

MEDICAL DATA ELECTRONICS TEST REPORT

FOR THE

MEDICAL TRANSMITTER, DS-1

FCC PART 15 SUBPART C SECTIONS 15.242 AND 15.109

COMPLIANCE

DATE OF ISSUE: APRIL 9, 2002

PREPARED FOR:

PREPARED BY:

Medical Data Electronics 12723 Wentworth Street Arleta, CA 91331 Mary Ellen Clayton CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

P.O. No.: 592ML-144 W.O. No.: 78635 Date of test: April 8-9, 2002

Report No.: FC02-032

This report contains a total of 30 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 30 Report No.: FC02-032

TABLE OF CONTENTS

Administrative Information	
Summary of Results	4
Conditions for Compliance	4
Approvals	
Equipment Under Test (EUT) Description	5
15.31 Voltage Variation	5
15.31 Number Of Channels	5
15.33 Frequency Ranges Tested	
15.242 Radiated Emissions	
15.109 Radiated Emissions	5
15.203 Antenna Requirements	
15.205 Restricted Bands	
Mode Of Operation	
Eut Operating Frequency	
Equipment Under Test	
Peripheral Devices	
Report of Measurements	
Table 1: Fundamental Highest Radiated Emission Levels - 15.242(c)	
Table 2: Six Highest Radiated Emission Levels - 15.242(c)	
Table 3: Six Highest Radiated Emission Levels - 15.109	
Temperature And Humidity During Testing	
Measurement Uncertainty	
EUT Setup	
Correction Factors	
Table A: Sample Calculations	
Test Instrumentation and Analyzer Settings	
Table B: 15.35 Analyzer Bandwidth Settings Per Frequency Range	
Spectrum Analyzer Detector Functions	
Peak	
Quasi-Peak	
Average	
EUT Testing	
Radiated Emissions	
Appendix A: Test Setup Diagram and Photographs	
Equipment Test Setup Diagram	
Photograph Showing Radiated Emissions	
Photograph Showing Radiated Emissions	
Photograph Showing Radiated Emissions	
Appendix B: Test Equipment List	
Appendix C: Measurement Data Sheets	20

Page 2 of 30 Report No.: FC02-032

CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:

A2LA (USA); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).

CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:

FCC (USA); VCCI (Japan); and Industry Canada.

CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

ADMINISTRATIVE INFORMATION

DATE OF TEST: April 8-9, 2002

DATE OF RECEIPT: April 8, 2002

PURPOSE OF TEST: To demonstrate the compliance of the Medical

Transmitter, DS-1 with the requirements for FCC Part 15 Subpart C Sections 15.242 and 15.109

devices.

TEST METHOD: ANSI C63.4 (1992)

MANUFACTURER: Medical Data Electronics

12723 Wentworth Street

Arleta, CA 91331

REPRESENTATIVE: Bill Costello

TEST LOCATION: CKC Laboratories, Inc.

110 Olinda Place Brea, CA 92621

> Page 3 of 30 Report No.: FC02-032

SUMMARY OF RESULTS

As received, the Medical Data Electronics Medical Transmitter, DS-1 was found to be fully compliant with the following standards and specifications:

United States

- FCC Part 15 Subpart C Section 15.242
- > FCC Part 15 Subpart B Section 15.109
- > ANSI C63.4 (1992) method

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply. Conducted emissions not required for this device.

APPROVALS

Eddie Wong, EMC Engineer

QUALITY ASSURANCE: TEST PERSONNEL:

Steve Behm, Manager of Engineering Services

Joyce Walker, Quality Assurance Administrative

Herton

Manager

Septimiu Apahidean, EMC/Lab Manager

Page 4 of 30 Report No.: FC02-032

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was a representative of a production unit. Medical ECG Telemetry Transmitter.

15.31(e) Voltage Variations

Not applicable to this device because it is battery powered.

15.31(m) Number Of Channels

This device can operate on 480 different channels from 608 to 614 MHz.

15.33(a) Frequency Ranges Tested

15.242 Radiated Emissions: 9 kHz – 7 GHz 15.109 Radiated Emissions: 30 MHz – 7 GHz

15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

Mode Of Operation

Eut Operating Frequency

The EUT was operating at 608-614 MHz.

EQUIPMENT UNDER TEST

Medical Transmitter

Manuf: Medical Data Electronics

Model: DS-1

Serial: 1402-1003 FCC ID: EHCDS1

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

Page 5 of 30 Report No.: FC02-032

REPORT OF MEASUREMENTS

The following tables report the worst case emissions levels recorded during the tests performed on the Medical Transmitter, DS-1. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

	Table 1: Fundamental Highest Radiated Emission Levels - 15.242(c)														
FREQUENCY MHz	METER READING dBµV	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES										
607.989	103.5	19.2	-28.1	5.3		99.9	106.0	-6.1	H-1						
608.029	103.0	19.2	-28.1	5.3		99.4	106.0	-6.6	H-1						
610.983	101.9	19.3	-28.0	5.3		98.5	106.0	-7.5	H-2						
610.995	99.8	19.3	-28.0	5.3		96.4	106.0	-9.6	H-2						
613.965	99.6	19.5	-28.0	5.4		96.5	106.0	-9.5	H-3						
613.995	103.4	19.5	-28.0	5.4		100.3	106.0	-5.7	H-3						

Test Method: ANSI C63.4 (1992) NOTES: H = Horizontal Polarization

Spec Limit: FCC Part 15 Subpart C Section 15.242(c) 1 = 608 MHzTest Distance: 3 Meters 2 = 611 MHz3 = 614 MHz

COMMENTS: See individual data sheets for test conditions.

