Intermec Technologies Corporation

Simultaneous Transmission - FCC Part 22H & Part 24E

Testing for Class II Permissive Change of FCC ID: EHASMC46 to authorize co-location with FCC ID: EHA2610CF and FCC ID: EHABTS080

700C configured with three internal radio modules:
GSM (FCC ID: EHASMC46)
802.11b/g (FCC ID: EHA2610CF)
Bluetooth (FCC ID: EHABTS080)

March 30, 2005

Report No. ITRM0073.4

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2004 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: March 30, 2005
Intermec Technologies Corporation

700C configured with three internal radio modules:

GSM (FCC ID: EHASMC46) 802.11b/g (FCC ID: EHA2610CF) Bluetooth (FCC ID: EHABTS080)

	Emissions		
Specification	Test Method	Pass	Fail
FCC 22.917(a) and FCC 24.238(a) Spurious Radiated Emissions:2004	TIA/EIA 603-B:2001	\boxtimes	
(Simultaneous Transmit)			

Modifications made to the product See the Modifications section of this report

Test Facility

• The measurement facility used to collect the data is located at:

Northwest EMC, Inc 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

Somula Manager

Don Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0, 200630-0, and 200676-0.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP)

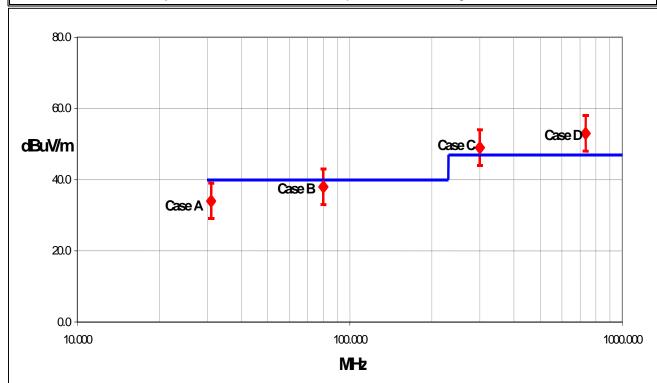
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Nos. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761)*

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

Measurement Uncertainty

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability	Bico	nical	Log Pe	eriodic	D	ipole
	Distribution Antenna Antenna		An	tenna			
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty uc(y)	normal	1.05
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U	normal (k = 2)	2.10
(level of confidence ≈ 95 %)	Horriai (K = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Revision 10/3/03

Party Requesting the Test	
Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Scott Holub
Model:	700C configured with three internal radio modules: GSM (FCC ID: EHASMC46) 802.11b/g (FCC ID: EHA2610CF) Bluetooth (FCC ID: EHABTS080)
First Date of Test:	2-7-2005
Last Date of Test:	3-16-2005
Receipt Date of Samples:	2-2-2005
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided at the time of test.
I/O Ports:	Serial

Functional Description of the EUT (Equipment Under Test):

Intermec's Handheld Computer, Model 700C was configured with three co-located radios. The 700C contained a GSM radio (FCC ID: EHASMC46), an 802.11(b)/(g) radio (FCC ID: EHA2610CF), and a Bluetooth radio (FCC ID: EHABTS080).

Client Justification for EUT Selection:

Not Provided

Client Justification for Test Selection:

This test demonstrated compliance with FCC Part 22H and Part 24E emissions limits while the co-located radios were transmitting simultaneously. Each radio transmits through its own antenna. This report will be used as part of a Class II Permissive Change to authorize the co-location of an 802.11b/g radio and Bluetooth radio with the GSM radio.

EUT Photo

Modifications

		E	Equipment modificat	ions	
Item	Test	Date	Modification	Note	Disposition of EUT
1	Spurious Radiated Emissions	02/07/2005 thru 03/16/2005	No EMI suppression devices were added or modified during this test.	Same configuration as received from client.	EUT remained at Northwest EMC.

Justification

Intermec's Handheld Computer, Model 700C was configured with three co-located radios. The 700C contained a GSM radio (FCC ID: EHASMC46), an 802.11(b)/(g) radio (FCC ID: EHA2610CF), and a Bluetooth radio (FCC ID: EHABTS080). This test demonstrated compliance with FCC Part 22H and Part 24E emissions limits while the co-located radios were transmitting simultaneously. Each radio transmits through its own antenna.

All possible combinations of harmonic emissions from the GSM, 802.11(b)/(g), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. All the radios were configured for simultaneous transmission at the channels specified below.

