

Report No. : FR031013-02

FCC RADIO TEST REPORT

FCC ID		EJE-KST001
Equipment	*	Tablet Computer
Brand Name		FUJITSU
Model Name		7Q13A1
Applicant	и в	FUJITSU CLIENT COMPUTING LIMITED
		1-1-2, Kashimada, Saiwai-Ku, Kawasaki, Kanagawa, 212-0058 Japan
Manufacturer	и и и	FUJITSU CLIENT COMPUTING LIMITED
		1-1-2, Kashimada, Saiwai-Ku, Kawasaki, Kanagawa, 212-0058 Japan
Standard	*	47 CFR FCC Part 15.255

The product was received on Mar. 10, 2020, and testing was started from Mar. 23, 2020 and completed on Apr. 29, 2020. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013, 47 CFR FCC Part 15.255, Millimeter Wave Test Procedures, FCC KDB 414788 D01 v01r01 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

Histo	ory of this test report	3
Sum	mary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	7
1.3	Testing Location	7
2	Test Configuration of Equipment under Test	8
2.1	Test Channel Frequencies	8
2.2	Conformance Tests and Related Test Frequencies	8
2.3	EUT Operation during Test	8
2.4	Accessories	8
2.5	Support Equipment	9
2.6	Far Field Boundary Calculations	
2.7	Test Setup Diagram	10
3	Transmitter Test Result	12
3.1	AC Power Conducted Emissions	
3.2	Occupied Bandwidth	
3.3	EIRP Power	21
3.4	Peak Conducted Power	
3.5	Transmitter Spurious Emissions	
3.6	Frequency Stability	
3.7	Operation Restriction and Group Installation	
4	Test Equipment and Calibration Data	
5	Measurement Uncertainty	41
Арре	endix A. Test Photos	

Photographs of EUT v01

History of this test report

Report No.	Version	Description	Issued Date
FR031013-02	01	Initial issue of report	May 05, 2020

Page Number: 3 of 41Issued Date: May 05, 2020Report Version: 01

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	FCC 15.207	AC Power Conducted Emissions	PASS	-
3.2	FCC 15.255(e)	Occupied Bandwidth	PASS	-
3.3	FCC 15.255(c)	EIRP Power	PASS	-
3.4	FCC 15.255(c)	Peak Conducted Power	PASS	-
3.5	FCC 15.255(d)	Transmitter Spurious Emissions	PASS	-
3.6	FCC 15.255(f)	Frequency Stability	PASS	-
3.7	FCC 15.255(a),(h)	Operation Restriction and Group Installation	PASS	-

Summary of Test Result

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen

Report Producer: Wendy Pan

1 General Description

1.1 Information

1.1.1 Product Feature of Equipment Under test

Equipment	Tablet Computer
Brand Name	FUJITSU
Model Name	7Q13A1
Frequency Range	57-71 GHz
The Channel Plan(s)	60.485 GHz
Modulation	ООК

1.1.2 Antenna Information

Ant.	Brand	Brand Model Name Ante		Connector	Gain (dBi)	
1	Keyssa	KSS104M	Built	N/A	5.3	

Note: The above information was declared by manufacturer.

1.1.3 Power Levels

Worst Power Levels			
Applicable power levels	Conducted 🛛 EIRP		
Frequency (GHz)	Highest (P _{high}): (dBm)		
	AV Power (dBm)	Peak Power (dBm)	
60.485	-15.74	-13.86	

1.1.4 Operating Conditions

Operating Conditions				
□ -20 °C to +50 °C				
0 °C to +40 °C				
Other: +5 °C to +35 °C				
EUT Power Type	From power	adapter or battery.		
Supply Voltage	AC	State AC voltage V		
Supply Voltage	DC	State DC voltage 19 V		

1.1.5 Equipment Use Condition

	Equipment Use Condition
	Fixed field disturbance sensors at 61-61.5GHz
	Except fixed field disturbance sensors at 61-61.5GHz
\boxtimes	Except fixed field disturbance sensors

1.1.6 User Condition

	Intended Operation		
🛛 Indoor	r		
Outdoo	Outdoor (except outdoor fixed Point to Point)		
Outdoor fixed Point to Point			

Note: The above information was declared by manufacturer.

1.1.7 Duty Cycle

Duty Cycle	Duty Cycle Factor (dB)
100%	0

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.255
- ANSI C63.10-2013 Section 9. "Procedures for testing millimeter-wave systems"

1.3 Testing Location

	Testing Location						
	HWA YA	ADD	:	No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City,	Taiwan (R.O.C.)		
		TEL	:	886-3-327-3456 FAX : 886-3-327	-0973		
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu Cou	nty 302, Taiwan, R.O.C.		
		TEL	:	886-3-656-9065 FAX : 886-3-656	-9085		

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
AC Conduction	CO02-CB	Wei Li	24.4~24.6°C / 61~69%	Mar. 31, 2020
Radiated<1GHz	03CH05-CB	Stim Sung	21.5~23°C / 46~49%	Mar. 23, 2020 ~ Apr. 29, 2020
Radiated>1GHz	03CH05-CB	Stim Sung	21.1~22.7°C / 45~49%	Mar. 23, 2020 ~ Apr. 29, 2020
RF Conducted	TH03-CB	Eddie Weng	22.2~22.8°C / 45~50%	Mar. 27, 2020

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086D with Industry Canada.

2 Test Configuration of Equipment under Test

2.1 Test Channel Frequencies

Channel Plan (GHz)	60.485
--------------------	--------

2.2 Conformance Tests and Related Test Frequencies

Test Item	Test Frequencies (GHz)
AC Power Conducted Emissions	60.485
Occupied Bandwidth	60.485
EIRP Power	60.485
Peak Conducted Power	60.485
Transmitter Spurious Emissions (below 1 GHz)	60.485
Transmitter Spurious Emissions (1 GHz-40 GHz)	60.485
Transmitter Spurious Emissions (above 40 GHz)	60.485
Frequency Stability	60.485

2.3 EUT Operation during Test

During the test, executed the test program to control the EUT continuously transmit RF signal.

2.4 Accessories

	Accessories							
No.	Equipment Name	Brand Name	Model Name	Rating				
1	Adapter	DELTA	ADP-65MD B	INPUT: 100-240V ~ 1.5A, 50-60Hz OUTPUT: 19V, 3.42A				
2	Rechargeable LITHIUM ION Battery Pack	Fujitsu	FPB03495	11.1V, 3420mAh				

2.5 Support Equipment

For AC Power Conducted Emissions test:

