Intermec Technologies Corporation

RFID in IP3 with 802.11(b) and CDMA in 700C

July 6, 2004

Report No. ITRM0030.2

Report Prepared By:

ENC

1-888-EMI-CERT

© 2003 Northwest EMC, Inc

Certificate of Test

Issue Date: June 6, 2004 Intermec Technologies Corporation Model: RFID in IP3 with 802.11(b) and CDMA in 700C

	Emissions		
Description		 Pass	Fail
FCC 15.247(c) Spurious Radiated Emissions:2003		\boxtimes	

Modifications made to the product See the Modifications section of this report

Test Facility

- The measurement facility used to collect the data is located at:
 - Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826 This site has been fully described in a report filed with and eccented by the ECC (Edder

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
Dould marten
2 mile Mohilen
Donald Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0, 200630-0, and 200676-0.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

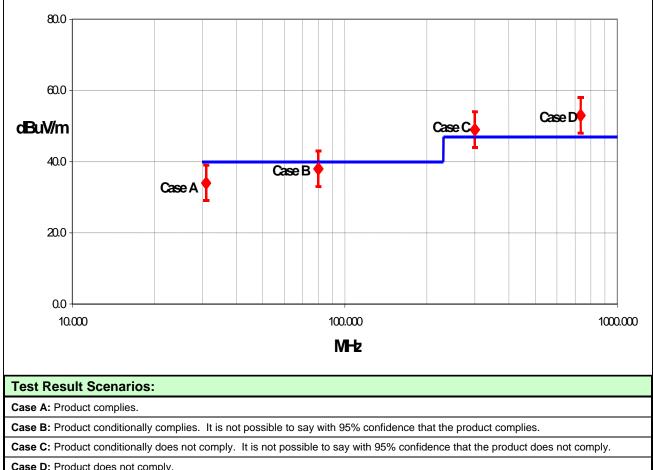
TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

Accreditations and Authorizations

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992. TUV Rheinland **NEMKO:** Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory NEMKO assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119). Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request. Australia/New Zealand: The National Association of Testing Authorities (NATA). Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP) VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. -Evergreen: C-1071 and R-1025, Trails End: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761) **BSMI:** Northwest EMC has been designated by NIST and validated by C-Taipei BSMI (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017. GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

> SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and measurement uncertainty, then test results can be interpreted from the diagram below.

Case D: Product does not comply.

Radiated Emissions ≤ 1 GHz		Value (dB)						
	Probability	bility Biconical		Log Pe	eriodic	D	ipole		
	Distribution	Antenna		Distribution Antenna		Antenna		Antenna	
Test Distance		3m	10m	3m	10m	3m	10m		
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25		
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25		
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49		
(level of confidence \approx 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49		

Radiated Emissions > 1 GHz	Value (dB)		
	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence $\approx 95\%$)		- 2.51	2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility 22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility 30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Party Requesting the Test	
Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Scott Holub
Equipment Under Test:	RFID in IP3 co-located with Bluetooth, 802.11(b), and CDMA in 700C
Model:	IP3
First Date of Test:	07-01-2004
Last Date of Test:	07-03-2004
Receipt Date of Samples:	06-15-2004
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators: Not provided at the time of test.

Functional Description of the EUT (Equipment Under Test):

RFID radio installed in mobile IP3. The 700C Handheld Computer can be installed in the IP3. When installed, the RFID radio is co-located with Bluetooth, 802.11(b), and CDMA radios. The CDMA radio is new, Model EM3420.

Client Justification for EUT Selection:

The EUT is a representative production sample.

Client Justification for Test Selection:

These tests satisfy the requirements FCC 15.247 (c) for co-located transmitters.

EUT Photo

Modifications

	Equipment modifications					
Item	Test	Date	Modification	Note	Disposition of EUT	
1	Spurious Radiated Emissions	07/01/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	
2	Spurious Radiated Emissions	07/02/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	
3	Spurious Radiated Emissions	07/03/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT was returned to client following testing.	

Justification

The EUT is a previously certified RFID radio module (FCC ID: EHARFID915PCC-6) installed inside Intermec's Model IP3. The IP3 is an optional pistol grip accessory that attaches externally to the bottom of Intermec's 700C. The 700C is a handheld computer that contains three co-located radio modules (CDMA, 802.11(b) and Bluetooth). The 802.11(b) and Bluetooth radios have been previously certified for portable, co-located use in the 700C (FCC ID: HN22011B-2, FCC ID: EHABTS0080). The CDMA radio is a new radio module that is undergoing certification (FCC ID: EHAEM3420). Since the IP3 uses the same IRDA interface port as the Bluetooth radio, the Bluetooth and RFID radios cannot transmit simultaneously (see Intermec's attestation letter). All other radios can transmit simultaneously. Each radio transmits through its own antenna. This test demonstrates compliance with FCC 15.247(c) emissions limits while the EUT is co-located with the 700C radios.

All possible combinations of harmonic emissions from the CDMA, 802.11(b) and RFID radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. All the radios were configured for simultaneous transmission at the channels specified below:

Channels in Specif	Channels in Specified Band Investigated:		
802.11(b):	1, 5, 8, 11		
CDMA (Cellular):	310, 477, 602, 727		
CDMA (PCS):	41, 932, 1117, 1175		
RFID:	7, 8, 12, 47, 50, 62, 69, 71, 73		

Operating Modes Investigated:

Simultaneous transmission of CDMA (cellular) and 802.11(b) radios in 700C and RFID radio in IP3 Simultaneous transmission of CDMA (PCS) and 802.11(b) radios in 700C and RFID radio in IP3

Operating Modes Investigated:

Simultaneous Transmission of CDMA Cellular Channel 477, RFID Channel 12, and 802.11(b) Channel 1 Simultaneous Transmission of CDMA Cellular Channel 727, RFID Channel 47, and 802.11(b) Channel 8 Simultaneous Transmission of CDMA Cellular Channel 602, RFID Channel 73, and 802.11(b) Channel 1 Simultaneous Transmission of CDMA Cellular Channel 310, RFID Channel 71, and 802.11(b) Channel 5 Simultaneous Transmission of CDMA Cellular Channel 310, RFID Channel 71, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA Cellular Channel 310, RFID Channel 71, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 41, RFID Channel 69, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 1175, RFID Channel 12, and 802.11(b) Channel 1 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 7, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 932, RFID Channel 8, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 50, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 50, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 50, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 50, and 802.11(b) Channel 11 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 50, and 802.11(b) Channel 1 Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 50, and 802.11(b) Channel 1

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated: 120 VAC, 60 Hz.

Antennas Investigated:				
802.11(b):	Custom internal to 700C			
CDMA (Cellular):	805-606-102 Dual Band CDMA 900/1900MHz Antenna (SB555)			
CDMA (PCS):	PCS): 805-666-204 Single Band CDMA 1900MHz Antenna (SB555)			
RFID:	IP3 integral antenna (internal to IP3)			

Software/Firmware Applied During Test												
	CDMA FCC Test		6/7/04									
Exercise software	PrismTest	Version	6/1/04									
	IP3FCC2											
Description												
The system was tested using special test software to exercise the functions of the device during the testing including channel, band, and operating mode.												