Page 6 of 30 Report No.: FC02-032

	Table 2: Six Highest Radiated Emission Levels - 15.242(c)														
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	TORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES						
628.032	38.0	20.0	-27.9	5.4		35.5	46.0	-10.5	H-1						
647.999	37.9	20.8	-27.8	5.5		36.4	46.0	-9.6	H-1						
650.998	37.1	20.9	-27.8	5.5		35.7	46.0	-10.3	H-2						
650.999	39.9	20.9	-27.8	5.5		38.5	46.0	-7.5	H-2						
1215.914	56.3	24.2	-39.6	2.9		43.8	54.0	-10.2	H-1						
3683.908	43.4	32.3	-37.5	6.2		44.4	54.0	-9.6	V-3						

Test Method: ANSI C63.4 (1992) NOTES: H = Horizontal Polarization

Spec Limit: FCC Part 15 Subpart C Section 15.242(c) V = Vertical Polarization
Test Distance: 3 Meters 1 = 608 MHz

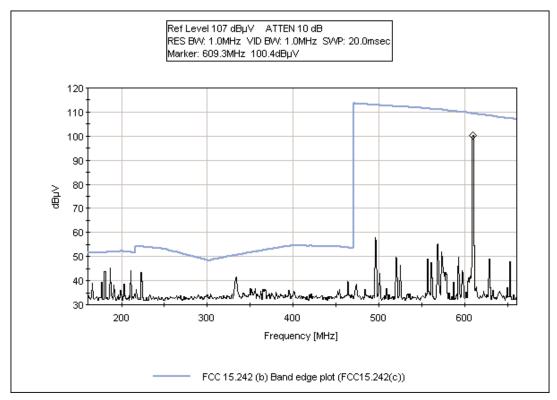
1 = 608 MHz 2 = 611 MHz3 = 614 MHz

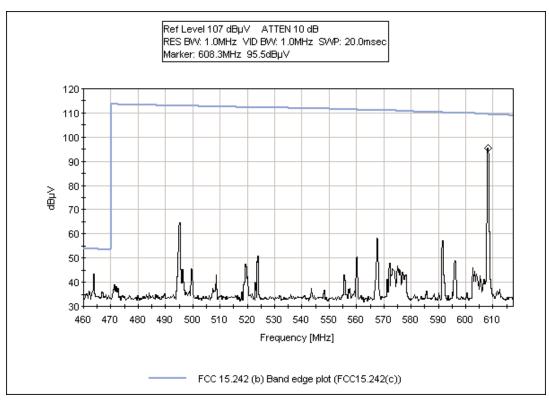
COMMENTS: See individual data sheets for test conditions.

Page 7 of 30 Report No.: FC02-032

	Table 3: Six Highest Radiated Emission Levels - 15.109														
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION Amp	ON FACT Cable dB	ORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES						
630.983	35.2	20.1	-27.9	5.4		32.8	46.0	-13.2	V						
630.994	36.1	20.1	-27.9	5.4		33.7	46.0	-12.3	Н						
650.998	37.1	20.9	-27.8	5.5		35.7	46.0	-10.3	Н						
650.999	39.9	20.9	-27.8	5.5		38.5	46.0	-7.5	Н						
670.994	33.5	21.7	-27.9	5.5		32.8	46.0	-13.2	Н						
1221.987	55.8	24.2	-39.6	2.9		43.3	54.0	-10.7	Н						

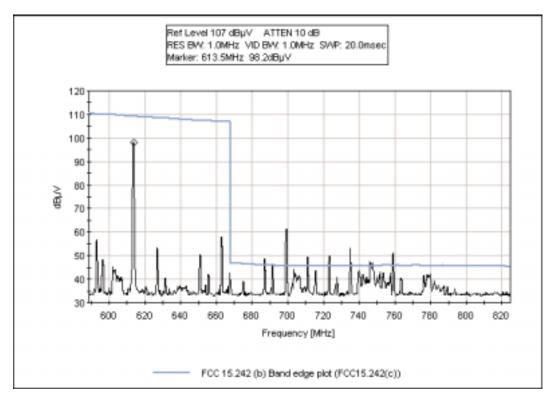
Test Method: ANSI C63.4 (1992) NOTES: H = Horizontal Polarization
Spec Limit: FCC Part 15 Subpart B Section 15.109 V = Vertical Polarization

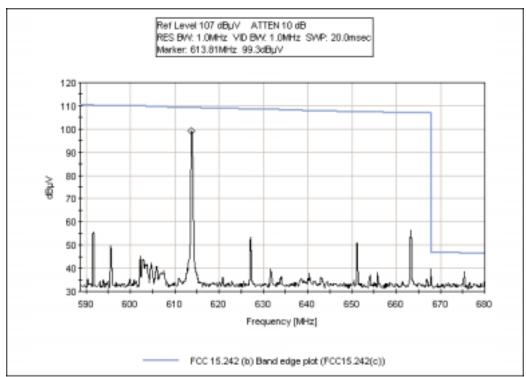

Test Distance: 3 Meters


COMMENTS: Battery operated, handheld medical Transmitter placed on the wooden table. EUT is set in continuos transmission mode. All 4 patient leads connected to a simulator. TX= 611.00 MHz. Spec limit: 30-88 MHz= 100uV/m@3m = 40.0dBuV@3m. 88-216MHz=150uV/m@3m = 43.dBuV@3m. 216-960MHz=200uV/m@3m = 46.0dBuV@3m. Above 960 MHz= 500uV/m@3m = 54.0 dBuV @3m. Measurement BW 30MHz-1000MHz: RBW=VBW=120KHz 1000MHz-7000MHz: RBW=VBW=1MHz. $17^{\circ}C$, 66% relative humidity.

