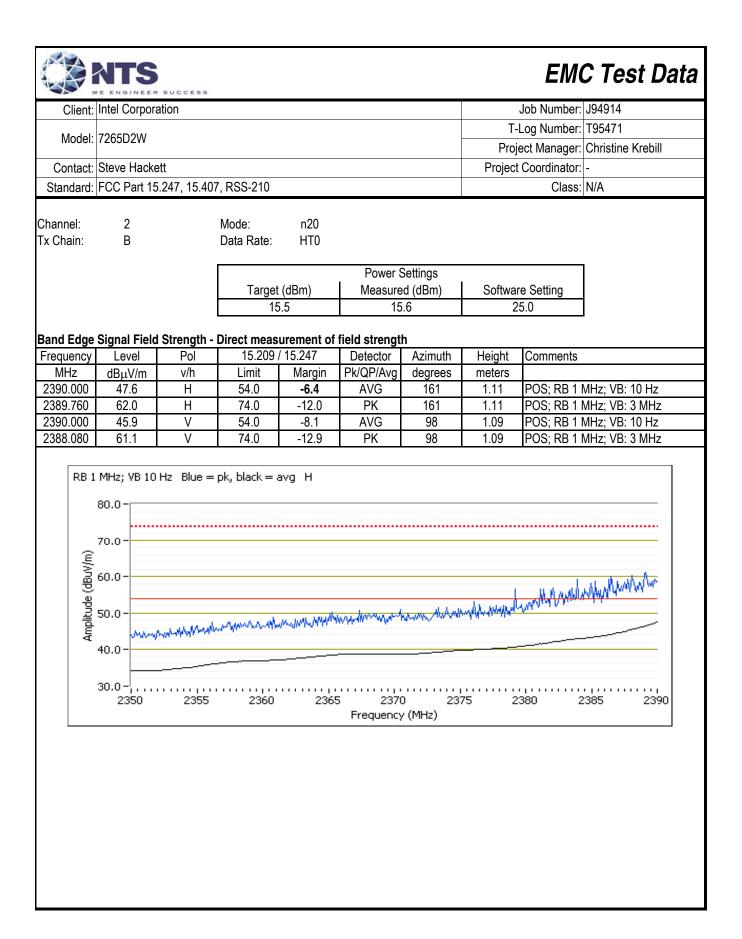

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

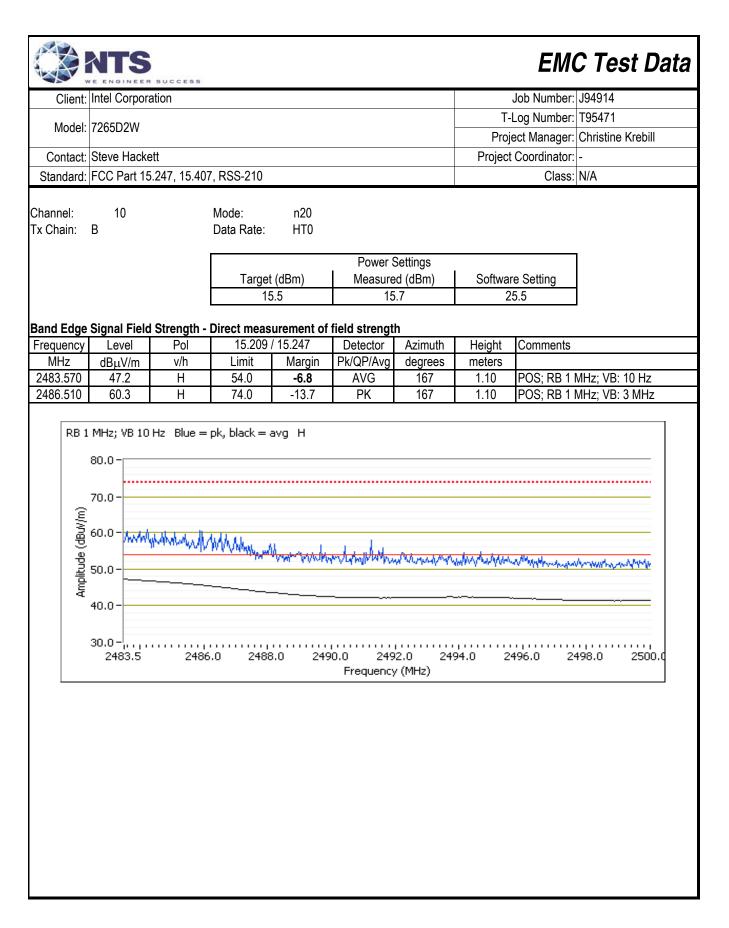
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1	0.99	Yes	2.272	0.0	0.0	440
11g	6	0.99	Yes	2.06	0.0	0.0	485
n20	HT0	0.99	Yes	1.919	0.0	0.0	521
n40	HT0	0.97	Yes	0.944	0.1	0.2	1059

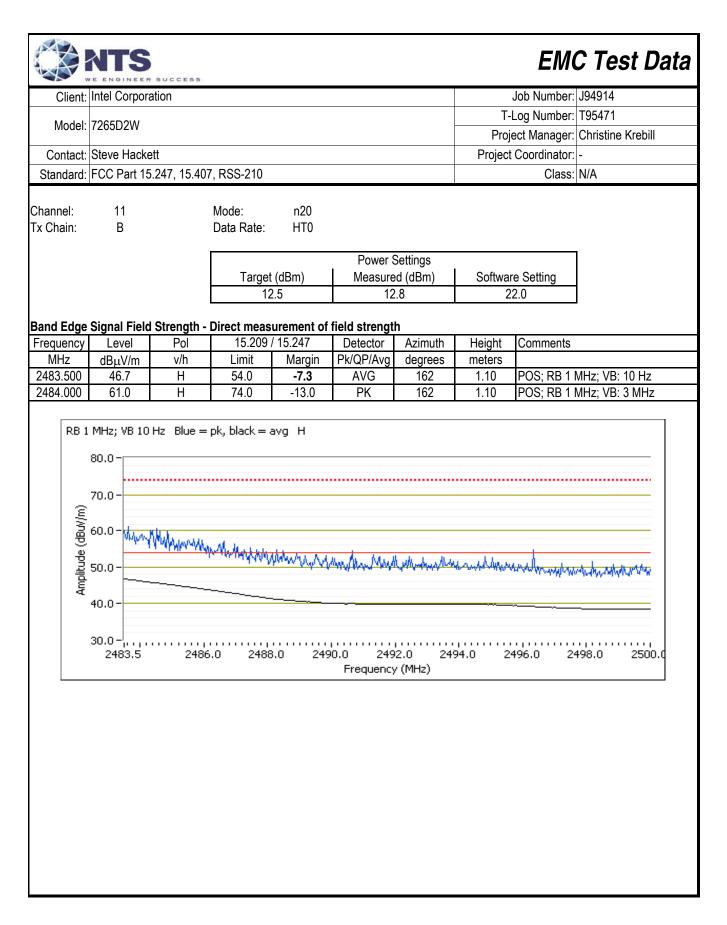

Measurement Specific Notes:

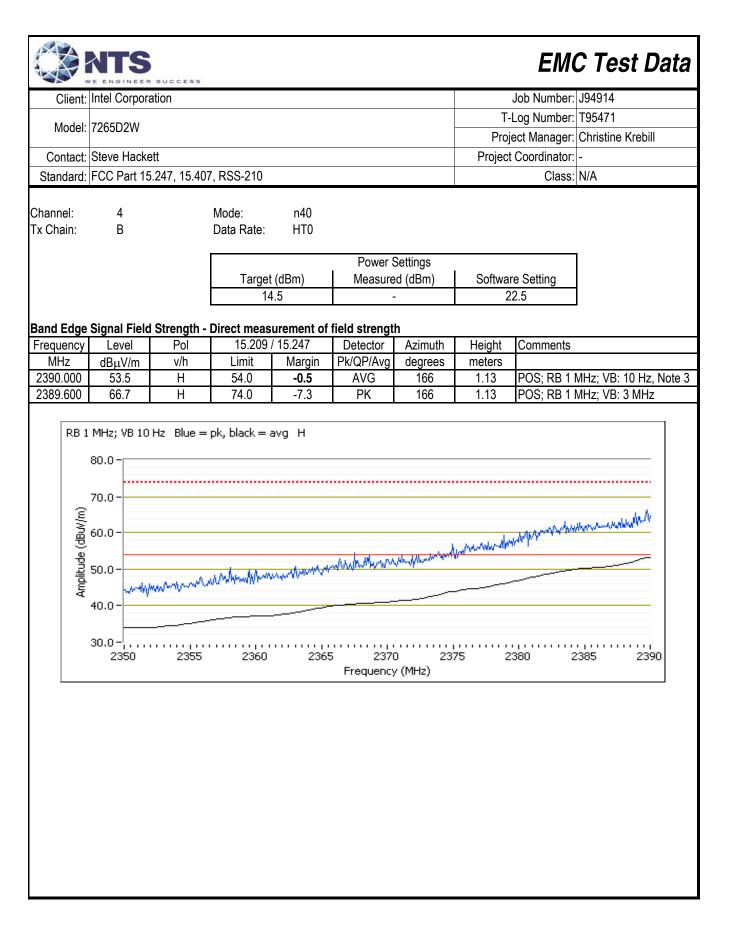

	Note 3:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector,
	NOLE J.	linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear Voltage correction factor
		Plots of the average bandedge do not account for any duty cycle correction. Refer to the tabular results for final
		measurements.

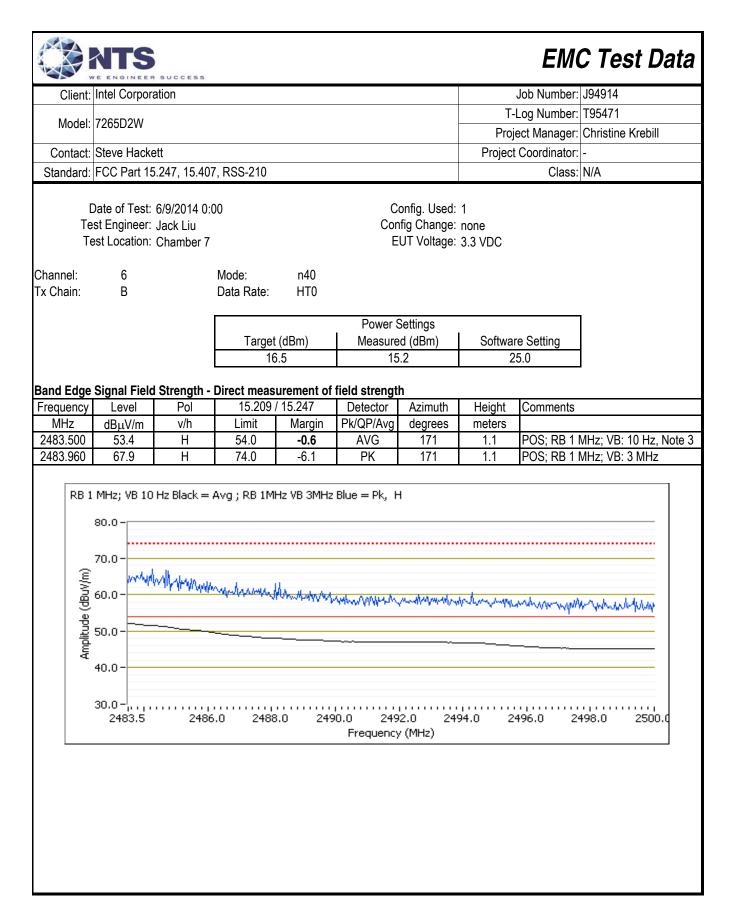

0.000	Intel Corpor	ation						Job Number:	J94914		
								Log Number:			
Model: 7265D2W								Project Manager: Christin			
Contact:	Steve Hack	ett		-	Coordinator:						
	FCC Part 1		7 RSS-210				Class: N/A				
		,	,								
	adiated Ban										
Date of Test: 6/6/2014 0:00Config. UsedTest Engineer: Joseph CadigalConfig ChangeTest Location: FT Chamber#7EUT Voltage							ge: none				
Channel:	1		Mode:	b							
x Chain:	В		Data Rate:	1							
					Power Settings						
			Target (dBm)		Measured (dBm)		Software Setting				
			16.5		16.6			1.5			
Sand Edge	Signal Field	l Strength -	Direct meas	urement of	field strengt	n					
Frequency		Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2389.280	47.9	Н	54.0	-6.1	AVG	172	1.2		MHz; VB: 10 Hz		
2389.840	54.0	H	74.0	-20.0	PK	172	1.2		MHz; VB: 3 MHz		
2389.360 2371.160	44.9 53.3	V V	54.0 74.0	-9.1 -20.7	AVG PK	14 14	1.1 1.1		MHz; VB: 10 Hz MHz; VB: 3 MHz		
2371.100	55.5	V	74.0	-20.7	ΓN	14	1.1	FU3, ND 11			
RB 1	1 MHz; VB 10	Hz Blue =	pk, black = a	avg H							
	80.0-										
Ê	70.0-										
uv/m)	70.0-										
(m/vuðb) e	70.0-										
itude (dBuV/m)	70.0-		where have group the face	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	the startight and	when we we we we	wh-nd-man	Auron and an	mant		
tmplitude (dBuV/m)	70.0-	mutundo	blas engraditra	****	er for the former and	man and a second	when have and	April 1999 Starten			
Amplitude (dBuV/m)	70.0-	www.mator	ulles walpertinger	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	### ^{###} %~~~			
Amplitude (dBuV/m)	70.0 -	m With maker ~~~~	ulas nadjos datajos	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	~~~~	<u>~~~</u>				
Amplitude (dBuV/m)	70.0 - 60.0 - 50.0 - 40.0 -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u>~~~</u>	~~~	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Amplitude (dBuV/m)	70.0 - 60.0 - 50.0 - 40.0 -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2360	2365) 237	~~ ~ 75 2:	₩₩₩ ^{₩₩₩₩} ₩₩₩ ₩₩₩₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩	2385 2390		

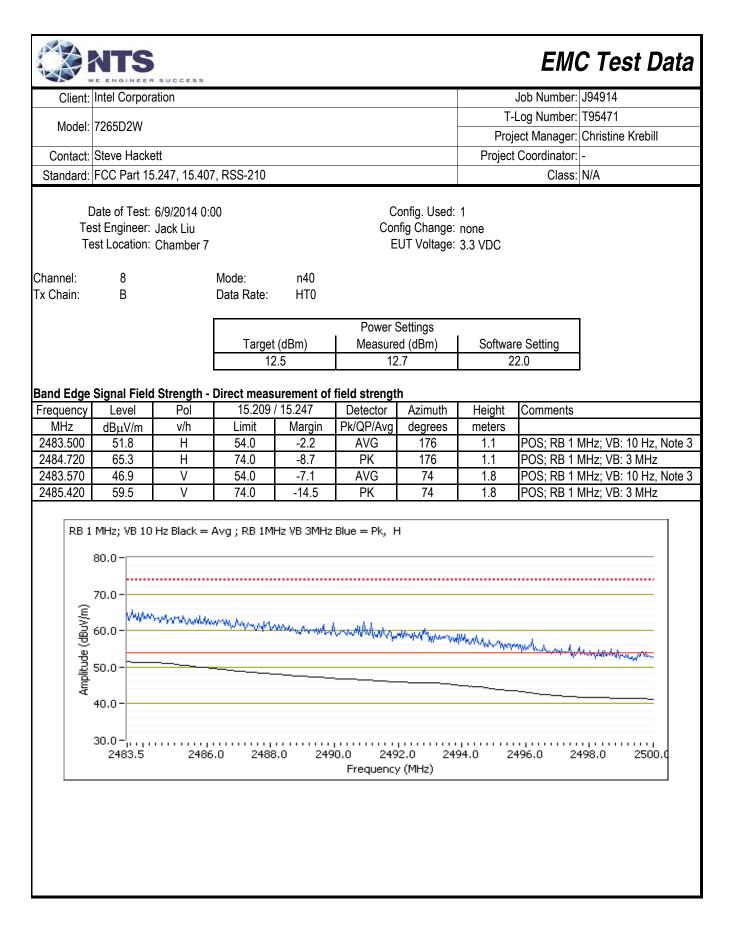

	Intol Comer	success						Job Number:	104014	
Client:	nt: Intel Corporation									
Model:	el: 7265D2W							Log Number:		
							-	-	Christine Krebill	
	Steve Hacke						Project	Coordinator:		
Standard:	FCC Part 15	5.247, 15.407	7, RSS-210					Class:	N/A	
	adiated Band	-								
Date of Test: 6/9/2014 0:00 Test Engineer: John Caizzi						onfig. Used:				
	est Engineer: est Location:					Config Change: none EUT Voltage: 3.3 VDC				
10	EST LOCATION:	Chamber /			E	or voltage:	3.3 VDC			
Channel: Tx Chain:	1 B		Mode: Data Rate:	g 6						
					Power S	Settings			1	
			Target (dBm)		Power Settings Measured (dBm)		Software Setting			
			-	14.5		14.6		4.0		
									1	
					field strengt			<u> </u>		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz 2390.000	dBμV/m 48.0	v/h H	Limit 54.0	Margin -6.0	Pk/QP/Avg AVG	degrees 166	meters 1.10		MHz; VB: 10 Hz	
2390.000	40.0 62.4	<u> </u>	54.0 74.0	-11.6	PK	166	1.10		MHz; VB: 3 MHz	
2390.000	44.8	V	54.0	-9.2	AVG	84	1.00		MHz; VB: 10 Hz	
2389.760	57.7	V	74.0	-16.3	PK	84	1.00		MHz; VB: 3 MHz	
Amplitude (dBuV/m)	MHz; VB 10 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 2350	Hz Blue =	pk, black = ،	4/u/~~~~~					Admund Mahumada 2385 2390	

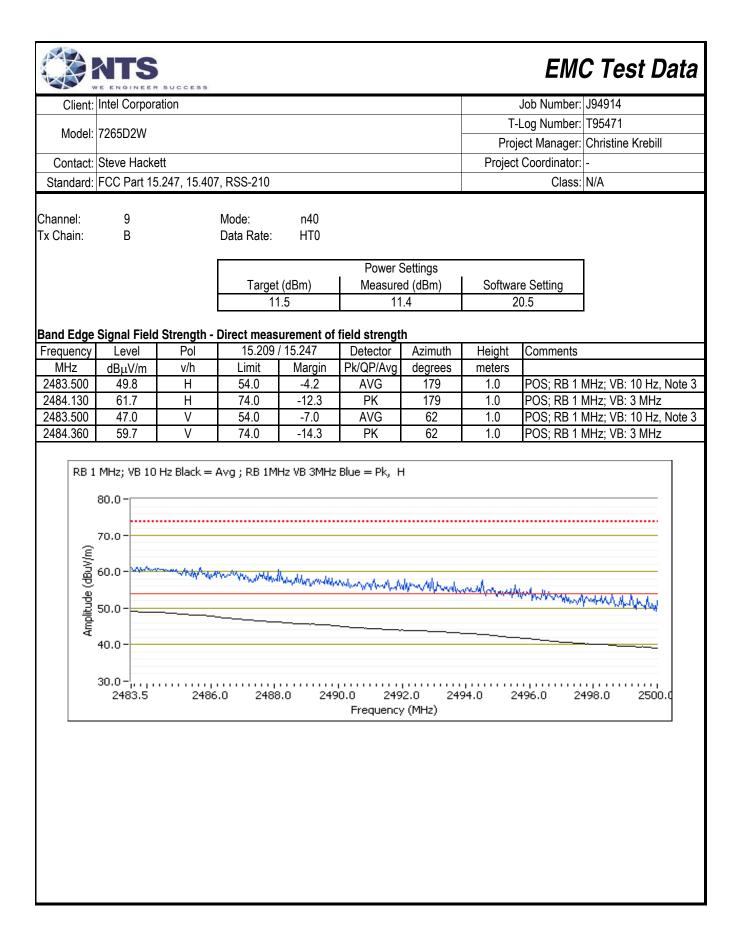





		ER SUCCESS						EM	C Test Dat
Client:	Intel Corp	oration						Job Number:	J94914
Model: 7265D2W							T-	Log Number:	T95471
							Proj	ect Manager:	Christine Krebill
Contact:	Steve Ha	ckett					Project	Coordinator:	-
Standard:	FCC Part	15.247, 15.40	7, RSS-210					Class:	N/A
		Indedge Meas							
Date of Test: 6/9/2014 0:00 Con									
Test Engineer: John Caizzi Test Location: Chamber 7						ifig Change: UT Voltage:			
16					E	or vollage.	J.J VDC		
Channel: Tx Chain:	1 B		Mode: Data Rate:	n20 HT0					
					Power S	Settings			
			Target	Target (dBm)		d (dBm)	Softwar	e Setting	
				14.5		14.8		4.0	
Band Edge	Signal Fi	eld Strength -	Direct meas	urement of	field strengt	h			
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m		Limit	Margin	Pk/QP/Avg	degrees	meters		
2390.000	49.6	Н	54.0	-4.4	AVG	162	1.14		MHz; VB: 10 Hz
2389.120	63.2 48.6	H V	74.0	-10.8 -5.4	PK AVG	162 98	1.14		MHz; VB: 3 MHz
2390.000 2388.320	48.6 63.4	V	54.0 74.0	-5.4 -10.6	PK	98 98	1.11 1.11		MHz; VB: 10 Hz MHz; VB: 3 MHz
2000.020	00.4	v	74.0	-10.0	11	50	1.11	100,1011	
Amplitude (dBuV/m)	MHz; VB 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 2350	10 Hz Blue =		www.www.	~) 23			385 2390
					Frequency	/ (MHz)			






		S EER SUCCESS						EM	C Test Data		
Client:	Intel Cor	poration						Job Number:	J94914		
		·					T-I	Log Number:	T95471		
Model:	7265D2\	V						-	Christine Krebill		
Contact:	Steve Ha	ackett					-	Coordinator:			
Standard:	FCC Par	t 15.247, 15.40	7, RSS-210				Class: N/A				
		andedge Meas			C	onfig. Used:	1				
Te	est Engine	eer: John Caizzi on: Chamber 7			Con	fig Change: UT Voltage:	none				
Channel: Tx Chain:	3 B		Mode: Data Rate:	n40 HT0							
					Power S	Settings					
			Target	(dBm)	Measured (dBm)		Softwar	e Setting			
				3.5	``````````````````````````````````````		1.5				
Band Edga	Signal E	ield Strength -	Direct meas	urement of	field strengt	h					
Frequency	Level			/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/i		Limit	Margin	Pk/QP/Avg	degrees	meters	Commonto			
2390.000	53.0	V	54.0	-1.0	AVG	98	1.09	POS; RB 1	MHz; VB: 10 Hz, Note		
2389.760	66.5	V	74.0	-7.5	PK	98	1.09		MHz; VB: 3 MHz		
2390.000	52.6	Н	54.0	-1.4	AVG	165	1.14		MHz; VB: 10 Hz, Note		
2388.400	65.0	Н	74.0	-9.0	PK	165	1.14	POS; RB 1	MHz; VB: 3 MHz		
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 -	10 Hz Blue =	www.uhannaha	ran yelqelet essen			-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	2350) 2355	2360	2365	5 2370 Frequency) 237	75 2:	380 2	385 2390		

		NTS	R SUCCESS						ЕМ	C Test Data
Cl	ient:	Intel Corpor							Job Number:	J94914
									Log Number:	
Мс	odel:	7265D2W								Christine Krebill
Con	tact:	Steve Hack	ett					-	Coordinator:	
			5.247, 15.40	7, RSS-210				,	Class:	
	Te	st Engineer:	6/9/2014 0: John Caizzi Chamber 7			Con	onfig. Used: ifig Change: UT Voltage:	none		
Channe Tx Chai		7 B		Mode: Data Rate:	n40 HT0					
						Power S	Settings			
				Target		Measure	d (dBm)		re Setting	
				13	8.5	13	.7	2	3.0	
Dond E	daa	Signal Field	d Strongth	Direct mass	uromont of	field strongt	h			
Freque	-	Level	Pol		15.247	field strengt Detector	Azimuth	Height	Comments	
MHz		dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commento	
2483.5		51.4	Н	54.0	-2.6	AVG	170	1.12	POS; RB 1 I	MHz; VB: 10 Hz, Note 3
2484.9	920	64.6	Н	74.0	-9.4	PK	170	1.12		MHz; VB: 3 MHz
2483.5		48.0	V	54.0	-6.0	AVG	76	1.00		MHz; VB: 10 Hz, Note 3
2484.2	290	60.8	V	74.0	-13.2	PK	76	1.00	POS; RB 1 I	MHz; VB: 3 MHz
	Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 -	almanatinut,		MM-Man		2.0 24	^ዚ ፈባ/ካ _ት ላዚ _ህ ምላ 94.0 2	44.downweden 	

EMC Test Data

	VE ENGINEER SUCCESS		
Client:	Intel Corporation	Job Number:	J94914
Model	7265D2W	T-Log Number:	T95471
Model.		Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

ITS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	24 °C
Rel. Humidity:	35 %

		R SUCCESS				ЕМ	C Test Data
Client:	Intel Corpor	ation				Job Number	: J94914
Model	7265D2W					T-Log Number	: T95471
	12030200					Project Manager	: Christine Krebill
Contact:	Steve Hack	ett				Project Coordinator	: -
Standard:	FCC Part 1	5.247, 15.407	′, RSS-210			Class	: N/A
Summary	of Result	ts - Device	Operating	g in the 24	100-2483.5 MHz Band	ł	
Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
		1 - 2412MHz	12.0, 12.0	16.0 21.5			50.7 dBµV/m @ 2389.9 MHz (-3.3 dB)
		2412101112	40 5 40 5	17.0	Restricted Band Edge		49.4 dBµV/m @ 2390.0
		2417MHz	13.5, 13.5	22.5	(2390 MHz)		MHz (-4.6 dB)
	1 n20	3 -	17.5, 17.5	23.0			52.8 dBµV/m @ 2389.7
1	n20	2422MHz 9 -		<u>28.0</u> 21.5			MHz (-1.2 dB) 52.9 dBµV/m @ 2483.5
		2452MHz	17.5, 17.5	27.0			MHz (-1.1 dB)
		10 -	13.5, 13.5	16.0	Restricted Band Edge		49.2 dBµV/m @ 2483.6
		2457MHz	10.0, 10.0	21.5	(2483.5 MHz)	FCC Part 15.209 /	MHz (-4.8 dB)
		11 - 2462MHz	12.0, 12.0	16.5 21.0		15.247(c)	52.8 dBµV/m @ 2483.5 MHz (-1.2 dB)
		3 -	0 5 0 5	14.0			47.4 dBµV/m @ 2389.9
		2422MHz	9.5, 9.5	19.5	Restricted Band Edge		MHz (-6.6 dB)
		4 -	11.5, 11.5	15.5	(2390 MHz)		49.1 dBµV/m @ 2389.4
•		2427MHz - 7 -		<u>21.0</u> 9.5			MHz (-4.9 dB) 52.2 dBµV/m @ 2483.5
2	n40	2442MHz	11.5, 11.5	20.0			MHz (-1.8 dB)
		8 -	10.5, 10.5	15.0	Restricted Band Edge		52.9 dBµV/m @ 2483.5
		2447MHz 9 -	,	<u>21.0</u> 13.5	(2483.5 MHz)		MHz (-1.1 dB) 53.0 dBµV/m @ 2483.5
		9 - 2452MHz	9.5, 9.5	19.5			MHz (-1.0 dB)