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
CDMA Radio	Intermec Technologies Corporation	EM3420	Unknown
Handheld Computer	Intermec Technologies Corporation	700C	13790400008
AC Adapter	Elpac Power Systems	FW1812	014869
802.11(b) Radio	Intermec Technologies Corporation	2011B	N/A
RFID Radio in Pistol Grip	Intermec Technologies Corporation	IP3	N/A

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	PA	1.4	No	Handheld Computer	AC Adapter
AC Power	No	2.0	No	AC Adapter	AC Mains
PA = Cable is per	manently at	tached to the devic	e. Shielding	g and/or presence of ferrite m	ay be unknown.

Measurement Eq	uipment				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	10/08/2003	12 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APC	10/08/2003	12 mo
Antenna, Horn	EMCO	3115	AHC	09/18/2003	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APJ	01/05/2004	13 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo
Attenuator	Pasternack	PE7001-10	ATD	02/03/2004	13 mo
Attenuator		2082-6148-20	ATE	02/03/2004	13 mo
Antenna, Horn	EMCO	3115	AHF	03/18/2004	24 mo
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo
Antenna, Dipole (ADAA included)	Roberts	Roberts	ADA	12/27/2002	24 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/23/2003	13 mo

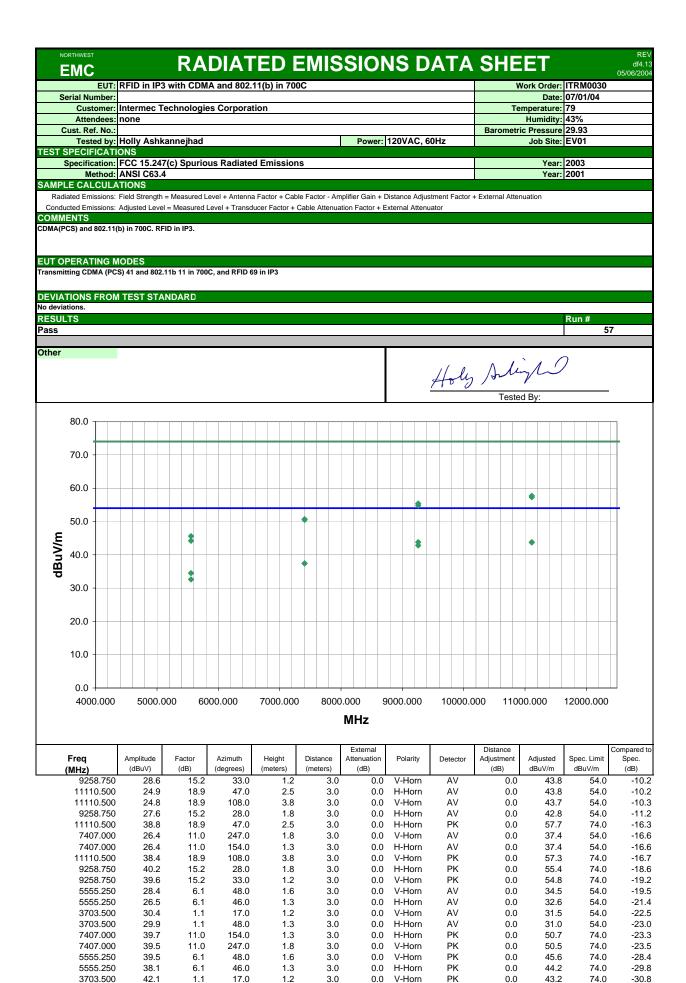
Test Description

Requirement: Per 15.247(c), the field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 15.205, is measured. The peak level must comply with the limits specified in 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

Configuration: The EUT is a previously certified RFID radio module (FCC ID: EHARFID915PCC-6) installed inside Intermec's Model IP3. The IP3 is an optional pistol grip accessory that attaches externally to the bottom of Intermec's 700C. The 700C is a handheld computer that contains three co-located radio modules (CDMA, 802.11(b) and Bluetooth). The 802.11(b) and Bluetooth radios have been previously certified for portable, co-located use in the 700C (FCC ID: HN22011B-2, FCC ID: EHABTS0080). The CDMA radio is a new radio module that is undergoing certification (FCC ID: EHAEM3420). Since the IP3 uses the same IRDA interface port as the Bluetooth radio, the Bluetooth and RFID radios cannot transmit simultaneously (see Intermec's attestation letter). All other radios can transmit simultaneously. Each radio transmits through its own antenna.

The following is an excerpt from the FCC / TCB Training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.



All possible combinations of harmonic emissions from the CDMA, 802.11(b) and RFID radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. The frequency range from 1 GHz to 25 GHz was investigated for channel combinations that would produce coincidental harmonics. Compliance with the restricted band at 2483.5 – 2500 MHz was also measured.

All the radios were configured for simultaneous transmission at the channels specified in the previous pages. The highest gain antennas to be used with the radios were tested. The spectrum was scanned throughout the specified range. While scanning, emissions from the radios were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antennas in three orthogonal axes, and adjusting the measurement antenna height and polarization (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Bandwidths Used for Me	asurements		
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were n	nade using the bandwidths a	and detectors specified. No	video filter was used.