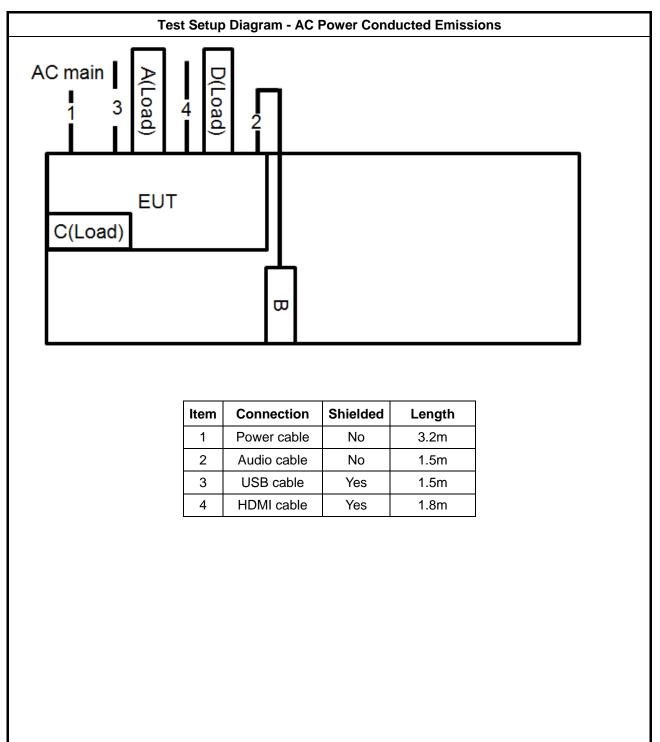
Support Equipment								
No.	Equipment	Brand Name	Model Name	FCC ID				
А	Flash disk3.0	Transcend	JetFlash-700	N/A				
В	Earphone	SHYARO CHI	MIC-04	N/A				
С	Micro SD Card	Transcend	TS16GUSDHC10	N/A				
D	Flash disk3.0	Transcend	JetFlash-700	N/A				

2.6 Far Field Boundary Calculations

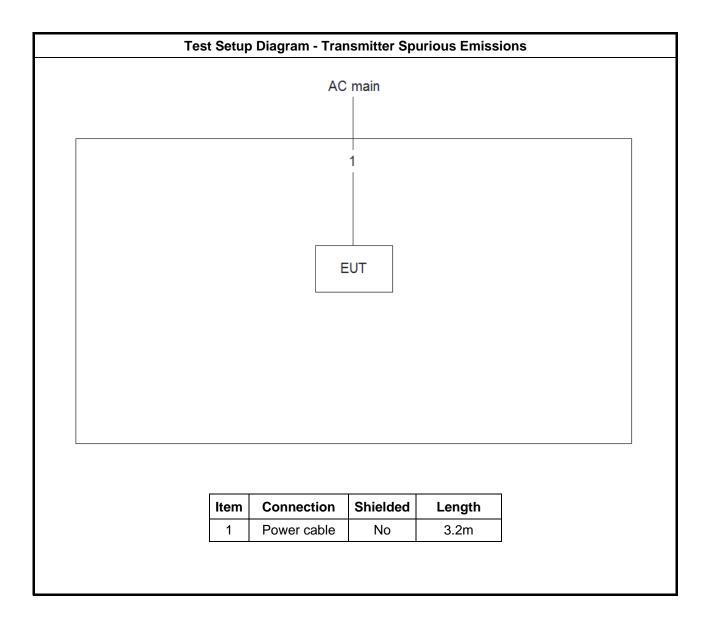
The far-field boundary is given as:

far field = $(2 * L^2) / \lambda$

where:


L = Largest Antenna Dimension, including the reflector, in meters

 λ = wavelength in meters


		Far Field (m)	_	
Frequency (GHz)	L (m)	Lambda (m)	d(Far Field) (m)	d(Far Field) (cm)
60.485	0.41	0.0049599	67.784	6778.35

2.7 Test Setup Diagram

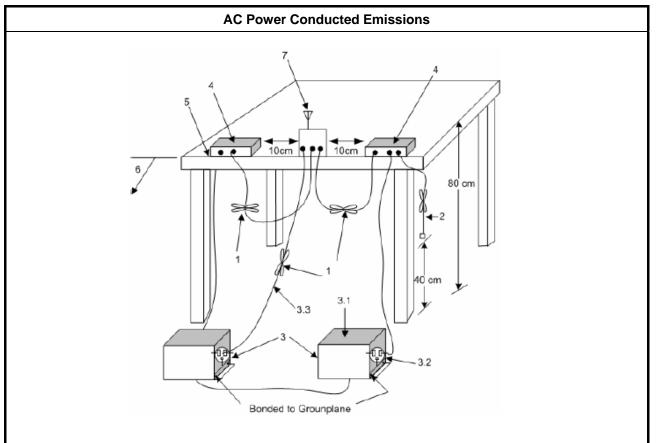
3 Transmitter Test Result

3.1 AC Power Conducted Emissions

3.1.1 Limit of AC Power Conducted Emissions

AC Power Conducted Emissions Limit						
Frequency Emission (MHz)	Quasi-Peak	Average				
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30	60	50				
Note: * Decreases with the logarithm of the fre	quency.					

3.1.2 Measuring Instruments


Refer a measuring instruments list in this test report.

3.1.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clause 6.2.

3.1.4 Test Setup

1—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

2—The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads.

LISN may be placed on top of, or immediately beneath, reference ground plane.

3.1—All other equipment powered from additional LISN(s).

3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment.

3.3—LISN at least 80 cm from nearest part of EUT chassis.

4-Non-EUT components of EUT system being tested.

5—Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop.

6—Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

3.1.5 Test Result of AC Power Conducted Emissions

Test Conditions	see ANSI C63.10, clause 5.11
Test Setup	see ANSI C63.10, clause 6.2.3
NOTE 1: If equipm	ent having different channel plan and nominal channel bandwidth modes (see test report
clause 1.	1.1), the measurements are uninfluenced by different channel plan and nominal channel
bandwidth	n modes, may not need to be repeated for all modes. If equipment having different
transmit o	operating modes (see test report clause 1.1.2), the measurements are uninfluenced by
different t	transmit operating modes, may not need to be repeated for all the operating modes.
Similar, if	the equipment supports different modulations and/or data rates, the measurements
described	I in ANSI C63.10, clause 5.12 may not need to be repeated for all these modulations and
data rates	s. Simple comparison of engineering test across all operating modes, modulations and
data rates	s may need to be performed to define the worse case combination to be used for the
conforma	nce testing.
NOTE 2: ">20dB"	means the tables in this clause should only list values of spurious emissions that exceed
the level of	of 20 dB below the applicable limit, see ANSI C63.4, clause 10.1.8.1.