EMC Test Data

	LE ENGINEER BOCCEBB		
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95471
woder.	12030210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

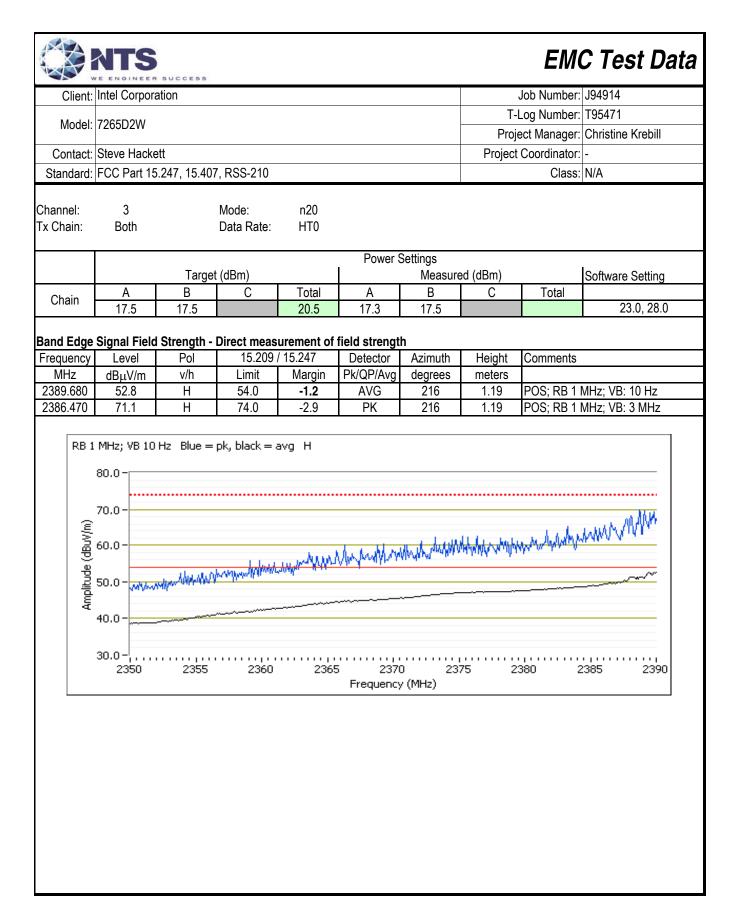
MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

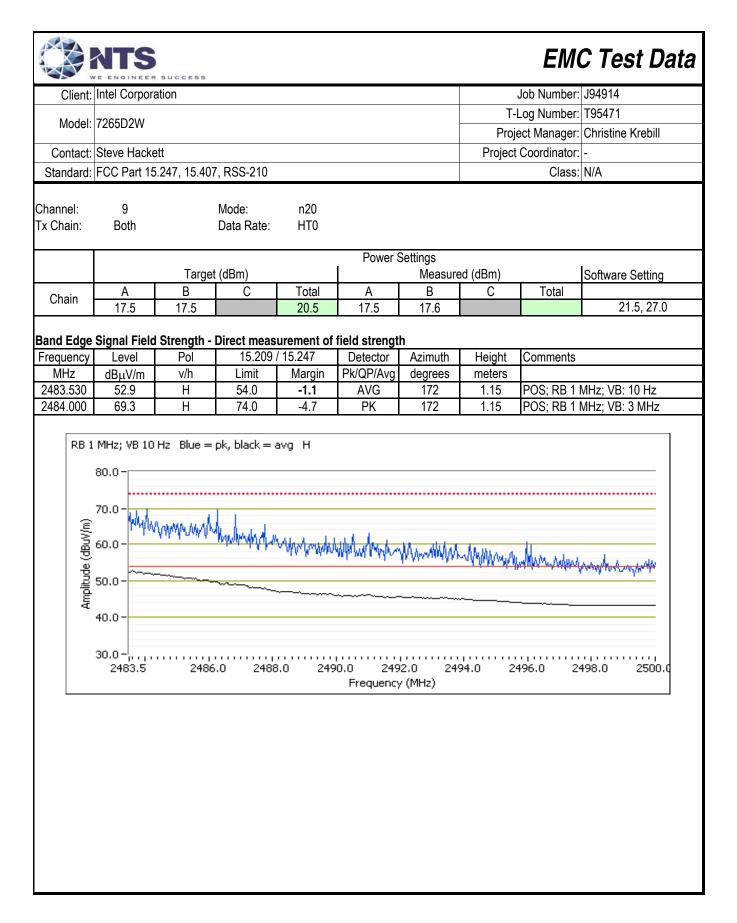
Antenna: Skycross WiMax/WLAN

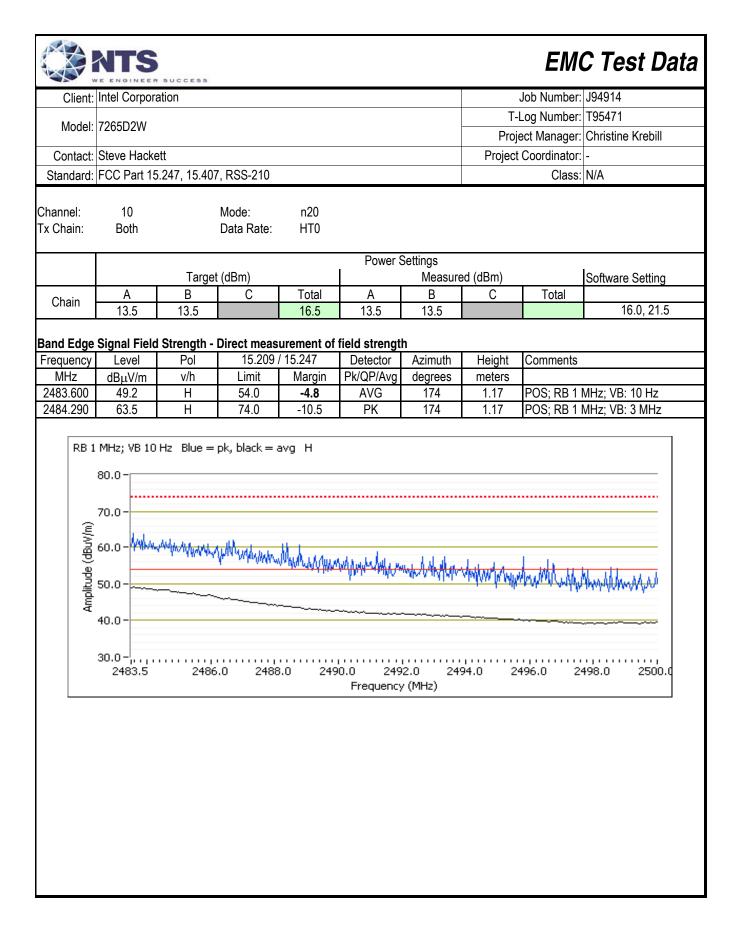
Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

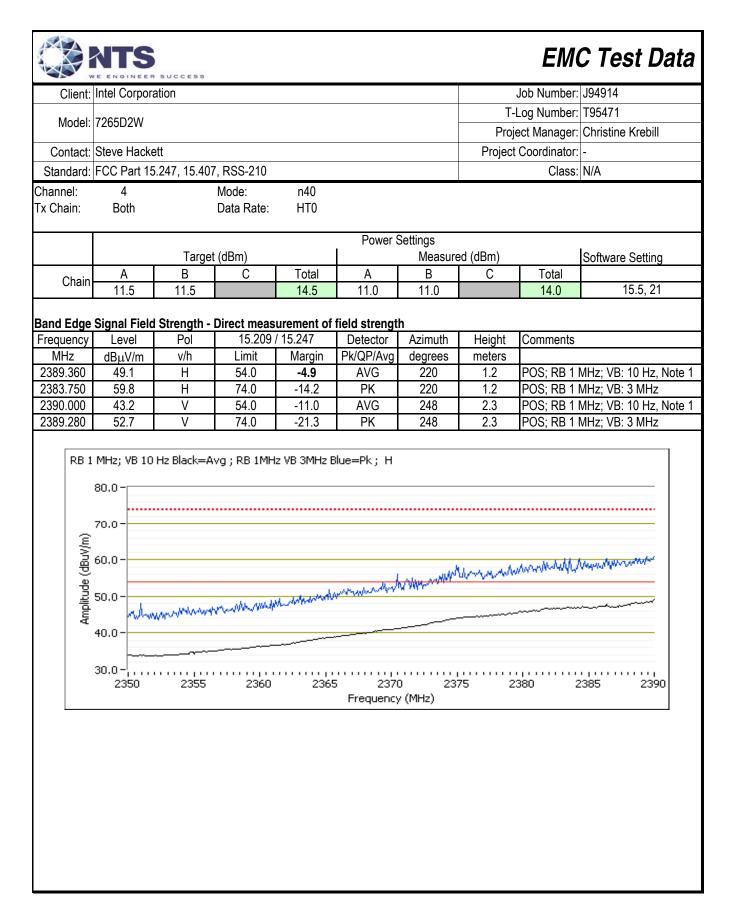

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
n20	HT0	0.99	Yes	1.919	0.0	0.0	521
n40	HT0	0.97	Yes	0.944	0.1	0.2	1059

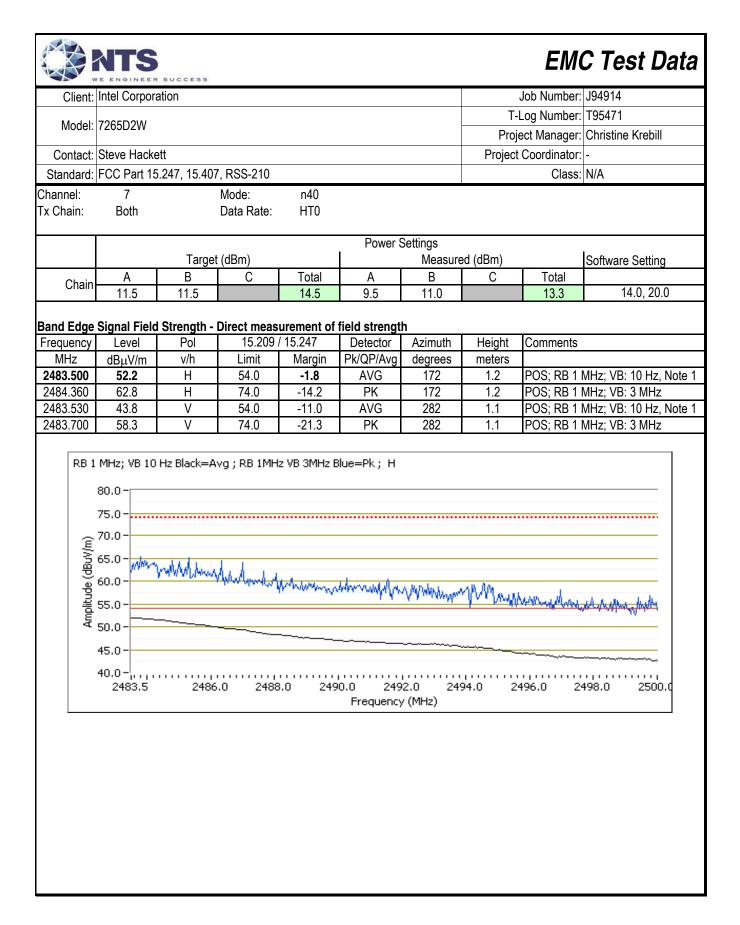

Measurement Specific Notes:

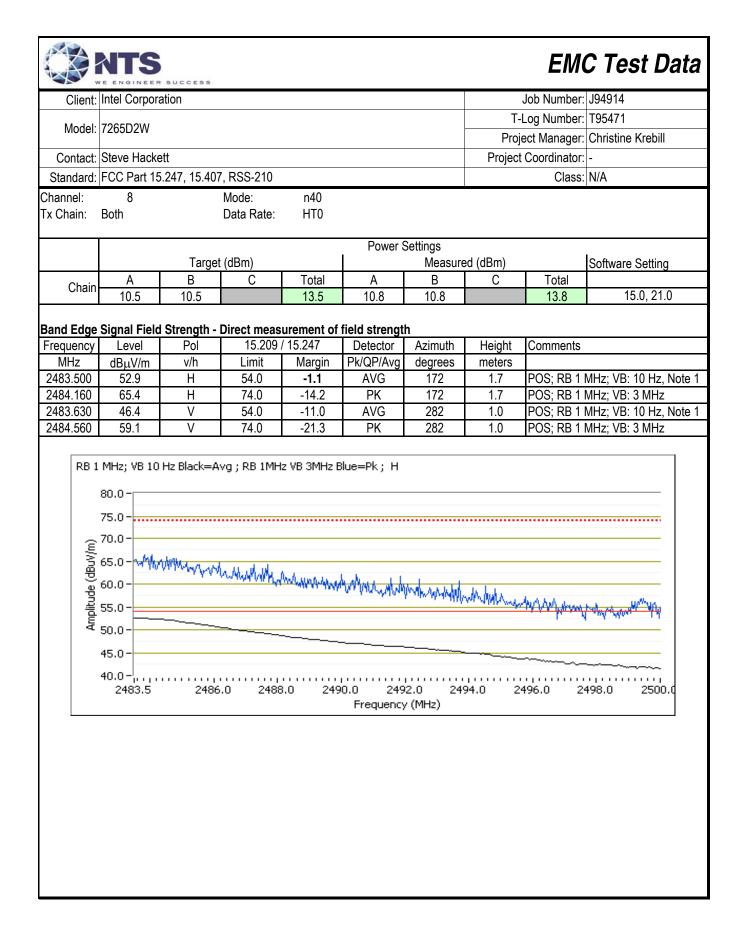

Note 1:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector, linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear Voltage correction factor
Note 2:	Plots of the average bandedge do not account for any duty cycle correction. Refer to the tabular results for final measurements.

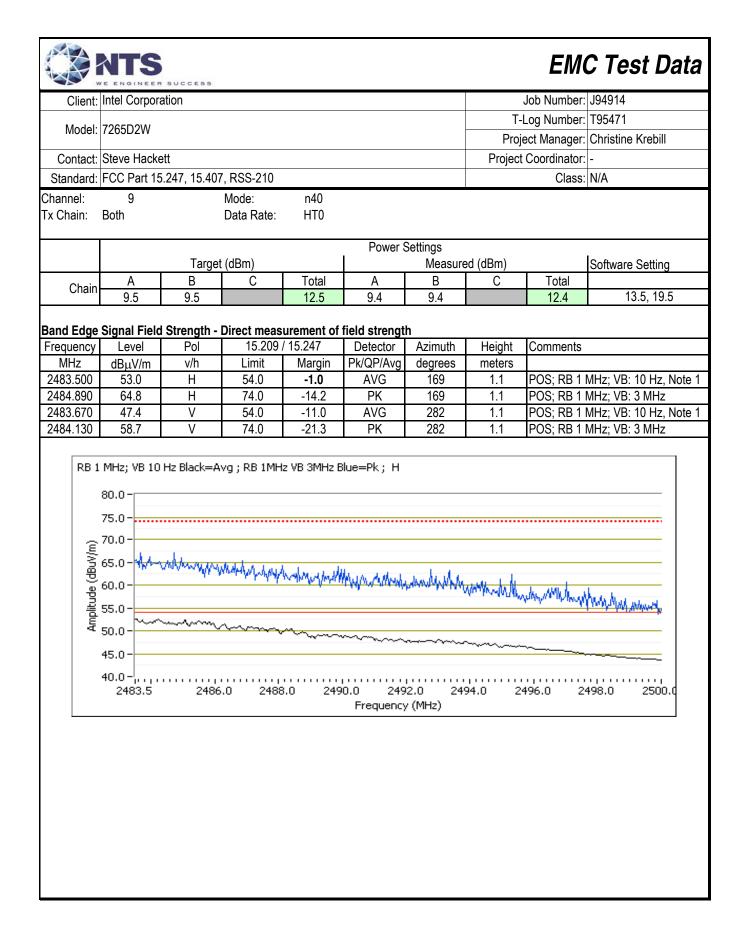
Client:	Intel Corpor	ation						Job Number:	J94914	
								Log Number:		
Model:	7265D2W						Project Manager: Christine Krebill			
	Steve Hack							Coordinator:		
Standard:	FCC Part 1	5.247, 15.40	7, RSS-210					Class:	N/A	
Run #1: Ra	adiated Ban	dedge Meas	urements							
		6/10/2014 0				onfig. Used:				
	est Engineer: est Location:	John Caizzi				fig Change: UT Voltage:				
					L	or vollage.	3.3 VDC			
Channel:	1		Mode:	n20						
Tx Chain:	Both		Data Rate:	HT0						
					Power S	Settings				
			t (dBm)			Measure	· · ·		Software Setting	
Chain	A	B	С	Total	A	B	С	Total	40.0.04.5	
	12.0	12.0		15.0	12.0	12.2		15.1	16.0, 21.5	
Band Edge	Signal Field	d Strength -	Direct meas	urement of	field strengt	h				
Frequency		Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz 2389.920	dBµV/m 50.7	v/h H	Limit	Margin	Pk/QP/Avg	degrees	meters			
2389.920	64.0	н Н	54.0 74.0	-3.3 -10.0	AVG PK	71 71	1.27 1.27		MHz; VB: 10 Hz MHz; VB: 3 MHz	
2390.000	45.9	V	54.0	-8.1	AVG	212	2.41	POS; RB 1 MHz; VB: 10 Hz		
2384.150	59.2	V	74.0	-14.8	PK	212	2.41	POS; RB 1	MHz; VB: 3 MHz	
de (dBuV/m)	MH2; VB 10 80.0 - 70.0 - 60.0 - 50.0 - 40.0 -	Mmy Adam	pk, black = a	avg H	WILLAW MAN	wyw.hithwythwyth	ht jayar blangb	V4444444	htter from the state of the sta	
	30.0 2350	2355	2360	236	5 237(Frequency	0 233	75 2	380 2	2385 2390	

N V		SUCCESS							C Test Dat
Client:	Intel Corpora	ation						Job Number:	
Model	7265D2W						T-	Log Number:	T95471
WOUEI.	12030211						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project Coordinator: -		
Standard:	FCC Part 15	.247, 15.407	7, RSS-210					Class:	N/A
Channel: Tx Chain:	2 Both		Mode: Data Rate:	n20 HT0					
					Power S	Settings			
		Target	t (dBm)			-	ed (dBm)		Software Setting
Chain	А	B	Ċ	Total	А	В	Ċ	Total	
Undin	13.5	13.5		16.5	13.5	13.6			17.0, 22.5
	•	•	.	-					
					field strengt		11.2.1.4		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2390.000	47.2	<u>H</u>	54.0	-6.8	AVG	69	1.27		MHz; VB: 10 Hz
2389.600	61.2	H V	74.0	-12.8	PK	69	1.27		MHz; VB: 3 MHz
2390.000 2389.440	49.4 62.9	V V	54.0 74.0	-4.6 -11.1	AVG PK	149 149	1.26 1.26		MHz; VB: 10 Hz MHz; VB: 3 MHz
2309.440	02.9	V	74.0	-11.1	ΓN	143	1.20	F 03, ND T	
RB 1	MHz; VB 10				er than .5 dB b				
de (dBuV/m)	80.0 -	Hz Blue =	pk, black = d	avg H			hlimmer	Jaam Magangar 	Www.htm.ht








Client:	Intel Corpor	ation						Job Number:	J94914
Madal	70050004						T-	Log Number:	T95471
wodel:	7265D2W						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	5.247, 15.407	7, RSS-210					Class:	N/A
	Date of Test:		:00			onfig. Used:			
	est Engineer: est Location:					fig Change: UT Voltage:			
10	est Location.	Chamber /			E	UT Voltage.	3.3 VDC		
Channel:	11		Mode:	n20					
x Chain:	Both		Data Rate:	HT0					
					Derror	ottingen			
		Target	t (dBm)		Power S	-	ed (dBm)		Software Setting
Ohain	А	B	C	Total	A	B	C	Total	Contware Octaing
Chain	12.0	12.0		15.0	12.0	10.3		14.2	16.5, 21
	o .		.						
Band Edge Frequency		Pol		urement of / 15.247	field strengt Detector	n Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
2483.530	52.8	Н	54.0	-1.2	AVG	176	1.1	POS; RB 1	MHz; VB: 10 Hz
2483.630	68.1	Н	74.0	-5.9	PK	176	1.1		MHz; VB: 3 MHz
2483.500	43.7	V	54.0	-10.3	AVG	20	1.4		MHz; VB: 10 Hz
2483.530	59.2	V	74.0	-14.8	PK	20	1.4	PUS; RB 11	MHz; VB: 3 MHz
	70.0- 65.0-								rudelmanaffa

Client:	Intel Corpor	ation						Job Number:	J94914		
M. 1.1	70055004/						T-	Log Number:	T95471		
Model:	7265D2W						Project Manager: Christine Krebill				
Contact:	Steve Hack	ett					Project	Coordinator:	-		
Standard:	FCC Part 1	5.247, 15.40	7, RSS-210					Class:	N/A		
Run #2: Ra	diated Ban	dedge Meas	urements								
[Date of Test:	6/10/2014 0):00		С	onfig. Used:	1				
Те	est Engineer:	Joseph Cac	ligal		Cor	ifig Change:	none				
Te	est Location:	FT Chambe	er#7		E	UT Voltage:	3.3 VDC				
Channel:	3		Mode:	n40							
Tx Chain:	Both		Data Rate:	HT0							
	l				Dowor	Pottingo					
		Tarce	t (dBm)		Power S	-	ed (dBm)		Software Setting		
Chain	A	B	C	Total	A	B	C	Total			
Chain	9.5	9.5		12.5	9.7	9.6		12.7	14.0, 19.5		
Sand Edge	Signal Field	d Strength -	Direct meas	urement of	field strengt	h					
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2389.920 2389.440	47.4 57.6	H	54.0	-6.6 -16.4	AVG	221	1.2		MHz; VB: 10 Hz, Note MHz; VB: 3 MHz		
2389.440	45.0				PK AVG	221 195	1.2 1.0		MHz; VB: 3 MHz MHz; VB: 10 Hz, Note		
2389.680	55.8	V	74.0	-9.0 -18.2	PK	195	1.0		MHz; VB: 3 MHz		
	MHz; VB 10 80.0 - 70.0 - 60.0 -		vg ; RB 1MH		Blue=Pk; H		Conf.jo., et in a				
Amplitude (dBuV/m)	50.0 - 40.0 - 30.0 -										

EMC Test Data

	E ENOMEER BOOGEDB		
Client:	Intel Corporation	Job Number:	J94914
Model:	72650200	T-Log Number:	T95471
woder.	1205D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

ITS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	??? °C
Rel. Humidity:	??? %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

	, 		Taraat	Power			
Run #	Mode	Channel	Target Power	Setting	Test Performed	Limit	Result / Margin
		1 - 2412MHz	16.5	15.5			49.3 dBµV/m @ 3000.2 MHz (-4.7 dB)
1	1 b - Chain A 2 b - Chain B	7 - 2442MHz	17.5	15.0			39.5 dBµV/m @ 4884.0 MHz (-14.5 dB)
		11 - 2462MHz	16.5	14.0	Radiated Emissions,	FCC Part 15.209 /	46.7 dBµV/m @ 4924.0 MHz (-7.3 dB)
		1 - 2412MHz	16.5	21.5	1 - 25 GHz	15.247(c)	40.6 dBµV/m @ 4824.0 MHz (-13.4 dB)
2		7 - 2442MHz	17.5	22.0			39.9 dBµV/m @ 4884.0 MHz (-14.1 dB)
		11 - 2462MHz	16.5	21.0			42.7 dBµV/m @ 4924.0 MHz (-11.3 dB)
Scans on ce	enter channel	in all three (OFDM mode	s to determin	e the worst case mode.		
	g - Chain A	7 - 2442MHz	17.5	21.0			40.3 dBµV/m @ 1599.1 MHz (-13.7 dB)
3	g - Chain B	7 - 2442MHz	17.5	27.0	Radiated Emissions,	FCC Part 15.209 /	39.4 dBµV/m @ 11678.9 MHz (-14.6 dB
5	n20 - Chain A+B	7 - 2442MHz	17.5	23.0 / 29.0	1 - 25 GHz	15.247(c)	33.4 dBµV/m @ 1598.8 MHz (-20.6 dB)
	n40 - Chain A+B		16.5	23.0 / 28.0			35.4 dBµV/m @ 1598.6 MHz (-18.6 dB)

		SUCCESS				EMO	C Test Data	
Client:	Intel Corpora	ation				Job Number:	J94914	
Madal					T-Log Number:	T95471		
Wodel:	7265D2W				Project Manager:	Christine Krebill		
Contact:	Steve Hacke	ett			Project Coordinator: -			
Standard:	FCC Part 15	5.247, 15.407	, RSS-210			Class: N/A		
leasureme	nts on low ar	nd high chanr	nels in worst	-case OFDM	mode.			
	g - Chain B	1 - 2412MHz	14.5	24.0	Radiated Emissions,	FCC Part 15.209 /	No radio realated emissions	
4	g - Chain P		0.0	8.0	1 - 25 GHz	15.247(c)	No radio realated emissions	
4	n20 - Chain A+B	1 - 2412MHz	12 / 12	16 / 21	Radiated Emissions,	FCC Part 15.209 /	No radio realated emissions	

1 - 25 GHz

15.247(c)

No radio realated

emissions

Modifications Made During Testing

No modifications were made to the EUT during testing

11 -

2462MHz

Deviations From The Standard

n20 - Chain

A+B

No deviations were made from the requirements of the standard.

Sample Notes

MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11 Antenna:

0.0

4/8.5

Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

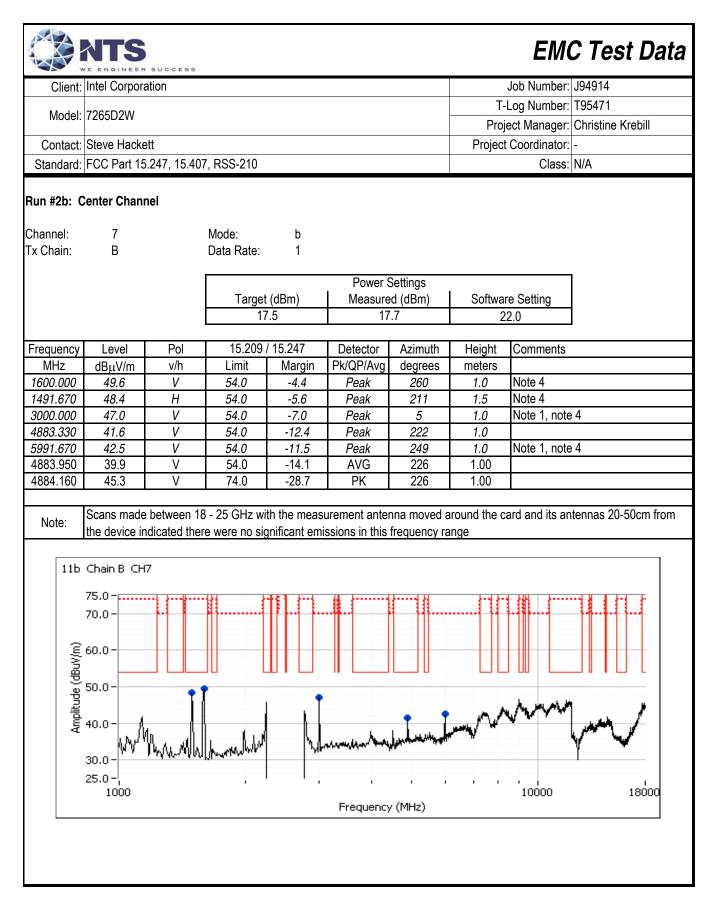
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time.

