

849 NW STATE ROAD 45 NEWBERRY, FL 32669 USA PH: 888.472.2424 OR 352.472.5500 FAX: 352.472.2030 EMAIL: <u>INFO@TIMCOENGR.COM</u> <u>HTTP://WWW.TIMCOENGR.COM</u>

FCC PART 15.231 TEST REPORT

LOW POWER UNLICENSED TRANSMITTER

Applicant	PBM INDUSTRIES, INC.
Address	1150 WEST JFG DRIVE
	NORTH VERNON IN 47265 USA
FCC ID	EILPGRM-AG
Product Description	ABOVE GROUD POOL ALARM
Date Sample Received	12/19/2007
Date Tested	12/28/2007
Tested By	NAM NGUYEN
Approved By	MARIO DE ARANZETA
Timco Report No.	3873UT7TestReport.doc
Test Results	🛛 Pass 🗌 Fail

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

TABLE OF CONTENTS

4
5
5
5
6
7
8
9
0
2
7
8

GENERAL REMARKS

The attached report shall not be reproduced except in full without the written permission of Timco Engineering Inc.

The test results only relate to the item tested.

Summary

The device under test does:

 \boxtimes

fulfill the general approval requirements as identified in this test report

not fulfill the general approval requirements as identified in this test report

Attestations

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report.

All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025 requirements.

I attest that the necessary measurements were made, under my supervision, at:

Timco Engineering Inc. 849 NW State Road 45 Newberry, Fl 32669

Authorized Signatory Name:

Mario de Aranzeta C.E.T. Compliance Engineer/ Lab. Supervisor

Date: 1/8/08

APPLICANT:PBM INDUSTRIES, INC.FCC ID:EILPGRM-AGREPORT:P\PBM_EIL\3873UT7\3873UT7TestReport.doc

Page 4 of 18 mdea 09.20.2007

REPORT SUMMARY

Applicable Rule(s) FCC Pt 15.231, Pt 15.209, Pt 15.207, ANSI C63.4: 2003

TEST ENVIRONMENT

Test Facility	The test sites are located at 849 NW State Road 45 Newberry, FL 32669 USA.	
Test Condition:	Temperature: 26°C	
	Relative humidity: 50%	

TEST SETUP

Test Exercise (e.g software description, test signal, etc.):	The DUT was placed in continuous transmit mode of operation.
Deviation from the standard(s)	No deviation from the standard(s)
Modification to the DUT:	No modification was made to the DUT.
Supporting Peripheral Equipment	Not applicable. The device is a stand-alone remote control radio.

DUT SPECIFICATION

Applicant	PBM INDUSTRIES, INC.				
Description	ABOVE GROUD	POOL ALARM			
FCC ID	EILPGRM-AG				
Model Number	PGRM-AG				
Frequency Range	433.9-433.9 MHz				
DUT Power Source	□ 110–120Vac/50– 60Hz				
	DC Power				
	Battery Operated Exclusively				
Test Item	Prototype	Pre-Production	Production		
Type of Equipment	Fixed	🗌 Mobile	Portable		

MANUFACTURE DECLARATION OF COMPLIANCE WITH PART 15.231(A)

Item	Description	Yes	No		
1	Does this device transmit a signal that is only used to control another device?	Х			
2	Does this device send data with this control signal?		Х		
3	Does this device send data? Data is, things like: temperature, wind direction, fluid amount, rate of flow, etc.		Х		
4	Does this device transmit continuously or automatically?		Х		
5	If manually operated does this device stop transmitting within 5 seconds of releasing the button?	Х			
6	If automatically operated does it deactivate 5 seconds after activation?	N/A	N/A		
7	Does it transmit at regular predetermined intervals?		Х		
8	Does it poll or send supervisory information?				
	If yes does it do a system integrity check? How often?		Х		
9	Is this a fire, security or safety of life device?	Х			
	If YES does the device stop transmitting after the alarm condition is satisfied?	Х			
10	Duty cycle: Maximum on-time?	10ms			
	If YES, on-time in 100 ms? If Other, please specify here X				
	On time in				
11	Modulation technique: Please specify the modulation of the test sample, FM, or AFSK, or FSK, or on-off keying, or others?	OOK			