Channels in Specified Band Investigated:			
802.11(b):	1,11		
GSM (Cellular):	140, 141, 191, 202		
GSM (PCS):	516, 606		
Bluetooth:	2, 11, 67, 80		

Operating Modes Investigated:
Bluetooth Radio in PW40 with 700C in cradle:
Simultaneous transmission of Bluetooth Channel 11, 802.11(b) Channel 1, & GSM PCS Channel 516
Simultaneous transmission of Bluetooth Channel 67, 802.11(b) Channel 11, & GSM PCS Channel 516
Simultaneous transmission of Bluetooth Channel 2, 802.11(b) Channel 1, & GSM PCS Channel 606
Simultaneous transmission of Bluetooth Channel 80, 802.11(b) Channel 11, & GSM PCS Channel 606
Simultaneous transmission of Bluetooth Channel 11, 802.11(b) Channel 1, & GSM cellular Channel 202
Simulteneous transmission of Bluetooth Channel 5, 802.11(b) Channel 1, & GSM cellular Channel 191
Simultaneous transmission of Bluetooth Channel 79, 802.11(b) Channel 11, & GSM cellular Channel 141
Simultaneous transmission of Bluetooth Channel 79, 802.11(b) Channel 11, & GSM cellular Channel 140

Antennas Investiga	ated:
802.11(b):	Folded Monopole internal to 700C, P/N 805-608-104
GSM:	Tri-band Antenna external to 700C, P/N 805-624-001
Bluetooth:	Chip antenna integral to Bluetooth module inside 700C

Data Rates Investigated:
Maximum

Power Input Settings Investigated:	
120 VAC, 60 Hz.	

Frequency Range Investi	gated		
Start Frequency	1 GHz	Stop Frequency	25 GHz

Spurious Radiated Emissions

Revision 10/1/03

Software\Firmware Appl	ied During Test		
Evension anthurns	Phone	Varaian	Unknown
Exercise software	Blue Test Test Utility	Version	Unknown 0.4
Description	,		

This system was tested using special test software to exercise the functions of the device during the testing such as channels, power, and modulation during simultaneous transmission.

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
Handheld Computer	Intermec Technologies Corporation	700C	18190400041
AC Adapter	Elpac Power Systems	FW1812	014868
GSM Radio in 700C	Intermec Technologies Corporation	SMC46	Unknown
Bluetooth Radio in 700C	Intermec Technologies Corporation	BTS080	Unknown
802.11(b)/(g) radio in 700C	Intermec Technologies Corporation	2601CF	Unknown

Remote Equipment Outside of Test	Setup Boundary		
Description	Manufacturer	Model/Part Number	Serial Number
GSM/DCS/PCS MS Test Set	Hewlett Packard	8922M	3829U02903
GSM/DCS/PCS RF Interface	Hewlett Packard	83220E	3842U05679
Wireless Communications Test Set	Agilent	8960 Series 10 E5515C	QB44051960
Equipment isolated from the EUT so as not to cont	ribute to the measurement res	ult is considered to be outside the t	est setup boundary

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	PA	1.3	PA	Handheld Computer	AC Adapter
AC Power	No	2.0	No	AC Adapter	AC Mains

Measurement Equipmen	nt				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA
Pre-Amplifier	Miteq	JSD4-18002600-26- 8P	APU	10/08/2003	24 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APJ	01/05/2004	13 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo
Attenuator		2082-6148-20	ATE	02/03/2004	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/02/2004	13 mo
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APC	10/08/2003	15 mo
Antenna, Horn	EMCO	3115	AHF	03/18/2004	24 mo
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo
Antenna, Dipole (ADAA included)	Roberts	Roberts	ADA	1/06/2005	24 mo

Test Description

Requirement: Per 2.1053, the field strength of spurious radiation was measured in the far-field at an FCC Listed semi-anechoic chamber up to 25 GHZ. The applicable limits are 22.917(a) for the cellular band, and 24.238(a) for the PCS band.

Per 22.917(a), The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB (-13 dBm).

Per 24.238(a), The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB (-13 dBm).

<u>Configuration:</u> Intermec's Handheld Computer, Model 700C was configured with three co-located radios. The 700C contained a GSM radio (FCC ID: EHASMC46), an 802.11(b)/(g) radio (FCC ID: EHA2610CF), and a Bluetooth radio (FCC ID: EHABTS080). This test demonstrated compliance with FCC Part 22H and Part 24E emissions limits while the co-located radios were transmitting simultaneously. Each radio transmits through its own antenna.

Simultaneous Transmission:

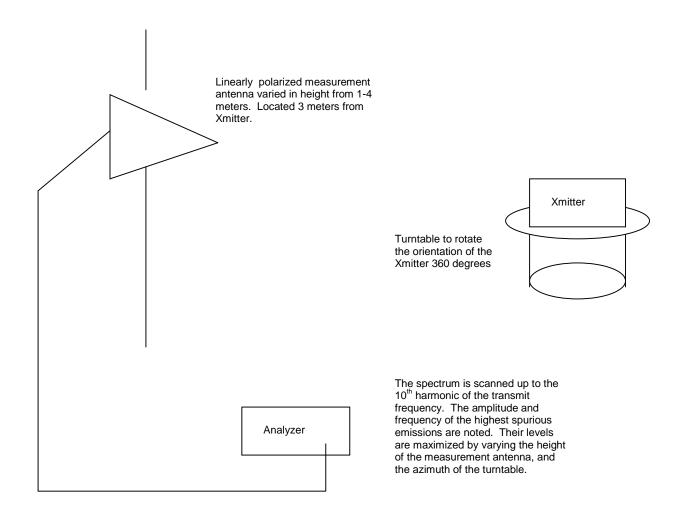
The following is an excerpt from the FCC / TCB Training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer

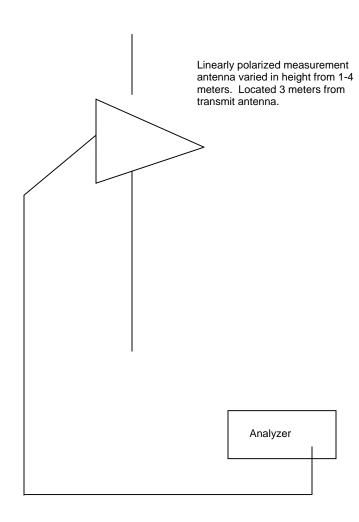
Spurious Radiated Emissions

Revision 10/1/03

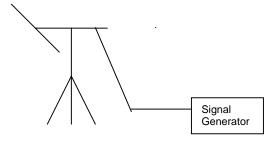
should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.


All possible combinations of harmonic emissions from the GSM, 802.11(b), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. The frequency range from 1 GHz to 25 GHz was investigated for channel combinations that would produce coincidental harmonics.

Test Methodology: For licensed transmitters, the FCC references TIA/EIA 603-B as the measurement procedure standard. TIA/EIA 603-B Section 2.2.12 describes a method for measuring radiated emissions that utilizes an antenna substitution method:


At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the dipole antenna and its gain; the power (ERP or e.i.r.p) is determined for each radiated emission.

Test Setup Diagram


Test Setup for Field Strength Measurements

Test Setup for Power Measurements Utilizing the Antenna Substitution Method

During field strength measurements, the amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole (at the same height) that is successively tuned to each of the highest spurious emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency.

The spectrum analyzer is monitored to verify that the output of the signal generator produces a signal equal in amplitude to a previously measured spurious emission.

Completed by: Holy Arling

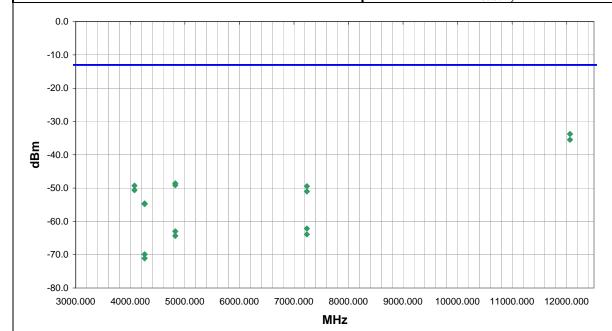
NORTHWEST **Apparent Power Data Sheet EMC** Work Order: ITRM0054 EUT: 2601CF Date: 02/07/05 Serial Number: Unknown Customer: Intermec Technologies Corporation Temperature: 20 Attendees: None Humidity: 34% Cust. Ref. No.: Barometric Pressure 30.24 Tested by: Holly Ashkannejhad Power: 120VAC/60Hz Job Site: EV01 TEST SPECIFICATIONS

Specification: FCC 24.238(a):2004 Method: TIA/EIA 603-B:2001

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS

EUT OPERATING MODES
Bluetooth 11, 802.11b 1, GSM 516 (PCS) on 700C


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS 75 Pass

Other

Holy Aligh Tested By:

_									Compared to	
Freq	Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.	
(MHz)	(degrees)	(meters)				(Watts)	(dBm)	(dBm)	(dB)	
12060.000	239.0	1.3		H-Horn	PK	0.0000	-33.8	-13.0	-20.8	
12060.000	186.0	1.2		V-Horn	PK	0.0000	-35.5	-13.0	-22.5	
4824.000	344.0	1.2		H-Horn	PK	0.0000	-48.6	-13.0	-35.6	
4824.000	116.0	1.5		V-Horn	PK	0.0000	-49.1	-13.0	-36.1	
4075.975	50.0	1.3		H-Horn	PK	0.0000	-49.3	-13.0	-36.3	
7236.000	306.0	1.3		H-Horn	PK	0.0000	-49.4	-13.0	-36.4	
4075.975	47.0	1.3		V-Horn	PK	0.0000	-50.6	-13.0	-37.6	
7236.000	127.0	1.2		V-Horn	PK	0.0000	-51.0	-13.0	-38.0	
4263.005	358.0	1.2		H-Horn	PK	0.0000	-54.6	-13.0	-41.6	
4263.005	288.0	1.2		V-Horn	PK	0.0000	-54.8	-13.0	-41.8	
7236.000	306.0	1.3		H-Horn	AV	0.0000	-62.1	-13.0	-49.1	
4824.000	344.0	1.2		H-Horn	AV	0.0000	-63.0	-13.0	-50.0	
7236.000	127.0	1.2		V-Horn	AV	0.0000	-63.9	-13.0	-50.9	
4824.000	116.0	1.5		V-Horn	AV	0.0000	-64.3	-13.0	-51.3	
4263.005	288.0	1.2		V-Horn	AV	0.0000	-69.9	-13.0	-56.9	
4263.005	358.0	1.2		H-Horn	AV	0.0000	-71.1	-13.0	-58.1	