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

2.4GHz band reject filter used

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1	0.99	Yes	2.272	0.0	0.0	440
11g	6	0.99	Yes	2.06	0.0	0.0	485
n20	HT0	0.99	Yes	1.919	0.0	0.0	521
n40	HT0	0.97	Yes	0.944	0.1	0.2	1059

and bin		
	NTS VE ENGINEER SUCCESS	EMC Test Data
Client:	Intel Corporation	Job Number: J94914
Madalı	79650914	T-Log Number: T95471
wodel:	7265D2W	Project Manager: Christine Krebill
Contact:	Steve Hackett	Project Coordinator: -
Standard:	FCC Part 15.247, 15.407, RSS-210	Class: N/A
Measurer	nent Specific Notes:	
Note 1:	Emission in non-restricted band, but limit of 15.209 used.	
Note 2:	Emission in non-restricted band, the limit was set 20dB below the level of th	
Note 3:	Emission has duty cycle < 98%, but constant, average measurement performed	
Note 4	linear averaging, auto sweep, trace average 100 traces, measurement correst Signal does not change with channel, not radio related, measured in run 1a.	


		SUCCESS						ЕМ	C Test Data	
Client:	Intel Corpora	ation						Job Number:	J94914	
Ma dali							T-	Log Number:	T95471	
Model:	7265D2W					-	Project Manager: Christine Krebill			
Contact:	Steve Hacke	ett					Project	Coordinator:	-	
Standard:	FCC Part 15	5.247, 15.407	7, RSS-210					Class:	N/A	
				25000 MHz	. Operating N					
Tes	ate of Test: st Engineer: st Location:	John Caizzi	onfig. Used: fig Change: UT Voltage:	none						
Run #1a: Lo	ow Channel									
Channel: Tx Chain:	1 A		Mode: Data Rate:	b 1						
			·		Power S		0 1	0		
			l arget	(dBm)	Measure 17	· /		e Setting		
				0.0	17	.1	15	5.5		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1499.200	44.9	Н	54.0	-9.1	AVG	210	1.25			
1499.370	52.5	Н	74.0	-21.5	PK	210	1.25			
1599.000	40.1	V	54.0	-13.9	AVG	286	1.02			
1592.170	56.5	V	74.0	-17.5	PK	286	1.02	Note 1		
3000.220 6000.450	49.3 45.8	V	54.0 54.0	-4.7 -8.2	PK PK	10 12	1.00 1.00	Note 1 Note 1		
0000.430	45.0	v	54.0	-0.2	ΓN	12	1.00			
Amplitude (dBuV/m)	Chain A CH 75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 40.0 - 25.0 - 1000		humbh		Frequency			10000	18000	

		SUCCESS						EM	C Test Data
Client:	Intel Corpora	ation						Job Number:	J94914
	70050014						T-	Log Number:	T95471
Model:	7265D2W						Proje	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					-	Coordinator:	
	FCC Part 15		7, RSS-210				,	Class:	
	Center Chan		,						
Channel:	7								
x Chain:	А		Data Rate:	1					
					Power	Settings			
			Target	(dBm)	Measure		Softwar	e Setting	
				17.5		17.3		5.0	
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	<u> </u>	
10620.000	48.4	H	54.0	-5.6	Peak	350	2.5		t seen when investigat
1591.670	48.3	V	54.0	-5.7	Peak	258	1.0	Note 4	
1491.670	47.9	H V	54.0 54.0	-6.1 -8.7	Peak Peak	208 3	1.5 1.0	Note 4 Note 1, note	1
<u>3000.000</u> 5991.670	45.3 43.7	V	54.0 54.0	-8.7 -10.3	Peak	<u> </u>	1.0	Note 1, note	
4500.000	38.3	V	54.0 54.0	-15.7	Peak	278	1.0	Note 1, note	• •
4883.990	39.5	V	54.0	-14.5	AVG	111	1.02		
4884.020	45.2	V	74.0	-28.8	PK	111	1.02		
	Chain A CH 75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 - 1000		landahad		Frequency	(MHz)		10000	

WEENG	INEER SUCCESS		
lient: Intel C	Corporation	Job Number:	
odel: 7265D	2W	T-Log Number:	
		Project Manager:	
ntact: Steve	Hackett Part 15.247, 15.407, RSS-210	Project Coordinator: Class:	
bard: FCC P	an 15.247, 15.407, RSS-210	Class:	IN/A
	made between 18 - 25 GHz with the measurement antenna moved vice indicated there were no significant emissions in this frequency r		tennas 20-50cm
11b Chain	A CH7		
80.0-			
70.0-			
- 툴 60.0-			
巴 850.0-			
Ę		man man	mount
	and a second and the second and the second the second the second se	and a second sec	
년 40.0- 북	unarrente and the second descended and the second se		
(W/Ngp) 50.0 - 50.0 - mplitdwy 40.0 - 30.0 - 20.0 -		22000 240	00 250
30.0- 20.0-		23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	000 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	000 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500
30.0- 20.0-	000 19000 20000 21000 22000	23000 240	00 2500

		SUCCESS						EM	C Test Da
Client:	Intel Corpora	ation						Job Number:	J94914
							T-	Log Number:	T95471
Model:	7265D2W								Christine Krebill
Contact:	Steve Hacke	ett					_	Coordinator:	
	FCC Part 15		7. RSS-210					Class:	
	igh Channel		,						
	-		Madai	h					
Channel: Tx Chain:	11 A		Mode: Data Rate:	b 1					
									_
					Power				
				(dBm)	Measure			e Setting	
			16	6.5	16	./	14	4.0	
Frequency	Level	Pol	15 209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4924.010	46.7	V	54.0	-7.3	AVG	163	1.0	POS; RB 1	MHz; VB: 10 Hz
4924.220	56.4	V	74.0	-17.6	PK	163	1.0		MHz; VB: 3 MHz
4924.020	45.9	Н	54.0	-8.1	AVG	140	1.0	POS; RB 1	MHz; VB: 10 Hz
4923.790	56.5	Н	74.0	-17.5	PK	140	1.0		MHz; VB: 3 MHz
1591.670	48.4	V	54.0	-5.6	Peak	272	1.0	Note 4	
1491.670	47.8	H V	54.0	-6.2	Peak	220	1.5	Note 4	
			54.0	-6.8	Peak	12	1.0	Note 1, note	94
	47.2			120	Dook	10	10		1
3000.000 5991.670	47.2	V	54.0	-12.0	Peak	12	1.0	Note 1, note	9.4
5991.670	42.0	V	54.0					Note 1, note	
	42.0 Scans mad	V e between	54.0 18 - 25 GHz v	vith the me		ntenna mov	ed around t	Note 1, note	e 4 its antennas 20-50
5991.670	42.0 Scans mad	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans mad	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans made from the de	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans made from the de Chain A 75.0 –	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans made from the de	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans made from the de Chain A 75.0 – 70.0 –	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans made from the de Chain A 75.0 – 70.0 –	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans made from the de Chain A 75.0 – 70.0 –	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans made from the de Chain A 75.0 – 70.0 –	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans made from the de Chain A 75.0 – 70.0 –	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans made from the de Chain A 75.0 –	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note:	42.0 Scans made from the de Chain A 75.0 - 70.0 - 60.0 - 50.0 - 40.0 -	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note: 11b (W/Angp) https://www.	42.0 Scans made from the de Chain A 75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	
5991.670 Note: 11b (W/Angp) https://www.	42.0 Scans made from the de Chain A 75.0 - 70.0 - 60.0 - 50.0 - 40.0 -	V e between	54.0 18 - 25 GHz v	vith the me	asurement ai	ntenna mov	ed around t	Note 1, note	

		SUCCESS							C Test Data
Client:	Intel Corpora	ation						Job Number:	
Model.	7265D2W							Log Number:	
WOUCI.	12030200						Proje	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	5.247, 15.40	7, RSS-210					Class:	N/A
	adiated Spur .ow Channel		sions, 1,000 -	25000 MHz	. Operating N	/lode: 802.1	1b		
Channali	1		Mode:	h					
Channel: Tx Chain:	1 B		Data Rate:	b 1					
					Power S	-	0.4	0	
				(dBm)	Measure	· · ·		e Setting	
			10	6.5	17	.4	2	1.5	
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1591.670	48.8	V	54.0	-5.2	Peak	280	1.0	Note 4	
1491.670	47.6	Н	54.0	-6.4	Peak	228	1.5	Note 4	
3000.000	46.2	V	54.0	-7.8	Peak	12	1.0	Note 1, note	
5991.670	42.0	V	54.0	-12.0	Peak	254	1.0	Note 1, note	4
4823.980	40.6	V V	54.0	-13.4	AVG	223	1.0		
4823.830	45.7	V	74.0	-28.3	PK	223	1.0		
Amplitude (dBuV/m)	Chain B CH 75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 - 1000		l		Frequency	(MHz)		10000	18000

		SUCCESS						EMO	C Test Data
Client:	Intel Corpora	ation						Job Number:	J94914
	70050014						T-	Log Number:	T95471
Model:	7265D2W						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
	FCC Part 15		7, RSS-210				,	Class:	N/A
	igh Channel								
Channel: Tx Chain:	11 B		Mode: Data Rate:	b 1					
					Power	Settings			
		Power Settings Target (dBm) Measured (dBm)						e Setting	
			16.5			16.6		1.0	
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4924.020	42.7	V	54.0	-11.3	AVG	307	1.0		MHz; VB: 10 Hz
4916.970	55.2	V	74.0	-18.8	PK	307	1.0		MHz; VB: 3 MHz
4924.020	42.4 55.0	<u>Н</u> Н	54.0	-11.6 -19.0	AVG PK	191	1.3 1.3		MHz; VB: 10 Hz
4926.790 4943.950	39.8	<u>п</u> V	74.0 54.0	-19.0	AVG	191 159	1.3	PUS, KB I I	MHz; VB: 3 MHz
1491.670	48.3	H	54.0	-5.7	Peak	217	1.14	Note 4	
3000.000	47.7	V	54.0	-6.3	Peak	7	1.0	Note 1, note	4
1591.670	47.6	V	54.0	-6.4	Peak	257	1.0	Note 4	
1158.330	43.9	V	54.0	-10.1	Peak	215	1.0		
6000.000	43.6	V	54.0	-10.4	Peak	12	1.0	Note 1, note	4
4941.670	43.4	V	54.0	-10.6	Peak	194	1.0		
11P Amplitude (dBuV/m)	Chain B 75.0 70.0 - 60.0 - 50.0 -								
Amplitud	40.0 - 30.0 - 25.0 - 1000	hunde	l Janan Jawall		Frequency	(MHz)	~~~^~	`10000	18000
L	1								J
Note:								ard and its an	tennas 20-50cm from
	Itha davica in	dicated the	e were no sig	niticant omi	ecione in thic	troquonov ra	nao		

Client:	Intel Corpora	ation						Job Number:	J94914
								Log Number:	
Model:	7265D2W							-	Christine Krebill
Contact:	Steve Hacke	ett					-	Coordinator:	
	FCC Part 15		7. RSS-210					Class:	
] Te Te	adiated Spur Date of Test: est Engineer: est Location: Center Chanr	6/11/2014 (John Caizz Chamber 7	0:00 i / Jack Liu	25000 MHz	Cor	Mode: OFD onfig. Used: ifig Change: UT Voltage:	1 none		
hannel:	7		Mode:	g					
x Chain:	А		Data Rate:	6	Power S	Settings			l
			Target	(dBm)	Measure		Softwa	re Setting	
				7.5	17	(/		1.0	
					• 				· · · · · · · · · · · · · · · · · · ·
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1591.670	50.8	<u> </u>	54.0	-3.2	Peak	289	1.0	Nista 4	
1491.670	47.4 46.5	<u> </u>	54.0	-6.6	Peak	227	1.5	Note 4	. 1
<u>3000.000</u> 6000.000	46.5 42.1	V V	54.0 54.0	-7.5 -11.9	Peak Peak	12 253	1.0 1.0	Note 1, note Note 1, note	
1599.140	42.1	V V	54.0	-11.9 -13.7	AVG	253	1.0	Note 1, note	
1592.200	40.3 57.1	V	74.0	-16.9	PK	276	1.0	Note 4	
uv/m)	Chain A CH 75.0 - 70.0 - 60.0 - 50.0 - 40.0 - <u></u>								
- T	30.0-W	™~{\w.~\ }k	llhuddlum		he the sequence of the second	The second se			y "v

		SUCCESS						EMO	C Test Data
Client:	Intel Corpora							Job Number:	J94914
								og Number:	
Model:	7265D2W							-	Christine Krebill
Contact:	Steve Hacke	ett						Coordinator:	-
	FCC Part 15		7, RSS-210				,	Class:	N/A
		,	,						
Te Te	Date of Test: est Engineer: est Location: Center Chani	Jack Liu Chamber 7):00		Con	onfig. Used: fig Change: UT Voltage:	none		
Channel: Tx Chain:	7 B		Mode: Data Rate:	g 6					
					Power S	Settinas			
			Target	(dBm)	Measure		Softwar	e Setting	
			17		17	.3	27	7.0	
_									
Frequency	Level	Pol		15.247	Detector	Azimuth	Height	Comments	
MHz 11678.900	dBµV/m 39.4	v/h H	Limit 54.0	Margin -14.6	Pk/QP/Avg AVG	degrees 201	meters 1.0		
11667.070	50.8	H	74.0	-14.0	PK	201	1.0		
3000.120	50.0	V	54.0	-23.2	PK	9	1.0	Notes 1, 4	
1499.120	43.9	H	54.0	-10.1	AVG	223	1.3	Note 4	
1497.850	51.7	Н	74.0	-22.3	PK	223	1.3	Note 4	
1598.950	34.0	V	54.0	-20.0	AVG	239	1.0	Note 4	
1596.580	54.6	V	74.0	-19.4	PK	239	1.0	Note 4	
11g Amplitude (dBuV/m)	Chain B CH 75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000		land and a second		Frequency	(MHz)		10000	

		a nati - ::							1				104044	
lient: In	ntel Corp	oration											J94914	
odel: 72	265D2W	1											T95471 Christine	Krohill
ataat: St	teve Ha	okott								Project				RIEDIII
			15 407	RSS-21	٥					Појест		lass:		
	oor art	10.217,	10.107,	1100 21	0							1000.	14/7	
						measure nt emissio					ird and i	its an	itennas 20	0-50cm
110.0	Their P	CU7												
	Chain B													
80	0.0-									1	1	1		
70	0.0-										[
Ê														
560	0.0-													
9 9 50	0.0-													
0												nert		
Ę,						al at = ~~ -	man	-	howard	any property and	Mar all	~ ~ ~	march	No. and the
ntild 40 Amplitu	0.0*	and survey	motorium	America	m	wingty and a	yan dawan	-tuthayat	hhave	en and a second s	Mary Mary Mary Mary Mary Mary Mary Mary	~ n	magne	~~~~
	0.0- 0.0-,,		/////// 19000	4	20000	 21				23000	·····	240	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2500
30	0.0-			·····	20000	21	www.	220	00	23000		240		2500
30	0.0- 0.0-,,			·····	~~~~~ 20000	21	000	220	00	23000		240	00	2500
30	0.0- 0.0-,,		 19000		20000	21	000	220	00	23000		240	00	2500
30	0.0- 0.0-,,		19000		20000	21	000	220	00	23000		240	00	2500
30	0.0- 0.0-,,		19000			21	000	220	00	23000		240	00	2500
30	0.0- 0.0-,,		19000		20000	21	000	220	00	23000		240	00	2500
30	0.0- 0.0-,,		19000		20000	21	000	220	00	23000		240	000	2500
30	0.0- 0.0-,,		19000		20000	21	000	220	00	23000		240	00	2500
30	0.0- 0.0-,,		19000		20000	21	000	220	00	23000		240	000	2500
30	0.0- 0.0-,,		19000		20000	21	000	220	00	23000		240	00	2500
30	0.0- 0.0-,,		19000		20000	21	000	220	00	23000		240	000	2500
30	0.0- 0.0-,,		19000		20000	21	000	220	00	23000		240	00	2500
30	0.0- 0.0-,,		19000	•••••	20000	21	000	220	00	23000		240	00	2500
30	0.0- 0.0-,,		19000		20000	21	000	220	00	23000		240	00	2500
30	0.0- 0.0-,,		19000	•••••	20000	21	000	220	00	23000		240	000	2500
30	0.0- 0.0-,,		19000		20000	21	000	220	00	23000		240	00	2500

		SUCCESS						EMO	C Test Data
Client:	Intel Corpora	ation						Job Number:	J94914
NA	70050014						T-	Log Number:	T95471
Model:	7265D2W						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	.247, 15.407	7, RSS-210					Class:	N/A
Run #3c: C	enter Chanr	nel							
Channel:	7		Mode:	n20					
x Chain:	-		Data Rate:	HT0					
					Power	Settings			
		Target	t (dBm)			Measure	ed (dBm)		Software Setting
Chain	А	В	С	Total	A	В	С	Total	
Ghailt	17.5	17.5		20.5	17.3	17.4		20.4	23.0, 29.0
		<u> </u>	45.000			A ' ''			
Frequency	Level	Pol		15.247	Detector	Azimuth	Height	Comments	
MHz 1598.750	dBµV/m 33.4	v/h V	Limit 54.0	Margin -20.6	Pk/QP/Avg	degrees 268	meters	Note 4	
1595.680	55.8	V	54.0 74.0	-20.6	AVG PK	268	1.0 1.0	Note 4	
3000.210	49.4	V	54.0	-10.2	PK	<u>200</u> 9	1.0	Notes 1, 4	
1499.110	49.4	H	54.0	-4.0	AVG	219	1.0	Note 4	
1497.740	51.3	 H	74.0	-22.7	PK	219	1.2	Note 4	
Amplitude (dBuV/m)		idicated ther							tennas 20-50cm from
					Frequency	/ (MHz)			

		SUCCESS						ЕМС	C Test Data
Client	: Intel Corpora	ation						Job Number:	J94914
Madal	: 7265D2W						T-	Log Number:	T95471
MOUEI.	. 72050200						Proj	ect Manager:	Christine Krebill
Contact:	: Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	5.247, 15.407	7, RSS-210					Class:	N/A
Run #3d: C	Center Chann	el							
Channel: Fx Chain:	6 A+B		Mode: Data Rate:	n40 HT0					
					Power S	Settinas			
		Target	t (dBm)			Measure	ed (dBm)		Software Setting
Chain	A	В	C	Total	A	В	C	Total	
	16.5	16.5		19.5	16.7	16.7		19.7	23.0, 28.0
Froquency	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Unight	Comments	
Frequency MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	Height meters	Comments	
1598.640	35.4	V	54.0	-18.6	AVG	275	1.0	Note 4	
1593.840	55.9	V	74.0	-18.1	PK	275	1.0	Note 4	
3000.250	48.8	V	54.0	-5.2	PK	7	1.0	Notes 1, 4	
1498.970	43.5	Н	54.0	-10.5	AVG	219	1.4	Note 4	
1498.270	52.2	Н	74.0	-21.8	PK	219	1.4	Note 4	
	40 MIMO CH 75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 -		M. v bay hadred		Strequency	Landon and the second		10000	

N	WE ENG	NEER SUCCES	5						EM		
Client:	Intel C	orporation						Job	Number	: J94914	
/odel·	7265D	2\\/								: T95471	
										: Christine Kr	rebill
		Hackett						Project Co			
ndard:	FCC P	art 15.247, 15	407, RSS-2	10					Class	: N/A	
te:	the dev	made betweer						d the card	and its a	ntennas 20-5	i0cm f
) MIMO	CH6									
	80.0-							1			
	70.0-					7]	
BuV/	60.0- 50.0- 40.0-										
l b b	50.0-										
bitu	40.0-				an and a strained	understan	munarde	many	hubertown	manner	su.
	40.0-	Labora							40-9		
H H		komen and	er-Meander-A	ale and a second se							
	30.0-	њи 100 19		20000	•		000	23000		000 :	25000
	30.0-		000	20000	21000	22(iency (MH2		23000	24	000	25000
	30.0-		000	20000	21000			23000	24	000 :	25000
	30.0-		000	20000	21000			23000	24	000 :	25000
	30.0-		000	20000	21000			23000	24	000 3	25000
	30.0-		000	20000	21000			23000	24	000 :	25000
	30.0-		000	20000	21000			23000	24	000 :	25000
	30.0-		000	20000	21000			23000	24	000 :	25000
	30.0-		000	20000	21000			23000	24	000 ::	25000
	30.0-		000	20000	21000			23000	24	000 3	25000
	30.0-		000	20000	21000			23000	24	000 ::	25000
	30.0-		000	20000	21000			23000	24	000 :	25000
	30.0-	00 19	000	20000	21000			23000	24	000	25000
	30.0-		000	20000	21000			23000	24	000 ::	25000
	30.0-		000	20000	21000			23000	24	000	25000
	30.0-	00 19	000	20000	21000			23000	24	000 ::	25000

	VE ENGINEER	SUCCESS							
Client:	Intel Corpora	ation						Job Number:	
Model [.]	7265D2W							Log Number:	
									Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	5.247, 15.40	7, RSS-210					Class:	N/A
l Te To	Date of Test: est Engineer: est Location:	6/12/2014 Deniz Dem FT Ch# 7		25000 MHz	Cor	Node: Wors onfig. Used: ofig Change: UT Voltage:	1 None	n Run #2	
	ow Channel								
Channel: Tx Chain:	1 B		Mode: Data Rate:	g 6					
					Power S	Settings]
			Target		Measure	ed (dBm)		e Setting]
			14	.5	14	.6	2	4.0	J
			15 000	15 017	Detector	الم المعادم الم	Unio-Li	Comment	
Frequency MHz	Level	Pol v/h	Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height meters	Comments	
3000.200	dBμV/m 46.8	V/II	54.0	Margin -7.2	AVG	degrees 8	1.0	Notes 1, 4	
3000.200	40.0	V	74.0	-24.2	PK	8	1.0	Notes 1, 4	
4496.730	33.9	V	54.0	-20.1	AVG	266	1.0	Note 4	
4498.280	46.5	V	74.0	-27.5	PK	266	1.0	Note 4	
1598.910	35.9	V	54.0	-18.1	AVG	268	1.0	Note 4	
1592.490	57.8	V	74.0	-16.2	PK	268	1.0	Note 4	
1498.890	43.1	H	54.0	-10.9	AVG	210	1.2	Note 4	
1499.460	53.6	Н	74.0	-20.4	PK	210	1.2	Note 4	
Amplitude (dBuV/m)	Chain B CH 75.0 - 70.0 - 60.0 - 50.0 - 40.0 -								
	30.0- 25.0- 1000	''\w/\\ k	(Mr.)Wr.		enderweiter und	, , ,		10000	18000

ient [.] Inte	Corpora	success						Job Number:	J94914
								Log Number:	
odel: 726	5D2W								Christine Krebill
tact: Ste	ve Hacket	ł					-	Coordinator:	
			7, RSS-210					Class:	
		,	.,					0.0001	
b: High	Channel								
el:	11		Mode:	g					
in:	В		Data Rate:	6					
					Power	Sottings			1
			Target	(dBm)	Measure		Softwa	re Setting	
			0		0.	、 /		3.0	
									J
	Level	Pol	15.209		Detector	Azimuth	Height	Comments	
	BμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	No.4	
	44.1 53.7	<u>Н</u> Н	54.0 74.0	-9.9 -20.3	AVG PK	211 211	1.3 1.3	Note 4 Note 4	
	34.4	N V	74.0 54.0	-20.3	AVG	211	1.3	Note 4	
	53.3	V	74.0	-20.7	PK	220	1.0	Note 4	
	47.2	V	54.0	-6.8	AVG	9	1.0	Notes 1, 4	
	50.4	V	74.0	-23.6	PK	9	1.0	Notes 1, 4	
	33.9	V	54.0	-20.1	AVG	279	1.0	Note 4	
200	46.5	V	74.0	-27.5	PK	279	1.0	Note 4	
75.1 70.1 (m) 60.1 (m) 60.1 (m	0- 0- MM				Frequency	(MHz)		10000	

		SUCCESS						EM	C Test Data
Client:	Intel Corpora	ation						Job Number:	J94914
Madalı							T-	Log Number:	T95471
wodel:	7265D2W						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	.247, 15.407	', RSS-210					Class:	N/A
)	ow Channel								
hannel:			Mode:	n20					
x Chain:	A + B		Data Rate:	HT0					
k onani.	<i>N</i> • D		Dula Halo.						
					Power S				1
		-	(dBm)			Measure	· · ·	<u> </u>	Software Setting
Chain	A	B 12.0	С	Total	A	B	С	Total	16 / 21.5
	12.0	12.0		15.0	12.2	12.2		15.2	10/21.5
requency	Level	Pol	15,209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4496.870	33.5	V	54.0	-20.5	AVG	274	1.0	Note 4	
4496.870	46.1	V	74.0	-27.9	PK	274	1.0	Note 4	
3000.200	47.2	V	54.0	-6.8	AVG	10	1.0	Notes 1, 4	
3000.210	50.2	V	74.0	-23.8	PK	10	1.0	Notes 1, 4	
1499.010	44.6	Н	54.0	-9.4	AVG	212	1.3	Note 4	
1499.170	53.0	Н	74.0	-21.0	PK	212	1.3	Note 4	
1598.650	35.9	V	54.0	-18.1	AVG	269	1.0	Note 4	
1596.930	57.6	V	74.0	-16.4	PK	269	1.0	Note 4	
Amplitude (dBuV/m)	Chain A+B 75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 25.0 - 1000				Frequency	(MHz)		10000	