Completed by:	
Holy Arlingh	

1.3

3.0

0.0

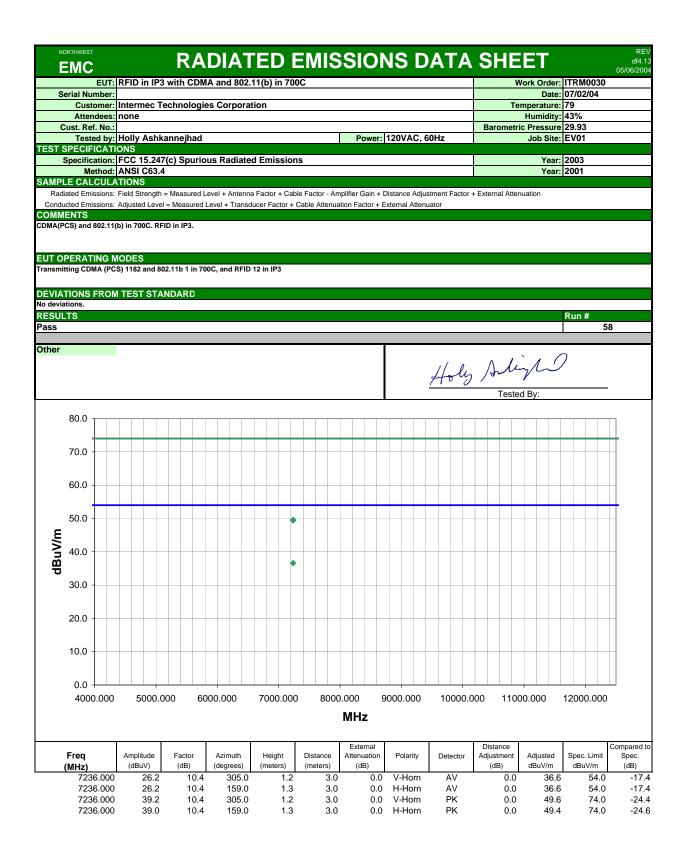
H-Horn

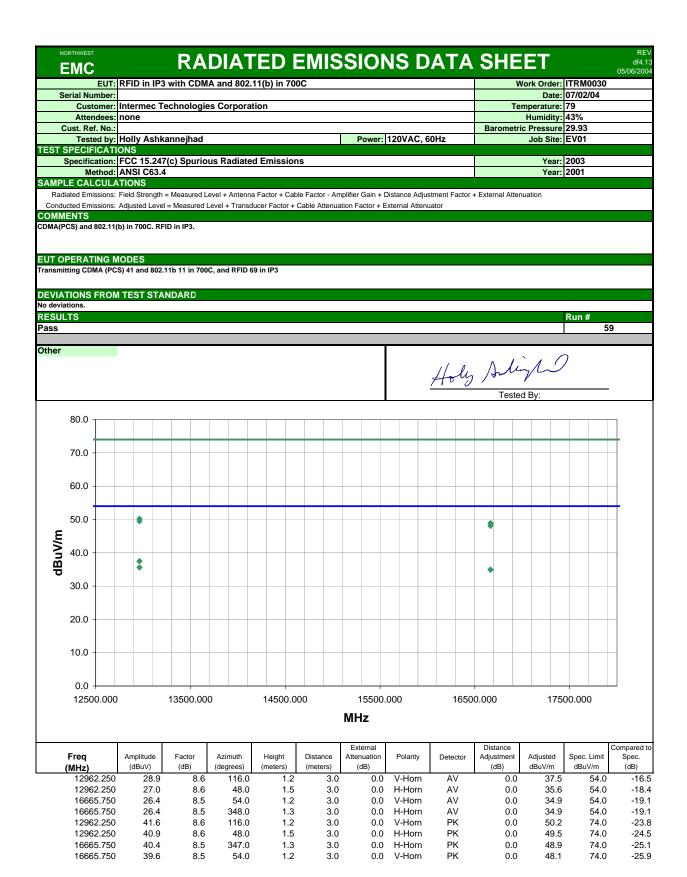
PK

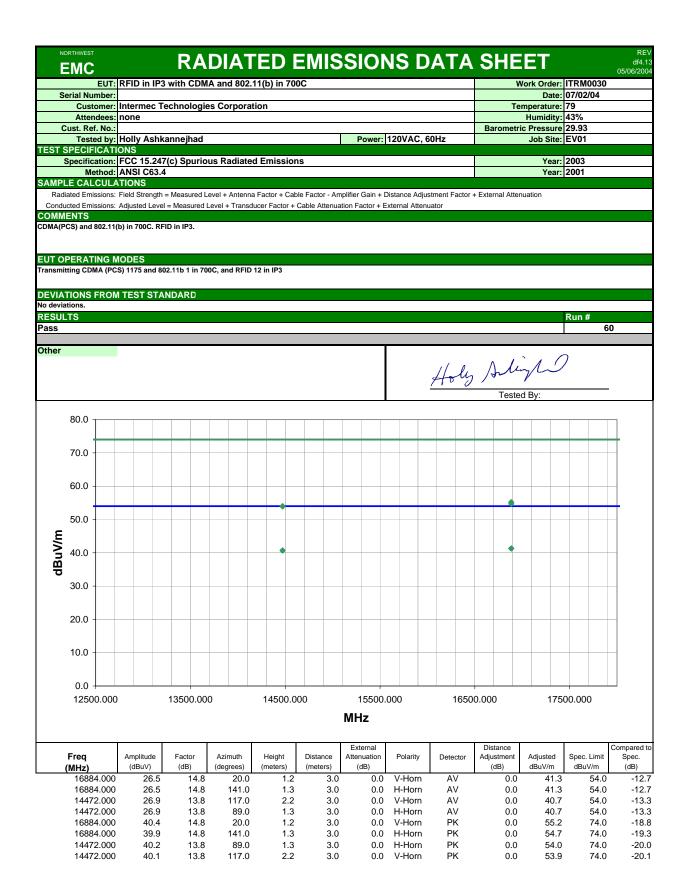
42.5

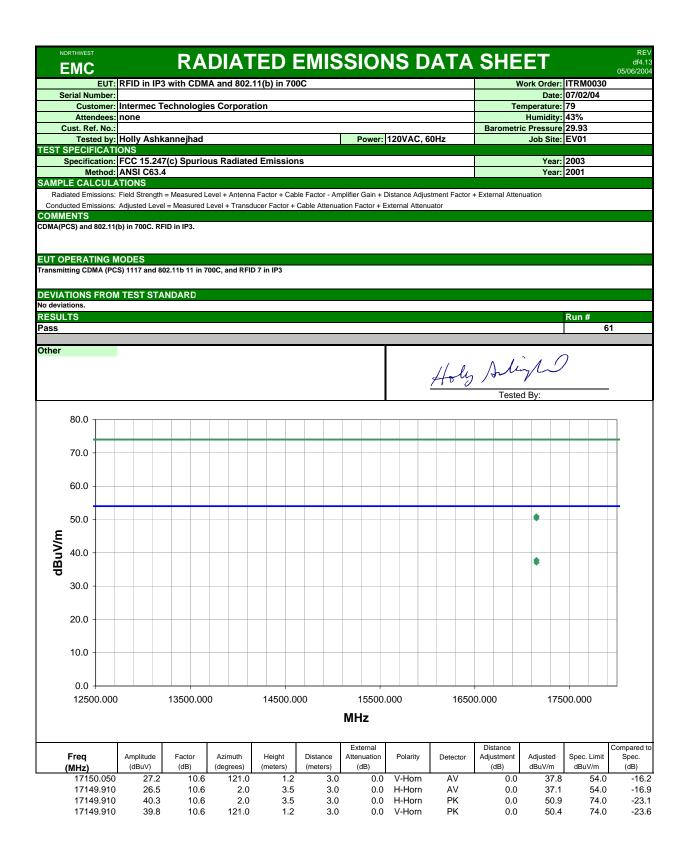
0.0

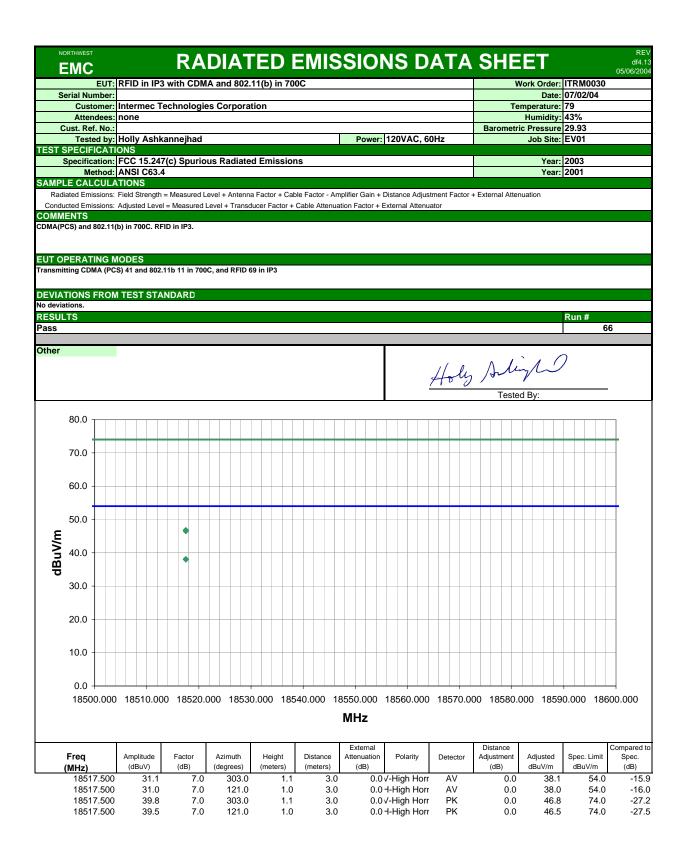
74.0

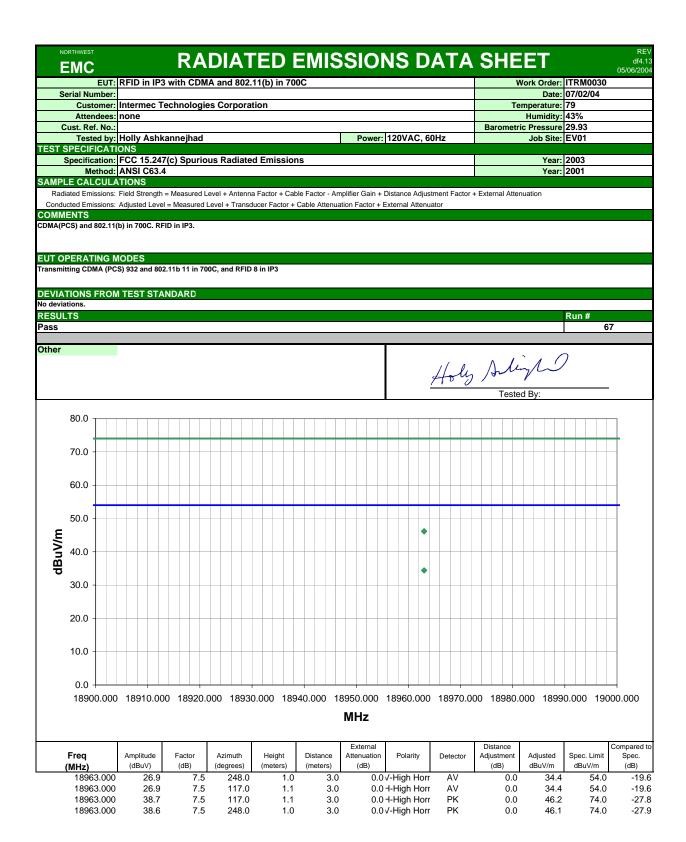

-31.5

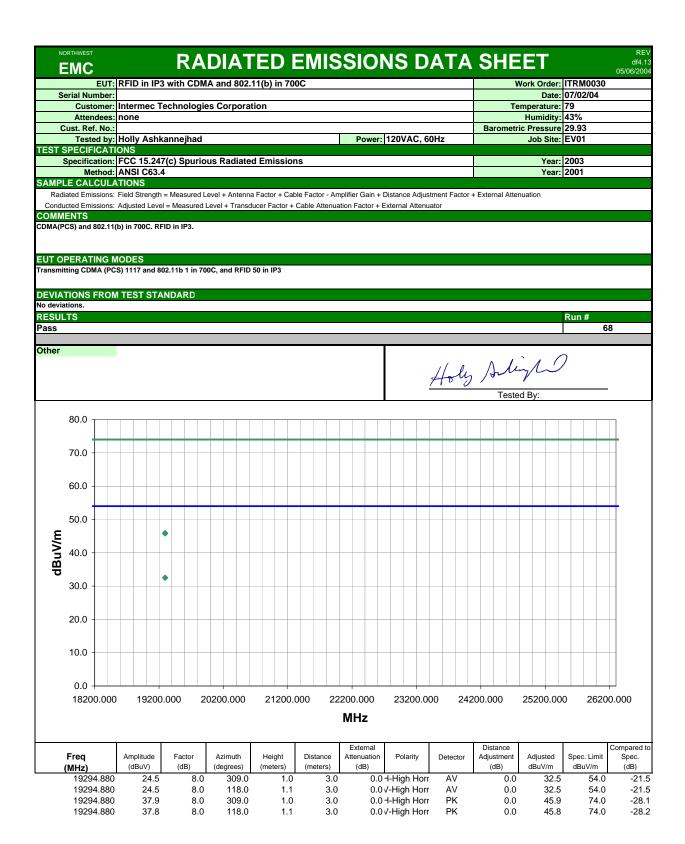

3703.500

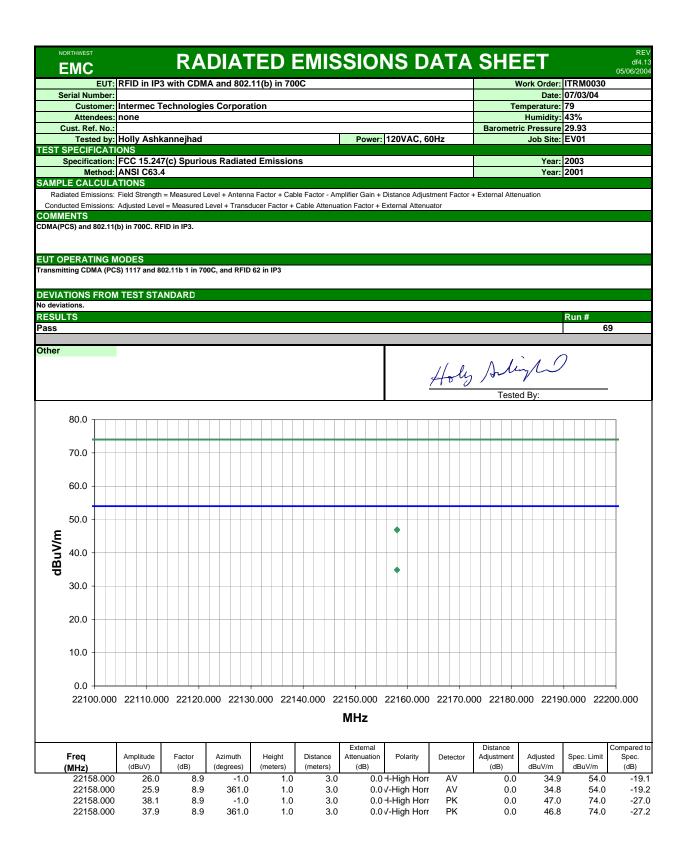

41.4

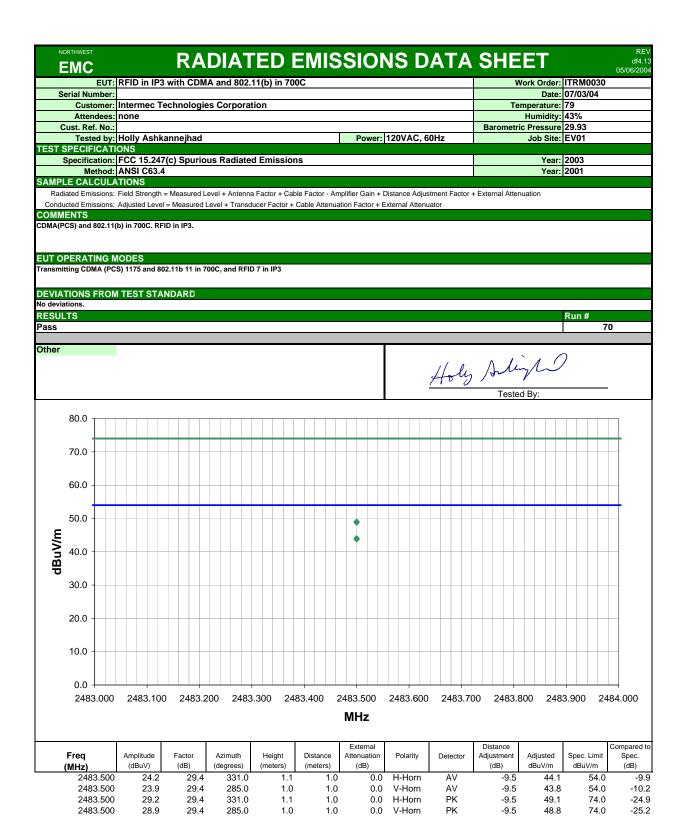

1.1

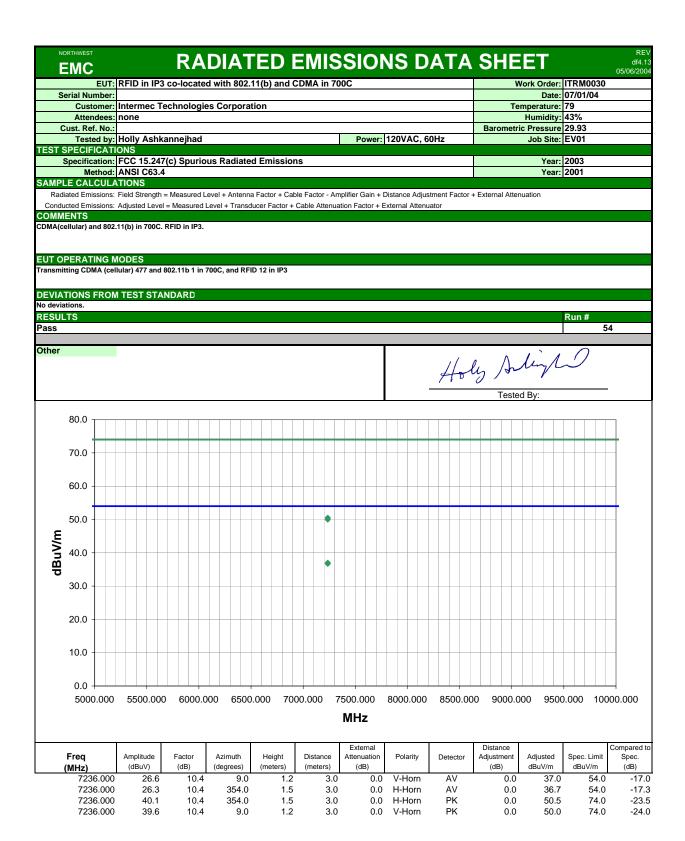

48.0

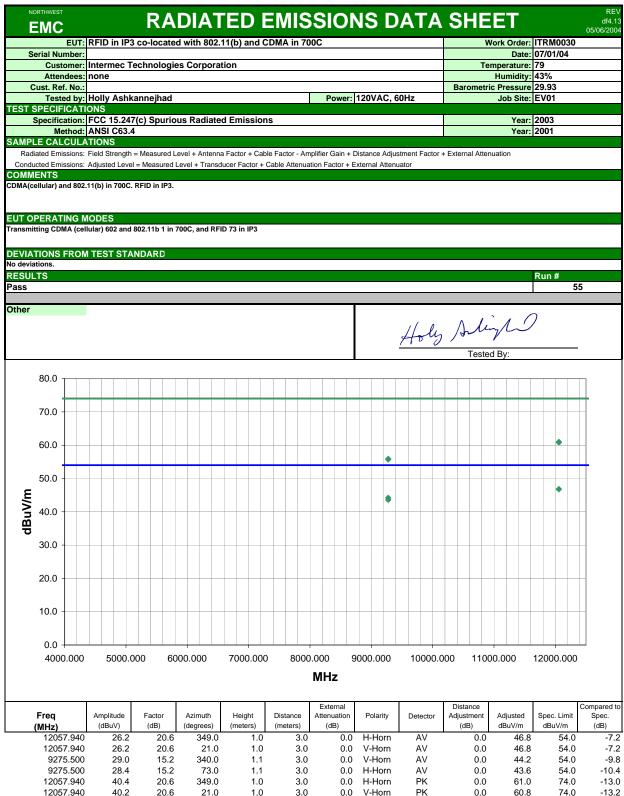












H-Horn

V-Horn

PK

ΡK

0.0

0.0

55.9

55.7

74.0

74.0

0.0

0.0

9275.500

9275.500

40.7

40.5

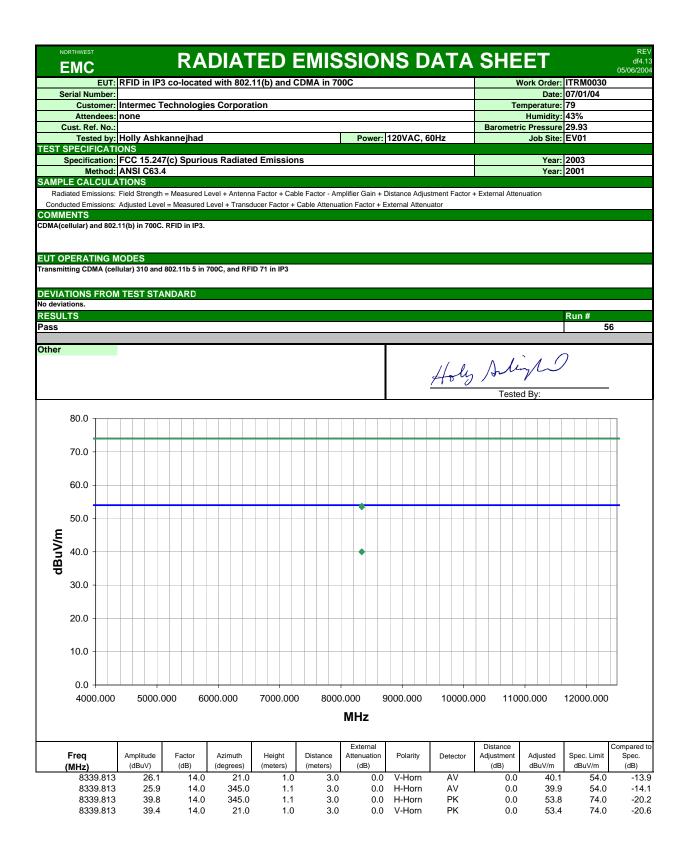