ase		L	ine					Con	figura	ation		СТХ		
80 - 70 - 60 - 50 -														31/03/2020
40-	mon	www												
30 -	ĭ	- 1 Y Ph	www.	Altern Antonia and	he make y have	the second second	la built a bad a	and the state of the		يحرفانا ودينا والان	all and a	للحياس محالها	as a sub-	
20 -	Ĭ	+	ļ			1	ter	and the first plant	ali ponteli la prop	and pipe of the second second	a <mark>la lun</mark> sectorion	as the state of th	papel for a set	
												1		
10-														
0-														
150k				1	М					10M			30M	P1
120K				1	М					10M			301M) P1
	Fren	Level	Limit			Condition	Comment	Raw	AF		AT		30M	P1
Туре	Freq	Level	Limit	Margin	Factor	Condition	Comment		AF (dB)	CL	AT (dB)		30M	P1
Туре	Freq (Hz) 280.5k	Level (dBuV) 36.74	Limit (dBuV) 60.80			Condition	Comment	Raw (dBuV) 26.52	AF (dB) 0.05		AT (dB) 10.10		30M	P1
	(Hz)	(dBuV)	(dBuV)	Margin (dB)	Factor (dB)			(dBuV)	(dB)	CL (dB)	(dB)		30M	P1
Туре QP	(Hz) 280.5k	(dBuV) 36.74	(dBuV) 60.80	Margin (dB) -24.06	Factor (dB) 10.22	Line	-	(dBuV) 26.52	(dB) 0.05	CL (dB) 0.07	(dB) 10.10			P1
Type QP AV QP AV	(Hz) 280.5k 280.5k	(dBuV) 36.74 29.47	(dBuV) 60.80 50.80	Margin (dB) -24.06 -21.33	Factor (dB) 10.22 10.22	Line Line	- "Worst"	(dBuV) 26.52 19.25	(dB) 0.05 0.05	CL (dB) 0.07 0.07	(dB) 10.10 10.10			P1
Type QP AV QP AV QP	(Hz) 280.5k 280.5k 370.5k 370.5k 631.5k	(dBuV) 36.74 29.47 32.77 25.98 29.37	(dBuV) 60.80 50.80 58.49 48.49 56.00	Margin (dB) -24.06 -21.33 -25.72 -22.51 -26.63	Factor (dB) 10.22 10.22 10.23 10.23	Line Line Line Line Line	- "Worst" -	(dBuV) 26.52 19.25 22.54 15.75 19.12	(dB) 0.05 0.05 0.05 0.05 0.05	CL (dB) 0.07 0.08 0.08 0.10	(dB) 10.10 10.10 10.10 10.10 10.10			
Type QP AV QP AV QP AV	(Hz) 280.5k 280.5k 370.5k 370.5k 631.5k 631.5k	(dBuV) 36.74 29.47 32.77 25.98 29.37 22.50	(dBuV) 60.80 50.80 58.49 48.49 56.00 46.00	Margin (dB) -24.06 -21.33 -25.72 -22.51 -22.51 -22.51 -22.50	Factor (dB) 10.22 10.23 10.23 10.25	Line Line Line Line	- "Worst" -	(dBuV) 26.52 19.25 22.54 15.75 19.12 12.25	(dB) 0.05 0.05 0.05 0.05 0.05 0.05	CL (dB) 0.07 0.08 0.08 0.10 0.10	(dB) 10.10 10.10 10.10 10.10 10.10 10.10			
Type QP AV QP AV QP AV QP AV QP	(Hz) 280.5k 280.5k 370.5k 370.5k 631.5k 631.5k 2.342M	(dBuV) 36.74 29.47 32.77 25.98 29.37 22.50 25.69	(dBuV) 60.80 50.80 58.49 48.49 56.00 46.00 56.00	Margin (dB) -24.06 -21.33 -25.72 -26.63 -26.63 -23.50 -30.31	Factor (dB) 10.22 10.23 10.23 10.25 10.25 10.25	Line Line Line Line Line Line Line	- "Worst" - -	(dBuV) 26.52 19.25 22.54 15.75 19.12 12.25 15.33	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10	CL (dB) 0.07 0.08 0.08 0.10 0.10 0.16	(dB) 10.10 10.10 10.10 10.10 10.10 10.10 10.10			
Type QP AV QP AV QP AV QP AV QP AV	(Hz) 280.5k 280.5k 370.5k 370.5k 631.5k 631.5k 2.342M 2.342M	(dBuV) 36.74 29.47 32.77 25.98 29.37 22.50 25.69 19.82	(dBuV) 60.80 50.80 58.49 48.49 56.00 46.00 56.00 46.00	Margin (dB) -24.06 -21.33 -25.72 -26.63 -23.50 -30.31 -26.18	Factor (dB) 10.22 10.23 10.23 10.23 10.25 10.36	Line Line Line Line Line Line Line Line	- "Worst" - - -	(dBuV) 26.52 19.25 22.54 15.75 19.12 12.25 15.33 9.46	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10	CL (dB) 0.07 0.08 0.08 0.10 0.10 0.16 0.16	(dB) 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10			
Type QP AV QP AV QP AV QP AV QP	(Hz) 280.5k 280.5k 370.5k 370.5k 631.5k 631.5k 2.342M 2.342M 12.516M	(dBuV) 36.74 29.47 32.77 25.98 29.37 22.50 25.69 19.82 25.70	(dBuV) 60.80 50.80 58.49 48.49 56.00 46.00 56.00 46.00 60.00	Margin (dB) -24.06 -21.33 -25.72 -22.51 -26.63 -23.50 -30.31 -26.18 -34.30	Factor (dB) 10.22 10.23 10.23 10.25 10.25 10.36 10.36 10.36	Line Line Line Line Line Line Line Line	- "Worst" - - - -	(dBuV) 26.52 19.25 22.54 15.75 19.12 12.25 15.33 9.46 15.12	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10	CL (dB) 0.07 0.08 0.08 0.10 0.10 0.16 0.16 0.19	(dB) 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.11			
Type QP AV QP AV QP AV QP AV QP AV QP AV	(Hz) 280.5k 280.5k 370.5k 370.5k 631.5k 631.5k 2.342M 2.342M 12.516M	(dBuV) 36.74 29.47 32.77 25.98 29.37 22.50 25.69 19.82 25.70 20.67	(dBuV) 60.80 50.80 58.49 48.49 56.00 46.00 56.00 46.00 60.00 50.00	Margin (dB) -24.06 -21.33 -25.72 -25.72 -22.51 -26.63 -23.50 -30.31 -26.13 -26.33 -23.30 -29.33	Factor (dB) 10.22 10.23 10.23 10.25 10.25 10.36 10.36 10.58	Line Line Line Line Line Line Line Line	- "Worst" - - - - - - - - - - -	(dBuV) 26.52 19.25 22.54 15.75 19.12 12.25 15.33 9.46 15.12 10.09	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10	CL (dB) 0.07 0.08 0.08 0.08 0.10 0.10 0.16 0.16 0.19 0.19	(dB) 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.11 10.11			
Type QP AV QP AV QP AV QP AV QP	(Hz) 280.5k 280.5k 370.5k 370.5k 631.5k 631.5k 2.342M 2.342M 12.516M	(dBuV) 36.74 29.47 32.77 25.98 29.37 22.50 25.69 19.82 25.70	(dBuV) 60.80 50.80 58.49 48.49 56.00 46.00 56.00 46.00 60.00	Margin (dB) -24.06 -21.33 -25.72 -22.51 -26.63 -23.50 -30.31 -26.18 -34.30	Factor (dB) 10.22 10.23 10.23 10.25 10.25 10.36 10.36 10.36	Line Line Line Line Line Line Line Line	- "Worst" - - - - - - -	(dBuV) 26.52 19.25 22.54 15.75 19.12 12.25 15.33 9.46 15.12	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10	CL (dB) 0.07 0.08 0.08 0.10 0.10 0.16 0.16 0.19	(dB) 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.11			