		SUCCESS						EM	C Test Data
Client:	Intel Corpora	ition						Job Number:	J94914
							T-	Log Number:	T95471
Model:	7265D2W							-	Christine Krebill
Contact:	Steve Hacke	tt						Coordinator:	
	FCC Part 15		7. RSS-210				.,	Class:	
Run #4d: H Channel:	igh Channel 11		Mode:	n20			L		
x Chain:	A + B		Data Rate:	HT0					
					Power S				
			: (dBm)	- · ·			ed (dBm)		Software Setting
Chain	A	B	С	Total	A	B	С	Total	A / O F
	0.0	0.0		3.0	0.1	0.2		3.2	4 / 8.5
requency	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
1598.480	35.3	V	54.0	-18.7	AVG	258	1.0	Note 4	
1592.920	55.6	V	74.0	-18.4	PK	258	1.0	Note 4	
1499.180	43.5	H	54.0	-10.5	AVG	215	1.4	Note 4	
1498.570	52.5	H	74.0	-21.5	PK	215	1.4	Note 4	
3000.240	46.9	V	54.0	-7.1	AVG	10	1.0	Notes 1, 4	
3000.170	49.9	V	74.0	-24.1	PK	10	1.0	Notes 1, 4	
4496.970	33.6	V	54.0	-20.4	AVG	277	1.0	Note 4	
4497.330	46.6	V	74.0	-27.4	PK	277	1.0	Note 4	
Amplitude (dBuV/m)	Chain A+B 75.0 - 70.0 - 60.0 - 50.0 - 40.0 - 40.0 - 25.0 - 1000		herry		Frequency	(MHz)		· 10000	18000

in the second			
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95471
wouer.	12030210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

TS

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1

Config Change: none

Host Unit Voltage

Date of Test: 6/19/2014 Test Engineer: John Caizzi Joseph Cadigal Test Location: Lab 4A

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

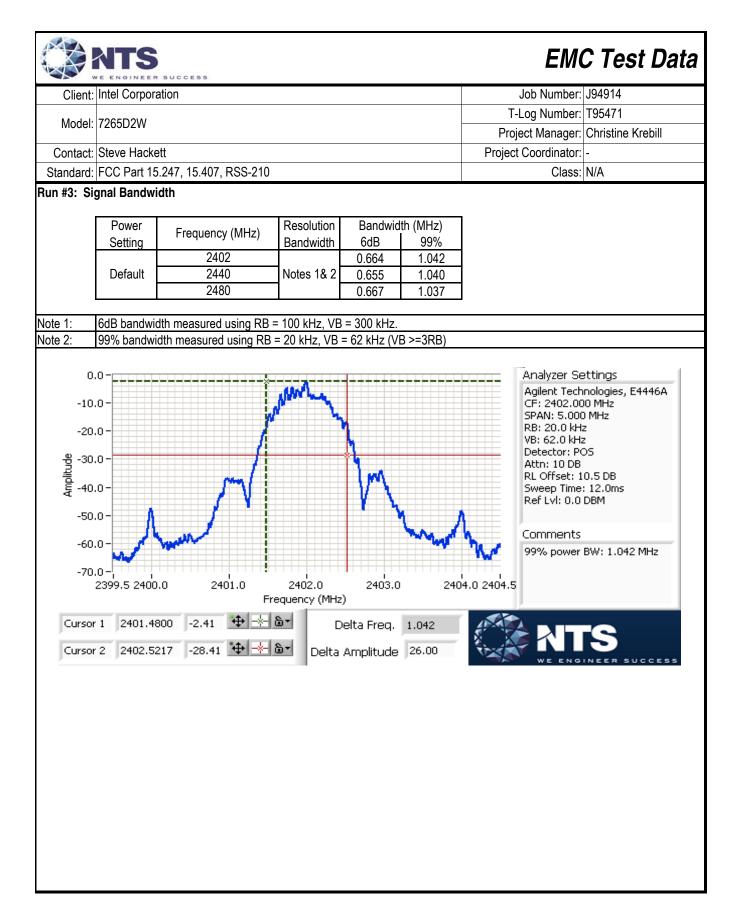
Ambient Conditions:

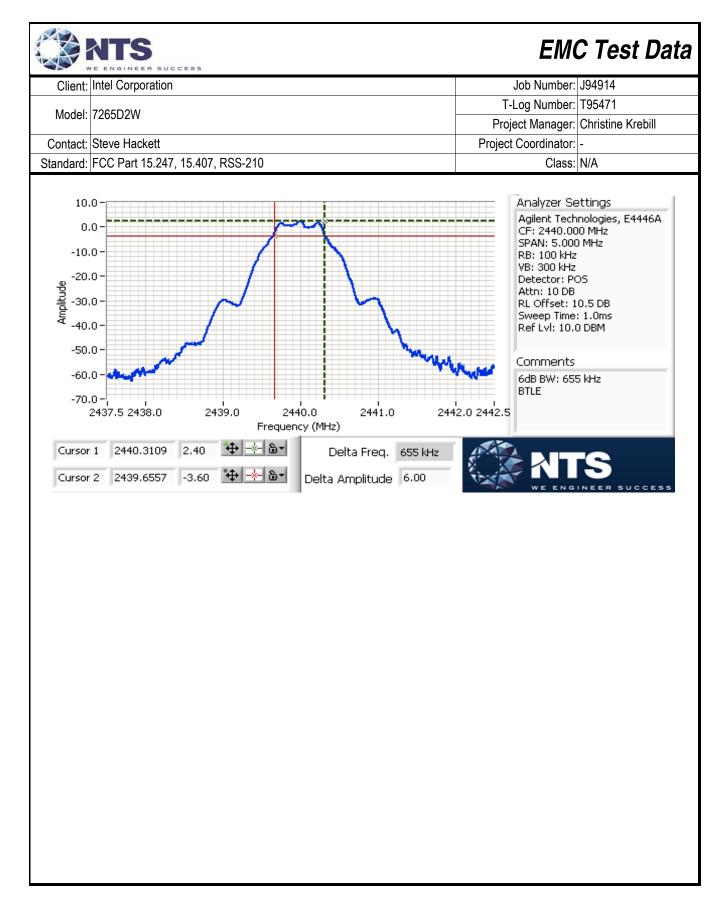
Temperature:	23 °C
Rel. Humidity:	35 %

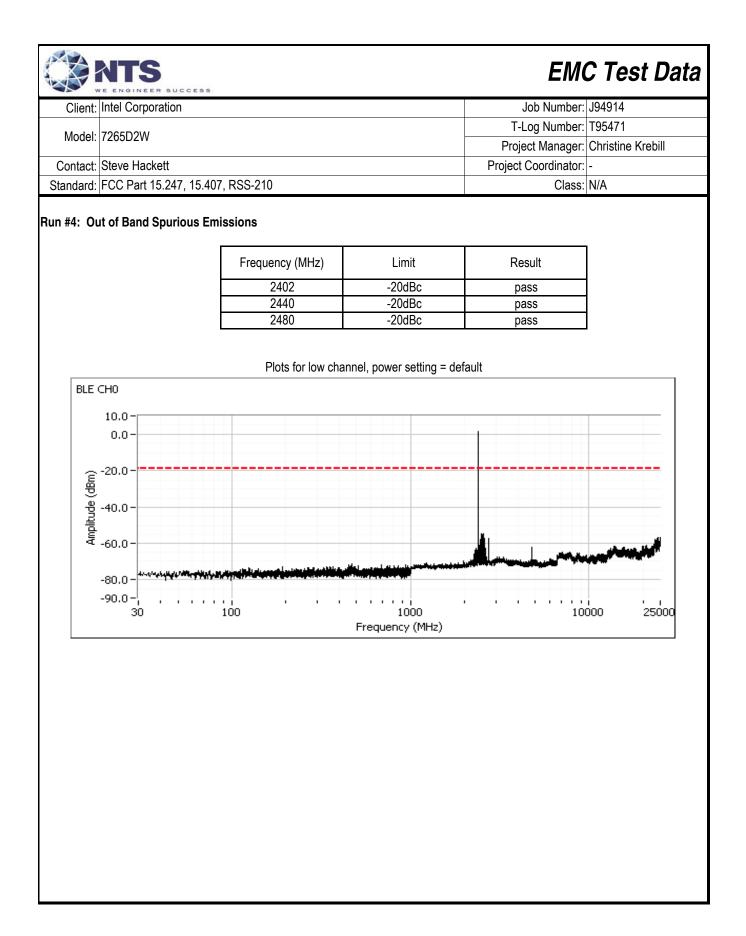
Summary of Results

MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

Run #	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1			Output Power	15.247(b)	Pass	3.5 dBm
2			Power spectral Density (PSD)	15.247(d)	Pass	-6.5 dBm/3kHz
3	Default		Minimum 6dB Bandwidth	15.247(a)	Pass	655 kHz
3			99% Bandwidth	RSS GEN	-	1.042 MHz
4			Spurious emissions	15.247(b)	Pass	All spurious < -20 dBc

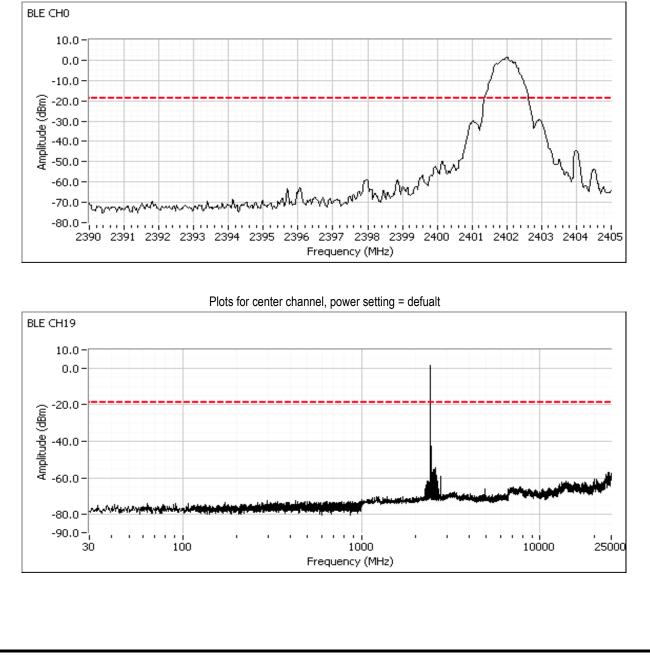

Modifications Made During Testing

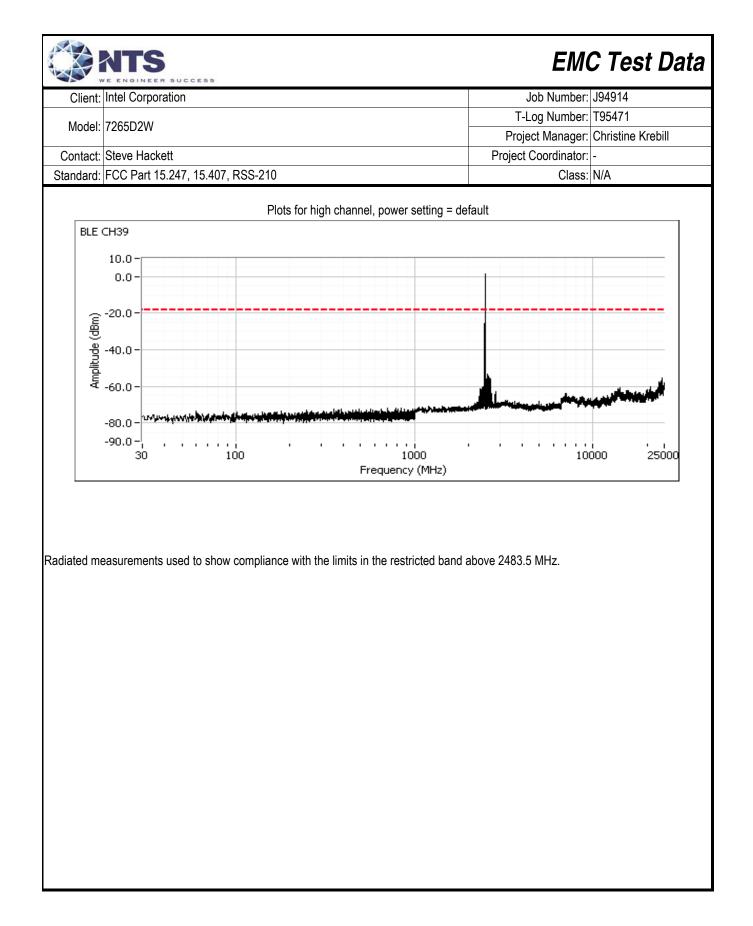

No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

							ЕМС	C Test	Data
Client:	Intel Corporation						Job Number:	J94914	
	70050014					T-	Log Number:	T95471	
Model:	7265D2W					Proj	ect Manager:	Christine Kr	ebill
Contact:	Steve Hackett					Project	Coordinator:	-	
Standard:	FCC Part 15.247, 15.407	', RSS-210					Class:	N/A	
Run #1:	Itput Power					I		l	
Power		Output F	ower	Antenna		FIRI	Note 2	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
ootang	2402	3.5	2.2	3.2	Pass	6.7	0.005	(abiii)	
Default	2440	3.3	2.1	3.2	Pass	6.5	0.004		
	2480	3.1	2.0	3.2	Pass	6.3	0.004		
Note 1:	Output power measured								
Note 2:	Power setting - the softw		<u> </u>	<u> </u>			nly.		
Note 3:	Power measured using a	verage power	meter and	l is included fo	or reference	only.			
Default	2402 2440 2480	-6.5 -6.6 -6.5	j	8.0 8.0 8.0	Pass Pass Pass				
Note 1:	Test performed per meth VBW=3*RBW, peak dete					•	l using: 3kHz	≤ RBW ≤ 1()0kHz,
-10. -15. -20. -25. -25. -30. -40. -45. -50. -55.	0- 0- 0- 0- 0- 0- 0- 0- 2439.0 2439		2440.0 uency (MH		0.5	2441.0	Analyzer Se Agilent Tech CF: 2440.00 SPAN: 2.000 RB: 10.0 kH: VB: 30.0 kH: Detector: PC Attn: 10 DB RL Offset: 1 Sweep Time: Ref Lvl: 0.0 Comments BT PSD = -6.59	nologies, E4 10 MHz 2 2 25 0.5 DB : 19.2ms DBM	446A
	0.0000 0.00	÷ 6							CESS





	NTS	EM	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95471
	1205D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

	E ENGINEER BOBBEBB		
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95471
woder.	12050210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature:	24 °C
Rel. Humidity:	38 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

MAC Address: 001500F15B5D DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a		low	Default	3.02	Restricted Band Edge (2390 MHz)	FCC Part 15.209 / 15.247(c)	36.3 dBµV/m @ 2342.1 MHz (-17.7 dB)
Ia		IOW	Delault	3.02	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	No radio realated emissions
1b	Bluetooth LE	center	Default	3.20	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	No radio realated emissions
1c		high	Default	3.40	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	38.2 dBµV/m @ 2485.0 MHz (-15.8 dB)
		nign	Deidult	5.40	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	No radio realated emissions

Modifications Made During Testing

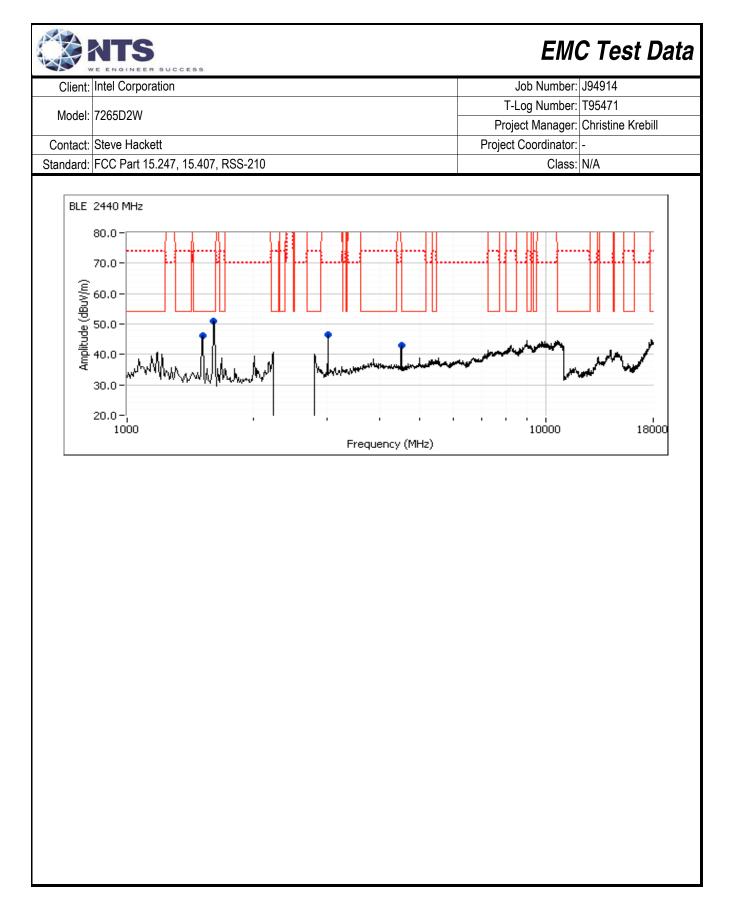
No modifications were made to the EUT during testing.

Deviations From The Standard

No deviations were made from the requirements of the standard.

		EM	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madalı	7265D2W	T-Log Number:	T95471
woder.	1205D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Sample Notes


BT Address: 001500F15B61 DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

Antenna: antenna connected. Duty Cycle: 0.63 Correction Factor (dB) 4.0

		SUCCESS						EM	C Test Data
Client:	Intel Corpora	ation						Job Number:	J94914
Madal	7265D2W						T-	Log Number:	T95471
Model.	12030200						Proje	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	5.247, 15.407	, RSS-210					Class:	N/A
C Te Te	Date of Test: st Engineer: st Location:	6/16/2014 &	6/17/14 7	6000 MHz. (Operating Mo	ode: Low Er	nergy		
			<u> </u>		Power	Settings			1
			Target	(dBm)	Measure	-	Softwar	e Setting	
		Chain B		-	3.		- •	fault]
					es measured				in 100kHz
Frequency MHz		Pol v/b		/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height	Comments	
2401.990	dBμV/m 100.5	v/h H	Limit	Margin -	PK/QP/Avg Pk	degrees 192	meters 1.0		00 kHz; VB: 100 kHz
2401.910	95.4	V	-	-	Pk	78	1.0		00 kHz; VB: 100 kHz
and Edge		emissions ou I Strength - I	Direct meas	urement of	70.5 field strengt	dBμV/m	Limit is -300		wer measurement)
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz 2342.060	dBµV/m 36.3	v/h H	Limit 54.0	Margin -17.7	Pk/QP/Avg AVG	degrees 60	meters 1.0	Correction	Fastar (2 06dD) addad
2342.060	30.3 43.4	H	54.0 74.0	-30.6	PK	60	1.0		Factor (3.96dB) added MHz; VB: 3 MHz
2341.900	35.1	V	54.0	-18.9	AVG	71	1.0		MHz; VB: 10 Hz
2376.050	42.8	V	74.0	-31.2	PK	71	1.1		MHz; VB: 3 MHz
(m//m)	MHz; VB 10 75.0 - 70.0 - 60.0 - 50.0 - 40.0 -	Hz Black=A	vg; RB1MH2	vB3MHz Blu	ue=Pk; H	yuunaha	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		fen Angren
	30.0-	^		<i>````````````````````````````````</i>	^		<u> </u>		
	2310 2	315 2320 2	2325 2330	2335 2340) 2345 235 Frequency	D 2355 23	60 2365 2	370 2375 2	2380 2385 2390

		SUCCESS							C Test Data
Client:	Intel Corpora	ation						Job Number:	
Model:	7265D2W							Log Number:	
								-	Christine Krebill
	Steve Hacke						Project	Coordinator:	
Standard:	FCC Part 15	5.247, 15.407	', RSS-210					Class:	N/A
Other Spur	ious Emissio	ons							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1499.000	43.5	Н	54.0	-10.5	AVG	209	1.3	Note 3	
1496.470	51.1	Н	74.0	-22.9	PK	209	1.3	Note 3	
1598.470	39.0	V	54.0	-15.0	AVG	267	1.0	Note 3	
1600.070	60.2	V	74.0	-13.8	PK	267	1.0	Note 3	
4496.930	39.4	V	54.0	-14.6	AVG	272	1.0	Note 2, 3	
4497.130	51.5	V	74.0	-22.5	PK	272	1.0	Note 2, 3	
3000.070	46.5	V	54.0	-7.5	AVG	268	1.0	Note 2, 3	
2999.940	50.4	V	74.0	-23.6	PK	268	1.0	Note 2, 3	
lote 3: lote 4		between 18	- 26GHz wit	th the measu			ound the ca	ird and its and	tennas 20-50cm from th
Amplitude (dBuV/m)	2402 MHz 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	Awrally	land b		aver for the second		w		
	20.0- 1000				, Frequency	, , / (MHz)		10000	18000

	Intel Corpor	ation						Job Number:	J94914
								Log Number:	
Model:	7265D2W							0	Christine Krebill
Contact	Steve Hacke	ott					-	Coordinator:	
	FCC Part 15		000 010				Fillect	Class:	
								01855.	N/A
	Center Chan	nei @ 2440 i	VINZ		Power	Settings			1
			Target	(dBm)		ed (dBm)	Softwar	re Setting	
	Target (dBm) Chain B -					20		efault	1
Note - meas	sured power i		e is average	power, for re	ference only				4
			-						
	tal Signal Fie							1.	
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2439.930 2439.970	100.6 94.0	H V	-	-	Pk Pk	191 88	1.0 1.0		00 kHz; VB: 100 kHz 00 kHz; VB: 100 kHz
2439.970	94.0	V	-	-	ΓK	00	1.0	FU3, KD II	
F	undamental e	emission leve	el @ 3m in 10	0kHz RBW:	100.6	dBµV/m	1		
•		emissions ou	U U			dBµV/m	Limit is -200	dBc (Peak po	wer measurement)
		emissions ou				dBµV/m		· ·	wer measurement)
									·
	ious Emissi		45.000			A 1 11	T		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
Frequency MHz	Level dBµV/m	Pol v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
Frequency MHz 1498.940	Level dBµV/m 44.0	Pol v/h H	Limit 54.0	Margin -10.0	Pk/QP/Avg AVG	degrees 208	meters 1.3	Note 3	
Frequency MHz 1498.940 1497.140	Level dBµV/m 44.0 52.5	Pol v/h H H	Limit 54.0 74.0	Margin -10.0 -21.5	Pk/QP/Avg AVG PK	degrees 208 208	meters 1.3 1.3	Note 3 Note 3	·
Frequency MHz 1498.940 1497.140 1593.860	Level dBµV/m 44.0 52.5 40.6	Pol v/h H H V	Limit 54.0 74.0 54.0	Margin -10.0 -21.5 -13.4	Pk/QP/Avg AVG PK AVG	degrees 208 208 274	meters 1.3 1.3 1.0	Note 3 Note 3 Note 3	·
Frequency MHz 1498.940 1497.140	Level dBµV/m 44.0 52.5	Pol v/h H H	Limit 54.0 74.0	Margin -10.0 -21.5	Pk/QP/Avg AVG PK	degrees 208 208	meters 1.3 1.3	Note 3 Note 3 Note 3 Note 3	
Frequency MHz 1498.940 1497.140 1593.860 1597.330	Level dBµV/m 44.0 52.5 40.6 59.4	Pol v/h H H V V	Limit 54.0 74.0 54.0 74.0	Margin -10.0 -21.5 -13.4 -14.6	Pk/QP/Avg AVG PK AVG PK	degrees 208 208 274 274	meters 1.3 1.3 1.0 1.0	Note 3 Note 3 Note 3	
Frequency MHz 1498.940 1497.140 1593.860 1597.330 3000.140	Level dBµV/m 44.0 52.5 40.6 59.4 45.9	Pol v/h H V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 54.0	Margin -10.0 -21.5 -13.4 -14.6 -8.1	Pk/QP/Avg AVG PK AVG PK AVG	degrees 208 208 274 274 264	meters 1.3 1.3 1.0 1.0 1.0	Note 3 Note 3 Note 3 Note 3 Note 2, 3	
Frequency MHz 1498.940 1497.140 1593.860 1597.330 3000.140 3000.140	Level dBµV/m 44.0 52.5 40.6 59.4 45.9 50.5	Pol v/h H V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -10.0 -21.5 -13.4 -14.6 -8.1 -23.5	Pk/QP/Avg AVG PK AVG PK AVG PK	degrees 208 208 274 274 264 264 264	meters 1.3 1.3 1.0 1.0 1.0 1.0	Note 3 Note 3 Note 3 Note 3 Note 2, 3 Note 2, 3	
Frequency MHz 1498.940 1497.140 1593.860 1597.330 3000.140 3000.140 4496.960	Level dBµV/m 44.0 52.5 40.6 59.4 45.9 50.5 39.8 50.6	Pol v/h H V V V V V V V V V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -10.0 -21.5 -13.4 -14.6 -8.1 -23.5 -14.2 -23.4	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	degrees 208 208 274 274 264 264 268 268	meters 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Note 3 Note 3 Note 3 Note 2, 3 Note 2, 3 Note 2, 3 Note 2, 3	
Frequency MHz 1498.940 1497.140 1593.860 1597.330 3000.140 3000.140 4496.960 4496.230	Level dBµV/m 44.0 52.5 40.6 59.4 45.9 50.5 39.8 50.6 For emission	Pol v/h H V V V V V v v ns in restricted	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -10.0 -21.5 -13.4 -14.6 -8.1 -23.5 -14.2 -23.4 limit of 15.2	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	degrees 208 208 274 274 264 264 268 268	meters 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Note 3 Note 3 Note 3 Note 2, 3 Note 2, 3 Note 2, 3 Note 2, 3	s set 20dB below the
Frequency MHz 1498.940 1497.140 1593.860 1597.330 3000.140 3000.140 4496.230 Note 1:	Level dBµV/m 44.0 52.5 40.6 59.4 45.9 50.5 39.8 50.6 For emission level of the f	Pol v/h H V V V V V V v s in restricte	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0 ed bands, the and measure	Margin -10.0 -21.5 -13.4 -14.6 -8.1 -23.5 -14.2 -23.4 Himit of 15.2 ed in 100kHz	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	degrees 208 208 274 274 264 264 268 268 268 268	meters 1.3 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Note 3 Note 3 Note 3 Note 2, 3 Note 2, 3 Note 2, 3 Note 2, 3	
Frequency MHz 1498.940 1497.140 1593.860 1597.330 3000.140 3000.140 4496.960 4496.230 Note 1: Note 2:	Level dBµV/m 44.0 52.5 40.6 59.4 45.9 50.5 39.8 50.6 For emission level of the f Signal is not	Pol v/h H V V V V V V v t in restricte	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0 ed bands, the and measure ed band but t	Margin -10.0 -21.5 -13.4 -14.6 -8.1 -23.5 -14.2 -23.4 elimit of 15.2 ed in 100kHz he more strir	Pk/QP/Avg AVG PK AVG PK AVG PK 09 was used	degrees 208 208 274 274 264 264 268 268 268 268	meters 1.3 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Note 3 Note 3 Note 3 Note 2, 3 Note 2, 3 Note 2, 3 Note 2, 3	
Frequency MHz 1498.940 1497.140 1593.860 1597.330 3000.140 3000.140 4496.960	Level dBµV/m 44.0 52.5 40.6 59.4 45.9 50.5 39.8 50.6 For emission level of the f Signal is not Not radio re	Pol v/h H V V V V V V v tin a restricted ated. See no	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0 ed bands, the and measure ed band but t botes for 2.4G	Margin -10.0 -21.5 -13.4 -14.6 -8.1 -23.5 -14.2 -23.4 limit of 15.2 ed in 100kHz he more strir Hz Wifi Sput	Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK 09 was used	degrees 208 208 274 274 264 264 268 268 268 268 . For all othe	meters 1.3 1.3 1.0	Note 3 Note 3 Note 3 Note 2, 3 Note 2, 3 Note 2, 3 Note 2, 3 Note 2, 3	

