Test Date: 22 May 2008

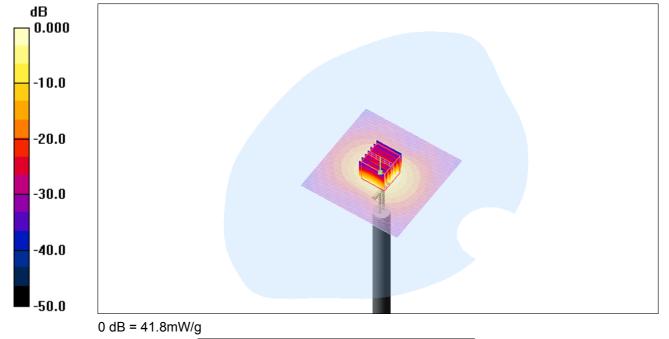
File Name: Validation 5800MHz (DAE 442 Probe EX3DV4) 22-05-08.da4

DUT: Dipole 5200_5800 MHz; Type: D5GHzV2; Serial: 1008

- * Communication System: CW 5800 MHz; Frequency: 5800 MHz; Duty Cycle: 1:1
- * Medium parameters used: f = 5800.8 MHz; σ = 5.23 mho/m; ε_r = 34.2; ρ = 1000 kg/m³
- Electronics: DAE3 Sn442; Probe: EX3DV4 SN3563; ConvF(3.65, 3.65, 3.65)
- Phantom: SAM 22; Serial: 1260; Phantom section: Flat Section

Channel 1 Test/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 42.3 mW/g

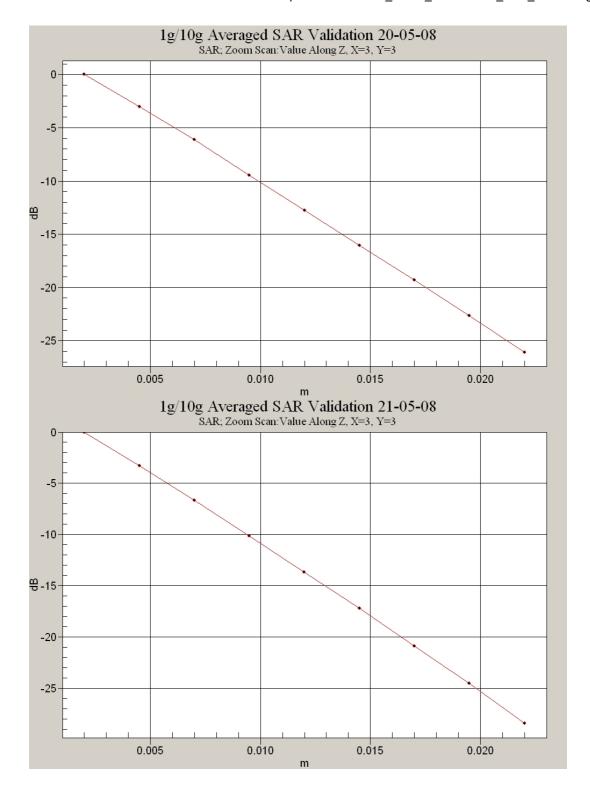

Channel 1 Test/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2.5mm

Reference Value = 96.3 V/m; Power Drift = -0.012 dB

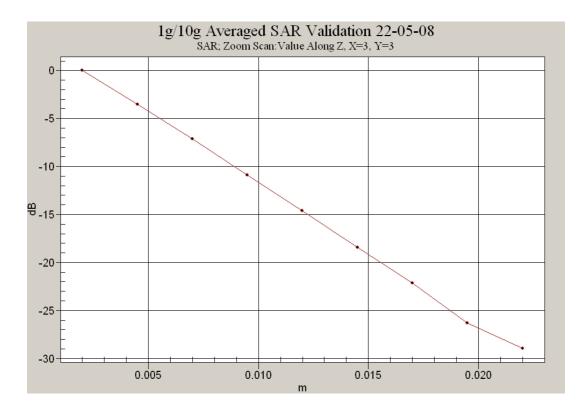
Peak SAR (extrapolated) = 84.5 W/kg

SAR(1 g) = 19.7 mW/g; SAR(10 g) = 5.58 mW/g Maximum value of SAR (measured) = 41.8 mW/g