15.2

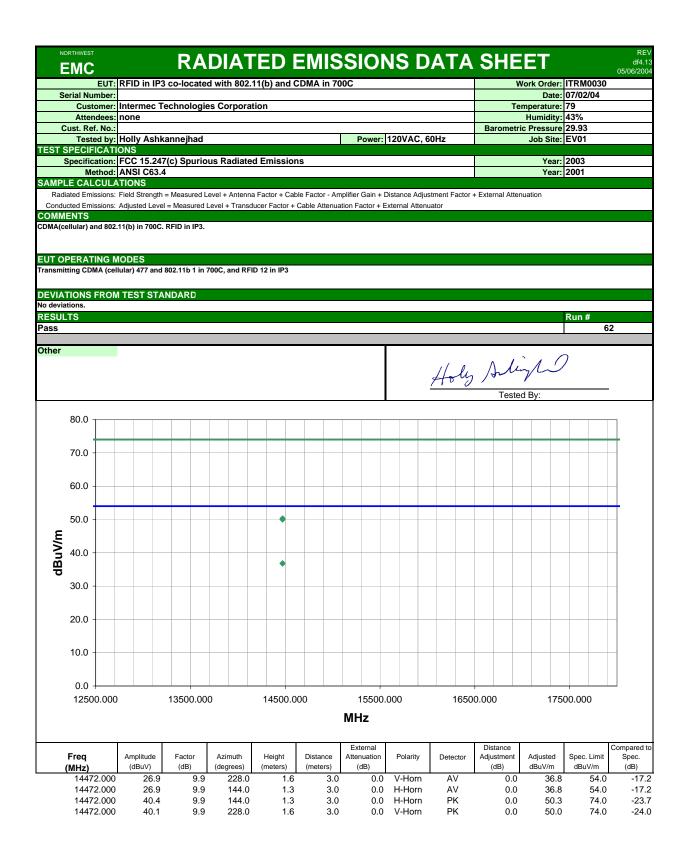
15.2

73.0

340.0

1.1

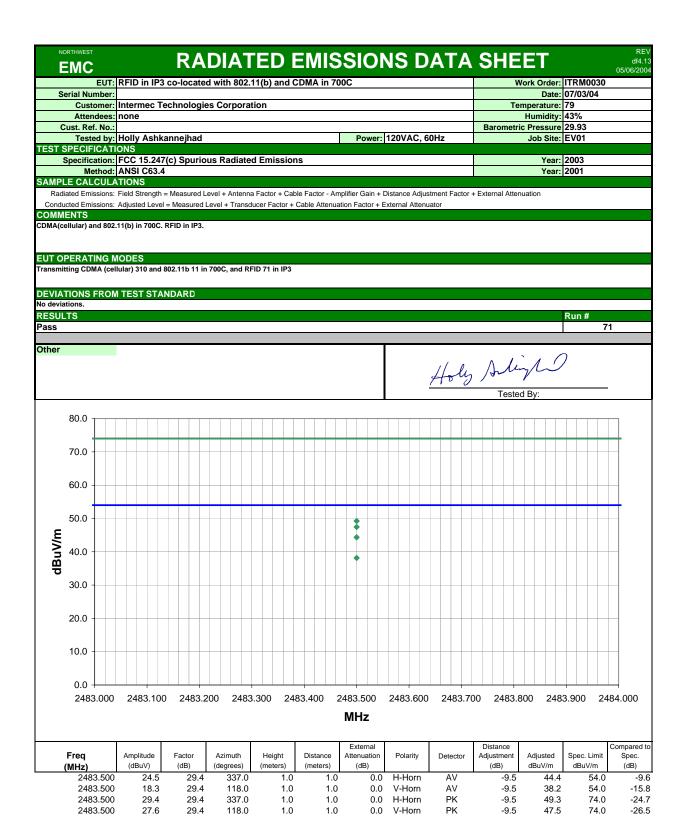

1.1

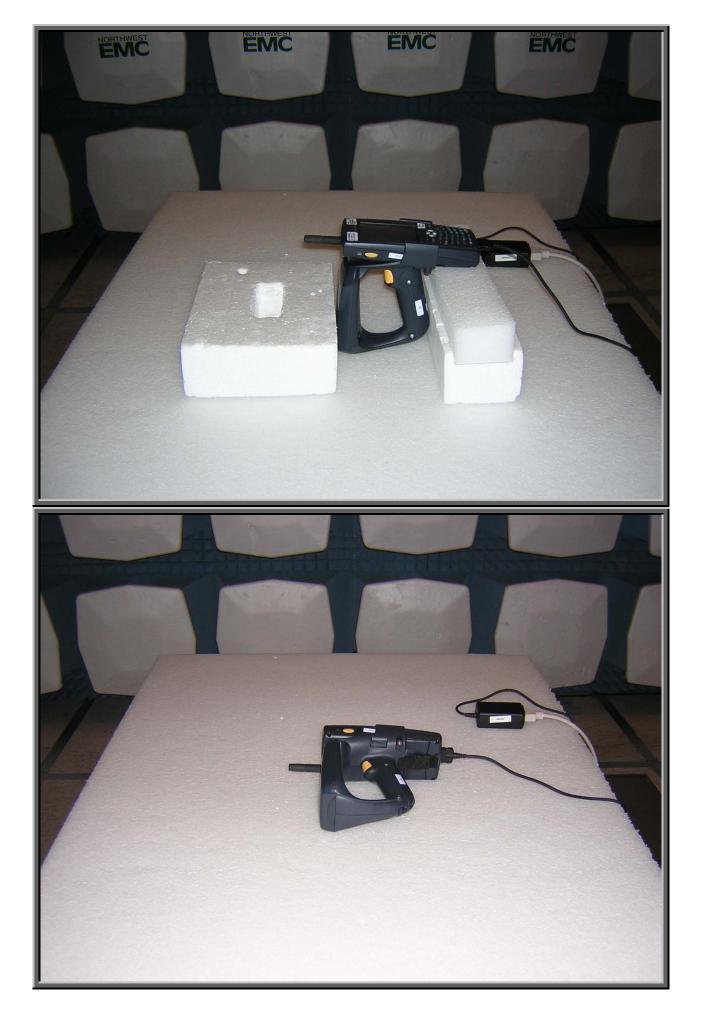

3.0

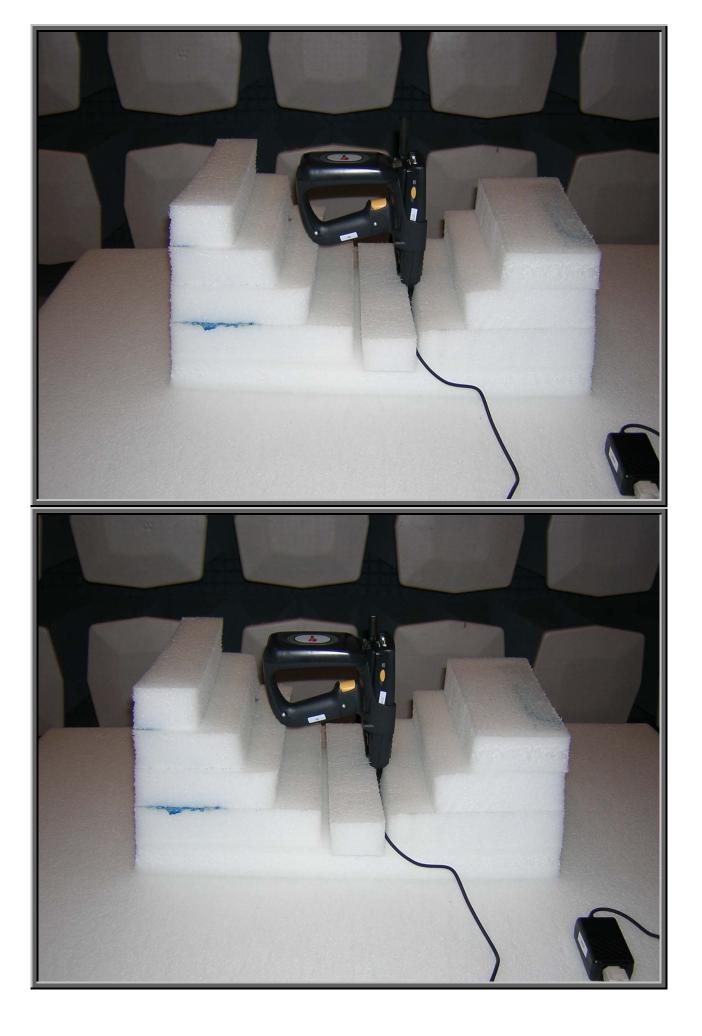
3.0

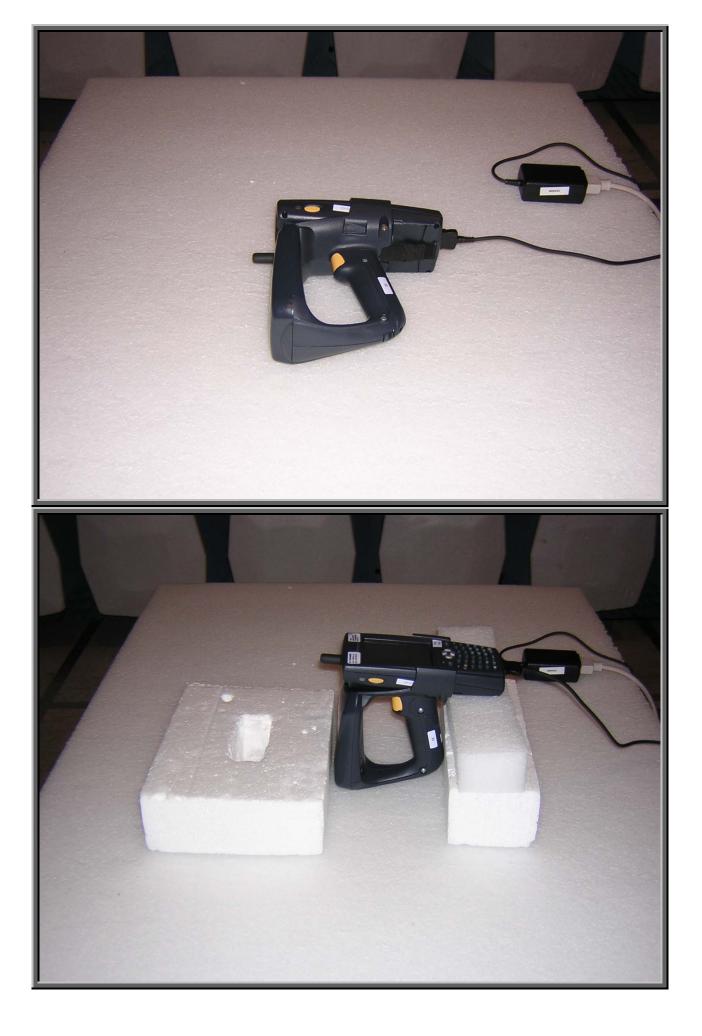
-18.1

-18.3




	THWEST				R	A	DIA	\T	ΈI	DE	ΞN	IIS	SI	01	٧S	D	ΑΤΑ	Sł	ΙE	ET			REV df4.13 05/06/2004
		JT: F	RFID i	n IP3	co-lo	cate	d with 8	302. ⁻	11(b) a	and C	DMA	in 70	00C						V	Vork Orde	er: ITRM	0030	
Ser	ial Numb																				te: 07/02	/04	
	Custom			ec Te	chno	logie	es Corp	ora	tion										Те	emperatur			
Cu	Attende st. Ref. N		ione															Baro	motr	Humidi ic Pressu	ty: 43%		
Cu	Tested I		lollv A	\shka	annei	had							Po	wer:	120V	AC. 6	0Hz	Dart	meu		te: EV01		