Model:	Intel Corpora	tion							
Contact:							Job Number:	J94914	
Contact:							T-	Log Number:	T95471
	7265D2W						Proj	ect Manager:	Christine Krebill
	Steve Hacke	tt					-	Coordinator:	-
Standard: FCC Part 15.247, 15.407, RSS-210							.,	Class:	N/A
	gh Channel							01000.	
		C 2400 MIT			Power S	Settings			
Target (dBm)			Measure		Softwar	e Setting			
		Chain B		-	3.4	40	De	fault	
Note - meası	ured power i <mark>r</mark>	n table above	e is average	power, for re	eference only.				
Fundamenta				measured in / 15.247		۸ <u> </u>	Llaight	Commente	
Frequency MHz	Level dBµV/m	Pol v/h	Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
2480.010	98.6	H	-	iviaryin -	Pk	192	1.0	POS: RB 10	0 kHz; VB: 100 kHz
2479.950	94.4	V	-		Pk	92	1.0		0 kHz; VB: 100 kHz
2110.000	01.1	v				02	1.0	1 00,110 10	0 KH2, VB. 100 KH2
Fu	ndamental ei	mission leve	l @ 3m in 10	OkHz RBW:	98.6	dBµV/m			
	Limit for e	missions ou	tside of restr	icted bands:		dBµV/m	Limit is -20	dBc (Peak po	wer measurement)
	Limit for e	missions ou	tside of restr	icted bands:	68.6	dBµV/m	Limit is -30	dBc (UNII pov	ver measurement)
					field strengt				
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz 2484.990	dBµV/m 38.2	v/h H	Limit 54.0	Margin -15.8	Pk/QP/Avg	degrees 189	meters		
2484.530	56.1	H	74.0	-15.8	AVG PK	189	1.0 1.0		MHz; VB: 10 Hz MHz; VB: 3 MHz
2485.020	36.5	V	54.0	-17.5	AVG	90	1.0		MHz; VB: 10 Hz
2484.660	52.4	V	74.0	-21.6	PK	90	1.0		MHz; VB: 3 MHz
2404.000	02.4	v	14.0	21.0		50	1.0	100,1011	1112, VD. 0 10112
	MHz; VB 10								
7	70.0-								
<u> </u>	60.0-								
ng		\sim							
Đ	50.0-								
tude		Why	manuch	M.M. al	May march	and and and	humburn	tumbete de teteres	and the state of the
Amplitude (dBuV/m)	40.0-		 where we have to be a set of the set of th	and the second second	and a strategy of the	A MARKAN AND	NAME OF BRIDE	n na an	and the sound of the state of t
		\sim							
	30.0-								
	2483.5	2486	.0 2488	3.0 249	0.0 249 Frequency	2.0 24	94.0 2	496.0 24	i98.0 2500.0

Client:	Intel Corpora	ition						Job Number: J94914
Model [.]	7265D2W							Log Number: T95471
							Proj	ect Manager: Christine Krebill
Contact:	Steve Hacke	tt					Project	: Coordinator: -
Standard:	FCC Part 15.247, 15.407, RSS-210							Class: N/A
Other Spur	ious Emissio	ons						
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1499.140	44.0	Н	54.0	-10.0	AVG	206	1.3	Note 3
1499.240	52.9	Н	74.0	-21.1	PK	206	1.3	Note 3
1598.760	40.9	V	54.0	-13.1	AVG	263	1.0	Note 3
1592.460	60.2	V	74.0	-13.8	PK	263	1.0	Note 3
3000.150	46.3	V	54.0	-7.7	AVG	326	1.0	Note 2, 3
3000.190	50.7	V	74.0	-23.3	PK	326	1.0	Note 2, 3
4497.060	40.2	V	54.0	-13.8	AVG	272	1.0	Note 2, 3
4496.200	51.7	V	74.0	-22.3	PK	272	1.0	Note 2, 3
ote 2: ote 3:	level of the fu Signal is not Not radio rela Scans made	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE.	ed band limit na moved ar	was used.	, the limit was set 20dB below the
lote 2: lote 3:	level of the fu Signal is not Not radio rela Scans made	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
Note 1: Note 2: Note 3: Note 4	level of the fu Signal is not Not radio rela Scans made	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
Note 2: Note 3: Note 4	level of the fi Signal is not Not radio rela Scans made device indica	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
lote 2: lote 3: lote 4	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
lote 2: lote 3: lote 4	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
lote 2: lote 3: lote 4 BLE	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz 80.0 – 70.0 –	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
ote 2: ote 3: ote 4	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz 80.0 – 70.0 –	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
ote 2: ote 3: ote 4	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz 80.0 – 70.0 –	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
lote 2: lote 3: lote 4 BLE	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz 80.0 – 70.0 –	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
lote 2: lote 3: lote 4 BLE	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz 80.0 – 70.0 –	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
lote 2: lote 3: lote 4	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz 80.0 – 70.0 –	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
lote 2: lote 3: lote 4 BLE	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz 80.0 – 70.0 –	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
ote 2: ote 3: ote 4	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	
lote 2: lote 3: lote 4 BLE	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 20.0 -	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit na moved ar	was used.	ard and its antennas 20-50cm from
lote 2: lote 3: lote 4 BLE	level of the fi Signal is not Not radio rela Scans made device indica 2480 MHz 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	undamental in a restricte ated. See no between 18	and measure ed band but t otes for 2.4G - 26GHz wit	ed in 100kHz he more stri Hz Wifi Spu h the measu	z. ngent restricte rious RE. irement anten	ed band limit	was used.	

WE ENGINEER S	UCCESS		
Client:	Intel Corporation	Job Number:	J94914
Product	7265D2W	T-Log Number:	T95472
		Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Emissions Standard(s):	FCC Part 15.247, 15.407, RSS-210	Class:	В
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Intel Corporation

Product

7265D2W

Date of Last Test: 7/8/2014

	E ENGINEER DOGGEDD		
Client:	Intel Corporation	Job Number:	J94914
Model	7265D2W	T-Log Number:	T95472
wouer.	1205D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

TS

SUCCESS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

For Bluetooth: Tx is chain B, Rx is chain B. For WiFi, only Chain A is used for transmit in the 2.4GHz band when Bluetooth is active, both chains can be used in 5GHz bands.

Ambient Conditions:

Temperature:	24 °C
Rel. Humidity:	39 %

Summary of Results

MAC Address: 001500F15B3A DRTU Tool Version 1.7.3-935 Driver version 17.1.0.11

101/ 10 / 10 al 0		IODO/(DITTO		111.1.0 000			
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	BT 1Mb/s 802.11b	2402MHz 2412MHz	10 14.5	4.8 17.6		FCC 15.247	56.8 dBµ V/m @ 1199.1 MHz (-17.2 dB)
2	BT 1Mb/s 802.11b	2480MHz 2462MHz	10 14.0	5.0 17.7	Radiated Emissions	FCC 15.247	43.5 dBµ V/m @ 4924.0 MHz (-10.5 dB)
3	BT 1Mb/s 802.11g	2402MHz 2412MHz	10 20.5	4.8 17.7	1- 10 GHz	FCC 15.247	56.3 dBµ V/m @ 1196.0 MHz (-17.7 dB)
4	BT 1Mb/s 802.11g	2480MHz 2462MHz	10 19.5	5.0 17.5		FCC 15.247	53.3 dBµ V/m @ 1198.7 MHz (-20.7 dB)

Client:	Intel Corpora	ation				Job Number:	J94914
Madalı	7005 DOW					T-Log Number:	T95472
Model:	7265D2W					Project Manager:	Christine Krebill
Contact:	Steve Hacke	ett				Project Coordinator:	-
Standard:	FCC Part 15	5.247, 15.407	7, RSS-210			Class:	N/A
	L						
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
/iFi mode f	or the followi	ng runs base	ed on worst c	ase mode fro	m runs 1 through 4		
5	BT 1Mb/s 802.11b	2402MHz 2437MHz	10 14	4.8 17.7	Radiated Emissions	FCC 15.247	46.1 dBµ V/m @ 2366 MHz (-7.9 dB)
6	BT 1Mb/s 802.11b	2440MHz 2412MHz	10 14.5	5.1 17.6	1- 10 GHz	FCC 15.247	41.9 dBµ V/m @ 2356 MHz (-12.1 dB)
7	BT 1Mb/s 802.11b	2440MHz 2462MHz	10 14	5.1 17.7	Radiated	FCC 15.247	41.3 dBµ V/m @ 4924 MHz (-12.7 dB)
8	BT 1Mb/s 802.11b	2480MHz 2437MHz	10 14	5.0 17.7	Emissions 1- 10 GHz	FCC 15.247	41.1 dBµ V/m @ 4874 MHz (-12.9 dB)
ViFi mode a	and channel a	and Bluetoot	h channel ba	sed on the wo	orst case mode from run	s 1 through 8	
9	BT 3Mb/s 802.11b	2440 MHz 2462 MHz	6 14	1.2 17.7	Radiated	FCC 15.247	41.4 dBµ V/m @ 4924 MHz (-12.6 dB)
10	BTLE 802.11b	2440 MHz 2462 MHz	Default 14	3.2 17.7	Emissions 1- 10 GHz	FCC 15.247	43.5 dBµ V/m @ 4924 MHz (-10.5 dB)
ViFi mode -	802.11n 20	MHz with bot	h chains acti	ve at 16.5 dBi	m per chain, center char	nnel in each 5GHz band. E	Bluetooth on center
hannel, 1M	b/s mode					T	
11	BT 1Mb/s 802.11n20	2440MHz 5200MHz	10 31.0 / 32.0	5.1 16.6 / 16.5		FCC 15.247	No intermodulation founded Other Emissions refer the spurious RE resul
12	BT 1Mb/s 802.11n20	2440MHz 5300MHz	10 32.0 / 33.0	5.1 16.6 / 16.5	Radiated Emissions	FCC 15.247	No intermodulation founded Other Emissions refer the spurious RE resul
13	BT 1Mb/s 802.11n20	2440MHz 5580MHz	10 28.5 / 29.5	5.1 16.5 / 16.6	1- 15 GHz	FCC 15.247	No intermodulation founded Other Emissions refer the spurious RE resul
14	BT 1Mb/s 802.11n20	2440MHz 5785MHz	10 34.5 / 35.5	5.1 16.7 / 16.5		FCC 15.247	No intermodulation founded Other Emissions refer the spurious RE resul

	E EROMEER DOGGEDD		
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95472
wouer.	12050210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes:

Bluetooth uses a frequency hopping algorithm that means that the device, during normal operation, is only on a specific channel for a short period of time. The average correction factor is calculated as follows:

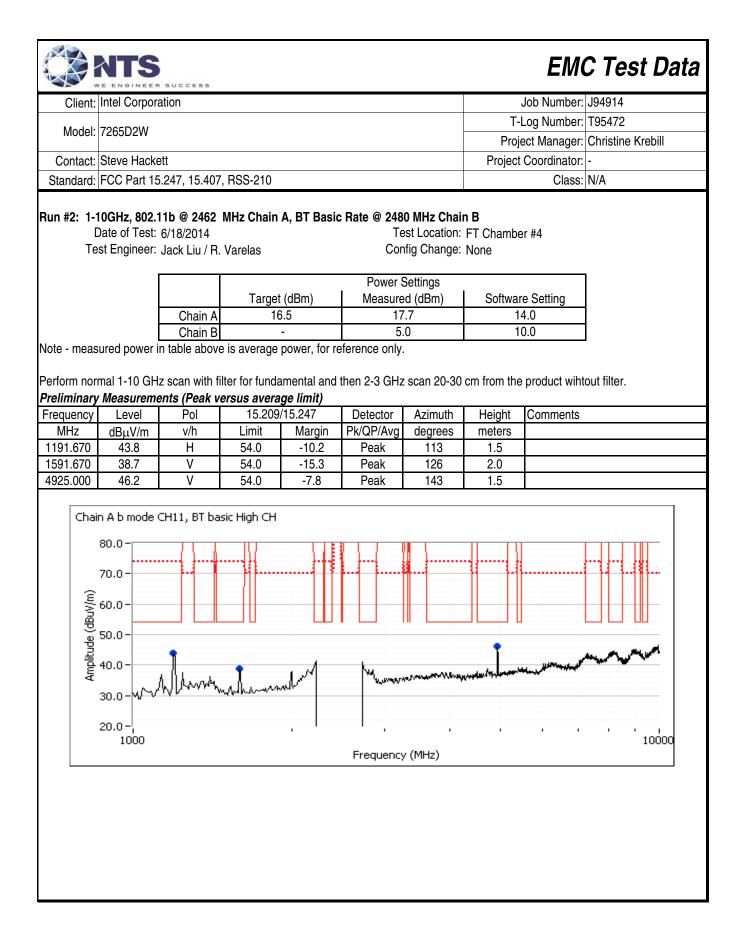
A maximum length packet has a duration of 5 time slots.

The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.

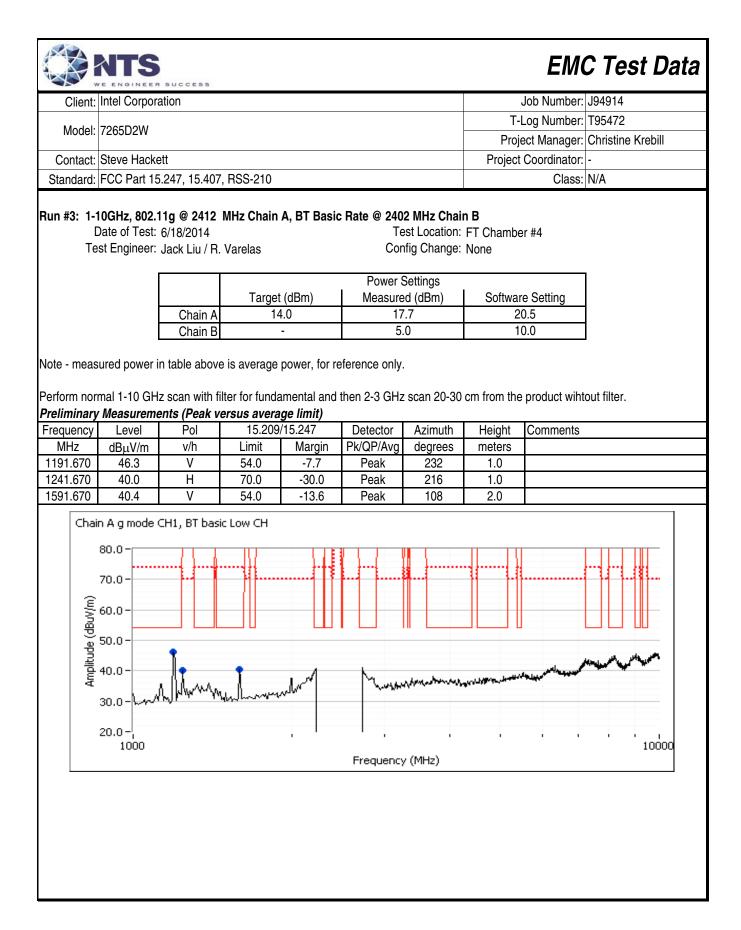
With a minimum of 20 hopping channels a channel will not be used more than 4 times in any 100ms period.

The maximum dwell time in a 100ms period is 4×3.125 ms = 12.5ms.

The average correction factor is, therefore, 20log(12.5/100) =-18dB

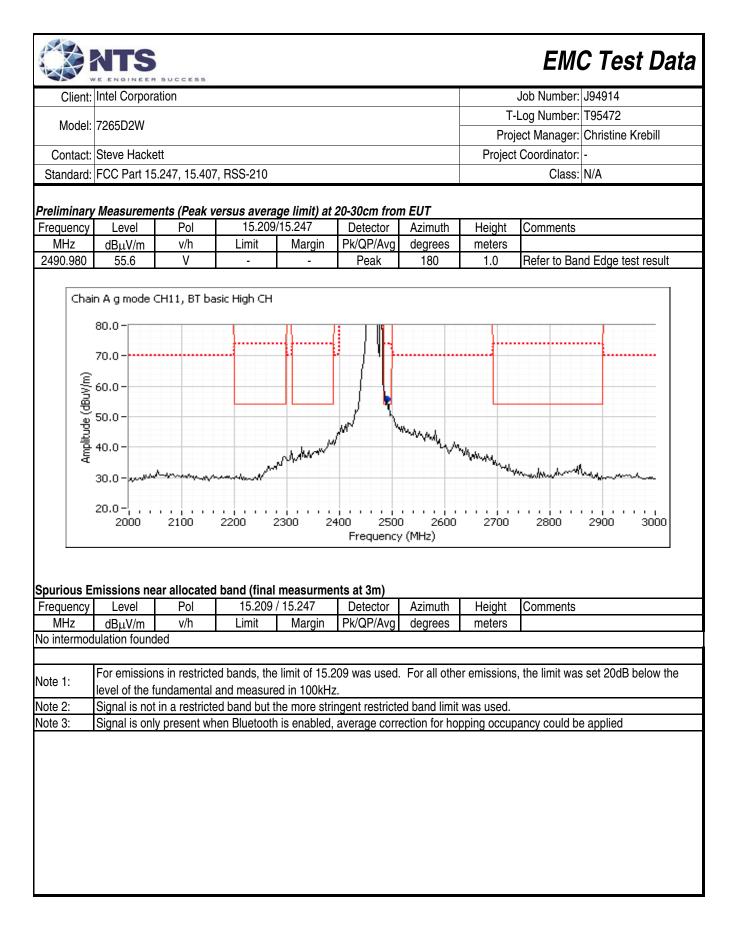

As this is a hopping radio this correction factor can be applied to the average value of the signal provided the average value was measured with the device continuously transmitting. DA 00-0705 permits the use of the average correction on the **measured average** value for frequency hopping radios.

All measurements in this data sheet do not include the average correction factor.


Antenna: Skycross WiMax/WLAN

Client:	Intel Corpora	ation						Job Number:	J94914
Model	7265D2W						T-	Log Number:	T95472
							Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	
Standard:	FCC Part 15	5.247, 15.407	, RSS-210					Class:	N/A
Run #1• 1₋•	10GH7 802 ·	11h @ 2/12	MHz Chain	Δ RT Raci	c Rate @ 240	2 MHz Chair	n B		
	Date of Test:			ה, שו שמשוו		est Location:		er #4	
	est Engineer:				Cor	fig Change:	None		
					Dowor	Pottingo			1
			Targe	t (dBm)	Power S Measure		Softwa	re Setting	
		Chain A		6.5	17	1 /		4.5	
		Chain B		-	4.	-	1	0.0	
lote - meas	sured power i	n table above	e is average	power, for re	eference only.				
erform nor	mal 1-10 GH	z scan with fi	lter for fund	amental and	then 2-3 GHz	scan 20-30	cm from the	e product wiht	out filter
	/ Measureme								
, o minute y					Detector	Azimuth	Height	Comments	
Frequency	Level	Pol	15.209					Commento	
Frequency MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
Frequency MHz 1200.000	dBμV/m 46.6	v/h V	Limit 54.0	Margin -7.4	Pk/QP/Avg Peak	degrees 220	meters 1.0		
Frequency MHz 1200.000 1825.000	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 -	V/h V V CH1, BT basi	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 -	v/h V V V	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	V/h V V CH1, BT basi	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBµV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 -	V/h V V CH1, BT basi	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60	meters 1.0 2.2		
Frequency MHz 1200.000 1825.000 1591.670	dBμV/m 46.6 52.6 42.4 in A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	V/h V V CH1, BT basi	Limit 54.0 70.0 54.0	Margin -7.4 -17.4	Pk/QP/Avg Peak Peak	degrees 220 60 260	meters 1.0 2.2		· 10000

	WE ENGINEER	SUCCESS							C Test Da
Client:	Intel Corpora	ation						Job Number:	
Model.	7265D2W							Log Number:	
Wouci.	12000211						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	5.247, 15.407	7, RSS-210					Class:	N/A
Pourious E			acted band	(final mass	unomonto ot	2ma)			
Frequency	Level	Pol		<u>(111a) meas</u> / 15.247	urements at Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
1196.800	31.4	V	54.0	-22.6	AVG	237	1.0	RB 1 MHz:V	/B 10 Hz;Peak
1199.130	56.8	V	74.0	-17.2	PK	237	1.0		/B 3 MHz;Peak
1819.800	27.3	V	54.0	-26.7	AVG	195	1.9	Note 2	, , , ,
1819.600	39.2	V	74.0	-34.8	PK	195	1.9	Note 2	
1594.340	31.2	V	54.0	-22.8	AVG	61	1.6	RB 1 MHz;V	/B 10 Hz;Peak
1594.940	47.0	V	74.0	-27.0	PK	61	1.6	RB 1 MHz;V	/B 3 MHz;Peak
Preliminar	/ Measurema	ents (Peak v	ersus avera	oge limit) at	20-30cm fror	n EUT			
Frequency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2460.920	55.9	H	-	-	Peak	180	1.0	In band inte	rmittent signal
2573.150	43.6	H	54.0	-10.4	Peak	180	1.0	Note 2	
		CH1, BT bas							
Amplitude (dBuV/m)	80.0-	and an an an		2300 24	100 250	 			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Spurious E	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000		2200 2	2300 24 measurmer	100 2500 Frequency nts at 3m)) 2600 / (MHz)	2700	2800	
Spurious E Frequency	80.0 - 70.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 missions ne Level	2100 Pol	2200 2 band (final 15.209	2300 24 measurmer / 15.247	+00 2500 Frequency nts at 3m) Detector	2600 7 (MHz) Azimuth	2700 Height		
Spurious E Frequency MHz	80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 20.0 - 2000 missions ne Level dBµV/m	ar allocated v/h	2200 2 band (final 15.209 Limit	2300 24 measurmen / 15.247 Margin	100 2500 Frequency nts at 3m) Detector Pk/QP/Avg	2600 7 (MHz) Azimuth degrees	2700 Height meters	2800	
Spurious E Frequency MHz 2573.150	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 30.0 - 2000 50.0 - 2000 30.0 - 2000 50.0 - 2000 5000 5000 5000 5000 5000 5000 500	سارمہر کر ا 2100	2200 2 band (final 15.209	2300 24 measurmer / 15.247	+00 2500 Frequency nts at 3m) Detector	2600 7 (MHz) Azimuth	2700 Height	2800	
Spurious E Frequency MHz 2573.150	80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 20.0 - 2000 missions ne Level dBµV/m	سارمہر کر ا 2100	2200 2 band (final 15.209 Limit	2300 24 measurmen / 15.247 Margin	100 2500 Frequency nts at 3m) Detector Pk/QP/Avg	2600 7 (MHz) Azimuth degrees	2700 Height meters	2800	
Spurious E Frequency MHz 2573.150	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 missions ne Level dBµV/m 43.6 dulation found	ar allocated Pol V/h H Jed	2200 2 band (final 15.209 Limit 54.0	measurmer / 15.247 Margin -10.4	100 2500 Frequency Ints at 3m) Detector Pk/QP/Avg Peak	Azimuth degrees 180	Height meters 1.0	2800 Comments Note 2	
Spurious E Frequency MHz 2573.150 No intermod	80.0 - 70.0 - 50.0 - 40.0 - 30.0 - 2000 - 2000 - 2000 - missions ne Level dBμV/m 43.6 Julation founce	2100 2100 2100 Pol V/h H led	2200 2 band (final 15.209 Limit 54.0 ed bands, the and measure	measurme / 15.247 / 15.247 -10.4 e limit of 15.2 ed in 100kHz	100 2500 Frequency Ints at 3m) Detector Pk/QP/Avg Peak	Azimuth degrees 180	Height meters 1.0	2800 Comments Note 2	2900 3000



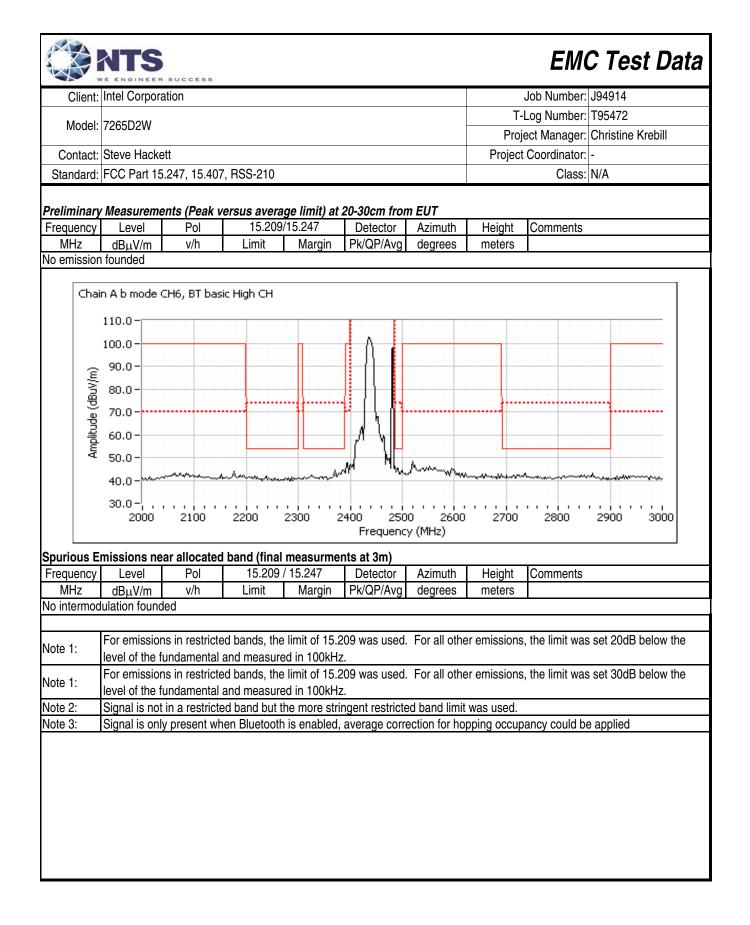
		SUCCESS							
Client:	Intel Corpora	ation						Job Number:	J94914
Madali	7005000						T-	Log Number:	T95472
Model:	7265D2W						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Proiect	Coordinator:	-
	FCC Part 15		7 BSS-210				.,	Class:	N/A
	I							01000.	1.1/7 (
•					urements at				
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
923.980	43.5	V	54.0	-10.5	AVG	207	1.0		B 10 Hz;Peak
924.070	49.0	V	74.0	-25.0	PK	207	1.0		B 3 MHz;Peak
174.670	30.3	H	54.0	-23.7	AVG	252	1.7	,	B 10 Hz;Peak
195.670	48.7	H	74.0	-25.3	PK	252	1.7	,	B 3 MHz;Peak
597.800	30.3	V	54.0	-23.7	AVG	284	1.8		B 10 Hz;Peak
597.470	48.6	V	74.0	-25.4	PK	284	1.8	RB 1 MHZ;V	B 3 MHz;Peak
reliminary	/ Measureme	ents (Peak v			20-30cm from	n EUT			
requency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
488.980	53.1	Н	-		Deels	180	1.0	D () D	al Ealain Annaturnault
				-	Peak	100	1.0		nd Edge test result
Chai	41.0 n A b mode (80.0 -	Н	54.0 Isic High CH	-13.0	Peak	180	1.0	Note 2	
Amplitude (dBuv/m)	n A b mode (<u>Н</u> CH11, BT ba	sic High CH	munard	Peak		1.0	Note 2	
Unit (m//m) Wulltude (dBu//m)	n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 -	<u>н</u> CH11, BT ba	isic High CH	2300 24	Peak	180	1.0	Note 2	
Whitnde (dBu//m) Amplitude (dBu//m) E irequency	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 - missions ne Level	H CH11, BT ba	sic High CH	2300 24 measurmer / 15.247	Peak	180	1.0	Note 2	
Chai (W/\ngp) (W/\ngp	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 20.0 - 2000 missions ne Level dBµV/m	Н СН11, ВТ Ба 2100 •ar allocated Pol v/h	isic High CH	measurmer / 15.247 Margin	Peak Peak Peak Peak Peak Peak Peak Peak	180	1.0	Note 2	
Chai (///mai) (//mai) (//ma	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 20.0 - 2000 (missions ne Level dBµV/m 41.0	H CH11, BT ba	sic High CH	2300 24 measurmer / 15.247	Peak	180	1.0	Note 2	
Chai (///mai) (//mai)	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 20.0 - 20.0 - 2000 missions ne Level dBµV/m	H CH11, BT ba	isic High CH	measurmer / 15.247 Margin	Peak Peak Peak Peak Peak Peak Peak Peak	180	1.0	Note 2	
Chai (///ngp) purious E requency MHz 2623.250 o intermod	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 - missions ne Level dBµV/m 41.0 ulation found	H CH11, BT ba	sic High CH	measurmer / 15.247 Margin -13.0	Peak Peak Peak Peak Peak Peak Peak	180	1.0	Note 2	
Chai (///mai) (//mai)	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 missions ne Level dBµV/m 41.0 lulation founc For emissior level of the f	H CH11, BT ba	isic High CH	measurmer /15.247 Margin -13.0	Peak Peak Peak Peak Peak Peak Peak	180	1.0	Note 2	2900 3000