Page 8 of 30 Report No.: FC02-032

15.242(b) BAND EDGE PLOT - 608 MHz





Page 9 of 30 Report No.: FC02-032

15.242(b) BAND EDGE PLOT – 614 MHz

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

MEASUREMENT UNCERTAINTY

Measurement uncertainty associated with data in this report is a \pm 2.94dB for radiated emissions.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated emissions data of the Medical Transmitter, DS-1, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAl	BLE A: SAMPLE CAL	CULATIONS
	Meter reading	$(dB\mu V)$
+	Antenna Factor	(dB)
+	Cable Loss	(dB)
-	Distance Correction	(dB)
_	Preamplifier Gain	(dB)
=	Corrected Reading	$(dB\mu V/m)$

Page 11 of 30 Report No.: FC02-032

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated emissions data for the Medical Transmitter, DS-1. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For radiated measurements below 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. The horn antenna was used for frequencies above 1000 MHz.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

FCC SECTION 15.35: TABLE B: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE											
TEST BEGINNING FREQUENCY ENDING FREQUENCY BANDWIDTH SETTING											
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz								
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz								
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz								
RADIATED EMISSIONS	1000 MHz	7 GHz	1 MHz								

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the Medical Transmitter, DS-1.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Page 12 of 30 Report No.: FC02-032

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

EUT TESTING

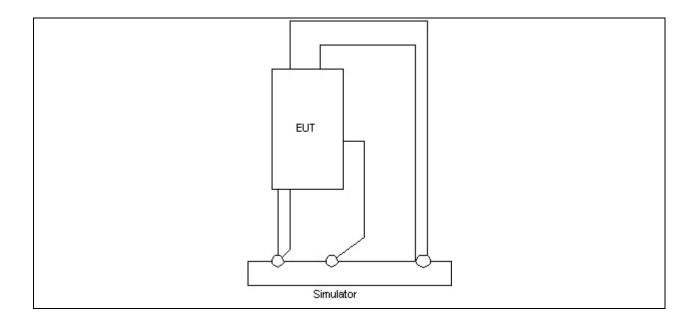
Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 88 MHz was scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. The frequency range of 100 to 300 MHz was then scanned in the same manner using the biconical antenna and the peaks recorded. Lastly, a scan of the FM band from 88 to 110 MHz was made, using a reduced resolution bandwidth and frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 to 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 to 1000 MHz was again scanned. For frequencies exceeding 1000 MHz, the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

Page 13 of 30 Report No.: FC02-032


APPENDIX A

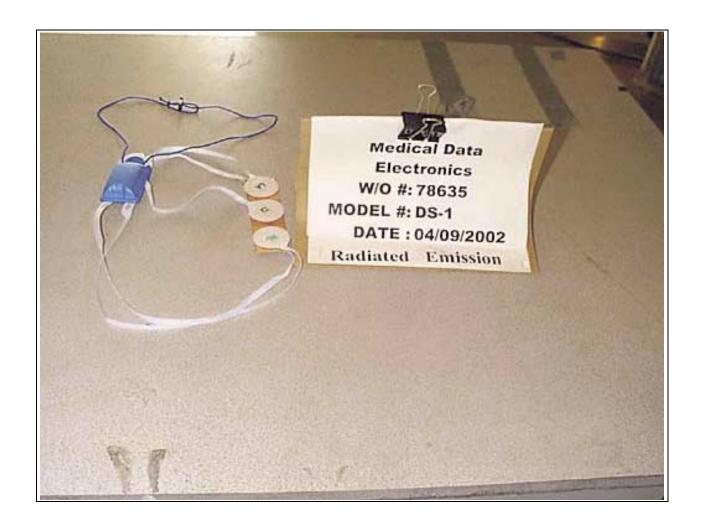
TEST SETUP DIAGRAM AND PHOTOGRAPHS

Page 14 of 30 Report No.: FC02-032

EQUIPMENT TEST SETUP DIAGRAM

Page 15 of 30 Report No.: FC02-032

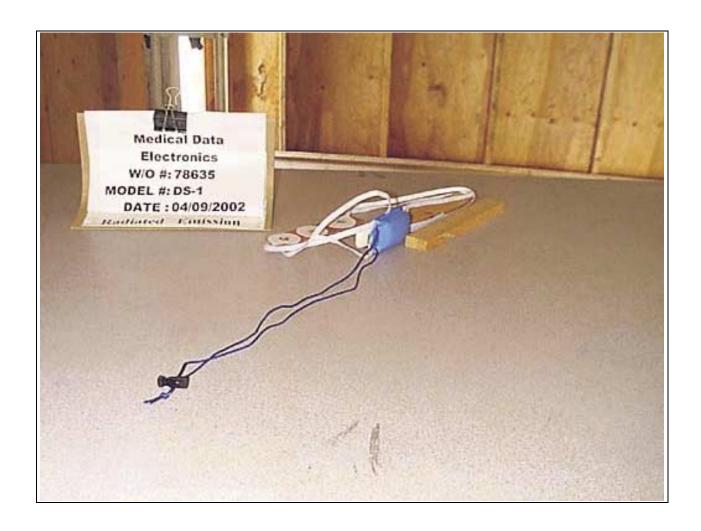
PHOTOGRAPH SHOWING RADIATED EMISSIONS



Radiated Emissions - Front View

Page 16 of 30 Report No.: FC02-032

PHOTOGRAPH SHOWING RADIATED EMISSIONS



Radiated Emissions - Back View

Page 17 of 30 Report No.: FC02-032

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Side View

Page 18 of 30 Report No.: FC02-032

APPENDIX B

TEST EQUIPMENT LIST

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
9kHz-30 MHz						
Active loop antenna	2014	Emco	6502	2014	073101	073102
Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
30 MHz- 1000MHz						
Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
Bicon Antenna	306	AH	SAS200/540	220	092401	092402
Log Periodic	331	AH	SAS 00/516	330	092401	092402
Antenna						
Pre-amp	00309	HP	8447D	1937A02548	090501	090502
Antenna cable	NA	NA	RG214	Cable#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable#10	071601	071602
1000MHz-7000MHz						
Horn Antenna	0849	EMCO	3115	6246	091201	091202
Microwave Pre-amp	00786	HP	83017A	3123A00281	091201	091202
1/4" Heliax Coaxial	NA	Andrew	LDF1-50	Cable#18 (70	091101	091102
Cable				ft)		
1.5 GHz HPF	01415	HP	8400-80037	3643A00026	030502	030503