TEST SP					,											, .							
Sp	ecificatio					ourio	us Rad	iate	d Emi	ssion	S										ar: 2003		
			ANSI (Yea	ar: 2001		
SAMPLE					Maga	unadi	aval i An	10000	- Feeter	L Cab			unlifies C		Dietener	Adiua	tment Factor	. Extern	1.0440	nuntion			
	ed Emissio			-														+ Externa	II Alle	nuation			
COMME		110. 7	lajaotoa	2010	= mod	Jaroa I		anoa	uoor r u	0101 1 1	ouble /	litoriae	allorr all		- Morria	71110110							
CDMA(cell	ular) and a	802.1	1(b) in 1	700C.	RFID ii	n IP3.																	
EUT OP		G M/																					
Transmitti		-		7 and 8	302.111	o 1 in 7	700C. and	i RFI	D 12 in	IP3													
	5		. ,																				
DEVIATI	ONS FR	OM	TEST	STAI	NDAF	D																	
No deviation																							
RESULT	S																				Run		
Pass																						63	3
Other	_													-	-								
Other																	,	. /		1 1	\cap		
																	Hol	h h	h	int	\sim		
																	AD	0		1			
																				ed By:			
80.0																							7
																							T
70.0																						+ + +	-
60.0																							
00.0																							
																							4
50.0																							
00.0																							
40.0																							_
30.0				-																		+	_
20.0		_																	_				-
40.0																							
10.0	1	-																					1
0.0																							
0.0				000		000-	0.000		0405	· · ·		000		<u> </u>	0000	+			、	05005	0.00		
1800	00.000		19000	.000		2000	0.000		2100	0.000	J	220	00.00	J	2300	00.00	U 24	000.000	J	25000	.000	260	00.000
-		Τ	A		F		Aria			a hat	D'-/		Exte		D-7	with a	D-1	Dista		Adiant			Compared to
	req /Hz)		Amplitu (dBu\		Fact (dE		Azimut (degree		Heig (mete		Dista (met		Attenu (dE		Pola	uity	Detector	Adjusti (dB		Adjusted dBuV/m		. Limit IV/m	Spec. (dB)
(N	19297.5	500		24.8	(uL	" 8.0		3.0	Unote	1.0	Unor	3.0	(01		0.0 V-High Horr AV				0.0	32	-21.2		
	19297.5			24.7		8.0		2.0		1.0		3.0			H-High		AV		0.0	32		54.0 54.0	-21.3
	19297.5			38.0		8.0		2.0		1.0		3.0			H-High				0.0	46		74.0	-28.0
	19297.500 38.0 19297.500 37.7						-	3.0		1.0		3.0		0.0	√-High	Horr	PK		0.0	45	5.7	74.0	-28.3