	NTS	SUCCESS						EM	C Test Da
Client:	Intel Corpora	ation						Job Number:	J94914
							T-	Log Number:	T95472
Model:	7265D2W							-	Christine Krebill
Contact	Steve Hacke	•tt					•	Coordinator:	-
			000 010				Појеск	Class:	- NI/A
Standard:	FCC Part 15	0.247, 10.407	, 600-210					Class.	IN/A
	1				urements at				
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1197.000	31.8	V	54.0	-22.2	AVG	227	1.0		'B 10 Hz;Peak
1196.000	56.3	V	74.0	-17.7	PK	227	1.0		'B 3 MHz;Peak
1260.940	29.1	H	54.0	-24.9	AVG	129	1.4	Note 2	
1241.070	42.8	Н	74.0	-31.2	PK	129	1.4	Note 2	
1594.540	30.9	V	54.0	-23.1	AVG	80	1.5		B 10 Hz;Peak
1594.070	46.2	V	74.0	-27.8	PK	80	1.5	RB 1 MHz;V	'B 3 MHz;Peak
					20-30cm from				
Frequency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
	55.3	V			Peak	180	1.0	In band inte	rmittont signal
2384.770	55.5 54.8	V	ic Low CH	-	Peak	180	1.0		nd Edge test result
2462.930 2384.770 Chai (///ngp) apn1/dww	54.8 in A g mode (80.0 - 70.0 -	V CH1, BT bas		and a second	Peak	180	1.0	Refer to Bar	
2384.770 Chai (w/\ngp)	54.8 n A g mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000	V CH1, BT bas	ic Low CH	2300 24	Peak	180	1.0	Refer to Bar	Augustania
2384.770 Chai (W/\ngp) epintilduwy Spurious E	54.8 n A g mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 -	V CH1, BT bas	ic Low CH	2300 24 measurmer	Peak	180	1.0	Refer to Bar	Augustania
2384.770 Chai (W/\ngp) apnalidwy Spurious E Frequency	54.8 n A g mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 - missions ne Level	V CH1, BT bas	ic Low CH	measurmen / 15.247	Peak	180	1.0	Refer to Bar	Augustania
2384.770 Chai (W/Mgp) phaindwy Spurious E Frequency MHz	54.8 n A g mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 -	V CH1, BT bas	ic Low CH	2300 24 measurmer	Peak	180	1.0	Refer to Bar	Augustania
2384.770 Chai ((W/\ngp) apprildwy Spurious E Frequency MHz Io intermod	54.8 n A g mode (80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 30.0 - 20.0 - 2000 missions ne Level dBµV/m lulation found	V CH1, BT bas	ic Low CH	2300 24 measurmer / 15.247 Margin	Peak	180	1.0	Refer to Bar	Augustania
2384.770 Chai ((W/\ngp) apprildwy Spurious E Frequency MHz Io intermod	54.8 n A g mode (80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 30.0 - 20.0 - 2000 missions ne Level dBµV/m lulation found	V CH1, BT bas	ic Low CH	2300 24 measurmer / 15.247 Margin	Peak Peak	180	1.0	Refer to Bar	1d Edge test result
2384.770 Chai (W/\ngp) philidwy Spurious E Frequency MHz	54.8 n A g mode 0 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 2000 missions ne Level dBμV/m fulation found	V CH1, BT bas	ic Low CH	measurmer / 15.247 Margin	Peak Peak	180	1.0	Refer to Bar	1d Edge test result

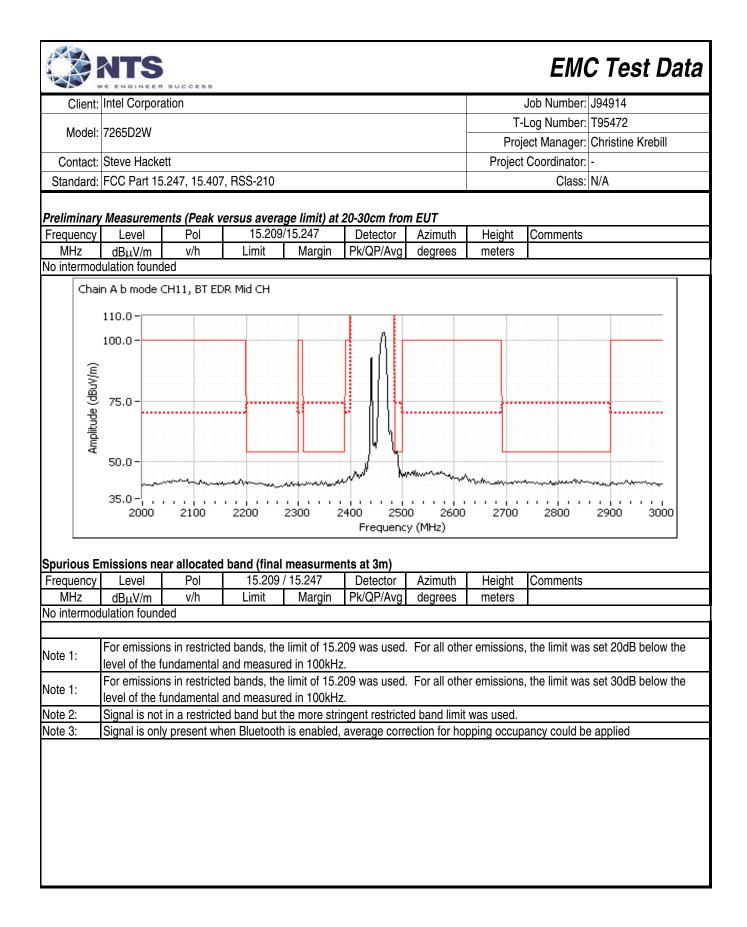
		SUCCESS							C Test Da
Client:	Intel Corpora	ation						Job Number:	J94914
Modal	7265D2W							Log Number:	
WOUEI.	12030200						Proje	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett					Project	Coordinator:	-
Standard:	FCC Part 15	5.247, 15.407	, RSS-210					Class:	N/A
C	Date of Test:			A, BT Basid		0 MHz Chain est Location: ofig Change:	FT Chambe	er #4	
					Power S				
			Target		Measure	()		e Setting	
		Chain A	12	2.5	17			9.5	
		Chain B		-	5.	U	1	0.0	J
MHz	υσμν/π	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1600.000 1200.000 Chair	80.0 -	V V CH11, BT bas	54.0 54.0	-13.8 -10.1	Peak Peak	221 259	1.5 1.0		
1600.000 1200.000 Chair (m//m)	40.2 43.9 n A g mode • 80.0 -	V V	54.0 54.0	-13.8	Peak	221	1.5		
1600.000 1200.000 Chair (m//ngp) apnntilduw	40.2 43.9 n A g mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 -	V V	54.0 54.0	-13.8	Peak	221 259	1.5		· · · 10000
1600.000 1200.000 Chair (m//ngp) aphitinde	40.2 43.9 n A g mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	V CH11, BT bas	54.0 54.0 sic High CH	-13.8 -10.1	Peak Peak	221 259	1.5		
1600.000 1200.000 Chair (m/\ngp) spurious Er	40.2 43.9 n A g mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex	V CH11, BT bas	54.0 54.0 sic High CH	-13.8 -10.1	Peak Peak	221 259	1.5 1.0	Comments	· · · 10000
1600.000 1200.000 Chair (W/Angp) aphritiduw Fipurious Er	40.2 43.9 n A g mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	CH11, BT bas	54.0 54.0 sic High CH	-13.8 -10.1	Peak Peak	221 259	1.5	Comments	· · · 10000
1600.000 1200.000 Chair (////ngp) apn1//dwy Spurious Er Frequency MHz 1598.670	40.2 43.9 n A g mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level	V CH11, BT bas CH11, BT bas	54.0 54.0 sic High CH	-13.8 -10.1	Peak Peak	221 259	1.5 1.0	RB 1 MHz;\	/B 10 Hz;Peak
1600.000 1200.000 Chair (///ngp) apnaliduw Spurious Er Frequency	40.2 43.9 n A g mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m	V CH11, BT bas	54.0 54.0 sic High CH	-13.8 -10.1	Peak Peak	221 259 (MHz) 3m) Azimuth degrees	1.5 1.0	RB 1 MHz;\ RB 1 MHz;\	
1600.000 1200.000 Chair (////ngp) apn1//dwy Epurious Er Frequency MHz 1598.670	40.2 43.9 n A g mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m 31.1	V CH11, BT bas CH11, BT bas	54.0 54.0 sic High CH	-13.8 -10.1	Peak Peak	221 259 ///////////////////////////////////	1.5 1.0	RB 1 MHz;\	/B 10 Hz;Peak

	NTS E ENGINEER	SUCCESS						EMO	
Client:	Intel Corpora	ation					,	Job Number:	J94914
Madalı	70050014						T-L	og Number:	T95472
Model:	7265D2W						Proje	ect Manager:	Christine Krebill
Contact:	Steve Hacke	ett						Coordinator:	
	FCC Part 15		' BSS-210					Class:	
					: Rate @ 240	2 MHz Chair	n B	014001	
0	Date of Test: st Engineer:	6/19/2014		A, DT Dasid	Te		FT Chambe	r 4	
					Power S	Settings			
			Target	(dBm)	Measure	-	Software	e Setting	
		Chain A	17	'.5	17	.7	14	4.0	
		Chain B		-	4.	.8	10).0	
erform norr		z scan with fi	ilter for funda	mental and	eference only. then 2-3 GHz		cm from the	•	out filter.
requency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
					-				
195.120	44.6	Н	54.0	-9.4	Peak	114	1.3		
1195.120 1594.440 4874.170		H V V	54.0 54.0	-9.4 -12.8 -11.6	Peak Peak Peak	114 227 141	1.3 1.6 1.3		
195.120 594.440 874.170 Chair	44.6 41.2 42.4 n A b mode (80.0 - 70.0 -	H V V	54.0 54.0	-12.8	Peak	227	1.6		
1195.120 1594.440 4874.170 Chair (ш/\/ngp) əpn1ildwy	44.6 41.2 42.4 n A b mode 0 80.0 -	H V V	54.0 54.0	-12.8	Peak Peak	227 141	1.6		· 10000
1195.120 1594.440 4874.170 Chair (///ngp) apn1/dwy	44.6 41.2 42.4 n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	H V CH6, BT Basi	54.0 54.0 ic Low CH	-12.8 -11.6	Peak Peak	227 141	1.6 1.3	Anary (1999) and (
195.120 594.440 874.170 Chair (///ngp) aprinting pourtious En requency	44.6 41.2 42.4 n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level	H V CH6, BT Basi	54.0 54.0 ic Low CH	-12.8 -11.6	Peak Peak	227 141	1.6 1.3	Comments	
195.120 594.440 874.170 Chair (///ngp) apnalidume burrious Er requency MHz	44.6 41.2 42.4 n A b mode 0 80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m	H V CH6, BT Basi	54.0 54.0 ic Low CH	-12.8 -11.6	Peak Peak	227 141	1.6 1.3	Comments	10000
195.120 594.440 874.170 Chair (m/\ngp) apn1idure (m/Tequency MHz 873.970	44.6 41.2 42.4 n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 40.2	H V CH6, BT Basi	54.0 54.0 ic Low CH	-12.8 -11.6	Peak Peak	227 141 (MHz) 3m) Azimuth degrees 154	1.6 1.3	Comments RB 1 MHz;V	'10000 'B 10 Hz;Peak
195.120 594.440 874.170 Chair (///ngp) Phriliduk Fourious El requency MHz 1873.970 1873.870	44.6 41.2 42.4 n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 40.2 46.9	H V V CH6, BT Basi	54.0 54.0 ic Low CH	-12.8 -11.6	Peak Peak	227 141	1.6 1.3	Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Peak /B 3 MHz;Peak
1195.120 1594.440 4874.170 Chair (////ngp) aphilidury purious Er requency MHz 4873.970 4873.870 1594.510	44.6 41.2 42.4 n A b mode 0 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m 40.2 46.9 30.4	H V V CH6, BT Basi	54.0 54.0 ic Low CH	-12.8 -11.6	Peak Peak	227 141 (MHz) 3m) Azimuth degrees 154 154 223	1.6 1.3	Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Peak /B 3 MHz;Peak /B 10 Hz;Peak
1195.120 1594.440 4874.170 Chair (///ngp) apn1 mildwy purious Er requency	44.6 41.2 42.4 n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 40.2 46.9	H V V CH6, BT Basi	54.0 54.0 ic Low CH	-12.8 -11.6	Peak Peak	227 141	1.6 1.3	Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Peak /B 3 MHz;Peak

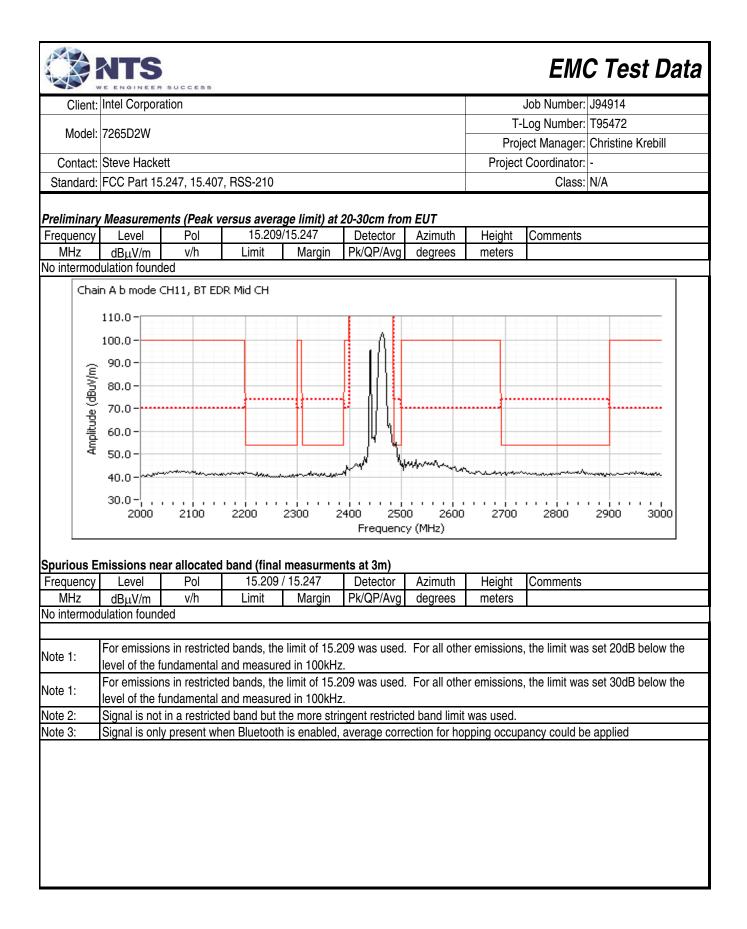
	Intel Corpora	ition						Job Number:	
Model	7265D2W						T·	Log Number:	T95472
WOUEI.	12030211						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacke	tt					Project	t Coordinator:	-
Standard:	FCC Part 15.	.247, 15.407	, RSS-210					Class:	N/A
	/ Measureme				1				
Frequency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz 2368.740	dBμV/m 49.2	v/h H	Limit	Margin -4.8	Pk/QP/Avg	degrees 210	meters 1.5		
2300.740	49.2	Π	54.0	-4.0	Peak	210	1.5		
Cha	in Albanada C	UC DT Las	a Law CH						
Cha	in A b mode C	.no, bi bas	CLOW CH						
	110.0-								
	100.0-				A				
	00.0-								
(E)	90.0-								
Amplitude (dBuV/m)	80.0-								
e (q	70.0-				H. I. II.				
litud	60.0-				(
di di di	50.0				JW 10			_	
	50.0-			<u>N</u>	W WW	un man			
	40.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mound	mand				-	marine
	30.0-			2300 2	2400 250	0 2600	2700	2800	
	2000	2100	2200	2000 2		v (MHz)			2900 3000
			2200	2000 2	Frequenc	y (MHz)			2900 3000
			2200			y (MHz)			2900 3000
Spurious E		2100			Frequenc	y (MHz)			2900 3000
Frequency	2000 missions nea	2100 ar allocated Pol	band (final 15.209 /	measurme / 15.247	Frequenc nts at 3m) Detector	Azimuth	Height	Comments	2900 3000
Frequency MHz	2000	2100 ar allocated Pol v/h	band (final 15.209 /	measurme	Frequenc		Height meters	Comments	2900 3000
Frequency MHz 2366.050	2000 missions nea Level dBµV/m 46.1	2100 ar allocated Pol v/h H	band (final 15.209 / Limit 54.0	measurme / 15.247 Margin -7.9	Frequenc nts at 3m) Detector Pk/QP/Avg AVG	Azimuth degrees 155	meters 1.4	POS; RB 1 I	MHz; VB: 10 Hz
Frequency MHz	2000 missions nea Level dBµV/m	2100 ar allocated Pol v/h	band (final 15.209 / Limit	measurme / 15.247 Margin	Frequenc nts at 3m) Detector Pk/QP/Avg	Azimuth degrees	meters	POS; RB 1 I	
Frequency MHz 2366.050	2000 missions nea Level dBµV/m 46.1 54.2	2100 ar allocated Pol v/h H H	band (final 15.209 / Limit 54.0 74.0	measurme / 15.247 Margin -7.9 -19.8	Frequenc nts at 3m) Detector Pk/QP/Avg AVG PK	Azimuth degrees 155 155	meters 1.4 1.4	POS; RB 1 I POS; RB 1 I	MHz; VB: 10 Hz MHz; VB: 3 MHz
Frequency MHz 2366.050 2366.300	2000 missions nea Level dBμV/m 46.1 54.2 For emission	2100 ar allocated Pol v/h H H s in restricte	band (final 15.209 / Limit 54.0 74.0 d bands, the	measurme (15.247 Margin -7.9 -19.8 limit of 15.2	Frequence nts at 3m) Detector Pk/QP/Avg AVG PK 209 was used.	Azimuth degrees 155 155	meters 1.4 1.4	POS; RB 1 I POS; RB 1 I	MHz; VB: 10 Hz MHz; VB: 3 MHz
Frequency MHz 2366.050 2366.300	2000 missions nea Level dBμV/m 46.1 54.2 For emission level of the fu	2100 ar allocated Pol v/h H H s in restricte	band (final 15.209) Limit 54.0 74.0 d bands, the and measure	measurme (15.247 Margin -7.9 -19.8 limit of 15.2 d in 100kH	Frequence nts at 3m) Detector Pk/QP/Avg AVG PK 209 was used. z.	Azimuth degrees 155 155 For all othe	meters 1.4 1.4 r emissions	POS; RB 1 I POS; RB 1 I POS; RB 1 I	MHz; VB: 10 Hz MHz; VB: 3 MHz s set 20dB below the
Frequency MHz 2366.050 2366.300 Note 1:	2000 missions nea Level dBµV/m 46.1 54.2 For emission level of the fu For emission	2100 ar allocated Pol V/h H H s in restricte undamental s in restricte	band (final 15.209 / Limit 54.0 74.0 d bands, the and measure d bands, the	measurme / 15.247 Margin -7.9 -19.8 limit of 15.2 ed in 100kHz limit of 15.2	Frequence nts at 3m) Detector Pk/QP/Avg AVG PK 209 was used. 2. 209 was used.	Azimuth degrees 155 155 For all othe	meters 1.4 1.4 r emissions	POS; RB 1 I POS; RB 1 I POS; RB 1 I	MHz; VB: 10 Hz MHz; VB: 3 MHz s set 20dB below the
Frequency MHz 2366.050 2366.300 Note 1:	2000 missions nea Level dBµV/m 46.1 54.2 For emission level of the fu For emission level of the fu	2100 ar allocated Pol V/h H H s in restricte undamental s in restricte	band (final 15.209 / Limit 54.0 74.0 d bands, the and measure d bands, the and measure	measurme (15.247 Margin -7.9 -19.8 limit of 15.2 limit of 15.2 limit of 15.2 d in 100kH	Frequence nts at 3m) Detector Pk/QP/Avg AVG PK 209 was used. 2. 209 was used. 2.	Azimuth degrees 155 155 For all othe For all othe	meters 1.4 1.4 r emissions r emissions	POS; RB 1 I POS; RB 1 I POS; RB 1 I	MHz; VB: 10 Hz
Frequency MHz 2366.050	2000 missions nea Level dBµV/m 46.1 54.2 For emission level of the fu For emission level of the fu Signal is not	2100 ar allocated Pol v/h H H s in restricte undamental s in restricte undamental in a restricte	band (final 15.209 / Limit 54.0 74.0 d bands, the and measure d bands, the and measure d band but t	measurme (15.247 Margin -7.9 -19.8 limit of 15.2 ed in 100kHz limit of 15.2 ed in 100kHz he more stri	Frequence nts at 3m) Detector Pk/QP/Avg AVG PK 209 was used. 2. 209 was used.	Azimuth degrees 155 155 For all othe For all othe	meters 1.4 1.4 r emissions r emissions was used.	POS; RB 1 I POS; RB 1 I POS; RB 1 I s, the limit was	MHz; VB: 10 Hz MHz; VB: 3 MHz s set 20dB below the s set 30dB below the


10/01/	Job Number:						success	Intel Corpora	Client
								Intel Corpora	Client:
	og Number:		-					7265D2W	Model:
Christine Krebill	-	-						A	-
-	Coordinator:	Project						Steve Hacke	
N/A	Class:							FCC Part 15	
				Rate @ 244	A, BT Basic	MHz Chain			
	r 4		est Location:					Date of Test:	
		None	ifig Change:	Con			Jack Liu	st Engineer:	Te
			Settinas	Power S]	
	e Setting	Software		Measure	(dBm)	Target			
	1.5		· /	17	. ,	16	Chain A		
).0			5.	-		Chain B		
				ference only.	power, for re	e is average	n table above	ured power i	lote - meas
						1			
out filter.	product wihte	cm from the	scan 20-30	then 2-3 GHz					
	Comments	Height	Azimuth	Detector		ersus avera 15.209/	Pol	Level	Frequency
	Johnnento	meters	degrees	Pk/QP/Avg	Margin	Limit	v/h	dBµV/m	MHz
		1.3	275	Peak	-9.3	54.0	V	44.7	1198.140
		1.9	87	Peak	-13.3	54.0	V	40.7	1590.120
						ic Mid CH	CH1, BT Basi	n A b mode (
							CH1, BT Basi	n A b mode (80.0 - 70.0 -	
			Alanotan					n A b mode (Amplitude (dBuV/m)
· · · 1000			л/ л и-, /мпонида	Frequency	- A			n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	Amplitude (dBuV/m)
· · · 1000					(final measu	ulum.	Jun 1	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	Amplitude (dBuV/m)
· · 1000	Comments	Height	3m)	Frequency urements at	(final measure) (final measure) (15.247	cated band	Jun 1	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	Amplitude (dBuV/m)
· · · 1000		Height meters		urements at		cated band		n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level	Amplitude (dBuV/m)
B 10 Hz;Peak		<u> </u>	3m) Azimuth	urements at Detector	15.247	cated band 15.209	cluding allo	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	Hz Whitnde (dBuv/m) Generations En Generations En MHz
	RB 1 MHz;V	meters	3m) Azimuth degrees	Detector Pk/QP/Avg	/ 15.247 Margin	cated band 15.209 /	cluding allo Pol	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m	(///mg) purious Ei Frequency MHz 1198.160
B 10 Hz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	meters 1.0	3m) Azimuth degrees 277	Detector Pk/QP/Avg AVG	/ 15.247 Margin -23.0	cated band 15.209 / Limit 54.0	cluding allo Pol Vh	n A b mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 31.0	Wmplitude (dBuV/m)