Page 19 of 30 Report No.: FC02-032

APPENDIX C: MEASUREMENT DATA SHEETS

Page 20 of 30 Report No.: FC02-032

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: Medical Data Electronics

Specification: FCC 15.242 (c)(15.209) >30 MHz

 Work Order #:
 78635
 Date:
 04/09/2002

 Test Type:
 Maximized Emissions
 Time:
 10:25:43

Equipment: Medical Transmitter Sequence#: 2

Manufacturer: Medical Data Electronics Tested By: Eddie Wong

Model: DS-1 S/N: 1402-1003

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Medical Transmitter*	Medical Data Electronics	DS-1	1402-1003

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Battery operated, handheld medical Transmitter placed on the wooden table. EUT is set in continuos transmission mode. All 4 patient leads connected to a simulator TX= 608.012 MHz. Spec limit: Fundamental: 200mV/m at 3 meter = 106 dBuV. Out of band: 0.009-0.490 MHz = 2400/F(kHz) uV/m @ 300m = 48.5dBuV - 13.8dBuV @ 300m. 0.490-1.705 MHz = 24000/F(kHz) uV/m @ 30m = 33.8dBuV - 22.9dBuV @ 30m. 1.705-30 MHz = 30uV/m @ 30m = 29.5dBuV @ 30m. 30-88 MHz = 100uV/m @ 3m = 40.0dBuV @ 3m. 88-216MHz = 150uV/m @ 3m = 43.5dBuV @ 3m. 216-960MHz = 200uV/m @ 3m = 46.0dBuV @ 3m. Above 960 MHz = 500uV/m @ 3m = 54.0dBuV @ 3m. Measurement BW 9-150 kHz: RBW=VBW=200KHz. 150KHz-30 MHz: RBW=VBW=9kHz. 30MHz-1000MHz: RBW=VBW=120kHz. 1000MHz-7000MHz: RBW=VBW=100MHz. 1000MHz-10000MHz-10000MHz-10000MHz-

Transducer Legend:

 T1=15.31 40dB/Dec Correction
 T2=Active Loop Antenna

 T3=Bicon 092401
 T4=Log 331 092401

 T5=Cable #10 071601
 T6=Cable #15 120602

 T7=Preamp 8447D 090501
 T8=Horn Antenna sn6246

T9=Heliax #18 70' 11Sept2001 T10=HP3017A sn3123A00281 11-Sept-01

T11=1.5GHz High Pass Filter, A/N 01415

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	607.989M	103.5	+0.0	+0.0	+0.0	+19.2	+0.0	99.9	106.0	-6.1	Horiz
			+0.4	+4.9	-28.1	+0.0			Fundamental		
			+0.0	+0.0	+0.0						
2	608.029M	103.0	+0.0	+0.0	+0.0	+19.2	+0.0	99.4	106.0	-6.6	Horiz
			+0.4	+4.9	-28.1	+0.0			Fundamen	tal, third	
			+0.0	+0.0	+0.0				orthogonal	side	
3	647.999M	37.9	+0.0	+0.0	+0.0	+20.8	+0.0	36.4	46.0	-9.6	Horiz
			+0.4	+5.1	-27.8	+0.0					
			+0.0	+0.0	+0.0						

Page 21 of 30 Report No.: FC02-032

4	1215.914M	56.3	+0.0	+0.0	+0.0	+0.0	+0.0	43.8	54.0	-10.2	Horiz
4	1213.914WI	30.3	+0.0 +0.0	+0.0	+0.0 +0.0	+24.2	+0.0	43.6	34.0	-10.2	попи
			+2.9	-39.6	+0.0	T24.2					
5	628.032M	38.0	+0.0	+0.0	+0.0	+20.0	+0.0	35.5	46.0	-10.5	Horiz
5	020.032111	20.0	+0.4	+5.0	-27.9	+0.0	10.0	33.3	10.0	10.5	TIOTIE
			+0.0	+0.0	+0.0						
6	648.019M	35.7	+0.0	+0.0	+0.0	+20.8	+0.0	34.2	46.0	-11.8	Horiz
			+0.4	+5.1	-27.8	+0.0			Third ortho		
			+0.0	+0.0	+0.0				side		
7	647.989M	35.6	+0.0	+0.0	+0.0	+20.8	+0.0	34.1	46.0	-11.9	Vert
			+0.4	+5.1	-27.8	+0.0					
			+0.0	+0.0	+0.0						
8	668.000M	34.1	+0.0	+0.0	+0.0	+21.5	+0.0	33.2	46.0	-12.8	Horiz
			+0.4	+5.1	-27.9	+0.0					
			+0.0	+0.0	+0.0						
9	607.985M	96.5	+0.0	+0.0	+0.0	+0.0	+0.0	92.9	106.0	-13.1	Vert
			+0.0	+0.0	+0.0	+0.0			Fundament	tal	
			+0.0	+0.0	+0.0						
10	303.997M	35.1	+0.0	+0.0	+0.0	+22.2	+0.0	32.6	46.0	-13.4	Horiz
			+0.3	+3.3	-28.3	+0.0					
			+0.0	+0.0	+0.0						
11	628.009M	34.7	+0.0	+0.0	+0.0	+20.0	+0.0	32.2	46.0	-13.8	Vert
			+0.4	+5.0	-27.9	+0.0					
			+0.0	+0.0	+0.0						
12	660.016M	31.4	+0.0	+0.0	+0.0	+21.3	+0.0	30.4	46.0	-15.6	Horiz
			+0.4	+5.1	-27.8	+0.0					
12	1924 02214	16.0	+0.0	+0.0	+0.0	+ΩΩ	.00	20.2	540	15 7	XIt
13	1824.033M	46.8	$+0.0 \\ +0.0$	$^{+0.0}_{+0.0}$	+0.0 +0.0	+0.0 +25.8	+0.0	38.3	54.0	-15.7	Vert
			+3.6	-38.5	+0.6	+23.6					
14	768.110M	30.0	+0.0	+0.0	+0.0	+21.9	+0.0	30.2	46.0	-15.8	Vert
14	700.110W	30.0	+0.5	+5.6	-27.8	+0.0	+0.0	30.2	40.0	-13.6	VEIL
			+0.0	+0.0	+0.0	10.0					
15	1824.020M	46.5	+0.0	+0.0	+0.0	+0.0	+0.0	38.0	54.0	-16.0	Horiz
13	1024.02011	40.5	+0.0	+0.0	+0.0	+25.8	10.0	30.0	34.0	10.0	HOHZ
			+3.6	-38.5	+0.6	120.0					
16	2843.670M	40.0	+0.0	+0.0	+0.0	+0.0	+0.0	36.6	54.0	-17.4	Vert
10	2 .2 . 2 , 0 2 . 2		+0.0	+0.0	+0.0	+29.3		20.0		- / • •	. •••
			+4.6	-38.0	+0.7						
17	303.990M	30.8	+0.0	+0.0	+0.0	+22.2	+0.0	28.3	46.0	-17.7	Vert
			+0.3	+3.3	-28.3	+0.0					
			+0.0	+0.0	+0.0						
18	624.006M	30.8	+0.0	+0.0	+0.0	+19.9	+0.0	28.1	46.0	-17.9	Horiz
			+0.4	+5.0	-28.0	+0.0					
			+0.0	+0.0	+0.0						
19	587.998M	31.8	+0.0	+0.0	+0.0	+18.7	+0.0	27.5	46.0	-18.5	Horiz
			+0.4	+4.8	-28.2	+0.0					
			+0.0	+0.0	+0.0						
20	1216.014M	47.2	+0.0	+0.0	+0.0	+0.0	+0.0	34.7	54.0	-19.3	Vert
			+0.0	+0.0	+0.0	+24.2					
			+2.9	-39.6	+0.0						