	rhwest MC					R	A	DI <i>l</i>	1	ΓEI	DE	EM	115	55	SIC	10	NS	S	D	A	ΓΑ		S⊦	IE	Ε	Т				REV df4.13 05/06/2004	
			RFID	in IF	'3 c	o-loc	ated	l with a	802.	11(b) a	and C	DMA	in 7	000	C									۷	Vork			RM0030)		
Ser	ial Num				T					11																		/02/04			
	Custor		none		rec	nnoid	gie	s Corp	ora	tion														IE		rature miditv					
Cur	st. Ref.		none																				Baro	metr		essure	-				
- Ou	Tested		Holly	Ash	kan	neih	ad								Pov	ver:	120	OVA	C, 60)Hz			Bailo	meti		b Site					
TEST SP																			,									-			
Sp	ecificat) Տրւ	iriou	is Rad	liate	d Emi	ssion	S																			
			ANSI		.4																					Year	: 20	01			
SAMPLE	ed Emiss				h – N	loogur	odlo		topp	o Footor	. Cob		or Ar	nnli	fior Co	in I [Diete	200	Adjuct	mont	Footo	r . E.	tornal	1 4#0	nuotio	2					
	ed Emiss			-															-		Facto	(+ E)	aema	Alle	nualio	m					
COMME		ionio.	ridjubit	50 201	0 1	nodou	100 2	010111	anoc	1000110		Sabio /	atona	atio	in r dote			incar 7	atonat												
CDMA(cell	ular) and	802.	11(b) ir	n 700	C. RF	ID in I	P3.																								
EUT OPE Transmittin					d 802	2.11b 8	8 in 7	00C, an	d RF	ID 47 in	IP3																				
DEVIATI		ROM	TES	T ST	AND	DARI)																								
No deviation RESULT																											Ru	n #			
Pass	<u> </u>																												64		
																													-		
Other																			4	4	li	, ,	A.	Ju Teste	、 ∽∕	<u></u>	2		_		
80.0																															
70.0																														-	
70.0																															
60.0																															
00.0																															
													-	_						-				-							
50.0													_																_		
40.0												_		-						_				_					-		
30.0																															
20.0			_										_																_		
10.0																															
0.0																															
	0.000		19000.000 20				0000	0.000		2100	0.000)	220	000	.000		23	3000	0.00	D	24	4000	.000		25	000.0	000	26	000	0.000	
(N	req IHz)		Ampl (dB	uV)		Factor (dB)		Azimu (degre	es)	Heig (mete		Dista (met	ers)	A	Extern Attenuat (dB)	tion		Polari	-		ector		Distan djustm (dB)	nent		justed uV/m	c	ec. Limit IBuV/m		ompared to Spec. (dB)	
	22016.			26.0			3.7		2.0		1.0		3.0						Horr		٩V			0.0		34.7		54.0		-19.3	
	22023.			26.0			3.7		2.0		1.0		3.0						Horr		۹V			0.0		34.7		54.0		-19.3	
	22023.			26.0			3.7 3.7		51.0 -2.0		1.0 1.0		3.0 3.0						Horr Horr		AV AV			0.0 0.0		34.7 34.3		54.0 54.0		-19.3 -19.7	
22016.000 25.6 22023.000 39.7				3.7 3.7		-2.0 51.0		1.0 1.0		3.0 3.0						Horr		4ν PK			0.0		34.3 48.4		54.0 74.0		-19.7 -25.6				
22016.000 39.6						3.7 3.7		2.0		1.0		3.0						Horr		PK			0.0		48.3		74.0		-25.0		
	22016.000 39.5						3.7		-2.0		1.0							•			۶K	0.0									
22018.000 39.5 22023.000 39.4						3.7		2.0		1.0		3.0							٩K		0.0 48.2 0.0 48.1			74.0		-25.9					


	THWEST					RA	DIA	١	ΈΙ) E	ΞN	IIS	S	0	NS	6 D)A	TA	Sł	łE	Εī	Γ				REV df4.13 6/2004
		JT:	RFID	in IP	3 co-	locate	d with a	802.	11(b) a	and C	DMA	in 70	00C							٧	Vork O	rder:	ITRM	0030		
Ser	ial Numb	_																					07/02	/04		
					[echi	nologi	es Corp	ora	tion											Te	mpera					
C 11	Attende st. Ref. N		none																Por	motr	Humi ic Pres					
Cu	Tested		Holly	Ash	kann	eihad							Р	ower:	120\	AC.	60H	z	Dail	meu			EV01			
TEST SP				71011		ojnaa										,		_				ener				
Sp	ecificatio	on:	FCC [·]	15.24	7(c)	Spurio	ous Rad	iate	d Emis	ssion	S										١	Year:	2003			
	Methe				4																١	Year:	2001			
SAMPLE														o :	D: 1				= .							
	ed Emissic ed Emissic			-															+ Externa	al Atte	nuation					
COMME		JIIS. 7	Aujuste	u Lev		asureu	Lever+1	ansu	lucer rai		Jable	Allenua			Externa	a Allei	lualu									
CDMA(cell		802.1	1(b) ir	n 700C	. RFIC	in IP3.																				_
				_																						
EUT OPE Transmitti		-	-	-	1 802 1	1b5 in	700C an		D 71 in	ID3																
Tansmitu		(cem	iiai) S	i u anc	1 002.1	10 5 11	700C, an			11-3																
DEVIATI	ONS FR	OM	TES	I ST		RD																				
No deviation		C III	120	01/																						_
RESULT	S																						Run #	#		
Pass																								65	5	
Other																					s	1	٦ ۲			
																	/	foli	Λ	h	ml	~				
																	F	fou) m		1-					
																	<u></u>	· ·		Teste	ed By:					
																					.a 2).					
80.0																									_	
00.0																										
		_			_						_			_		_			_	_			_	+	+	
70.0											_														_	
60.0											_								_						_	
																									+	
50.0			_																	_					-	
									•																	
40.0																									-	
20.0									•																	
30.0																										
20.0																										
20.0																										
10.0																				_				\vdash	_	
0.0																									4	
	0.000		1850	0.00	0	190	00.000		1950	0.000)	200	00.00	00	205	500.0	00	21(00.00)	2150	00.00	00	220	00.00	00
			-00		-									-						-			-			
		Т			r		1			T			Ev+	ernal	1		Т		Dista	nce				— T	Compa	ared to
F	itude	Fa	actor	Azimu	th	Heig	ht	Dista	ance		uation	Po	larity		Detector	Adjust		Adjus	sted	Spec.		Spe				
	/Hz)		(dB	uV)		dB)	(degree		(mete		(met			dΒ)					, (dE		dBuV/m dBuV				(dl	
-	19460.6			24.4		8.2		61.0		1.0		3.0			.0 High Horr AV					0.0		32.6		54.0		-21.4
	19460.6			24.4		8.2		2.0		1.0		3.0			V-Hig			AV		0.0		32.6		54.0		-21.4
	19460.6			37.4		8.2		51.0		1.0		3.0			H-Hig			PK		0.0		45.6		74.0		-28.4
	19460.6	990		37.3		8.2	-	·2.0		1.0		3.0		0.0	V-Hig	n Ho	rr 🗌	PK		0.0		45.5		74.0	-	-28.5