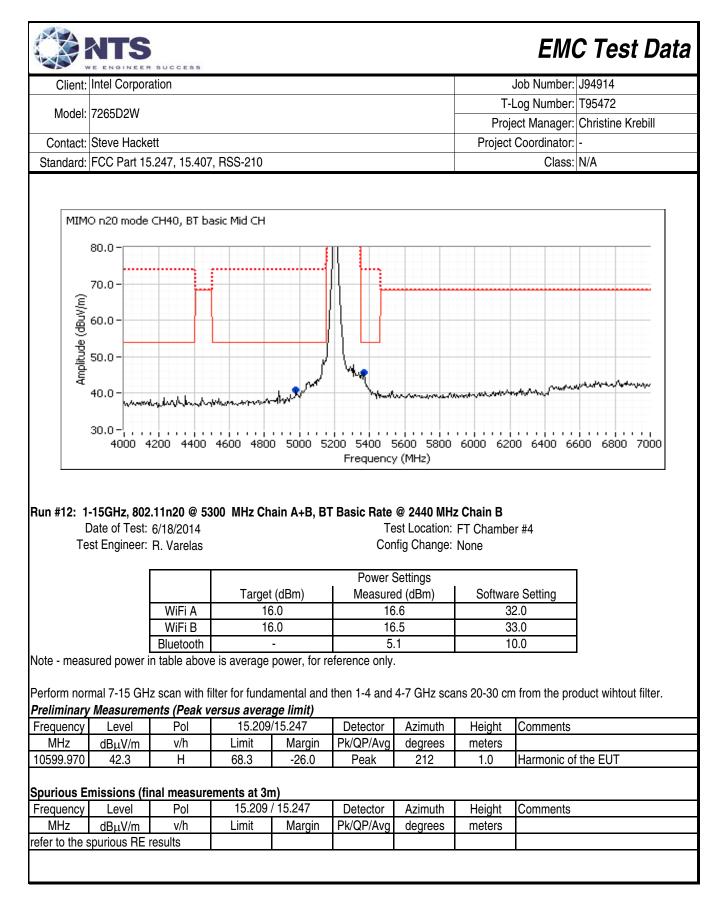
Client:	Intel Corpora	tion						Job Number:	J94914
Madal							T-	Log Number:	T95472
wodel:	7265D2W					-	Proj	ect Manager:	Christine Krebill
Contact:	Steve Hacker	t					Project	Coordinator:	-
Standard:	FCC Part 15.	247, 15.407	, RSS-210					Class:	N/A
requency MHz 2386.770 2352.710	Level dBµV/m 52.5 44.9	Pol v/h H H	15.209 Limit - 54.0	ige limit) at 1/15.247 Margin - -9.1	100cm from Detector Pk/QP/Avg Peak Peak	Azimuth	Height meters 1.0 1.5	Comments Refer to Bar	nd Edge test result
Chai	in A b mode C	H1, BT basi	c Mid CH						
	110.0-								
	100.0-		_	- 11	A.				
	90.0-								
Amplitude (dBuV/m)	80.0-								
Ē	70.0-								
inde					I W				
mplit	60.0-				/ 4 U				
4	50.0-			•)	when	ann.			
	40.0	-man	Minham	and the second s		- which		adage gan dan dan dan dan dan dan dan dan dan d	
	30.0-, , , 2000	2100	2200	2300 2	2400 250 Frequence	0 2600	2700	2800	2900 3000
	missions nea							1-	
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz 2356.760	dBμV/m 41.9	v/h H	Limit 54.0	Margin -12.1	Pk/QP/Avg AVG	degrees 204	meters 1.6	POS: BB 1	MHz; VB: 10 Hz
2356.600	51.1	H	74.0	-22.9	PK	204	1.6		MHz; VB: 3 MHz
lote 1:	level of the fu	Indamental	and measur	ed in 100kHz	2.				s set 20dB below th
lote 1:	For emission level of the fu					For all othe	r emissions	, the limit was	s set 30dB below t
lote 2:					ngent restricte	d band limit	was used.		
Note 3:					average corre			ancv could be	e applied


C Test Da							SUCCESS	E ENGINEER	- N
J94914	lob Number:	J					ation	Intel Corpora	Client:
T95472	.og Number:	T-L						70050014	Maria
Christine Krebill	ct Manager:	Proje						7265D2W	Model:
-	Coordinator:	Project (ett	Steve Hacke	Contact:
	Class:	,				, RSS-210	5.247, 15.407	FCC Part 15	Standard:
		n B	0 MHz Chair	Rate @ 244	A. BT Basic				
	r 4	FT Chamber		T€	,		6/19/2014	Date of Test: st Engineer:	Γ
			Settings	Power S					
	e Setting	Software		Measure		Target			
		14		17	6.5		Chain A		
	0.0	10		5.	-		Chain B	_	
out filter.	product wihte	cm from the		ference only then 2-3 GHz	imental and	-	z scan with f	mal 1-10 GH	erform nor
	Comments	Height	Azimuth	Detector		15.209/	Pol	Level	requency
		meters	degrees	Pk/QP/Avg	Margin	Limit	v/h	dBµV/m	MHz
		1.3	111	Peak	-8.7	54.0	H	45.3	195.250
		1.0 1.6	103 189	Peak Peak	-14.5 -10.3	54.0 54.0	H	39.5 43.7	590.780 924.000
								80.0	
								70.0-	de (dBuV/m)
				Nursed		u Junn		70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	
· · · 10000					(final measured)			70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	
· 10000		Height	3m)	Frequency urements at	(final mease) (15.247		cluding allo	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	ourious E
· 10000	Comments	Height meters		urements at	1			70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	urious E
/B 10 Hz;Peak		meters	3m) Azimuth	urements at Detector	/ 15.247	15.209	Pol v/h H	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level	urious E equency MHz
/B 10 Hz;Peak /B 3 MHz;Peak	RB 1 MHz;V RB 1 MHz;V	meters 1.0 1.0	3m) Azimuth degrees 147 147	Detector Pk/QP/Avg AVG PK	/ 15.247 Margin	15.209 / Limit	Pol v/h H H	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m	urious E equency MHz 923.960
/B 10 Hz;Peak /B 3 MHz;Peak /B 10 Hz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	meters 1.0 1.0 1.6	3m) Azimuth degrees 147 147 116	Detector Pk/QP/Avg AVG PK AVG	/ 15.247 Margin -12.7 -27.1 -24.1	15.209 / Limit 54.0 74.0 54.0	Pol v/h H H H	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m 41.3 46.9 29.9	urious E equency MHz 923.960 924.020 196.560
/B 10 Hz;Peak /B 3 MHz;Peak /B 10 Hz;Peak /B 3 MHz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	meters 1.0 1.0 1.6 1.6	Azimuth degrees 147 147 116 116	Detector Pk/QP/Avg AVG PK AVG PK	/ 15.247 Margin -12.7 -27.1 -24.1 -20.4	15.209 / Limit 54.0 74.0 54.0 74.0	Pol v/h H H H	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 1000 missions ex Level $dB\mu V/m$ 41.3 46.9 29.9 53.6	urious E equency MHz 923.960 924.020 196.560 196.320
/B 10 Hz;Peak /B 3 MHz;Peak /B 10 Hz;Peak	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	meters 1.0 1.0 1.6 1.6 1.0	3m) Azimuth degrees 147 147 116	Detector Pk/QP/Avg AVG PK AVG	/ 15.247 Margin -12.7 -27.1 -24.1	15.209 / Limit 54.0 74.0 54.0	Pol v/h H H H	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m 41.3 46.9 29.9	purious E requency

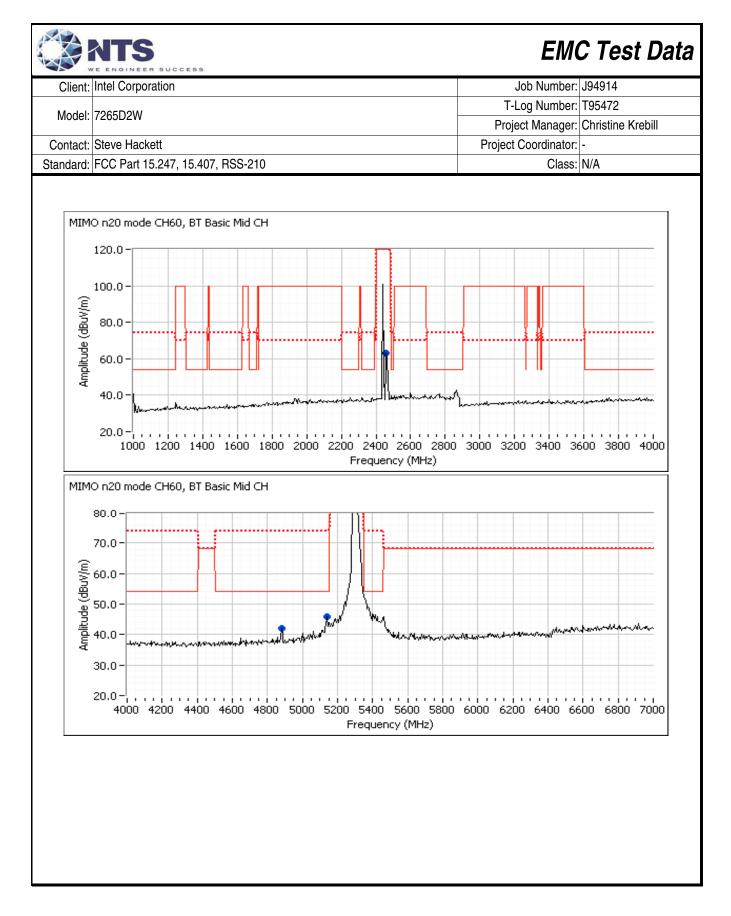
T-Log Number: T95472 Project Manager: Christine Krebill Project Coordinator: - Class: N/A Height Comments meters
Project Coordinator: - Class: N/A Height Comments meters
Class: N/A Height Comments meters
Height Comments meters
meters
meters
meters
1.0 Refer to Band Edge test result
Usisht Commonto
Height Comments meters
motoro
er emissions, the limit was set 20dB below the
er emissions, the limit was set 30dB below the

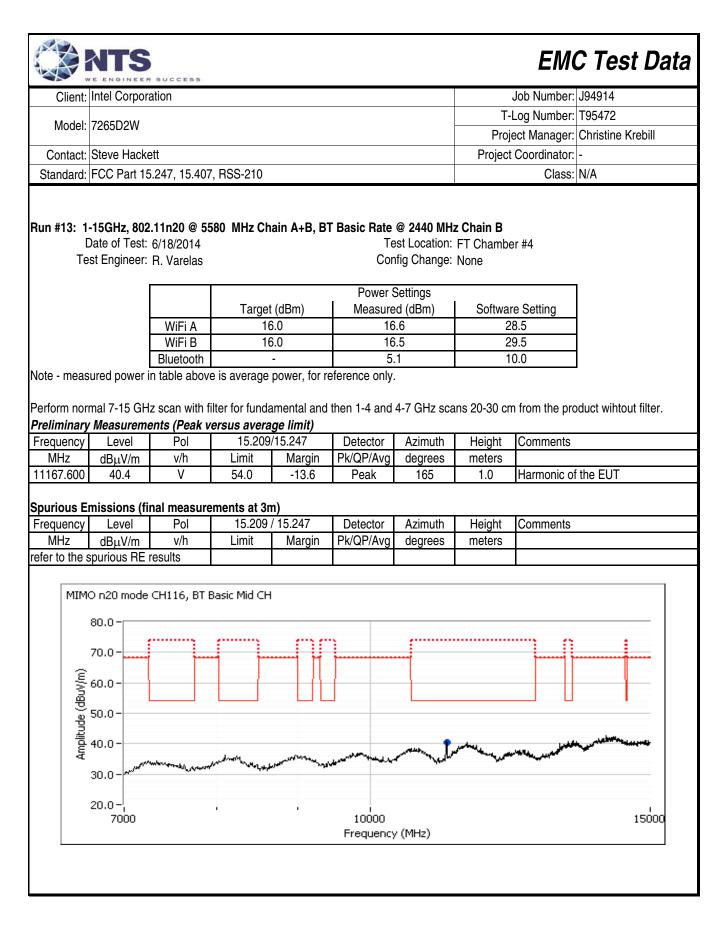

	E ENGINEER	SUCCESS							
Client:	Intel Corpora	ation						Job Number: J94914	
Madali							T-I	og Number: T95472	
Wodel:	7265D2W						Proje	ect Manager: Christin	e Krebill
Contact:	Steve Hacke	ett					Project	Coordinator: -	
		5.247, 15.407	. BSS-210					Class: N/A	
				A BT Basic	: Rate @ 248	0 MHz Chair	n B		
[Date of Test: st Engineer:	6/19/2014		.,	Te	est Location: fig Change:	FT Chambe	r 4	
					Power S	Settings			
			Target	(dBm)	Measure	-	Softwar	e Setting	
		Chain A	16	.5	17	.7		4.0	
		Chain B				.0	1(0.0	
ote - meas	ured power i	n table above	e is average	power, for re	eference only.				
		z scan with fi ents (Peak v			then 2-3 GHz	scan 20-30	cm from the	product wihtout filter	
requency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
				M		degrees	motoro		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	-	meters		
192.970	44.7	V	54.0	-9.3	Peak	224	1.0		
192.970 594.110	44.7 41.0	V H	54.0 54.0	-9.3 -13.0	Peak Peak	224 120	1.0 1.0		
192.970 594.110 874.080	44.7 41.0 42.6 n A b mode	V	54.0 54.0 54.0	-9.3	Peak	224	1.0		
192.970 1594.110 1874.080 Chai (m/\/ngp)	44.7 41.0 42.6	V H V	54.0 54.0 54.0	-9.3 -13.0	Peak Peak Peak	224 120 154	1.0 1.0		- 10000
192.970 594.110 874.080 Chai (////ngp) aphilitomer Sourcious E	44.7 41.0 42.6 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex	V H V CH6, BT Basi	54.0 54.0 54.0 ic High ⊂H	-9.3 -13.0 -11.4	Peak Peak Peak	224 120 154	1.0 1.0 1.9		- 100000
192.970 594.110 874.080 Chai (///ngp) epinitidue burious E requency	44.7 41.0 42.6 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level	V H V CH6, BT Basi	54.0 54.0 54.0 ic High ⊂H	-9.3 -13.0 -11.4	Peak Peak Peak	224 120 154	1.0 1.0 1.9		10000
192.970 594.110 874.080 Chai (///ngp) phyliphysical (///mgp) sourious E requency MHz	44.7 41.0 42.6 n A b mode 80.0 - 70.0 - 50.0 - 30.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m	V H V CH6, BT Basi	54.0 54.0 54.0 ic High CH	-9.3 -13.0 -11.4	Peak Peak Peak	224 120 154	1.0 1.0 1.9		
192.970 594.110 874.080 Chai (///ngp) apn1/dwy www. surrious E requency MHz 874.020	44.7 41.0 42.6 n A b mode 0 80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m 41.1	V H V CH6, BT Basi	54.0 54.0 54.0 ic High CH	-9.3 -13.0 -11.4 (final measure (15.247 Margin -12.9	Peak Peak Peak Peak	224 120 154	1.0 1.0 1.9 Height Height meters 1.9	RB 1 MHz;VB 10 Hz	;Peak
192.970 594.110 874.080 Chai (m/\ngp) entrious E equency MHz 874.020 874.190	44.7 41.0 42.6 n A b mode 0 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m 41.1 47.0	V H V CH6, BT Basi	54.0 54.0 54.0 ic High ⊂H	-9.3 -13.0 -11.4 (final meas) (final meas) (15.247 Margin -12.9 -27.0	Peak Peak Peak Peak Frequency Urements at Detector Pk/QP/Avg AVG PK	224 120 154 3 4 4 4 4 4 4 4 4 4 4 5 4 5 4 154 154	1.0 1.0 1.9 Height meters 1.9 1.9	RB 1 MHz;VB 10 Hz RB 1 MHz;VB 3 MH	;Peak z;Peak
192.970 594.110 874.080 Chai (///ngp) apn1 ilduv burious E requency MHz 874.020 874.190 595.050	44.7 41.0 42.6 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m 41.1 47.0 31.7	V H V CH6, BT Basi	54.0 54.0 54.0 ic High ⊂H	-9.3 -13.0 -11.4 (final measure (15.247 Margin -12.9 -27.0 -22.3	Peak Peak Peak Peak Frequency urements at Detector Pk/QP/Avg AVG PK AVG	224 120 154 (MHz) 3m) Azimuth degrees 154 154 154 121	1.0 1.0 1.9 Height Height neters 1.9 1.9 1.0	RB 1 MHz;VB 10 Hz RB 1 MHz;VB 3 MH RB 1 MHz;VB 10 Hz	:;Peak z;Peak :;Peak
192.970 594.110 874.080 Chai (///ngp) epinitidue burious E requency	44.7 41.0 42.6 n A b mode 0 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBμV/m 41.1 47.0	V H V CH6, BT Basi	54.0 54.0 54.0 ic High ⊂H	-9.3 -13.0 -11.4 (final meas) (final meas) (15.247 Margin -12.9 -27.0	Peak Peak Peak Peak Frequency Urements at Detector Pk/QP/Avg AVG PK	224 120 154 3 4 4 4 4 4 4 4 4 4 4 5 4 5 4 154 154	1.0 1.0 1.9 Height meters 1.9 1.9	RB 1 MHz;VB 10 Hz RB 1 MHz;VB 3 MH	;;Peak z;Peak ;;Peak z;Peak

		SUCCESS						EMC Test Dat
Client:	Intel Corpora	ation					L. L.	Job Number: J94914
							T-L	_og Number: T95472
Model:	7265D2W							ect Manager: Christine Krebill
Contact:	Steve Hacke	ett						Coordinator: -
	FCC Part 15		' BSS-210					Class: N/A
					Rate @ 2440	MHz Chain	B	
[Date of Test: st Engineer:	6/19/2014			Te	est Location: fig Change:	FT Chambe	r 4
					Power S	Settings		
			Target	1 /	Measure	(/		e Setting
		Chain A	16	6.5	17			4.0
		Chain B		-	1.		6	.0
ote - meas	ured power i	n table above	e is average	power, for re	eference only.			
reliminary	Measureme	ents (Peak v	ersus avera	ge limit)				roduct wihtout filter.
requency MHz		Pol		/15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height	Comments
	dBµV/m	v/h	Limit	Margin	Ŭ.	Ū	meters	
245 000	46.2	н	70 0	-23 B	Poak	110	¥	
	46.2 38.0	H	70.0 54.0	-23.8 -16.0	Peak Peak	119 124	1.3	
1593.170 1924.030 Chai	46.2 38.0 45.2 n A b mode 1 80.0 -	H V	54.0 54.0	-23.8 -16.0 -8.8	Peak Peak Peak	119 124 115	1.3 1.0 1.3	
Amplitude (dBuV/m)	38.0 45.2 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 -	H V	54.0 54.0	-16.0	Peak	124	1.0	
1593.170 4924.030 Chai (W/\/ngp) epntlindwy	38.0 45.2 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000		54.0 54.0 IR Mid CH	-16.0 -8.8	Peak Peak	124 115	1.0	
1593.170 4924.030 Chai (///mgp gurious E	38.0 45.2 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 30.0 - 1000 missions ex	H CH11, BT ED	54.0 54.0 IR Mid CH	-16.0 -8.8	Peak Peak	124 115	1.0 1.3	10000
1593.170 1924.030 Chai (m/\ngp) apn1ldww Purious Ei requency	38.0 45.2 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 30.0 - 1000 missions ex Level	H V CH11, BT ED	54.0 54.0 IR Mid CH	-16.0 -8.8	Peak Peak	124 115	1.0 1.3	Comments
593.170 1924.030 Chai (m/\ng) http://www.second Chai (m/\ng) Chai Chai Chai Chai MHz	38.0 45.2 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 30.0 - 30.0 - 1000 missions ex Level dBµV/m	H V CH11, BT ED	54.0 54.0 IR Mid CH	-16.0 -8.8	Peak Peak	124 115	1.0 1.3	1 0000 Comments
1593.170 1924.030 Chai (///ngp) apn1 Idwy purious E requency MHz 1923.970	38.0 45.2 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.4	H V CH11, BT ED	54.0 54.0 IR Mid CH	-16.0 -8.8 (final measure / 15.247 Margin -12.6	Peak Peak Peak	124 115 (MHz) 3m) Azimuth degrees 146	1.0 1.3	10000 Comments RB 1 MHz;VB 10 Hz;Peak
1593.170 1924.030 Chai (m//ngp) purious E requency MHz 1923.970 1923.840	38.0 45.2 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.4 47.1	H V CH11, BT ED	54.0 54.0 IR Mid CH	-16.0 -8.8 (final mease / 15.247 Margin -12.6 -26.9	Peak Peak Peak	124 115 (MHz) 3m) Azimuth degrees 146 146	1.0 1.3	10000 Comments RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
1593.170 4924.030 Chai (m/\ngp) apn1ldww Purious Ei requency	38.0 45.2 n A b mode 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 missions ex Level dBµV/m 41.4	H V CH11, BT ED	54.0 54.0 IR Mid CH	-16.0 -8.8 (final measure / 15.247 Margin -12.6	Peak Peak Peak	124 115 (MHz) 3m) Azimuth degrees 146	1.0 1.3	10000 Comments RB 1 MHz;VB 10 Hz;Peak

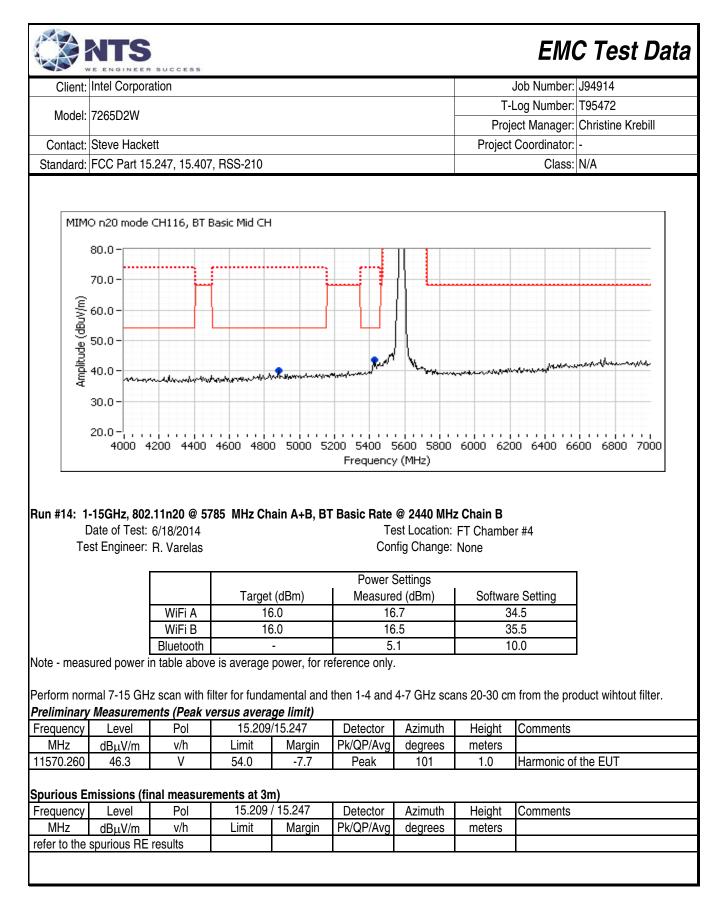


	PTK							FM	C Test Dat
Client	Intel Corpora	a success						Job Number:	
Client.		allon							
Model:	7265D2W							_og Number:	
							-	-	Christine Krebill
	Steve Hacke						Project	Coordinator:	
		5.247, 15.407						Class:	N/A
			MHz Chair	n A, BTLE @	2440 MHz C				
	Date of Test:						FT Chambe	er 4	
Te	st Engineer:	Jack Liu			Con	ifig Change:	None		
					Power S	Sottinge			1
			Target	(dBm)	Measure	-	Softwar	e Setting	
		Chain A	16		17	· /		4.0	
		Chain A Chain B		-	3.			fault	
lote - meas	ured power i		e is average	power. for re	eference only.		50		l
				, ioi it					
erform nor	mal 1-10 GH	z scan with f	Iter for funda	mental and	then 2-3 GHz	scan 100 cr	n from the p	roduct wihtou	ıt filter.
Preliminary	Measureme	ents (Peak v							
Frequency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1242.560	45.5	Н	70.0	-24.5	Peak	308	1.6		
1598.530	38.2	V	54.0	-15.8	Peak	60	1.6		
4924.030	46.4	V	54.0	-7.6	Peak	125	2.2		
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	Min	- H		Ma,waliki	national distance	190	Magane Laword Managara de	
	20.0-								
	1000				Frequency	(MH2)			10000
	missions av		aatad band	(final mass		· ·			
requency		Pol	15.209		Urements at Detector	3m) Azimuth	Height	Comments	
-requency MHz	Level	v/h	Limit	Margin	Pk/QP/Avg		meters	Comments	
4923.990	dBμV/m 43.5	V/II	54.0	-10.5	AVG	degrees 157	1.9	BB 1 MH	/B 10 Hz;Peak
4923.950 1243.960 1598.280 1598.740	48.4 48.4 31.6 44.6	V H V V	74.0 68.3 54.0 74.0	-25.6 -19.9 -22.4 -29.4	PK PK AVG PK	157 306 58 58	1.9 1.6 1.5 1.5	RB 1 MHz;V RB 1 MHz;V	/B 3 MHz;Peak /B 3 MHz;Peak /B 10 Hz;Peak /B 3 MHz;Peak

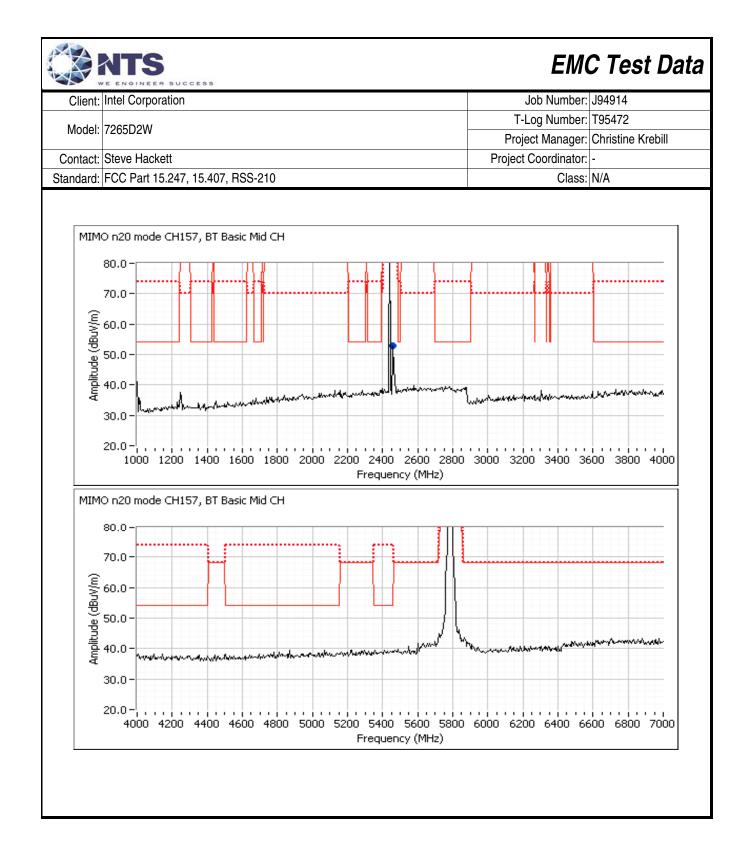



Olient.	Intel Corpor	ation						Job Number:	J94914
Madalı							T-	Log Number:	T95472
woder:	7265D2W						Proj	ect Manager:	Christine Krebill
Contact:	Steve Hack	ett					Project	Coordinator:	-
Standard:	FCC Part 18	5.247, 15.407	, RSS-210					Class:	N/A
I	Date of Test:			ain A+B, B1		@ 2440 MH st Location: fig Change:	FT Chambe	er #4	
					Power S	Settings			
				(dBm)	Measure	1 /		re Setting	
		WiFi A		<u>3.0</u>	16			1.0 2.0	
		WiFi B Bluetooth	10	3.0 -	16 5.			2.0 0.0	
ote - meas	sured power		e is average	power, for re	eference only.				
requency MHz 0401.330	Level dBµV/m 39.0	Pol v/h H	Limit 68.3	/15.247 Margin -29.3	Detector Pk/QP/Avg Peak	Azimuth degrees 126	Height meters 1.0	Comments Harmonic of	the EUT
purious E Frequency		nal measure Pol		n) / 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
fer to the	spurious RE	results							
	IO n20 mode	CH40, BT ba	asic Mid CH						
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 7000	W. And			10000		~~~~		15000

Client.	Intel Corpora	ation						Job Number:	J94914
								Log Number:	
Model:	7265D2W							0	Christine Krebill
Contact	Steve Hacke	tt					-	Coordinator:	
	FCC Part 15		7 899-210				110,000	Class:	
r eliminary requency	<i>Measureme</i> Level	e nts (Peak v Pol		ge limit) at /15.247	20-30cm from	n EUT Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	Comments	
5370.000	45.6	V	54.0	-8.4	Peak	180	1.0		
4980.000	40.9	V	54.0	-13.1	Peak	180	1.0		
2460.000	59.6	V	120.0	-60.4	Peak	180	1.0	emission is	in band
requency MHz	missions (fin Level dBµV/m s found abov	Pol v/h	15.209 Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
ote 2:	level of the f Signal is not	undamental in a restricte	and measure ed band but t	ed in 100kHz he more stri		ed band limit	was used.		s set 20dB below e applied
Note 1: Note 2: Note 3: MIM	level of the f Signal is not Signal is only O n20 mode	undamental in a restricte y present wh	and measure ed band but t nen Bluetooth	ed in 100kHz he more stri	z. ngent restricte	ed band limit	was used.		
Note 2: Note 3: MIM	level of the f Signal is not Signal is only	undamental in a restricte y present wh	and measure ed band but t nen Bluetooth	ed in 100kHz he more stri	z. ngent restricte average corre	ed band limit	was used.		