SAR MEASUREMENT PLOT 17

Ambient Temperature Liquid Temperature Humidity 21.4 Degrees Celsius 21.1 Degrees Celsius 39.0 %



APPENDIX C CALIBRATION DOCUMENTS

- 1. SN3563 Probe Calibration Certificate
- 2. D5GHzV2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Certificate No: EX3-3563_Jul07

EMC Technologies

Object	EX3DV4 - SN:3	563					
Calibration procedure(s)	QA CAL-01.v6 and QA CAL-14.v3 Calibration procedure for dosimetric E-field probes						
Calibration date:	July 13, 2007						
Condition of the calibrated item	In Tolerance						
The measurements and the unce	rtainties with confidence	tional standards, which realize the physical units of probability are given on the following pages and are ory facility: environment temperature $(22 \pm 3)^{\circ}$ C and	e part of the certificate.				
Calibration Equipment used (M&	FE critical for calibration)						
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration				
Power meter E4419B Power sensor E4412A	GB41293874 MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08 Mar-08				
ower sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Mar-08				
	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07				
eference 3 dB Attenuator							
			17.0				
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	SN: S5086 (20b) SN: S5129 (30b)	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593)	Mar-08 Aug-07				
Reference 20 dB Attenuator Reference 30 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08				
Reference 20 dB Attenuator	SN: S5086 (20b) SN: S5129 (30b)	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593)	Mar-08 Aug-07				
teference 20 dB Attenuator teference 30 dB Attenuator teference Probe ES3DV2 AE4	SN: S5086 (20b) SN: S5129 (30b) SN: 3013	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Mar-08 Aug-07 Jan-08				
teference 20 dB Attenuator teference 30 dB Attenuator teference Probe ES3DV2 NAE4	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Mar-08 Aug-07 Jan-08 Apr-08				
Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Mar-08 Aug-07 Jan-08 Apr-08 Scheduled Check				
teference 20 dB Attenuator teference 30 dB Attenuator teference Probe ES3DV2 tAE4 tecondary Standards tF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Mar-08 Aug-07 Jan-08 Apr-08 Scheduled Check In house check: Nov-07				
teference 20 dB Attenuator teference 30 dB Attenuator teference Probe ES3DV2 tAE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Mar-08 Aug-07 Jan-08 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07				
Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) Function	Mar-08 Aug-07 Jan-08 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07				

Certificate No: EX3-3563_Jul07

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z

ConF

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

DCP Polarization φ diode compression point φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3509_Jul07

Page 2 of 9

July 13, 2007

Probe EX3DV4

SN:3563

Manufactured:

February 14, 2005

Last calibrated:

July 14, 2006

Recalibrated:

July 13, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3563_Jul07

Page 3 of 9

July 13, 2007

DASY - Parameters of Probe: EX3DV4 SN:3563

Sensitivity in Fre	Diode Compression ^B			
NormX	0.380 ± 10.1%	$\mu V/(V/m)^2$	DCP X	89 mV
NormY	0.380 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	89 mV
NormZ	0.480 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	89 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	3500 N	//Hz	Typical	SAR	gradient:	15 %	per mm

Sensor Center to	o Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	5.8	2.9
SAR _{be} [%]	With Correction Algorithm		0.1

TSL 5600 MHz Typical SAR gradient: 29 % per mm

Sensor Center to	2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	7.5	0.5
SAR _{be} [%]	With Correction Algorithm	0.0	0.1