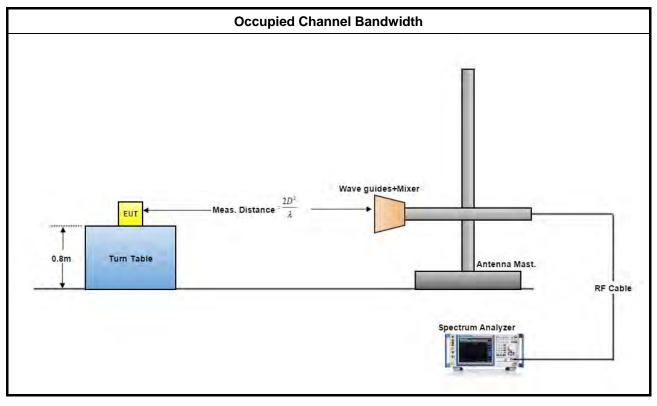
ase		Ν	leutral					Con	figura	ation		СТХ		
														31/03/2020
80 - 70 - 60 -														Lim.QP QP Lim.AV
50 - 40 - 30 -	h	www	him	W Year York Market	wiyunheterywy T	wanallahumpanga	Villes-tels.			na ka je ka je stali ^{je k} a je stali stali se		د دارد در انداز در مربق در مربق میشود.	d seal	
20 - 10 - 0 -	•		•									allin is	•	
					1					1				
150k				11	M					10M			30M	P2
				11	M					10M			30M	P2
	Freq	Level	Limit	11	Factor	Condition	Comment	Raw	AF	10M	AT		30M	P2
150k	(Hz)	Level (dBuV)	(dBuV)	Margin (dB)		Condition	Comment	Raw (dBuV)	AF (dB)		(dB)		30M	P2
150k Type QP	(Hz) 150k	(dBuV) 52.01	(dBuV) 66.00	Margin (dB) -13.99	Factor (dB) 10.20	Neutral	Comment "Worst"	(dBuV) 41.81	(dB) 0.05	CL (dB) 0.05	(dB) 10.10		30M	P2
150k Type QP AV	(Hz) 150k 150k	(dBuV) 52.01 30.75	(dBuV) 66.00 56.00	Margin (dB) -13.99 -25.25	Factor (dB) 10.20 10.20	Neutral Neutral		(dBuV) 41.81 20.55	(dB) 0.05 0.05	CL (dB) 0.05 0.05	(dB) 10.10 10.10		30M	P2
150k Type QP AV QP	(Hz) 150k 150k 249k	(dBuV) 52.01 30.75 41.09	(dBuV) 66.00 56.00 61.79	Margin (dB) -13.99 -25.25 -20.70	Factor (dB) 10.20 10.22	Neutral Neutral Neutral	"Worst" - -	(dBuV) 41.81 20.55 30.87	(dB) 0.05 0.05 0.05	CL (dB) 0.05 0.07	(dB) 10.10 10.10 10.10		30M	P2
150k Type QP AV QP AV	(Hz) 150k 150k 249k 249k	(dBuV) 52.01 30.75 41.09 24.94	(dBuV) 66.00 56.00 61.79 51.79	Margin (dB) -13.99 -25.25 -20.70 -26.85	Factor (dB) 10.20 10.22 10.22	Neutral Neutral Neutral Neutral	"Worst" - -	(dBuV) 41.81 20.55 30.87 14.72	(dB) 0.05 0.05 0.05 0.05	CL (dB) 0.05 0.05 0.07 0.07	(dB) 10.10 10.10 10.10 10.10		30M	P2
150k Type QP AV QP AV QP	(Hz) 150k 150k 249k 249k 541.5k	(dBuV) 52.01 30.75 41.09 24.94 31.41	(dBuV) 66.00 56.00 61.79 51.79 56.00	Margin (dB) -13.99 -25.25 -20.70 -26.85 -24.59	Factor (dB) 10.20 10.22 10.22 10.24	Neutral Neutral Neutral Neutral Neutral	"Worst" - -	(dBuV) 41.81 20.55 30.87 14.72 21.17	(dB) 0.05 0.05 0.05 0.05 0.05	CL (dB) 0.05 0.05 0.07 0.07 0.07	(dB) 10.10 10.10 10.10 10.10 10.10			P2
150k Type QP AV QP AV QP AV	(Hz) 150k 150k 249k 249k 541.5k 541.5k	(dBuV) 52.01 30.75 41.09 24.94 31.41 24.77	(dBuV) 66.00 56.00 61.79 51.79 56.00 46.00	Margin (dB) -13.99 -25.25 -20.70 -26.85 -24.59 -21.23	Factor (dB) 10.20 10.22 10.22 10.24	Neutral Neutral Neutral Neutral	"Worst" - -	(dBuV) 41.81 20.55 30.87 14.72 21.17 14.53	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.05	CL (dB) 0.05 0.05 0.07 0.07 0.09 0.09	(dB) 10.10 10.10 10.10 10.10 10.10 10.10		30M	P2
150k Type QP AV QP AV QP	(Hz) 150k 150k 249k 249k 541.5k 541.5k 1.194M	(dBuV) 52.01 30.75 41.09 24.94 31.41 24.77 27.08	(dBuV) 66.00 56.00 61.79 51.79 56.00 46.00 56.00	Margin (dB) -13.99 -25.25 -20.70 -26.85 -24.59 -21.23 -31.92	Factor (dB) 10.20 10.22 10.22 10.22 10.24 10.24 10.24	Neutral Neutral Neutral Neutral Neutral	"Worst" - - -	(dBuV) 41.81 20.55 30.87 14.72 21.17 14.53 13.78	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	CL (dB) 0.05 0.07 0.07 0.09 0.09 0.13	(dB) 10.10 10.10 10.10 10.10 10.10 10.10 10.10			P2
150k Type QP AV QP AV QP AV QP AV QP AV	(Hz) 150k 150k 249k 249k 541.5k 541.5k	(dBuV) 52.01 30.75 41.09 24.94 31.41 24.77	(dBuV) 66.00 56.00 61.79 51.79 56.00 46.00	Margin (dB) -13.99 -25.25 -20.70 -26.85 -24.59 -21.23	Factor (dB) 10.20 10.22 10.22 10.24	Neutral Neutral Neutral Neutral Neutral Neutral	"Worst" - - - -	(dBuV) 41.81 20.55 30.87 14.72 21.17 14.53	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.05	CL (dB) 0.05 0.05 0.07 0.07 0.09 0.09	(dB) 10.10 10.10 10.10 10.10 10.10 10.10			P2
150k Type QP AV QP AV QP AV QP	(Hz) 150k 150k 249k 249k 541.5k 541.5k 1.194M	(dBuV) 52.01 30.75 41.09 24.94 31.41 24.77 27.08	(dBuV) 66.00 56.00 61.79 51.79 56.00 46.00 56.00	Margin (dB) -13.99 -25.25 -20.70 -26.85 -24.59 -21.23 -31.92	Factor (dB) 10.20 10.22 10.22 10.22 10.24 10.24 10.24	Neutral Neutral Neutral Neutral Neutral Neutral Neutral	"Worst" - - - - -	(dBuV) 41.81 20.55 30.87 14.72 21.17 14.53 13.78	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	CL (dB) 0.05 0.07 0.07 0.09 0.09 0.13	(dB) 10.10 10.10 10.10 10.10 10.10 10.10 10.10			P2
150k Type QP AV QP AV QP AV QP AV QP AV QP AV	(Hz) 150k 150k 249k 249k 541.5k 541.5k 1.194M 1.194M	(dBuV) 52.01 30.75 41.09 24.94 31.41 24.77 27.08 20.04	(dBuV) 66.00 56.00 61.79 51.79 56.00 46.00 56.00 46.00	Margin (dB) -13.99 -25.25 -20.70 -26.85 -24.59 -21.23 -31.92 -28.96	Factor (dB) 10.20 10.22 10.22 10.22 10.24 10.30 10.30	Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	"Worst" - - - - - - - -	(dBuV) 41.81 20.55 30.87 14.72 21.17 14.53 13.78 6.74	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	CL (dB) 0.05 0.07 0.07 0.09 0.09 0.13 0.13	(dB) 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10			P2
150k Type QP AV QP AV QP AV QP AV QP AV QP	(Hz) 150k 150k 249k 249k 541.5k 541.5k 1.194M 1.194M 1.919M	(dBuV) 52.01 30.75 41.09 24.94 31.41 24.77 27.08 20.04 24.38	(dBuV) 66.00 56.00 61.79 51.79 56.00 46.00 56.00 46.00 56.00	Margin (dB) -13.99 -25.25 -20.70 -26.85 -24.59 -21.23 -31.92 -28.96 -31.62	Factor (dB) 10.20 10.22 10.22 10.22 10.24 10.24 10.30 10.30 10.30	Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	"Worst" - - - - - - - - - - - -	(dBuV) 41.81 20.55 30.87 14.72 21.17 14.53 13.78 6.74 14.04	(dB) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	CL (dB) 0.05 0.07 0.07 0.09 0.13 0.13 0.13	(dB) 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10			P2