TEST EQUIPMENT LIST

Device	Manufacturer	Model	Serial	Cal/Char	Due Date
			Number	Date	
3-Meter Semi-	Panashield	N/A	N/A	Listed	5/11/10
Anechoic		-	-	5/11/07	
Chamber					
Analyzer Tan	HP	8566B Opt	3138A07786	CAL	11/30/09
Tower Spectrum		462	3144A20661	11/30/07	
Analyzer					
Analyzer Tan	HP	85685A	3221A01400	CAL	11/30/09
Tower RF				11/30/07	
Preselector					
Analyzer Tan	HP	85650A	3303A01690	CAL	11/30/09
Tower Quasi-				11/30/07	
Peak Adapter					
Analyzer Tan	HP	8449B-	3008A00372	CAL	11/30/09
Tower		H02		11/30/07	
Preamplifier					
Analyzer Blue	HP	8568B	2928A04729	CAL	5/17/09
Tower Spectrum			2848A18049	5/17/07	
Analyzer					
Analyzer Blue	HP	85685A	2926A00983	CAL	5/17/09
Tower RF				5/17/07	
Preselector					
Analyzer Blue	HP	85650A	2811A01279	CAL	5/17/09
Tower Quasi-				5/17/07	
Peak Adapter					
Analyzer Silver	HP	8566B Opt	3552A22064	CAL	10/30/08
Tower Spectrum		462	3638A08608	10/30/06	
Analyzer					
Analyzer Silver	HP	85685A	2620A00294	CAL 3/6/07	3/6/09
Tower RF					
Preselector					
Analyzer Silver	HP	85650A	3303A01844	CAL	10/30/08
Tower Quasi-				10/30/06	
Peak Adapter					
Analyzer Open-	HP	8449B	3008A01075	CAL	6/20/09
Frame Tower				6/20/07	
Preamplifier					
Antenna:	Electro-	BIA-25	1171	CAL	7/18/09
Biconnical	Metrics			7/18/07	
Antenna:	Eaton	94455-1	1096	CAL	10/11/08
Biconnical				10/11/06	
Antenna: Log-	Electro-	LPA-25	1122	CAL	12/1/08
Periodic	Metrics			12/1/06	

TEST PROCEDURES

Power line conducted Emissions: The test procedure used was ANSI C63.4-2003.

Spurious Emissions: The test procedure used was ANSI C63.4-2003 using a spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was always greater than the RBW.

Occupied Bandwidth: A small sample of the transmitter output was fed into the spectrum analyzer and a was generated. The vertical scale is set to 10 dB per division.

Formula Of Conversion Factors: The field strength at 3m was established by adding the meter reading of the spectrum analyzer to the antenna correction factor supplied by the antenna manufacturer plus the coax loss. The antenna correction factors are stated in terms of dB/m. The gain of the preselector was accounted for in the spectrum analyzer reading.

Example:

Freq	Meter Reading	ACF	Cable Loss	Field Strength
MHz	dBuV	dB/m	dB	dBuV/m@3m
33	20	+10.36	+1.2	= 31.56

ANSI C63.4-2003 Measurement: The DUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The DUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes when necessary and the highest readings were converted to average readings based on the duty cycle.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

RADIATION INTERFERENCE

Rules Part No.: 15.231

Requirements:

Fundamental	Field Strength of	Field Strength of Harmonics and
Frequency	Fundamental	Spurious Emissions
(MHz)	(dBµV/m)	(dBµV/m @ 3m)
40.66 to 40.70	67.04	47.04
70 to 130	61.94	41.94
130 to 174	61.94 to 71.48	41.94 to 51.48
174 to 260	71.48	51.48
260 to 470	71.48 to 81.94	51.48 to 61.94
470 and above	81.94	61.94

No fundamental frequency is allowed in the restricted bands.

Spurious emissions in the restricted bands must be less than 54 $dB\mu V/m$ or to the limits of 15.209.

Note: Emissions that are 20 dB below the limit are not required to be reported.

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

1) for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F)-6136.3636; 2) for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F)-7083.3333.

Sample calculation of limit @ 315 MHz:

41.6667 (315)-7083.3333 = 6041.68 uV/m 20log(6041.68) = 75.62dBuV/m limit @ 315 MHz

Sample calculation of limit @ 433.92 MHz:

41.6667 (433.9)-7083.3333 = 10,995.85 uV/m 20log(10,995.85) = 80.82 dBuV/m limit @ 433.9 MHz

FOR THIS DUT:

The limit for average field strength in dBuV/m for the fundamental frequency is 80.82 dB μ V/m.

The limit for average field strength in dBuV/m for the harmonics and other spurious frequencies is $60.82 \text{ dB}\mu\text{V/m}$ unless it is in a restricted band.