Page 22 of 30 Report No.: FC02-032

21	3648.069M	30.1	+0.0	+0.0	+0.0	+0.0	+0.0	31.1	54.0	-22.9	Horiz
			+0.0	+0.0	+0.0	+31.3					
			+6.2	-37.5	+1.0						
22	227.006M	30.3	+0.0	+0.0	+17.4	+0.0	+0.0	22.4	46.0	-23.6	Horiz
			+0.3	+2.7	-28.3	+0.0					
			+0.0	+0.0							
23	1808.813M	37.8	+0.0	+0.0	+0.0	+0.0	+0.0	29.1	54.0	-24.9	Horiz
			+0.0	+0.0	+0.0	+25.7					
			+3.6	-38.5	+0.5						
24	3.208M	19.6	-40.0	+11.3	+0.0	+0.0	+0.0	-8.8	29.5	-38.3	None
			+0.0	+0.3	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Page 23 of 30 Report No.: FC02-032

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: Medical Data Electronics

Specification: FCC 15.242 (c)(15.209) >30 MHz

Work Order #: 78635 Date: 04/09/2002
Test Type: Maximized Emissions Time: 10:19:06
Equipment: Medical Transmitter Sequence#: 3

Manufacturer: Medical Data Electronics Tested By: Eddie Wong

Model: DS-1 S/N: 1402-1003

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Medical Transmitter*	Medical Data Electronics	DS-1	1402-1003

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Battery operated, handheld medical Transmitter placed on the wooden table. EUT is set in continuos transmission mode. All 4 patient leads connected to a simulator. TX=611.00~MHz. Spec limit: Fundamental: 200mV/m at 3 meter = 106~dBuV. Out of band: 0.009-0.490~MHz = <math>2400/F(kHz)~uV/m @ 300m = 48.5dBuV - 13.8dBuV @ 300m. 0.490-1.705~MHz = <math>24000/F(kHz)~uV/m @ 30m = 33.8dBuV - 22.9dBuV @ 30m. 1.705-30~MHz = <math>30uV/m @ 30m = 29.5dBuV @ 30m. 30-88~MHz = <math>100uV/m @ 3m = 40.0dBuV @ 3m. 88-216MHz = <math>150uV/m @ 3m = 43.5dBuV @ 3m. 216-960MHz = <math>200uV/m @ 3m = 46.0~dBuV @ 3m. Above 960~MHz = <math>500uV/m @ 3m = 54.0dBuV @ 3m. Measurement 3m = 54.0dBuV @ 3m. Measurement 3m = 54.0dBuV @ 3m. Measurement 3m = 54.0dBuV @ 3m = 54.0dBuV @

Transducer Legend:

 T1=15.31 40dB/Dec Correction
 T2=Active Loop Antenna

 T3=Bicon 092401
 T4=Log 331 092401

 T5=Cable #10 071601
 T6=Cable #15 120602

 T7=Preamp 8447D 090501
 T8=Horn Antenna sn6246

T9=Heliax #18 70' 11Sept2001 T10=HP3017A sn3123A00281 11-Sept-01

T11=1.5GHz High Pass Filter, A/N 01415

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	S	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	650.999M	39.9	+0.0	+0.0	+0.0	+20.9	+0.0	38.5	46.0	-7.5	Horiz
			+0.4	+5.1	-27.8	+0.0					
			+0.0	+0.0	+0.0						
2	610.983M	101.9	+0.0	+0.0	+0.0	+19.3	+0.0	98.5	106.0	-7.5	Horiz
			+0.4	+4.9	-28.0	+0.0			Fundamen	tal	
			+0.0	+0.0	+0.0						
3	610.995M	99.8	+0.0	+0.0	+0.0	+19.3	+0.0	96.4	106.0	-9.6	Horiz
			+0.4	+4.9	-28.0	+0.0			Fundamen	tal, third	
			+0.0	+0.0	+0.0				orthogonal	side	