IORTHWEST		Anne	ront D	ower P	ata S	Shoo	,			ACQ 2005.1.3	I
EMC		Appa	rent P	ower D	ala 3	Snee	5			EMI 2005.1.3	
	JT: 2601CF						V		ITRM0054		
Serial Number							_		02/07/05		
Attende		chnologies Corporat	ion				1e	mperature: Humidity:			•
Cust. Ref. N							Barometri	ic Pressure			
	by: Holly Ashka	nnejhad		Power:	120VAC/6	0Hz		Job Site:			
SPECIFICA											
Specification	on: FCC 24.238(a):2004			Method	TIA/EIA 60	3-B:2001				
LE CALCU		Measured Level + Antenna	Factor + Cable Fac	tor - Amplifior Gain +	Distance Adius	tmont Eactor +	External Attenu	ation			1
		= Measured Level + Transdi					External Attent	auon			
IENTS											
DED 4 TIME											
PERATING th 67, 802.11b	MODES 5 11, GSM 516 (PCS	6) on 700C									
TIONS FRO	OM TEST STAN	IDARD									
ations.									D #		
LTS									Run #	6	1
					1				,		
						. / .	Ale	10	7		
						Holy	John	$\gamma \sim$			
						1100	Tanta	d Dur			
					<u> </u>		Teste	и ву:			1
0.0										7	
-10.0										_	
+										+	
20.0											
-20.0											
-30.0											
-40.0											
-40.0											
								*			
-50.0											
-60.0						3					
00.0											
-70.0					-						
_{-80.0} \perp											
1000.0	000								100	000.000	
	•			B411-					. 50		
				MHz							
		 	1		1				I	Compared to	
Freq		Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.	
		(degrees)	(meters)		11111-	DIC	(Watts)	(dBm)	(dBm)	(dB)	Comr
(MHz)		280.0	1.4		H-Horn V-Horn	PK PK	0.0000	-45.2 -47.3	-13.0 -13.0		EUT ve
(MHz) 7404.0		E40								-,34.,3	EUI OF
7404.00 7404.00	00	54.0 123.0	1.2 1.5								
(MHz) 7404.0	00 07	54.0 123.0 194.0	1.5		V-Horn H-Horn	PK PK	0.0000	-56.7 -57.9	-13.0 -13.0	-43.7	EUT ve
7404.00 7404.00 4319.00	00 07 07	123.0			V-Horn	PK	0.0000	-56.7	-13.0	-43.7 -44.9	EUT ve EUT ve

NORTHWEST EMC		<u> </u>	\pp <u>a</u>	rent	Pow	ver_[Data	a S	Shee	t				Q 2005.1.3 MI 2005.1.3	
	: 2601CF										Vork Order:	ITRMO	054		I
Serial Number										•		02/09/0			1
Customer	: Intermec T	echnologies	Corporati	on						Te	mperature	20]
Attendees											Humidity				
Cust. Ref. No.	: Holly Ashk	rannoihad				Bowe	er: 120V	1 A C /6/	∩U-z	Barometr	ic Pressure Job Site:				
TEST SPECIFICAT		amejnau				FOWE	:I. 120V	AC/0	UTIZ		Job Site.	LVUI			
Specification	FCC 24.23	8(a):2004					Me	ethod:	TIA/EIA 6	03-B:2001					
SAMPLE CALCUL	ATIONS														i
Radiated Emissions										+ External Atten	uation				
Conducted Emissions COMMENTS	s: Adjusted Leve	el = Measured Le	evel + Transdu	icer Factor +	Cable Attenua	tion Factor	+ External	l Attenu	uator						
EUT OPERATING Bluetooth 11, 802.11b	MODES 1, GSM 516 (PC	S) on 700C													
DEVIATIONS FROM No deviations.	M TEST STA	NDARD													
RESULTS												Run#			1
Pass													77		l
Other							_								1
									Holy	Teste	d By:	<i>)</i>			
0.0				1										1	
-10.0														_	
-20.0														-	
-30.0														-	
-40.0			*											-	
-50.0															
-60.0															
-70.0															
-80.0	5000.000	10000.00	00 1500	00.000	20000.000	2500	0.000	300	000.000	35000.000	40000	.000	4500	0.000	
Freq (MHz)			Azimuth (degrees)	Height (meters)				arity	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Li	imit)	ompared to Spec. (dB)	Com
14472.000 14472.000			230.0 219.0	1.3 1.2				Horn Horn	PK PK	0.0000 0.0000	-39.1 -40.0		3.0 3.0		EUT ho