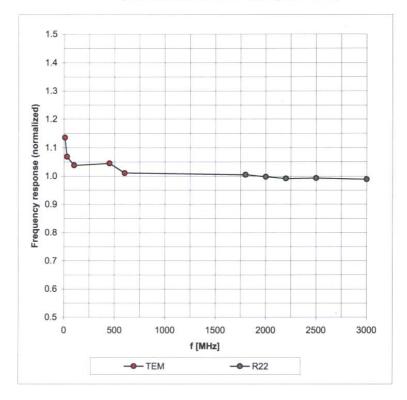
Sensor Offset

1.0 mm Probe Tip to Sensor Center

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3563 Jul07

Page 4 of 9


^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

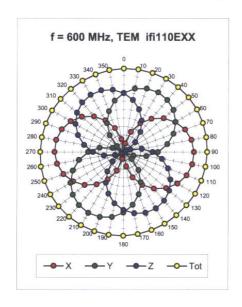
July 13, 2007

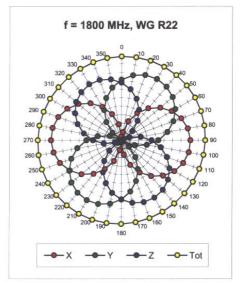
Frequency Response of E-Field

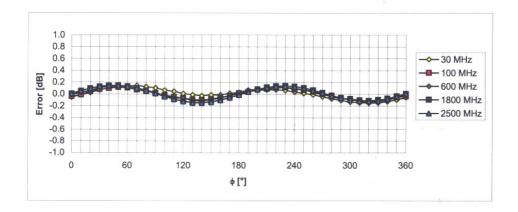
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3563_Jul07


Page 5 of 9





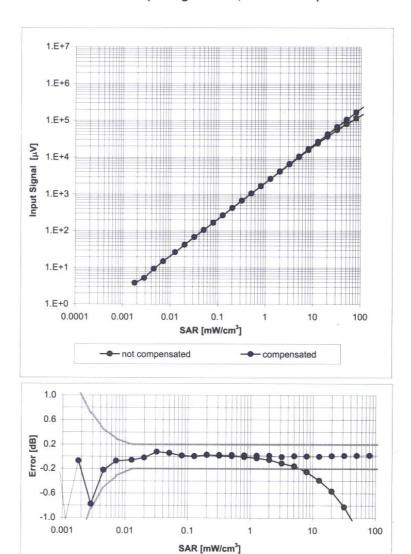
July 13, 2007

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3563_Jul07

Page 6 of 9



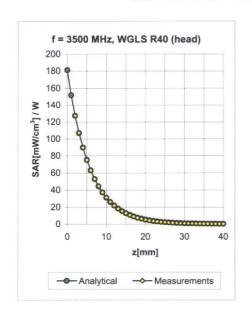
EX3DV4 SN:3563 July 13, 2007

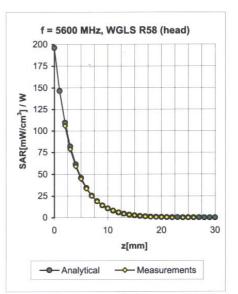
Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3563_Jul07


Page 7 of 9



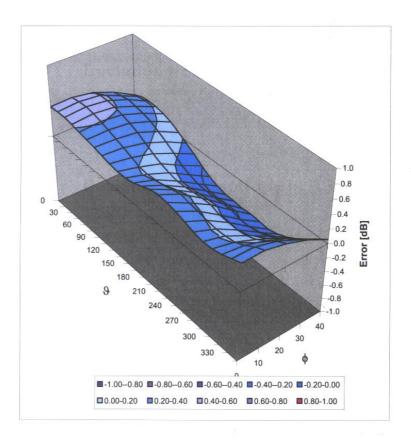
July 13, 2007 EX3DV4 SN:3563

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
3500	± 50 / ± 100	Head	37.9 ± 5%	2.91 ± 5%	0.27	1.25	6.33	± 13.1% (k=2)
5200	± 50 / ± 100	Head	36.0 ± 5%	4.66 ± 5%	0.40	1.75	4.25	± 13.1% (k=2)
5600	± 50 / ± 100	Head	35.5 ± 5%	5.07 ± 5%	0.38	1.75	4.03	± 13.1% (k=2)
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.40	1.75	3.65	± 13.1% (k=2)
3500	± 50 / ± 100	Body	51.3 ± 5%	3.31 ± 5%	0.17	0.92	4.90	± 13.1% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	$5.30 \pm 5\%$	0.34	1.70	3.79	± 13.1% (k=2)
5600	± 50 / ± 100	Body	48.5 ± 5%	5.77 ± 5%	0.31	1.70	3.68	± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.28	1.70	3.72	± 13.1% (k=2)

Certificate No: EX3-3563_Jul07

Page 8 of 9



 $^{^{\}mathrm{C}}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

July 13, 2007

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3563_Jul07

Page 9 of 9