3.2 Occupied Bandwidth

3.2.1 Limit of Occupied Bandwidth

6dBc Bandwidth (see Note 1)	None
99% Occupied Bandwidth (see Note 2)	None
NOTE 1: The 6dBc bandwidth is the frequency band	dwidth of the signal power at the -6 dBc points when
measured with a 100 kHz resolution bandwi	dth. These measurements shall also be performed at
normal test conditions.	
NOTE 2: The 99% occupied bandwidth is the frequer	ncy bandwidth of the signal power at the 99% channel
power of occupied bandwidth when resolution	on bandwidth should be approximately 1 % to 5 % of
the occupied bandwidth (OBW). These me	easurements shall also be performed at normal test
conditions.	

3.2.2 Measuring Instruments


Refer a measuring instruments list in this test report.

3.2.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clauses 6.9.2.

3.2.4 Test Setup

3.2.5 Test Result of Occupied Bandwidth

Test Conditions	see ANSI C63.10, clause 5.11
Test Setup	see ANSI C63.10, clause 6.9.2
NOTE: If equipment	ent having different transmit operating modes (see test report clause 1.1.2), the
measurer	nents are uninfluenced by different transmit operating modes, may not need to be
repeated	for all the operating modes. Similar, if the equipment supports different modulations
and/or da	ta rates, the measurements described in ANSI C63.10, clause 5.11 may not need to be
repeated	for all these modulations and data rates. Simple comparison of engineering test across
all operat	ing modes, modulations and data rates may need to be performed to define the worse
case com	bination to be used for the conformance testing. Refer as ANSI C63.10, clause 15,
observe a	and record with plotted graphs or photographs the worst-case (i.e., widest) occupied
bandwidth	n produced by these different modulation sources.

Test Results										
Test Freq. (GHz)	6 dBc Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit (MHz)							
60.485	6.80	24.40	N/A							

3.2.5.1 Bandwidth Plots

3.3 EIRP Power

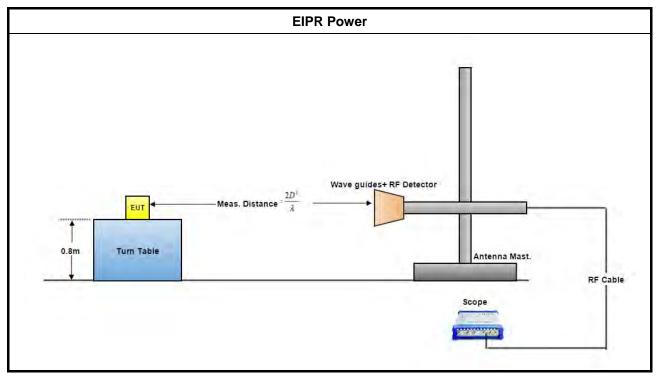
3.3.1 Limit of EIRP Power

EIRP Power Limit										
Use Condition	EIRP Average Power	EIRP Peak Power								
Fixed field disturbance sensors at										
within the frequency band	40 dBm	43 dBm								
61-61.5GHz										
Fixed field disturbance sensors at	40 dDm	40 dDm								
outside of the band 61-61.5GHz	10 dBm	13 dBm								
Except fixed field disturbance	N1/A									
sensors at 61-61.5GHz	N/A	10 dBm								
Except outdoor fixed Point to Point	40 dBm	43 dBm								
Outdoor fixed Point to Point	82 dBm	85 dBm								

Note: For fixed point-to-point transmitters located outdoors, the average power of any emission shall not exceed 82 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi. The peak power of any emission shall not exceed 85 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.

NOTE: For the applicable limit, see FCC 15.255 (c)

3.3.2 Measuring Instruments


Refer a measuring instruments list in this test report.

3.3.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013 clause 9.3 & 9.5.

3.3.4 Test Setup

3.3.5 Test Result of EIRP Power

Test Conditions	see ANSI C63.10, clause 5.11 & clause 9
Test Setup	see ANSI C63.10, clause 9.11
NOTE: If the equip	oment supports different modulations and/or data rates, the measurements described in
ANSI C63.1	0, clause 5.11 may not need to be repeated for all these modulations and data rates.
Simple com	parison of engineering test across all operating modes, modulations and data rates may
need to be	performed to define the worst case combination to be used for the conformance testing.

3.3.5.1 Test Result of EIRP Power

Test D	istance	0.50m	0.50m										
Test Results													
Test	Rx	DS	0	Power Me	easured	sured E _{Meas}			RP	EIRP Limit			
Freq.	Gain	(m)	V)	(dB	m)	(dBu	V/m)	(dE	3m)	(dBm) (note 1)			
(GHz)	(dBi)	Peak	AV	Peak	AV	Peak	Peak AV		AV	Peak	AV		
60.485	23.6	14.01	9.65	-52.33	-54.21	96.96	95.08	-13.86	-15.74	43	40		
The measured power level is converted to EIRP using the Friis equation:													
For radiated emissions, calculate the field strength (E) in $dB\mu V/meter$.													
$E = 126.8 - 20log(\lambda) + P - G$													
where:													
E	: is the fie	eld streng	gth of th	e emission	at the m	easurem	ent distar	nce, in dB	µV/m				
Р	: is the p	ower mea	asured a	at the outpu	ut of the t	est anten	na, in dB	m					
λ : i	s the way	elength o	of the er	nission une	der inves	tigation [3	300/fMHz], in m					
G :	is the ga	in of the	test ante	enna, in dE	Bi For rad	iated emi	ssions, c	alculate t	he EIRP	(dBm). If	the		
	measure	ment wa	s perfor	med in the	far field,	calculate	the EIRF	Р.					
EIRP = E	E-meas +	20log(d-r	neas)-1	04.7									
where:													
EIRP : is	the equiv	valent is	sotopica	Illy radiate	ed power	, in dBm							
E-meas.	: is the fi	eld streng	gth of th	e emission	at the m	easurem	ent distar	nce, in dE	βµV/m				
d-meas.	: is the m	easurem	ent dist	ance, in m									
NOTE 1:	For the a	applicable	e limit, s	ee FCC 15	5.255 (c)								
NOTE 2	: The cor	nparison	method	which rep	laces EL	JT with a	signal g	enerator	is used t	o find the	e correct		
	convers	ion factor	betwee	en "DSO(m	V)" & "Po	wer Mea	sured(dB	m)".					