NORTHWEST EMC		Ap	paren	t Pow	er Da	ata S	Shee	t			.CQ 2005.1.3 EMI 2005.1.3
	UT: 2601CF								ork Order	ITRM0054	
	ber: Unknown							•		02/09/05	
	ner: Intermec Te	chnologies Co	rnoration					Ten	nperature:		
	ees: None	Jointologico Go	· porution						Humidity:		
Cust. Ref.								Barometric	_		
	by: Holly Ashka	anneihad			Power: 1	20VAC/60)Hz	Darometri	Job Site:		
TEST SPECIFIC		armejnaa			1 OWCI .	20171070	71 IE		oob oite.	2401	
	ion: FCC 24.238	(a):2004				Method:	TIA/EIA 60)3-B:2001			
	ions: Field Strength =							+ External Attenu	uation		
Conducted Emissi COMMENTS	ions: Adjusted Level	= Measured Level +	Transducer Factor	r + Cable Attenuati	ion Factor + Ex	ternal Attenu	ator				
EUT OPERATIN Bluetooth 67, 802.1	IG MODES 1b 11, GSM 516 (PC	S) on 700C									
No deviations.	ROM TEST STAI	NDARD								Dun #	
RESULTS Pass										Run #)
Other											
							Holy	Addi		<i>)</i> 	
0.0											7
-10.0											
-20.0											
-30.0											
-40.0			•								
-50.0											
-60.0											
-70.0											_
-80.0	5000 000	40000 000	45000.000	00000 000	05000.00	00 000	00.000	25000 222	40000	000 450	00.000
0.000	5000.000	10000.000	15000.000	20000.000	25000.00	υυ 300 	00.000	35000.000	40000.		00.000
Freq (MHz) 14808.	000	(deg	nuth Height (meters)	.0		Polarity H-Horn	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB) -26.1
14808.				.u .2		V-Horn	PK PK	0.0000	-39.1	-13.0	-26. -26.4

NORTHWEST EMC		Ap	paren	t Pow	er Da	ata S	Shee	t			ICQ 2005.1.3 EMI 2005.1.3
EMC Apparent Power Data Sheet EUT: 2601CF Work Order: ITRM0054 Serial Number: Unknown Date: 02/09/05 Customer: Intermec Technologies Corporation Temperature: 20 Attendees: None Humidity: 33% Cust. Ref. No.: Barometric Pressure 30.14											
EUT: 2601CF Work Order: ITRM0054 Serial Number: Unknown Date: 02/09/05 Customer: Intermec Technologies Corporation Temperature: 20 Attendees: None Humidity: 33%											
EUT: 2601CF Work Order: ITRM0054											
								Barometric	•		
		annejhad			Power: 1	20VAC/60)Hz		Job Site:	EV01	
		(a):2004				Mothod	TIA/EIA 6	2 P.2004			
Specification	OII. FCC 24.238	(a):2004				wethou.	IIA/EIA 6	J3-B:2001			
SAMPLE CALC	JLATIONS										
	_			-		-		+ External Attenu	ation		
	ons: Adjusted Level	= Measured Level +	Transducer Factor	+ Cable Attenuation	on Factor + Ext	ternal Attenu	ator				
EUT OPERATING		on 700C									
DEVIATIONS FR lo deviations. RESULTS	OM TEST STAI	NDARD								Run #	
Pass										80)
Other	_										
							Holy	Tested	By:		
-10.0											
-20.0											
-30.0											
-40.0											
-50.0											
-60.0											
-70.0											
-80.0											
0.000	5000.000	10000.000	15000.000	20000.000	25000.00	00 300	00.000	35000.000	40000.		00.000 Compared t
Freq (MHz) 16821.0		(deg	nuth Height (meters)	2		Polarity V-Horn	Detector	EIRP (Watts) 0.0000	EIRP (dBm) -37.1	Spec. Limit (dBm) -13.0	Spec. (dB)
16821.0	000		279.0 1.	3		H-Horn	PK	0.0000	-37.6	-13.0	-24.

NORTHWEST **Apparent Power Data Sheet EMC** EUT: 2601CF Work Order: ITRM0054 Serial Number: Unknown Date: 02/09/05 Customer: Intermec Technologies Corporation Temperature: 20 Attendees: None Humidity: 34% Cust. Ref. No.: Barometric Pressure 30.24 Tested by: Holly Ashkannejhad Power: 120VAC/60Hz Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 24.238(a):2004 Method: TIA/EIA 603-B:2001 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator **EUT OPERATING MODES** Bluetooth 11, 802.11b 1, GSM 516 (PCS) on 700C DEVIATIONS FROM TEST STANDARD RESULTS 81 Pass Other Holy Saling Tested By: 0.0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 10000.000 15000.000 20000.000 25000.000 30000.000 40000.000 0.000 5000.000 35000.000 45000.000 Compared to Azimuth Height Polarity EIRP EIRP Spec. Limit Freq Detector (dBm) (degrees) (meters) (Watts) (dBm) (dB) (MHz) 23612.000 239.0 V-High Horr 0.0000 -35.9 -13.0 -22.9 23612.000 281.0 H-High Horr PΚ 0.0000 -40.2 -13.0 -27.2 19310.000 306.0 V-High Horr PΚ 0.0000 -42.7 -13.0 -29.7 1.1 19310.000 H-High Horr 0.0000 -43.8 -30.8 84.0 1.1 -13.0 19674.000 245.0 V-High Horr PΚ 0.0000 -44.0 -13.0 -31.0 1.1 19296.000 V-High Horr PΚ -44.1 360.0 0.0000 -13.0 -31.1 1.0 19674.000 299.0 H-High Horr PΚ 0.0000 -45.8 -32.8