Page 24 of 30 Report No.: FC02-032

4	650.998M	37.1	+0.0	+0.0	+0.0	+20.9	+0.0	35.7	46.0	-10.3	Horiz
			$+0.4 \\ +0.0$	+5.1 +0.0	-27.8 +0.0	+0.0			Third ortho	ogonai	
5	1221.987M	55.8	+0.0	+0.0	+0.0	+0.0	+0.0	43.3	54.0	-10.7	Horiz
			+0.0	+0.0	+0.0	+24.2					
			+2.9	-39.6	+0.0						
6	630.994M	36.1	+0.0	+0.0	+0.0	+20.1	+0.0	33.7	46.0	-12.3	Horiz
			+0.4	+5.0	-27.9	+0.0					
			+0.0	+0.0	+0.0						
7	610.976M	97.1	+0.0	+0.0	+0.0	+19.3	+0.0	93.7	106.0	-12.3	Vert
			+0.4	+4.9	-28.0	+0.0			Fundament	tal	
			+0.0	+0.0	+0.0						
8	670.994M	33.5	+0.0	+0.0	+0.0	+21.7	+0.0	32.8	46.0	-13.2	Horiz
			+0.4	+5.1	-27.9	+0.0					
			+0.0	+0.0	+0.0						
9	630.983M	35.2	+0.0	+0.0	+0.0	+20.1	+0.0	32.8	46.0	-13.2	Vert
			+0.4	+5.0	-27.9	+0.0					
			+0.0	+0.0	+0.0						
10	305.476M	33.6	+0.0	+0.0	+0.0	+22.1	+0.0	31.0	46.0	-15.0	Horiz
			+0.3	+3.3	-28.3	+0.0					
			+0.0	+0.0	+0.0						
11	659.983M	30.9	+0.0	+0.0	+0.0	+21.2	+0.0	29.8	46.0	-16.2	Horiz
			+0.4	+5.1	-27.8	+0.0					
			+0.0	+0.0	+0.0						
12	1832.972M	45.9	+0.0	+0.0	+0.0	+0.0	+0.0	37.5	54.0	-16.5	Vert
			+0.0	+0.0	+0.0	+25.8					
			+3.6	-38.4	+0.6						
13	305.504M	31.8	+0.0	+0.0	+0.0	+22.1	+0.0	29.2	46.0	-16.8	Vert
			+0.3	+3.3	-28.3	+0.0					
			+0.0	+0.0	+0.0						
14	1221.993M	49.6	+0.0	+0.0	+0.0	+0.0	+0.0	37.1	54.0	-16.9	Vert
			+0.0	+0.0	+0.0	+24.2					
			+2.9	-39.6	+0.0						
15	651.000M	30.0	+0.0	+0.0	+0.0	+20.9	+0.0	28.6	46.0	-17.4	Vert
			+0.4	+5.1	-27.8	+0.0					
1.0	152456734	16.3	+0.0	+0.0	+0.0	. 0 0	. 0. 0	26.4	F 4 O	17.6	TT. *
16	1534.567M	46.2	+0.0	+0.0	+0.0	+0.0	+0.0	36.4	54.0	-17.6	Horiz
			+0.0	+0.0	+0.0	+24.7					
17	670 09 <i>C</i> M	20.1	+3.4	-38.8	+0.9	1217	100	20.4	46.0	17.6	V4
17	670.986M	29.1	+0.0	+0.0	+0.0	+21.7	+0.0	28.4	46.0	-17.6	Vert
			+0.4	+5.1	-27.9	+0.0					
10	620.05014	21 1	+0.0	+0.0	+0.0	+10.7	100	20.2	46.0	17.0	II.e.::-
18	620.950M	31.1	+0.0	+0.0	+0.0	+19.7	+0.0	28.2	46.0	-17.8	Horiz
			+0.4	+5.0	-28.0	+0.0					
10	616 492N	21.2	+0.0	+0.0	+0.0	10.6	100	20.2	46.0	17.0	II.e.::-
19	616.483M	31.2	+0.0	+0.0	+0.0	+19.6	+0.0	28.2	46.0	-17.8	Horiz
			+0.4	+5.0	-28.0	+0.0					
			+0.0	+0.0	+0.0						

Page 25 of 30 Report No.: FC02-032

20	213.454M	30.7	+0.0	+0.0	+17.1	+0.0	+0.0	22.5	43.5	-21.0	Vert
			+0.3	+2.7	-28.3	+0.0					
			+0.0	+0.0	+0.0						
21	1826.005M	39.0	+0.0	+0.0	+0.0	+0.0	+0.0	30.6	54.0	-23.4	Vert
			+0.0	+0.0	+0.0	+25.8					
			+3.6	-38.4	+0.6						
22	18.750M	15.6	-40.0	+10.4	+0.0	+0.0	+0.0	-13.2	29.5	-42.7	None
			+0.0	+0.8	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Page 26 of 30 Report No.: FC02-032

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: Medical Data Electronics

Specification: FCC 15.242(c)

Work Order #: 78635 Date: 04/09/2002
Test Type: Maximized Emissions Time: 10:12:00
Equipment: Medical Transmitter Sequence#: 1

Manufacturer: Medical Data Electronics Tested By: Eddie Wong

Model: DS-1 S/N: 1402-1003

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Medical Transmitter*	Medical Data Electronics	DS-1	1402-1003