3.4 Peak Conducted Power

3.4.1 Limit of Peak Conducted Power

Peak Conducted Power Limit									
6dBc Bandwidth Peak Conducted Power (note 1)									
> 100MHz	500mW								
≤ 100MHz	500mW x (BW/100) (see note 2)								
NOTE 1: For the applicable limit, see FCC 15.255(c)									
NOTE 2: BW= 6dB bandwidth (measured at RBW 100	lkHz)								

3.4.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.4.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clause 9.5

3.4.4 Test Result of Peak Conducted Power

Test Conditions see ANSI C63.10, clause 5.11 & clause 9

Test Setup see ANSI C63.10, clause 9.11

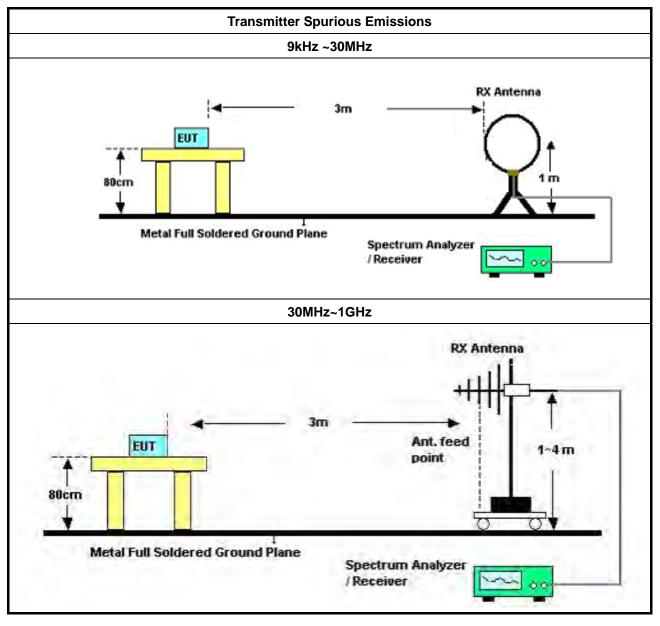
NOTE: If the equipment supports different modulations and/or data rates, the measurements described in ANSI C63.10, clause 5.11 may not need to be repeated for all these modulations and data rates. Simple comparison of engineering test across all operating modes, modulations and data rates may need to be performed to define the worst case combination to be used for the conformance testing.

3.4.4.1 Peak Conducted Power

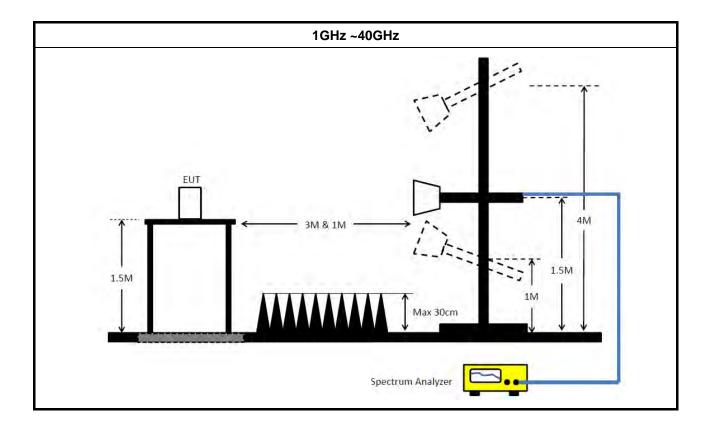
Test Results											
Test Freq. (GHz)	EIRP (dBm)	Max. Ant. Gain (dBi)	6dBc BW (MHz) (note2)	Peak Power Limit (mW) (note3)							
60.485	-13.86	5.3	-19.16	0.012	6.80	34.00					
NOTE 1: Because EUT used peak conducted power NOTE 2: For the 6dBc bandwi NOTE 3: For the applicable lin NOTE 4: For radiated emission P(cond) = EIRP - G(cond) where: G(dBi) is gain of EUT	er is equal dth, see te hit, see FC n measure IBi)	to EIRP powe st report claus C 15.255(c)	er subtract the ar se 3.2.5.	ntenna gai	n.						

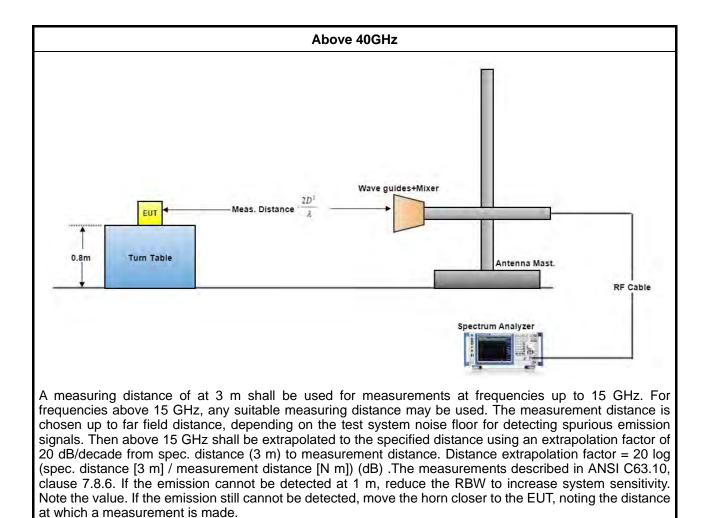
3.5 Transmitter Spurious Emissions

3.5.1 Limit of Transmitter Spurious Emissions


Frequency Range	Limit								
Radiated emissions below 40 GHz	FCC 15.209								
Radiated emissions above 40 GHz – 200GHz	90 pW/cm ² @ 3 m (Equivalent EIRP 102 μW, -9.91dBm)								
NOTE 1: For the applicable limit, see FCC 15.25	55(d)								
NOTE 2: Spurious emissions shall not exceed the level of the fundamental emission.									

3.5.2 Test Procedures


Method of measurement: Refer as ANSI C63.10-2013, clause 9.12


3.5.3 Test Setup

3.5.4 Test Result of Transmitter Spurious Emissions

Test Conditions	see ANSI C63.10, clause 5.11 & clause 9									
Test Setup	see ANSI C63.10, clause 9.12 🚿 9.13									
NOTE: If equipme	ent having different channel plan and nominal channel bandwidth modes (see test report									
clause 1.1.	1), the measurements are uninfluenced by different channel plan and nominal channel									
bandwidth modes, may not need to be repeated for all modes.										