1.1

1.0

H-High Horr

PΚ

0.0000

-1.0

19296.000

-13.0

-13.0

-33.6

-46.6

NORTH EN							A	۱þ	p	a	r	er	nt		P	0	W	e	r	D)	at	a	S	Sh	е	e	t											2005.1.3 2005.1.3
		T: 260	1CF																												Wo	rk O	rder	r: T	٦R	1004	54		
Seria	al Numbe			/n																											.,,			_		2/05			
	Custom				chr	nolo	aies	s Co	orpo	orat	ion	1																		1	[emi	pera		_					
	Attende						<u> </u>																									lum		_					
Cust	t. Ref. N	o.:																										E	Baro	me	tric	Pres	sur	е 3	0.0	1			
	Tested b			shka	anne	ejha	d												Ро	wer	: 1	20\	VAC	:/60	Hz							Job	Site	: E	V01	l			
TEST SPE																																							
Spe	CALCU			917	(a):2	2004	1															М	etho	od:	TIA	/EI/	4 60)3-E	3:20	01									
	d Emissio	ns: Field	Strer																							t Fac	ctor -	+ Ex	terna	l Att	enua	ition							
COMMEN	TS																																						
EUT OPE				(cellu	ular)	on 70	00C																																
DEVIATION No deviation		ом те	ST S	TAI	NDA	RD																																	
RESULTS																																		ь	un	#			
Pass	,																																		un	#	92	2	
Other																					T													_					
																									4	8	ly	/	J.	l est	ted	A By:		<i>2</i> _					
																																							i i
0.0 -																				1					T													7	
-10.0 -																																							
10.0																																							
-20.0 -																																							
-30.0 -																																							
-40.0 -																																							
-50.0 -					:																																		
-60.0 -																																							
-70.0 -																																							
-80.0										<u> </u>				_																								_	
0.0	000	500	0.00	0	10	0000	0.00	00	1	500	0.00	000		20	000	0.0	00		250	000	.00	00	3	300	00.0	000		350	000.	.00	0	40	000	0.00	00	4			000
Fro									muth			leigh neter										Po	olarity	′	De	etect	or		EIRF (Watt			EIR (dB)		\$. Lim 3m)			npared to Spec. (dB)
	4823.9								258				1.1										Hor			PK			0.0				47.			-13			-34.1
	4823.9								288				1.6										Horr			PK			0.0				47.			-13			-34.3
	7236.0								230				1.3										Hori			PK			0.0				48.			-13			-35.7
	7236.0								232				1.6										Horr			PK			0.0				49.8			-13			-36.8 -36.9
	4075.9° 4075.9°								237 268				1.1 1.3										Hori Hori			PK PK			0.0				49.9 51.0			-13 -13			-36.9

NORTH EN	HWEST				A	þ	oa	re	n	: [2 0	W	е	r	D	at	a S	Sh	ee	et									2005.1.3 2005.1.3
		г: 2601CF																				W	/ork	Orde	r: 17	ΓRΜ	0054		
Seria		r: Unknov																							_	3/12			
		r: Interme	c Tec	hnol	ogies	Corp	orat	ion						-								Te		ratur					
	Attendees																							midit	-				
	t. Ref. No		-1-1	il-								_		D		4201	/ A C /C	011-			Baror	metri		essu					
TEST SPE		Y: Holly A	SiiKal	mejn	au									row	er:	1∠U\	/AC/6	UMZ					Jo	b Site	e: E	vU1			
Spe	ecification	1: FCC 22	.917(a	a):200)4											M	ethod:	TIA/	EIA 6	03-E	3:200	01							
SAMPLE	CALCUL	ATIONS																											
		s: Field Stre	-																Factor	r + Ex	ternal	Atten	uatio	n					
COMMEN		s: Adjusted I	Level =	weasu	irea Lev	vei + i	ransa	ucer F	actor -	- Cai	DIE ATT	enuat	ion F	acto	T + E	externa	ai Atteni	uator											
EUT OPE Bluetooth 7			1 (cellu	ılar) or	1 700C																								
DEVIATION No deviation	ns.	M TEST S	STAN	DARI)																								
RESULTS	5																								R	un i			
Pass																											9	3	
Other																		<u> </u>	, li) /					0			_	
																					Т	este	d By	r:					
0.0 -											-				1			_							1		$\overline{}$	7	
-10.0 -																													
													_		+	++							_		.				
-20.0 -															\perp								_					-	
-30.0															+														
-40.0															+												-		
50.0			•																										
-50.0 -															T														
		*																											
-60.0																													
-00.0																													
		•																											
-70.0															1														
-80.0																													
0.0	000	5000.00	00	1000	00.00	0	1500	00.00	00	20	000.0	000	2	2500	0.0	000	300	0.00	00	35	000.	000	2	1000	0.00	00	450	000	.000
_																_													npared to
	ed.					Azimu (degre			ight ters)							Po	larity	De	tector		EIRP (Watts			IRP Bm)	15	Spec. dB)	Limit		Spec. (dB)
(M	Hz) 7386.21	0			1 '		es) 76.0	(ille	ters) 1.2	<u> </u>						\/_I	Horn	<u> </u>	PK		0.00		(0	-46.	3		-13.0	<u> </u>	-33.3
	7386.21						19.0		1.6								Horn		PK		0.00			-46.			-13.0		-33.8
	4959.96						36.0		1.3								Horn		PK		0.00			-51.			-13.0		-38.6
	4959.96						13.0		1.3								Horn		PK		0.00			-51.			-13.0		-38.9
	4175.96						33.0		1.1								Horn		PK		0.00			-52.			-13.0		-39.1
	4175.96						76.0		1.2								Horn		PK		0.00			-53.			-13.0		-40.7
	4959.96	3				1	13.0		1.3	3						V-I	Horn		ΑV		0.00	000		-65.	.8		-13.0		-52.8