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Battery operated, handheld medical Transmitter placed on the wooden table. EUT is set in continuos transmission mode. All 4 patient leads connected to a simulator. TX = 613.9875.000 MHz. Spec limit: Fundamental: 200mV/m at 3 meter = 106 dBuV. Out of band: 0.009-0.490 MHz = 2400/F(kHz) uV/m @ 300m = 48.5dBuV - 13.8dBuV @ 300m. 0.490-1.705 MHz = 24000/F(kHz) uV/m @ 30m = 33.8dBuV - 22.9dBuV @ 30m. 1.705-30 MHz = 30uV/m @ 30m = 29.5 dBuV @ 30m. 30-88 MHz = 100uV/m @ 3m = 40.0dBuV @ 3m. 88-216MHz = 150uV/m @ 3m = 43.5dBuV @ 3m. 216-960MHz = 200uV/m @ 3m = 46.0 dBuV @ 3m. Above 960 MHz = 500uV/m @ 3m = 54.0dBuV @ 3m. Measurement BW 9-150 kHz: RBW=VBW=200kHz. 150KHz-30 MHz: RBW=VBW=9kHz. 30MHz-1000MHz: RBW=VBW=120kHz. 1000MHz-7000MHz: RBW=VBW=100MHz. 1000MHz-1000MHz: RBW=VBW=100MHz. 1000MHz-

Transducer Legend:

T1=15.31 40dB/Dec Correction	T2=Active Loop Antenna
T3=Log 331 092401	T4=Cable #10 071601
T5=Cable #15 120602	T6=Preamp 8447D 090501
T7=Horn Antenna sn6246	T8=Heliax #18 70' 11Sept2001
T9=HP3017A sn3123A00281 11-Sept-01	T10=1.5GHz High Pass Filter, A/N 01415

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	613.995M	103.4	+0.0	+0.0	+19.5	+0.4	+0.0	100.3	106.0	-5.7	Horiz
			+5.0	-28.0	+0.0	+0.0			Fundament	tal, third	
			+0.0	+0.0					orthogonal	side	
2	613.965M	99.6	+0.0	+0.0	+19.5	+0.4	+0.0	96.5	106.0	-9.5	Horiz
			+5.0	-28.0	+0.0	+0.0			Fundament	tal	
			+0.0								
3	3683.908M	43.4	+0.0	+0.0	+0.0	+0.0	+0.0	44.4	54.0	-9.6	Vert
			+0.0	+0.0	+31.4	+6.2					
			-37.5	+0.9							
4	654.006M	36.7	+0.0	+0.0	+21.0	+0.4	+0.0	35.4	46.0	-10.6	Horiz
			+5.1	-27.8	+0.0	+0.0					
			+0.0								

Page 27 of 30 Report No.: FC02-032

5	633.976M	36.3	+0.0	+0.0	+20.3	+0.4	+0.0	34.1	46.0	-11.9	Horiz
			+5.0	-27.9	+0.0	+0.0					
	1007.0743.4	50.0	+0.0	. 0. 0	. 0. 0	. 0. 0	. 0. 0	10.5	540	10.5	X7 .
6	1227.974M	52.9	+0.0	+0.0	+0.0	+0.0	+0.0	40.5	54.0	-13.5	Vert
			+0.0	+0.0	+24.2	+3.0					
7	C12.0CCM	05.5	-39.6	.00	. 10.5	+0.4	.00	02.4	1060	12.6	Vt
7	613.966M	95.5	+0.0	+0.0	$+19.5 \\ +0.0$	+0.4 +0.0	+0.0	92.4	106.0	-13.6	Vert
			+5.0 +0.0	-28.0	+0.0	+0.0			Fundament	lai	
8	306.990M	34.3	+0.0	+0.0	+21.9	+0.3	+0.0	31.5	46.0	-14.5	Horiz
0	300.990M	34.3	+3.3	-28.3	+21.9	+0.5	+0.0	31.3	46.0	-14.3	попх
			+0.0	-20.3	+0.0	+0.0					
0	3683.926M	38.1	+0.0	+0.0	+0.0	+0.0	+0.0	39.1	54.0	-14.9	Horiz
7	3063.720WI	30.1	+0.0	+0.0	+31.4	+6.2	+0.0	37.1	34.0	-14.7	HOHZ
			-37.5	+0.9	131.7	10.2					
10	1227.880M	51.2	+0.0	+0.0	+0.0	+0.0	+0.0	38.8	54.0	-15.2	Horiz
10	1227.000141	31.2	+0.0	+0.0	+24.2	+3.0	10.0	30.0	34.0	13.2	HOHZ
			-39.6	+0.0		15.0					
11	2845.362M	41.5	+0.0	+0.0	+0.0	+0.0	+0.0	38.1	54.0	-15.9	Vert
11	2013.302111	11.5	+0.0	+0.0	+29.3	+4.6	10.0	30.1	2 1.0	10.7	, 611
			-38.0	+0.7	,						
12	1841.965M	46.3	+0.0	+0.0	+0.0	+0.0	+0.0	38.0	54.0	-16.0	Horiz
			+0.0	+0.0	+25.9	+3.6					
			-38.4	+0.6							
13	1841.967M	46.1	+0.0	+0.0	+0.0	+0.0	+0.0	37.8	54.0	-16.2	Vert
			+0.0	+0.0	+25.9	+3.6					
			-38.4	+0.6							
14	653.982M	30.9	+0.0	+0.0	+21.0	+0.4	+0.0	29.6	46.0	-16.4	Vert
			+5.1	-27.8	+0.0	+0.0					
			+0.0								
15	633.980M	31.7	+0.0	+0.0	+20.3	+0.4	+0.0	29.5	46.0	-16.5	Vert
			+5.0	-27.9	+0.0	+0.0					
			+0.0								
16	1759.703M	45.6	+0.0	+0.0	+0.0	+0.0	+0.0	36.7	54.0	-17.3	Horiz
			+0.0	+0.0	+25.6	+3.6					
			-38.5	+0.4							
17	307.001M	31.5	+0.0	+0.0	+21.9	+0.3	+0.0	28.7	46.0	-17.3	Vert
			+3.3	-28.3	+0.0	+0.0					
			+0.0								
18	624.091M	28.3	+0.0	+0.0	+19.9	+0.4	+0.0	25.6	46.0	-20.4	Vert
			+5.0	-28.0	+0.0	+0.0					
			+0.0								
19	19.518M	15.3	-40.0	+10.3	+0.0	+0.0	+0.0	-13.6	29.5	-43.1	None
			+0.8	+0.0	+0.0	+0.0					
			+0.0								