Emission	*	Meter	Δnt	Coav	Correction	Duty	Field	Margin
Frequency		Reading	Pol	Loss	Factor	Cycle	Strength	dR
MH ₇		dBuV	101	dB	AR	Factor	dBuV/m	uВ
101112		ubuv		uD	uВ	dB	ubuv/m	
433.94		61.3	Н	1.23	16.62	20.00	59.15	21.67
433.94		69.0	V	1.23	16.18	20.00	66.41	14.41
867.88		20.9	V	1.93	22.40	20.00	25.23	35.59
867.88		24.0	Н	1.93	22.96	20.00	28.89	31.93
1,301.82	**	12.4	Н	2.34	27.84	20.00	22.58	31.42
1.301.82	**	12.6	V	2.34	27.84	20.00	22.78	31.22
1,735.76		12.6	Н	2.69	29.51	20.00	24.80	36.03
1,735.76		14.7	V	2.69	29.51	20.00	26.90	33.93
2,169.70		9.1	V	3.02	31.64	20.00	23.76	37.07
2,169.70		9.3	Н	3.02	31.64	20.00	23.96	36.87
2.603.64		9.8	Н	3.32	32.52	20.00	25.64	35.18
3,037.58		8.5	Н	3.63	32.62	20.00	24.75	36.07
3.037.58		11.4	V	3.63	32.62	20.00	27.65	33.17
433.94		61.3	V	1.23	16.18	20.00	58.71	22.11
433.94		62.9	Н	1.23	16.62	20.00	60.75	20.07
867.88		21.9	V	1.93	22.40	20.00	26.23	34.59
867.88		22.5	H	1.93	22.96	20.00	27.39	33.43
1.301.82	**	11.2	V	2.34	27.84	20.00	21.38	32.62
1.301.82	**	13.1	Н	2.34	27.84	20.00	23.28	30.72
1.735.76		17.2	Н	2.69	29.51	20.00	29.40	31.43
1.735.76		17.3	V	2.69	29.51	20.00	29.50	31.33
2,169.70		10.1	V	3.02	31.64	20.00	24.76	36.07
2,169.70		12.0	Н	3.02	31.64	20.00	26.66	34.17
2,603.64		10.9	V	3.32	32.52	20.00	26.74	34.08
2,603.64		11.0	Н	3.32	32.52	20.00	26.84	33.98
3,037.58		10.2	Н	3.63	32.62	20.00	26.45	34.37
3,037.58		13.0	V	3.63	32.62	20.00	29.25	31.57
· · ·								
433.94		60.6	Н	1.23	16.62	20.00	58.45	22.37
433.94		64.7	V	1.23	16.18	20.00	62.11	18.71
867.88		24.1	V	1.93	22.40	20.00	28.43	32.39
867.88		24.3	Н	1.93	22.96	20.00	29.19	31.63
1,301.82	**	12.5	V	2.34	27.84	20.00	22.68	31.32
1,301.82	**	13.1	Н	2.34	27.84	20.00	23.28	30.72
1,735.76		15.5	V	2.69	29.51	20.00	27.70	33.13
1,735.76		15.8	Η	2.69	29.51	20.00	28.00	32.83
2,169.70		9.8	V	3.02	31.64	20.00	24.46	36.37
2,169.70		12.7	Η	3.02	31.64	20.00	27.36	33.47
2,603.64		10.7	V	3.32	32.52	20.00	26.54	34.28
2,603.64		11.5	Η	3.32	32.52	20.00	27.34	33.48
3,037.58		10.1	V	3.63	32.62	20.00	26.35	34.47
3,037.58		11.3	Н	3.63	32.62	20.00	27.55	33.27

Test Data: X axis, Y axis, and Z axis results.

** -Denotes restricted bands

APPLICANT: P	BM INDUSTRIES,	INC.
--------------	----------------	------

FCC ID: EILPGRM-AG

REPORT: P\PBM_EIL\3873UT7\3873UT7TestReport.doc

Page 11 of 18 mdea 09.20.2007

CALCULATION OF DUTY CYCLE

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero (0) frequency span. A plot is then made of the pulse train with a sweep time of 100 milliseconds. This sweep determines the duration of the pulse train. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100-millisecond plot, the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the DUT is on within 100 ms.

Long Pulse	1.76 ms
Medium Pulse	0.64 ms
Short Pulse	3.40 ms
On Time	5.80 ms
Length of Pulse Train	11.40 ms
Total	0.058 ms

dB = 20*log(ON TIME)/PERIOD dB = 20*log(5.80/100) dB = 20*log(0.058) dB = -20

See the following plots.

MEDIUM PULSES

SHORT PULSES

OCCUPIED BANDWIDTH

Rules Part No.: 15.231(C)

NOTES:

Requirements: The bandwidth of the emission shall be no wider than .25% of the center frequency for devices operating between 70 and 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test Data: Please refer to the following plot.

OCCUPIED BANDWIDTH PLOT

PBM INDUSTRIES, INC. - FCC ID: EILPGRM-AG

REF (dBm) -35.00 5PAN (Hz) 200.39k Timco Engineering, Inc. -35 -45 -55 -65 Amplitude [dBm] -75 -85 -95 -105 -115 -125 -135 433.8400 434.0404 Frequency (MHz) RBW VBW ST (sec) 433.94(-36.80 🔳 Peak ♦ 🕞 300 Hz 100 kHz 6 ĥ 0.000 0.00 MKR2 Center Frequency (Hz) 433.940M MKR3 0.000 0.00 6 Marker Delta (Hz) 0.00 6 HWMK. 23.076 6.27

POWER LINE CONDUCTED INTERFERENCE

Rules Part No.: Pt 15.207

Requirements:

Frequency	Quasi Peak Limits	Average Limits
(MHz)	(dBuV)	(dBuV)
0.15 – 0.5	66 – 56	56 - 46
0.5 – 5.0	56	46
5.0 - 30	60	50

Test Data: Not applicable because the DUT is battery operated exclusively.