4959.963

86.0

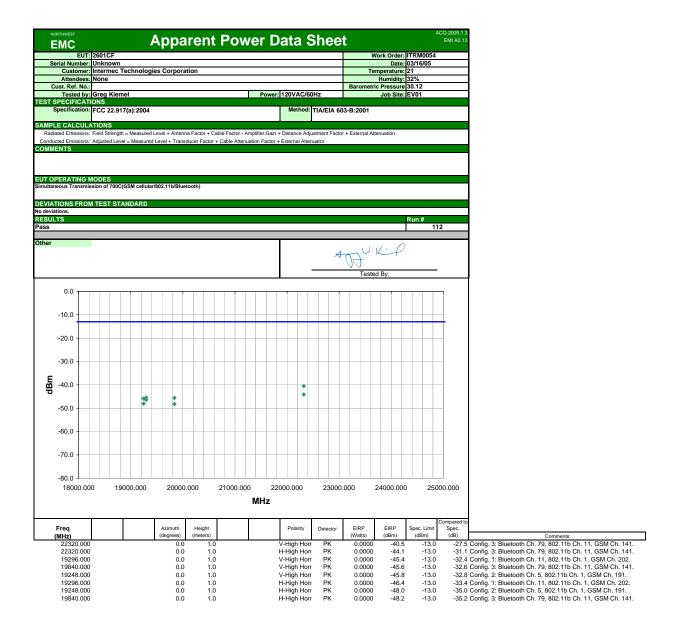
1.3

H-Horn

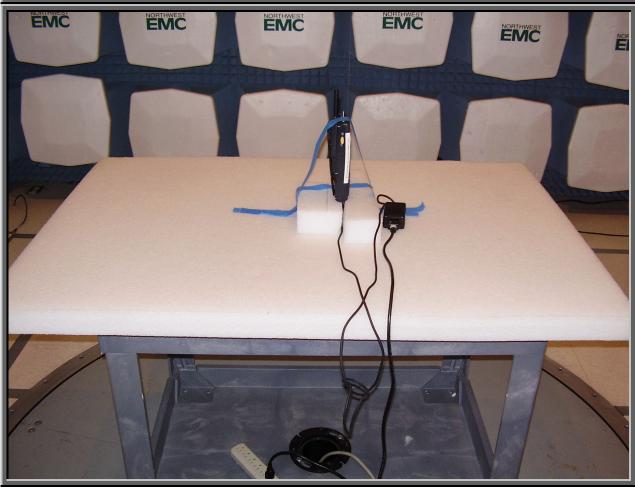
 AV

0.0000

-66.2


-13.0

-53.2


NORTHWEST		A	Appa	rent	Pow	er D	ata S	Shee	t			.CQ 2005.1.3 EMI 2005.1.3
	- 00040F										ITDM0054	
A												
		Technologies	s Cornorat	ion					Tor			
		comiciogica	o corporat						101			
									Barometrio			
		kannejhad				Power:	120VAC/6	0Hz				
		7(a):2004					Method:	TIA/EIA 6	03-B:2001			
Radiated Emission Conducted Emission	s: Field Strength								+ External Atten	uation		
EUT OPERATING		ular) on 700C										
DEVIATIONS FRO	•											
lo deviations.												
RESULTS											Run#	
Pass											98	3
Other								Holy	, Arlin	N)	
								/ · · · · · · · · · · · · · · · · · · ·	Tested	l Bv		
									103100	Dy.		
0.0												_
0.0												
-10.0												
-10.0												
20.0												
-20.0												
20.0												
-30.0												
40.0												
-40.0												
-50.0	•											
-50.0	•											
-60.0												
-00.0												
-70.0												
-70.0												
-80.0												
	E000 000	10000 00	20 452	00.000	20000 202	25222	200	200 000	25000.000	40000	200 450	00.000
0.000	5000.000	10000.00	JU 1500	00.000	20000.000	25000.	JUU 300	000.000	35000.000	40000.0	JUU 450	00.000
_												Compared to
Freq			Azimuth	Height			Polarity	Detector	EIRP (Matte)	EIRP	Spec. Limit	Spec.
(MHz)			(degrees)	(meters)			LI Liana	DIZ	(Watts)	(dBm)	(dBm)	(dB)
4811.95 4811.95			274.0 113.0	1.1 1.1			H-Horn V-Horn	PK PK	0.0000 0.0000	-47.4 -47.6	-13.0 -13.0	-34.4 -34.6
4075.92			246.0	1.8			H-Horn	PK	0.0000	-50.7	-13.0	-34.6
4075.92			279.0	1.2			V-Horn	PK	0.0000	-51.2	-13.0	-38.2

NORTHWEST EMC		Appa	rent	Pow	er D	ata S	Sheet				ACQ 2005. EMI 2005.
	: 2601CF							W	ork Order:	ITRM0054	
Serial Number									Date:	03/13/05	
	Intermec Technologi	es Corpora	tion					Te	mperature:		
Attendees Cust. Ref. No								Rarometri	Humidity: c Pressure		
	: Holly Ashkannejhad				Power:	120VAC/60)Hz	Daronieur	Job Site:		
T SPECIFICA											
Specification	FCC 22.917(a):2004					Method:	TIA/EIA 603	3-B:2001			
IPLE CALCUL Radiated Emissions	ATIONS :: Field Strength = Measured I	Level + Antenn	a Factor + Cable	e Factor - Am	plifier Gain +	Distance Adjus	tment Factor +	External Atter	nuation		