3.5.5 Measurement Results Calculation

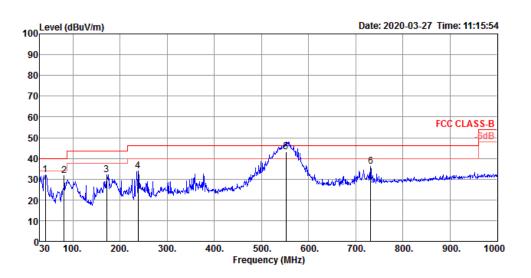
The measured Level is calculated using:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

3.5.5.1 Test Result of Transmitter Spurious Emissions (Below 30MHz)

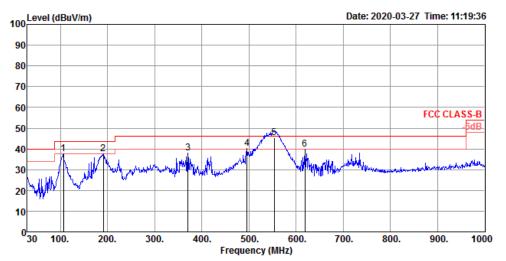
There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.


The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate.

3.5.5.2 Test Result of Transmitter Spurious Emissions

Test Range	30 MHz – 1000 MHz	Test Distance	3 m
Test Configuration	СТХ		


Vertical

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	41.64	32.25	40.00	-7.75	44.12	0.86	18.81	31.54	100	343	Peak	VERTICAL
2	81.41	31.56	40.00	-8.44	48.68	1.15	13.59	31.86	300	71	Peak	VERTICAL
3	171.62	32.03	43.50	-11.47	46.34	1.67	15.94	31.92	300	215	Peak	VERTICAL
4	238.55	34.05	46.00	-11.95	46.16	1.97	17.93	32.01	100	0	Peak	VERTICAL
5	551.86	43.35	46.00	-2.65	48.00	3.10	24.60	32.35	100	123	QP	VERTICAL
6	731.31	36.05	46.00	-9.95	38.87	3.58	25.99	32.39	300	157	Peak	VERTICAL

Horizontal

	Freq	Level	Limit Line					Preamp Factor	-	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1	106.63	37.58	43.50	-5.92	50.30	1.34	17.85	31.91	300	132	Peak	HORIZONTAL
2	191.02	37.80	43.50	-5.70	52.44	1.73	15.59	31.96	150	154	Peak	HORIZONTAL
3	370.47	37.92	46.00	-8.08	45.83	2.50	21.75	32.16	100	231	Peak	HORIZONTAL
4	495.60	40.07	46.00	-5.93	45.87	2.92	23.75	32.47	200	198	Peak	HORIZONTAL
5	553.80	45.38	46.00	-0.62	50.01	3.11	24.61	32.35	187	170	QP	HORIZONTAL
6	618.79	39.78	46.00	-6.22	43.76	3.28	25.13	32.39	100	8	Peak	HORIZONTAL

Note: Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Test Rang	е		1 GHz – 18 GHz						Test Distance3 m				
Test Freq.	(GH	lz)	60.485										
Vertical													
		Free	q Level	Limit Line					Preamp Factor	A/Pos		Remark	Pol/Phase
	-	MH:	z dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
	1 2	5807.20 5808.20		54.00 74.00			6.38 6.38		35.86 35.86	100 100		Average Peak	VERTICAL VERTICAL
Horizontal													
		Free	q Level	Limit Line					Preamp Factor	A/Pos		Remark	Pol/Phase
	-	MH:	z dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
	1 2	5807.8 5808.4		54.00 74.00			6.38 6.38		35.86 35.86	193 193		Average Peak	HORIZONTAL HORIZONTAL

Note: Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Test Range				18 GHz	– 40 G	iHz			Tes	st Dist	ance		1 m
Test Freq. (GHz)				60.485									
Vertica	l												
		Freq	Lev	Limit el Line					Preamp Factor	A/Pos	T/Pos	Remark	k Pol/Phase
		MHz	dBuV	/m dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
		042.00 045.44		52 63.54 07 83.54	-13.92 -23.47				47.87 47.85	150 150		Averag Peak	ge VERTICAL VERTICAL
Horizoi	ntal												
		Freq	Lev	Limit el Line					Preamp Factor	A/Pos	T/Pos	Remark	k Pol/Phase
		MHz	dBuV	/m dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
		036.08		94 83.54 28 63.54	-21.60 -15.26		16.47 16.47		47.87 47.87	150 150		Peak Averag	HORIZONTAL Ge HORIZONTAL

Note: Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Test Range	40GHz – 200GHz

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
60.485	23.6	0.50	51.95	-77.88
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-40.75	3	0.0745	90	PASS

Note:

EIRP = Prx - Grx + Free Space Path Loss = Prx - Grx + $20Log(4\pi d/\lambda)^2$

Which

Prx = Read Level.

Grx = Rx Antenna Gain.

A distance factor is offset and the formula is 20LOG(D1/D2)

Which

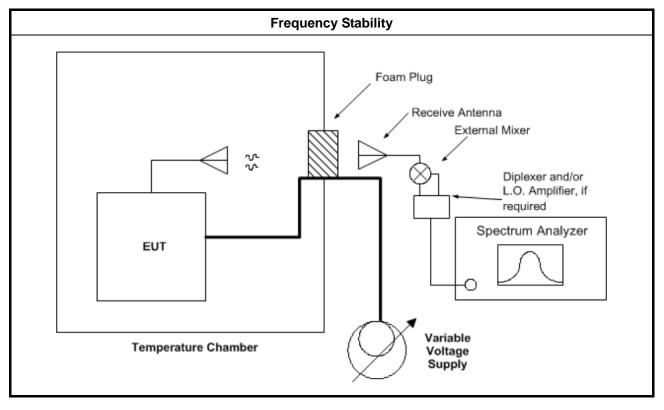
D1 = Specification Distance

D2 = Measurement Distance

3.6 Frequency Stability

3.6.1 Limit of Frequency Stability

Frequency Stability	Limit					
Refer as FCC 15.255(f) and	within the frequency bands					
ANSI C63.10-2013, clause 9.14	within the frequency bands					
Note: These measurements shall also be performed at normal and extreme test conditions.						


3.6.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.6.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clauses 9.14.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Test Conditions see ANSI C63.10, clause 5.11 & clause 9

Test Setup see ANSI C63.10, clause 9.14

NOTE: If equipment having different channel plan and nominal channel bandwidth modes (see test report clause 1.1.1), the measurements are uninfluenced by different channel plan and nominal channel bandwidth modes, may not need to be repeated for all modes.

3.6.5.1 Frequency Stability with Respect to Ambient Temperature

Frequency Stability with Respect to Ambient Temperature								
Test Results								
Test Temp.erature (°C)Measured Frequency (MHz)Delta Frequency (kHz)Limit (±kHz)								
5	60.894	-1	Within band					
10	60.894	-1	Within band					
20	60.895	Reference	Within band					
30	60.896	1	Within band					
35	60.896	1	Within band					
NOTE: The manufacturer's specifi	ed temperature range of 5 t	to 35°C.						