Client:	Intel Corpora	tion						Job Number:	J94914
							T-	Log Number:	T95472
Model:	7265D2W							-	Christine Krebill
Contact:	Steve Hacket	tt					-	Coordinator:	
	FCC Part 15.		. RSS-210				.,	Class:	
Amplitude (dBuV/m)	O n20 mode (80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 7000	CH60, BT ba	asic Mid CH		10000 Frequency	/ (MHz)	/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		15000
		nto (De ale u			00 00 (
requency	/ Measureme Level	Pol		/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commonito	
2460.000	63.3	V	120.0	-56.7	Peak	180	1.0	In band inte	rmittent signal
5140.000	45.8	V	54.0	-8.2	Peak	180	1.0		
4880.000	42.0	V	54.0	-12.0	Peak	180	1.0		
	missions (fin	al measurr	nents at 3m)					
purious F	· · · · · · · · · · · · · · · · · · ·	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
		v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
Spurious E Frequency MHz	dBµV/m		loor			-			
requency MHz		e the noise f							set 20dB below th



Client [.]	Intel Corpora	ation						Job Number:	J94914
								Log Number:	
Model:	7265D2W							•	Christine Krebill
Contact.	Steve Hacke	ett					•	Coordinator:	-
	FCC Part 15		7. BSS-210					Class:	N/A
r eliminary requency	<i>Measureme</i> Level	e nts (Peak v Pol		ge limit) at /15.247	20-30cm fror Detector	<i>n EUT</i> Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4880.000	43.5	V	54.0	-10.5	Peak	180	1.0		
5425.000	46.2	V	54.0	-7.8	Peak	180	1.0		
2460.000	59.8	V	120.0	-60.2	Peak	180	1.0	In band inte	rmittent signal
	missions (fir				Detector	A	11-2-50	0	
Frequency	Level dBµV/m	Pol v/h	15.209 Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height	Comments	
	(IBUV/M	V/II			FN/QF/AVQ	degrees	meters	1	
ote 1: ote 2:	s found above For emission level of the fu Signal is not	e the noise f ns in restricte undamental in a restricte	loor ed bands, the and measure ed band but t	e limit of 15.2 ed in 100kHz he more stri	209 was used. 2. ngent restricte	ed band limit	was used.	, the limit was	s set 20dB below t e applied
o emisisona lote 1: lote 2: lote 3: MIMO	s found above For emission level of the fu Signal is not Signal is only	e the noise f ns in restricte undamental in a restricte y present wh	loor ed bands, the and measure ed band but t en Bluetooth	e limit of 15.2 ed in 100kHz he more stri n is enabled,	209 was used. 2. ngent restricte	ed band limit	was used.		
Note 1: Note 2: Note 3: MIM	s found above For emission level of the fu Signal is not Signal is only O n20 mode 80.0 – 70.0 – 60.0 –	e the noise f ns in restricte undamental in a restricte y present wh	loor ed bands, the and measure ed band but t en Bluetooth	e limit of 15.2 ed in 100kHz he more stri n is enabled,	209 was used. 2. ngent restricte	ed band limit	was used.		
Note 1: Note 2: Note 3: MIM((m/\ngp) apnailduw	s found above For emission level of the fu Signal is not Signal is only O n20 mode 80.0 – 70.0 – 60.0 –	e the noise f ns in restricte undamental in a restricte y present wh	loor ed bands, the and measure ed band but t en Bluetooth	e limit of 15.2 ed in 100kHz he more stri n is enabled,	209 was used.	ed band limit	was used.	pancy could be	

Durious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments		WE ENGI	NEER SU	CCESS						EMC Test Dat
Model: Zés5D2W Project Manager: Christine Krebill Contact: Steve Hackett Project Coordinator: - Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A MIMO n20 mode CH157, BT Basic Mid CH 0.0 <td< td=""><td>Client</td><td>Intel Co</td><td>rporation</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Client	Intel Co	rporation	1						
Project Manager: Christine Krebill Contact: Steve Hackett Project Coordinator: - Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A MIMO n20 mode CH157, BT Basic Mid CH 0.0 0.0 0.0 0.0 70.0 0.0 0.0 0.0 0.0 0.0 0.0 99 50.0 0.0<	Model	7265D	W							•
Standard: FCC Part 15.247, 15.407, RSS-210 Class: N/A MIMO n20 mode CH157, BT Basic Mid CH 0 0 0 0 0 9 0.0 0 0 0 0 0 9 0.0 0 0 0 0 0 9 0.0 0 0 0 0 0 9 0.0 0 0 0 0 0 9 0.0 0 0 0 0 0 20.0 0 0 0 0 0 0 9 0.0 0 10000 15000 15000 Frequency (MHz) 10000 15000 15000 15000 Requency (MHz)									-	÷
MIMO n20 mode CH157, BT Basic Mid CH 80.0- 70.0- 90 91 92 92.00 92.8 91 92 92 90 91 92 92 92 92 92 92 92									Project	
80.0 0	Standard	FCC P	ırt 15.247	′, 15.407	7, RSS-210					Class: N/A
80.0 0										
80.0 0	MIN	10 n20 r	node CH1	57. BT F	Basic Mid CH					
reliminary Measurements (Peak versus average limit) at 20-30cm from EUT requency Level Pol 15.209/15.247 Detector Azimuth Height Comments										
Image: Second		80.0-								
30.0 30.0 10000 15000 20.0 - 10000 15000 7000 10000 15000 Frequency (MHz) reliminary Measurements (Peak versus average limit) at 20-30cm from EUT requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2460.000 52.8 V 120.0 -67.2 Peak 180 1.0 In band intermittent signal ourious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments		70.0-		_						
30.0 30.0 10000 15000 20.0 - 10000 15000 7000 10000 15000 Frequency (MHz) reliminary Measurements (Peak versus average limit) at 20-30cm from EUT requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2460.000 52.8 V 120.0 -67.2 Peak 180 1.0 In band intermittent signal ourious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments	j je					- 1 11				
30.0 30.0 10000 15000 20.0 - 10000 15000 7000 10000 15000 Frequency (MHz) reliminary Measurements (Peak versus average limit) at 20-30cm from EUT requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2460.000 52.8 V 120.0 -67.2 Peak 180 1.0 In band intermittent signal ourious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments	Buy)	00.0-								
30.0 30.0 10000 15000 20.0 7000 10000 15000 Frequency (MHz) 15000 15000 reliminary Measurements (Peak versus average limit) at 20-30cm from EUT requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2460.000 52.8 V 120.0 -67.2 Peak 180 1.0 In band intermittent signal burious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments	le (d	50.0-								
30.0 30.0 10000 15000 20.0 - 10000 15000 7000 10000 15000 Frequency (MHz) reliminary Measurements (Peak versus average limit) at 20-30cm from EUT requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2460.000 52.8 V 120.0 -67.2 Peak 180 1.0 In band intermittent signal ourious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments	olituo	40.0-							T.	معديات والمحافظ والمحاج والمرجا
20.0-7000 10000 15000 reliminary Measurements (Peak versus average limit) at 20-30cm from EUT requency (MHz) requency (MHz) requency (MHz) Mage: Colspan="2">Comments (Peak versus average limit) at 20-30cm from EUT requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2460.000 52.8 V 120.0 -67.2 Peak 180 1.0 In band intermittent signal ourious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments	Am A	. 40.0	maria		وحا المعيل	Jandanda		And the second	and a start and a start and a start as a sta	and a state of the
7000 10000 Frequency (MHz) 15000 reliminary Measurements (Peak versus average limit) at 20-30cm from EUT requency (MHz) requency (MHz) Measurements (Peak versus average limit) at 20-30cm from EUT requency (MHz) MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters		30.0-	Mar	V-WARDAN	~ ~~~	1 ⁴⁰	¥ .	••		
7000 10000 Frequency (MHz) 15000 reliminary Measurements (Peak versus average limit) at 20-30cm from EUT requency (MHz) requency (MHz) Measurements (Peak versus average limit) at 20-30cm from EUT requency (MHz) MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters		20.0-								
reliminary Measurements (Peak versus average limit) at 20-30cm from EUT requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2460.000 52.8 V 120.0 -67.2 Peak 180 1.0 In band intermittent signal purious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments)0			1				15000
requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2460.000 52.8 V 120.0 -67.2 Peak 180 1.0 In band intermittent signal ourious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments							Frequency	/ (MHz)		
requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2460.000 52.8 V 120.0 -67.2 Peak 180 1.0 In band intermittent signal ourious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments	roliminar	w Moocu	romonto	(Dook y	oreus avora	ao limit) at	20-20am from			
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2460.000 52.8 V 120.0 -67.2 Peak 180 1.0 In band intermittent signal Durious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments		-							Height	Comments
purious Emissions (final measurments at 3m) requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments				v/h		1				
requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments	2460.000	52.	}	V	120.0	-67.2	Peak	180	1.0	In band intermittent signal
requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments	nuriouo F	minaia	o (final i		nonto at 2m	N				
	•	1					Detector	Azimuth	Height	Comments
				v/h	Limit		Pk/QP/Avg		meters	
missions is in band	missions	is in bar	d							
	ote 1:							For all othe	er emissions	, the limit was set 20dB below the
bet 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below the								d bond limit	wooucod	
level of the fundamental and measured in 100kHz.										anay could be applied
Dre 1: level of the fundamental and measured in 100kHz. Dre 2: Signal is not in a restricted band but the more stringent restricted band limit was used.	ote 3:	Signal	s only pre	esent wh	en Bluetooth	n is enabled,	average corr	ection for hop	oping occup	ancy could be applied
level of the fundamental and measured in 100kHz.										
Dre 1: level of the fundamental and measured in 100kHz. Dre 2: Signal is not in a restricted band but the more stringent restricted band limit was used.										
Dre 1: level of the fundamental and measured in 100kHz. Dre 2: Signal is not in a restricted band but the more stringent restricted band limit was used.										
Dre 1: level of the fundamental and measured in 100kHz. Dre 2: Signal is not in a restricted band but the more stringent restricted band limit was used.										
Dre 1: level of the fundamental and measured in 100kHz. Dre 2: Signal is not in a restricted band but the more stringent restricted band limit was used.										
Dre 1: level of the fundamental and measured in 100kHz. Dre 2: Signal is not in a restricted band but the more stringent restricted band limit was used.										
Dre 1: level of the fundamental and measured in 100kHz. Dre 2: Signal is not in a restricted band but the more stringent restricted band limit was used.										

				110	oot managon.		
Contact:	Contact: Steve Hackett				Project Coordinator: -		
Standard:	FCC Part 15	.247, 15.407, RSS-210			Class:	N/A	
			ated Emissions mont Facility, Semi-Anec	hoic Cham	nber)		
Test Spe	•	S The objective of this test session is specification listed above.	to perform final qualification	on testing o	f the EUT with	respect to the	
Те	Date of Test: est Engineer: est Location:	John Caizzi	Config. Used: Config Change: Host Unit Voltage	none	:		
The EUT an		guration upport equipment were located on t rapolation factor (if applicable) are			sting.		
Note, prelim	inary testing	indicates that the emissions were n ing indicated that the emissions we	naximized by orientation of	the EUT a			
Ambient	Conditions	Temperature: 23	3 °C I %				
	of Result						
		5B3A, DRTU Tool Version 1.7.3-90			1		
	<u>in #</u>	Test Performed Radiated Emissions 30 - 1000 MHz, Maximized	Limit FCC 15.209 / RSS 210	Result Pass	30.9 dBµ V/n (-12.6 dB)	Margin n @ 112.94 MHz	
	4	Radiated Emissions 30 - 1000 MHz, Maximized	FCC 15.209 / RSS 210	Pass	See above		
fixture and E	EUT are not a o show comp	h the WiFi and BT transmitters botl ffected by the module's operating f liance with the limits. During Testing					

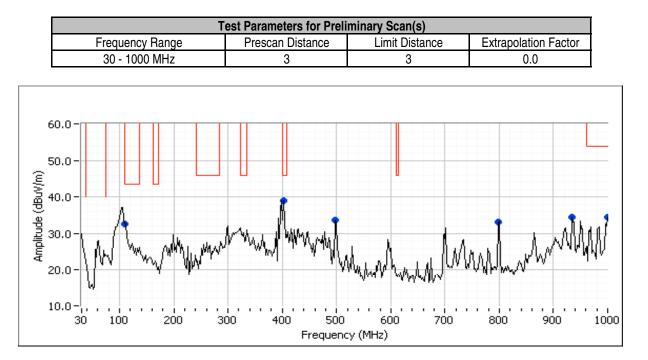
NTS

Client: Intel Corporation

Model: 7265D2W

EMC Test Data

Job Number: J94914


Project Manager: Christine Krebill

T-Log Number: T95472

	E ENGINEER BUCCESS	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95472
MOUEI.	12030210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz

Configured to Tx , 802.11b, 16.5 dBm on chain A (setting = 13.5) on channel 6, Bluetooth 5.1 dBm, 1Mb/s (setting 10 dBm) on channel 0

Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
112.935	32.7	V	43.5	-10.8	Peak	330	1.0	
399.925	38.9	Н	46.0	-7.1	Peak	178	1.0	
497.952	33.8	Н	46.0	-12.2	Peak	193	1.0	Note 1
799.457	33.2	V	46.0	-12.8	Peak	236	1.0	Note 1
933.500	34.6	Н	46.0	-11.4	Peak	247	1.0	Note 1
999.347	34.5	V	54.0	-19.5	Peak	176	1.0	

	E ENGINEER BUCCESS	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madal	796ED9W	T-Log Number:	T95472
wouer.	7265D2W	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Preliminary quasi-peak readings (no manipulation of EUT interface cables)

i i onnai y	quadi pour	Teadinge	(ine mampe					
Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
112.935	30.9	V	43.5	-12.6	QP	45	1.00	
933.500	32.4	Н	46.0	-13.6	QP	245	1.58	Note 1
799.457	30.6	V	46.0	-15.4	QP	151	1.04	Note 1
497.952	32.2	Н	46.0	-13.8	QP	198	1.00	Note 1
399.925	33.3	Н	46.0	-12.7	QP	182	1.00	
999.347	32.4	V	54.0	-21.6	QP	179	1.00	

Note 1: Emission in non-restricted band, but limit of 15.209 used.

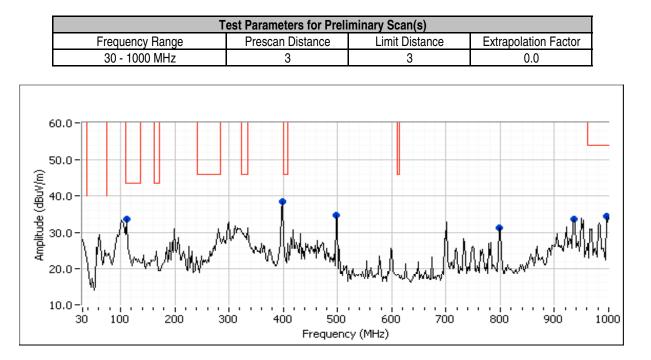
Run #2: Maximized Readings From Run #1

Test Parameters for Maximized Reading(s)									
Frequency Range	Frequency Range Test Distance Limit Distance Extrapolation Factor								
30 - 1000 MHz	3	3	0.0						

Maximized guasi-peak readings (includes manipulation of EUT interface cables)

	quadi pour	leadinge ,				ace cabice)		
Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
112.935	30.9	V	43.5	-12.6	QP	45	1.00	
933.500	32.4	Н	46.0	-13.6	QP	245	1.58	Note 1
799.457	30.6	V	46.0	-15.4	QP	151	1.04	Note 1
497.952	32.2	Н	46.0	-13.8	QP	198	1.00	Note 1
399.925	33.3	Н	46.0	-12.7	QP	182	1.00	
999.347	32.4	V	54.0	-21.6	QP	179	1.00	

Note 1: Emission in non-restricted band, but limit of 15.209 used.


EMC Test Data

	E ENGINEER SUCCESS		
Client:	Intel Corporation	Job Number:	J94914
Model	7265D2W	T-Log Number:	T95472
wouer.	12030210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Run #3: Preliminary Radiated Emissions, 30 - 1000 MHz

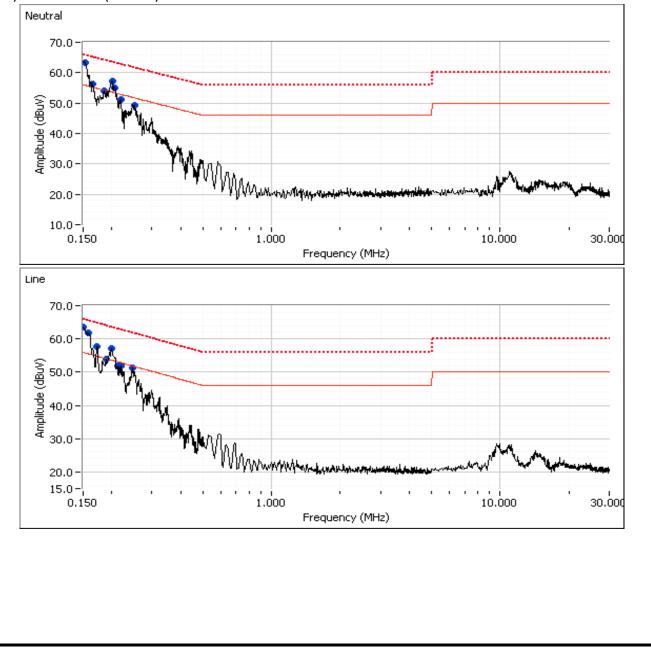
NTS

Configured to Tx , 802.11a, 16.5 dBm on each chain (settings 25.5, 26.0) on channel 116, Bluetooth 4.7 dBm, 1Mb/s (setting 10 dBm) on Channel 78.

Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
111.643	33.8	Н	43.5	-9.7	Peak	89	3.0	
399.339	38.5	Н	46.0	-7.5	Peak	169	1.0	Note 1
498.477	34.8	Н	46.0	-11.2	Peak	199	1.0	Note 1
797.836	31.4	Н	46.0	-14.6	Peak	79	1.0	Note 1
935.852	33.7	Н	46.0	-12.3	Peak	249	1.0	Note 1
996.112	34.4	Н	54.0	-19.6	Peak	319	1.0	

Note 1: Emission in non-restricted band, but limit of 15.209 used.


NTS VE ENGINEER SUCCESS				EMC	C Test
Intel Corporation				Job Number:	J94914
7265D2W			T-	Log Number:	T95472
12030200			Proj	ect Manager:	Christine Kreb
Steve Hackett			Project	Coordinator:	-
FCC Part 15.247, 15.407, RSS-21	0			Class:	N/A
	09 / RSS 210 Detector	Azimuth	Height	Comments	
dBµV/m v/h Limit	Margin Pk/QP/Avg	degrees	meters		
Frequency Range	est Parameters for Maxi Test Distance	mized Readir Limit Di		Extrapolati	on Factor
30 - 1000 MHz	3		3	0.	
dBµV/m v/h Limit	Margin Pk/QP/Avg	degrees	meters		

				EMO	C Test Data
Client: Intel Corpo	r success			Job Number:	104014
Client. Inter Corpo	Tallon		т	-Log Number:	
Model: 7265D2W				-	Christine Krebill
Contact: Steve Hack	tett			t Coordinator:	-
Standard: FCC Part 1	5.247, 15.407, RSS-210		,	Class:	N/A
	Condu (Elliott Laboratories Fremo	cted Emissions ont Facility, Semi-Anecl	hoic Cham	ber)	
Test Specific Deta Objective	ils : The objective of this test session is to specification listed above.	perform final qualification	n testing of	the EUT with r	espect to the
Date of Test Test Engineer Test Location		Config. Used: Config Change: Host Unit Voltage	None	2	
	ure and other support equipment was lo and 80cm from the LISN. A second LIS				
Ambient Conditior Summary of Resul	Rel. Humidity:	24 °C 38 %			
Summary of Resul	Rel. Humidity:	38 %	Decit	Manuia	
	Rel. Humidity:	-	Result Pass	Margin 62.0 dBµ V (@ 0.152 MHz (-3.9 dB)

	ATS	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J94914
Madal	7265D2W	T-Log Number:	T95472
wodei.	72050210	Project Manager:	Christine Krebill
Contact:	Steve Hackett	Project Coordinator:	-
Standard:	FCC Part 15.247, 15.407, RSS-210	Class:	N/A

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

Configured to Tx , 802.11a, 16.5 dBm on each chain (settings 25.5, 26.0) on channel 116, Bluetooth 5.1dBm, 1Mb/s (setting 10 dBm) on Mid Channel (2440MHz).

Client:	Intel Corpor	ation					Job Number:	J94914
				T-Log Number:	T95472			
Model:	7265D2W			Project Manager:	Christine Krebill			
Contact:	Steve Hack	ett		Project Coordinator:				
		5.247, 15.407	7 BSS-210	Class:				
		,	,					
						s. average lim	it)	
Frequency	Level	AC		/ 15.207	Detector	Comments		
MHz	dBμV	Line	Limit	Margin	QP/Ave			
0.200	57.1	Neutral	53.6	3.5	Peak			
0.150	63.2	Neutral	55.8	7.4	Peak			
0.162	56.2	Neutral	55.2	1.0	Peak			
0.188	53.9	Neutral	54.2	-0.3	Peak			
0.207	55.0	Neutral	53.3	1.7	Peak			
0.219	51.3	Neutral	52.9	-1.6	Peak			
0.251	49.3	Neutral	51.7	-2.4	Peak			
0.152	63.6	Line	56.0	7.6	Peak			
0.160	61.9	Line	55.6	6.3	Peak			
0.174	57.7	Line	54.8	2.9	Peak			
0.198	57.0	Line	53.6	3.4	Peak			
0.190	54.0	Line	54.0	0.0	Peak			
0.210	52.0	Line	53.1	-1.1	Peak			
	51.9	Line	52.8	-0.9	Peak			
0.222	51.2	Line	51.9	-0.7	Peak			

		R SUCCESS					EM	C Test Da
Client:	Intel Corpor	ation			Job Number:	J94914		
					T-Log Number:			
Model:	7265D2W					Project Manager:		
Contact.	Steve Hack	ett			Project Coordinator:			
		5.247, 15.407	BSS-210		Class:			
		verage readi	·					
Frequency					Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.152	62.0	Line	65.9	-3.9	QP	QP (1.00s)		
0.152	47.8	Line	55.9	-8.1	AVG	AVG (0.10s)		
0.200	54.7	Neutral	63.6	-8.9	QP	QP (1.00s)		
0.198	54.4	Line	63.7	-9.3	QP	QP (1.00s)		
0.160	46.1	Line	55.5	-9.4	AVG	AVG (0.10s)		
0.160	56.0	Line	65.5	-9.5	QP	QP (1.00s)		
0.162	55.3	Neutral	65.4	-10.1	QP	QP (1.00s)		
0.210	51.6	Line	63.2	-11.6	QP	QP (1.00s)		
0.190	52.3	Line	64.0	-11.7	QP	QP (1.00s)		
0.162	43.1	Neutral	55.4	-12.3	AVG	AVG (0.10s)		
0.174	51.9	Line	64.8	-12.9	QP	QP (1.00s)		
0.150	52.9	Neutral	66.0	-13.1	QP	QP (1.00s)		
0.207	50.1	Neutral	63.3	-13.2	QP	QP (1.00s)		
0.200	39.6	Neutral	53.6	-14.0	AVG	AVG (0.10s)		
0.188	50.1	Neutral	64.1	-14.0	QP	QP (1.00s)		
0.246	47.7	Line	61.9	-14.2	QP	QP (1.00s)		
0.251	47.2	Neutral	61.7	-14.5	QP	QP (1.00s)		
0.174	39.2	Line	54.8	-15.6	AVG	AVG (0.10s)		
0.198	37.9	Line	53.7	-15.8	AVG	AVG (0.10s)		
0.210	36.8	Line	53.2	-16.4	AVG	AVG (0.10s)		
0.150	39.0	Neutral	56.0	-17.0	AVG	AVG (0.10s)		
0.219	45.2	Neutral	62.9	-17.7	QP	QP (1.00s)		
0.222	44.8	Line	62.7	-17.9	QP	QP (1.00s)		
0.207	34.7	Neutral	53.3	-18.6	AVG	AVG (0.10s)		
0.251	32.0	Neutral	51.7	-19.7	AVG	AVG (0.10s)		
0.190	34.2	Line	54.0	-19.8	AVG	AVG (0.10s)		
0.188	34.1	Neutral	54.1	-20.0	AVG	AVG (0.10s)		
0.219	32.5	Neutral	52.9	-20.4	AVG	AVG (0.10s)		
0.246	31.5	Line	51.9	-20.4	AVG	AVG (0.10s)		
0.222	30.9	Line	52.7	-21.8	AVG	AVG (0.10s)		

End of Report

This page is intentionally blank and marks the last page of this test report.