nducted Emission	: Adjusted Level = Measured	Level + Transo	lucer Factor + C	able Attenua	tion Factor + I	External Attenu	ator				
OPERATING											
ooth 11, 802.11b	1, GSM 202 (cellular) on 700	С									
eviations.	M TEST STANDARD										
SULTS s										Run #	9
er										<u> </u>	
							Holy	Ale	m)	
							FIO D	Teste	d By:		
0.0											
-10.0											
-20.0											_
20.0											
-30.0											
_											
ቼ -40.0 -40.0							+				
5											
-50.0											
-30.0											
-60.0											
-70.0											
. 5.5											
-80.0											
14400.0	00 14410.000 14420	0.000 1443	0.000 1444	40.000 1		14460.000	14470.00	0 14480.0	000 1449	0.000 145	00.000
					MHz						
											Compar
Freq		Azimuth	Height (motors)			Polarity	Detector	EIRP (Motto)	EIRP	Spec. Limit	Spec (dB)
(RAH-)	1 1	(degrees)	(meters)					(Watts)	(dBm)	(dBm)	(aB)
(MHz) 14472.00	<u> </u>	318.0	1.3			H-Horn	PK	0.0000	-39.1	-13.0	-2

NORTHWEST EMC		Ap	paren	t Pow	er Da	ta S	hee	t		А	CQ 2005.1 EMI A2.1
E	UT: 2601CF							Wo	ork Order:	ITRM0054	
	er: Unknown									03/16/05	
	ner: Intermec Te	chnologies Co	rporation					Ten	perature:		
	es: None		•						Humidity:	32%	
Cust. Ref. N	No.:							Barometric	Pressure	30.12	
Tested	by: Greg Kieme	el			Power: 12	0VAC/60	Hz		Job Site:	EV01	
ST SPECIFIC											
	on: FCC 22.917	(a):2004				Method:	TIA/EIA 60)3-B:2001			
	JLATIONS ons: Field Strength : ons: Adjusted Level					-		+ External Attenu	ation		
DMMENTS	ch. 79, 802.11b Ch										
IT OPERATIN											
	smission of 700C(G		b/Bluetooth)								
VIATIONS FR deviations. SULTS	ROM TEST STA	NDARD								Run#	
SS										11 ¹	1
										- ''	
ner						-	AD'	J. K			
0.0											7
-10.0											
-20.0											
-30.0											
40.0	*										
-50.0											
-60.0											
70.0											-
0.000	5000.000	10000.000	15000.000	20000.000	25000.000	300	00.000	35000.000	40000.	000 4500	00.000
	3000.000	10000.000	10000.000	70000.000	2000.000	, 300i			+0000.		Compared
Freq (MHz) 2483.5	500	(deg	muth Height (meters)	.7		Polarity H-Horn	Detector	EIRP (Watts) 0.0000	EIRP (dBm)	Spec. Limit (dBm)	Spec. (dB)
2483.5				.6		/-Horn	PK	0.0000	-40.5	-13.0	-27