Page 28 of 30 Report No.: FC02-032

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: Medical Data Electronics
Specification: FCC 15.109 Class B

 Work Order #:
 78635
 Date: 04/09/2002

 Test Type:
 Maximized Emissions
 Time: 10:19:06

Equipment: Medical Transmitter Sequence#: 3

Manufacturer: Medical Data Electronics Tested By: Eddie Wong

Model: DS-1 S/N: 1402-1003

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Medical Transmitter*	Medical Data Electronics	DS-1	1402-1003

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Battery operated, handheld medical Transmitter placed on the wooden table. EUT is set in continuos transmission mode. All 4 patient leads connected to a simulator. TX= 611.00 MHz. Spec limit: 30-88 MHz = 100uV/m @3m = 40.0dBuV @3m. 88-216MHz = 150uV/m @3m = 43.dBuV @3m. 216-960MHz = 200uV/m @3m = 46.0dBuV @3m. Above 960 MHz = 500uV/m @3m = 54.0 dBuV @3m. Measurement BW 30MHz-1000MHz: RBW=VBW=120KHz 1000MHz-7000MHz: RBW=VBW=1MHz. 17°C, 66% relative humidity.

Transducer Legend:

T1=Bicon 092401 T2=Log 331 092401 T3=Cable #10 071601 T4=Cable #15 120602 T5=Preamp 8447D 090501 T6=Horn Antenna sn6246

T7=Heliax #18 70' 11Sept2001 T8=HP3017A sn3123A00281 11-Sept-01

T9=1.5GHz High Pass Filter, A/N 01415

Measurement Data:		Reading listed by margin.				Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
			T5	T6	T7	T8						
			T9									
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	650.999M	39.9	+0.0	+20.9	+0.4	+5.1	+0.0	38.5	46.0	-7.5	Horiz	
			-27.8	+0.0	+0.0	+0.0						
			+0.0									
2	650.998M	37.1	+0.0	+20.9	+0.4	+5.1	+0.0	35.7	46.0	-10.3	Horiz	
			-27.8	+0.0	+0.0	+0.0			Third orthogonal			
			+0.0						side			
3	1221.987M	55.8	+0.0	+0.0	+0.0	+0.0	+0.0	43.3	54.0	-10.7	Horiz	
			+0.0	+24.2	+2.9	-39.6						
			+0.0									
4	630.994M	36.1	+0.0	+20.1	+0.4	+5.0	+0.0	33.7	46.0	-12.3	Horiz	
			-27.9	+0.0	+0.0	+0.0						
			+0.0									
5	670.994M	33.5	+0.0	+21.7	+0.4	+5.1	+0.0	32.8	46.0	-13.2	Horiz	
			-27.9	+0.0	+0.0	+0.0						
			+0.0									

Page 29 of 30 Report No.: FC02-032

6	630.983M	35.2	+0.0	+20.1	+0.4	+5.0	+0.0	32.8	46.0	-13.2	Vert
			-27.9	+0.0	+0.0	+0.0					
			+0.0								
7	305.476M	33.6	+0.0	+22.1	+0.3	+3.3	+0.0	31.0	46.0	-15.0	Horiz
			-28.3	+0.0	+0.0	+0.0					
			+0.0								
8	659.983M	30.9	+0.0	+21.2	+0.4	+5.1	+0.0	29.8	46.0	-16.2	Horiz
			-27.8	+0.0	+0.0	+0.0					
			+0.0								
9	1832.972M	45.9	+0.0	+0.0	+0.0	+0.0	+0.0	37.5	54.0	-16.5	Vert
			+0.0	+25.8	+3.6	-38.4					
			+0.6								
10	305.504M	31.8	+0.0	+22.1	+0.3	+3.3	+0.0	29.2	46.0	-16.8	Vert
			-28.3	+0.0	+0.0	+0.0					
			+0.0								
11	1221.993M	49.6	+0.0	+0.0	+0.0	+0.0	+0.0	37.1	54.0	-16.9	Vert
			+0.0	+24.2	+2.9	-39.6					
			+0.0								
12	651.000M	30.0	+0.0	+20.9	+0.4	+5.1	+0.0	28.6	46.0	-17.4	Vert
			-27.8	+0.0	+0.0	+0.0					
			+0.0								
13	1534.567M	46.2	+0.0	+0.0	+0.0	+0.0	+0.0	36.4	54.0	-17.6	Horiz
			+0.0	+24.7	+3.4	-38.8					
			+0.9								
14	670.986M	29.1	+0.0	+21.7	+0.4	+5.1	+0.0	28.4	46.0	-17.6	Vert
			-27.9	+0.0	+0.0	+0.0					
			+0.0							1=0	
15	620.950M	31.1	+0.0	+19.7	+0.4	+5.0	+0.0	28.2	46.0	-17.8	Horiz
			-28.0	+0.0	+0.0	+0.0					
4.5	51 5 10 3 5	21.2	+0.0	10.5				20.2	4.6.0	150	** .
16	616.483M	31.2	+0.0	+19.6	+0.4	+5.0	+0.0	28.2	46.0	-17.8	Horiz
			-28.0	+0.0	+0.0	+0.0					
17	010 4543 6	20.7	+0.0	. 0. 0	. 0. 2	. 2.7	. 0. 0	22.5	12.5	21.0	X7 .
17	213.454M	30.7	+17.1	+0.0	+0.3	+2.7	+0.0	22.5	43.5	-21.0	Vert
			-28.3	+0.0	+0.0	+0.0					
10	1026 00534	20.0	+0.0	.0.0	. 0. 0	.00	. 0. 0	20.6	540	22.4	XIt
18	1826.005M	39.0	+0.0	+0.0	+0.0	+0.0	+0.0	30.6	54.0	-23.4	Vert
			+0.0	+25.8	+3.6	-38.4					
			+0.6								

Page 30 of 30 Report No.: FC02-032