3.6.5.2 Frequency Stability When Varying Supply Voltage

Frequency Stability When Varying Supply Voltage								
	Test Results							
Test Voltage: (Vdc)	Measured Frequency (MHz)	Delta Frequency (kHz)	Limit (±kHz)					
16.15	60.894	-1	Within band					
19	60.895	Reference	Within band					
21.85	60.895	0	Within band					

3.7 Operation Restriction and Group Installation

3.7.1 Limit of Operation Restriction and Group Installation

Item	Limit					
	Operation is not permitted for the following products:					
	• Equipment used on aircraft or satellites. (Refer as FCC 15.255 (a))					
Operation Restriction	• Field disturbance sensors, including vehicle radar systems, unless the field					
	disturbance sensors are employed for fixed operation. (Refer as FCC					
	15.255 (a))					
	Operation is not permitted for the following products:					
Group Installation	External phase-locking (Refer as FCC 15.255 (h))					

3.7.2 Result of Operation Restriction

Manufacturer declares that EUT will not been used on aircraft or satellites. Then user manual will include a statement to caution EUT is not permitted for used on aircraft or satellites. EUT is a wireless video area network (WVAN) for the connection of consumer electronic (CE) audio and video devices.

3.7.3 Result of Group Installation

The frequency, amplitude and phase of the transmit signal are set within the EUT. There are no external phase-locking inputs or any other means of combining two or more units together to realize a beam-forming array.

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz	Nov. 21, 2019	Nov. 20, 2020	Conduction (CO02-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Oct. 30, 2019	Oct. 29, 2020	Conduction (CO02-CB)
EMI Receiver	Agilent	N9038A	MY52260140	9kHz ~ 8.4GHz	Mar. 10, 2020	Mar. 10, 2021	Conduction (CO02-CB)
COND Cable	Woken	Cable	2	0.15MHz ~ 30MHz	Oct. 21, 2019	Oct. 20, 2020	Conduction (CO02-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	N.C.R.	Conduction (CO02-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 29, 2019	Mar. 28, 2020	Radiation (03CH05-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Apr. 13, 2020	Apr. 12, 2021	Radiation (03CH05-CB)
Bilog Antenna with 6dB Attenuator	TESEQ & EMCI	CBL 6112D & N-6-06	35236 & AT-N0610	30MHz ~ 2GHz	Mar. 27, 2020	Mar. 26, 2021	Radiation (03CH05-CB)
Horn Antenna	SCHWARZBE CK	BBHA9120D	BBHA 9120D-1291	1GHz~18GHz	Oct. 05, 2019	Oct. 04, 2020	Radiation (03CH05-CB)
Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170507	15GHz ~ 40GHz	Jun. 12, 2019	Jun. 11, 2020	Radiation (03CH05-CB)
Pre-Amplifier	EMCI	EMC330N	980331	20MHz ~ 3GHz	May 01, 2019	Apr. 30, 2020	Radiation (03CH05-CB)
Pre-Amplifier	EMCI	EMC12630S E	980287	1GHz – 26.5GHz	Apr. 16, 2019	Apr. 15, 2020	Radiation (03CH05-CB)
Pre-Amplifier	EMCI	EMC12630S E	980287	1GHz – 26.5GHz	Apr. 15, 2020	Apr. 14, 2021	Radiation (03CH05-CB)
Pre-Amplifier	MITEQ	TTA1840-35- HG	1864479	18GHz ~ 40GHz	Jul. 03, 2019	Jul. 02, 2020	Radiation (03CH05-CB)
Spectrum Analyzer	R&S	FSP40	100304	9kHz ~ 40GHz	Aug. 15, 2019	Aug. 14, 2020	Radiation (03CH05-CB)
EMI Test Receiver	R&S	ESCS	826547/017	9kHz ~ 2.75GHz	May 15, 2019	May 14, 2020	Radiation (03CH05-CB)
RF Cable-low	Woken	RG402	LOW Cable-04+23	30MHz~1GHz	Oct. 07, 2019	Oct. 06, 2020	Radiation (03CH05-CB)
RF Cable-high	Woken	RG402	High Cable-28	1GHz~18GHz	Oct. 07, 2019	Oct. 06, 2020	Radiation (03CH05-CB)
RF Cable-high	Woken	RG402	High Cable-04+28	1GHz~18GHz	Oct. 07, 2019	Oct. 06, 2020	Radiation (03CH05-CB)
RF Cable-high	Woken	RG402	High Cable-40G#1	18GHz ~ 40 GHz	Jul. 24, 2019	Jul. 23, 2020	Radiation (03CH05-CB)
RF Cable-high	Woken	RG402	High Cable-40G#2	18GHz ~ 40 GHz	Jul. 24, 2019	Jul. 23, 2020	Radiation (03CH05-CB)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Temp.late No.: CB-A9_1 Ver1.0 Page Number : 39 of 41

Issued Date : May 05, 2020

Report Version : 01

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Mixer	OML	M19HWA	U91113-1	40 ~ 60 GHz	Oct. 01 2019	Sep. 30, 2020	Radiation (03CH05-CB
Mixer	OML	M15HWA	V91113-1	50 ~ 75 GHz	Oct. 25 2019	Oct. 24, 2020	Radiation (03CH05-CB
Mixer	OML	M12HWA	E91113-1	60 ~ 90 GHz	Oct. 25 2019	Oct. 24, 2020	Radiation (03CH05-CB
Mixer	OML	M08HWA	F91113-1	90 ~ 140 GHz	Oct. 25 2019	Oct. 24, 2020	Radiation (03CH05-CB
Mixer	OML	M05HW/A	G91113-1	140 ~ 220 GHz	Oct. 25 2019	Oct. 24, 2020	Radiation (03CH05-CB
Standard Horn Antenna	Custom Microwave	M19RH	U91113-A	40 ~ 60 GHz	N.C.R	N.C.R	Radiation (03CH05-CB
Standard Horn Antenna	Custom Microwave	M15RH	V91113-A	50 ~ 75 GHz	N.C.R	N.C.R	Radiation (03CH05-CB
Standard Horn Antenna	Custom Microwave	M12RH	E91113-A	60 ~ 90 GHz	N.C.R	N.C.R	Radiation (03CH05-CB
Standard Horn Antenna	Custom Microwave	M08RH	F91113-A	90 ~ 140 GHz	N.C.R	N.C.R	Radiation (03CH05-CB
Standard Horn Antenna	Custom Microwave	M05RH	G91113-A	140 ~ 220 GHz	N.C.R	N.C.R	Radiation (03CH05-CB
Detector	Millitech	DET-15-RPF W0	#A17807(067)	50 ~ 75 GHz	Dec. 12, 2019	Dec. 11, 2020	Radiation (03CH05-CB
Pico Scope	Pico	Pico Scope 6402C	CX372/002	N/A	Jul. 07, 2019	Jul. 06, 2020	Radiation (03CH05-CB
Temp. and Humidity Chamber	Gaint Force	GTH-408-40- CP-AR	MAA1410-011	-40~100 degree	Sep. 12, 2019	Sep. 11, 2020	Conducted (TH03-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	2.0 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	5.1 dB	Confidence levels of 95%
Radiated Emission (40GHz ~ 60GHz)	4.6 dB	Confidence levels of 95%
Radiated Emission (60GHz ~ 90GHz)	5.1 dB	Confidence levels of 95%
Radiated Emission (90GHz ~ 200GHz)	5.6 dB	Confidence levels of 95%
Temperature	1°C	Confidence levels of 95%