# Intermec Technologies Corporation

## CDMA (EM3420) in 700C

Co-located with Bluetooth and 802.11(b) in 700C Co-located with Bluetooth and 802.11(b) in 700C and Bluetooth in 6820 Co-located with 802.11(b) in 700C and RFID in IP3

July 9, 2004

Report No. ITRM0030.3

Report Prepared By:



1-888-EMI-CERT

© 2003 Northwest EMC, Inc



## **Certificate of Test**

## Issue Date: July 9, 2004 Intermec Technologies Corporation Model: CDMA (EM3420) in 700C

|                                                                    | Emissions        |             |      |
|--------------------------------------------------------------------|------------------|-------------|------|
| Specification                                                      | Test Method      | Pass        | Fail |
| FCC 15.107 AC Powerline Conducted Emissions<br>(Receive Mode):2003 | ANSI C63.4:2001  |             |      |
| FCC 15.109 Radiated Emissions (Receive Mode):2003                  | ANSI C63.4:2001  | $\boxtimes$ |      |
| FCC 22H & 24E Frequency Stability:2003                             | TIA/EIA-603:2001 | $\square$   |      |
| FCC 22H & 24E Effective Radiated Power:2003                        | TIA/EIA-603:2001 | $\boxtimes$ |      |
| FCC 22H & 24E Occupied Bandwidth:2003                              | TIA/EIA-603:2001 | $\square$   |      |
| FCC 2.1046 Output Power:2003                                       | TIA/EIA-603:2001 | $\square$   |      |
| FCC 22H & 24E Spurious Conducted Emissions:2003                    | TIA/EIA-603:2001 | $\boxtimes$ |      |
| FCC 22H & 24E Spurious Radiated Emissions:2003                     | TIA/EIA-603:2001 | $\square$   |      |

#### Modifications made to the product See the Modifications section of this report

#### Test Facility

 The measurement facility used to collect the data is located at: Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826 This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

| Approved By:            |
|-------------------------|
| Donald Manchant         |
| malamancent             |
| Don Facteau, IS Manager |

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.



| Revision<br>Number | Description | Date | Page Number |
|--------------------|-------------|------|-------------|
|                    |             |      |             |
| 00                 | None        |      |             |



**FCC:** Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

**NVLAP:** Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0, 200630-0, and 200676-0.

**Industry Canada:** Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

**CAB:** Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

**TÜV Product Service:** Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C















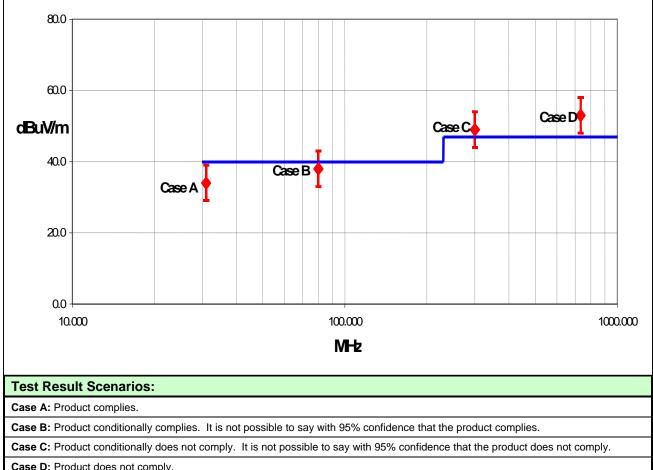
## **Accreditations and Authorizations**

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992. TUV Rheinland **NEMKO:** Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory NEMKO assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119). Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request. Australia/New Zealand: The National Association of Testing Authorities (NATA). Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP) VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. -Evergreen: C-1071 and R-1025, Trails End: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761) **BSMI:** Northwest EMC has been designated by NIST and validated by C-Taipei BSMI (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017. GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

> SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>



#### What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

#### How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and measurement uncertainty, then test results can be interpreted from the diagram below.



Case D: Product does not comply.



| Radiated Emissions ≤ 1 GHz          | Value (dB)   |                       |        |                    |         |        |        |    |       |
|-------------------------------------|--------------|-----------------------|--------|--------------------|---------|--------|--------|----|-------|
|                                     | Probability  | Probability Biconical |        | Log Pe             | eriodic | D      | ipole  |    |       |
|                                     | Distribution | Antenna               |        | stribution Antenna |         | Ante   | enna   | An | tenna |
| Test Distance                       |              | 3m                    | 10m    | 3m                 | 10m     | 3m     | 10m    |    |       |
| Combined standard                   | normal       | + 1.86                | + 1.82 | + 2.23             | + 1.29  | + 1.31 | + 1.25 |    |       |
| uncertainty <i>u<sub>c</sub>(y)</i> |              | - 1.88                | - 1.87 | - 1.41             | - 1.26  | - 1.27 | - 1.25 |    |       |
| Expanded uncertainty <b>U</b>       | normal (k=2) | + 3.72                | + 3.64 | + 4.46             | + 2.59  | + 2.61 | + 2.49 |    |       |
| (level of confidence $\approx$ 95%) |              | - 3.77                | - 3.73 | -2.81              | - 2.52  | - 2.55 | - 2.49 |    |       |

| Radiated Emissions > 1 GHz                            | Value (dB)   |                  |                  |
|-------------------------------------------------------|--------------|------------------|------------------|
|                                                       | Probability  | Without High     | With High        |
|                                                       | Distribution | Pass Filter      | Pass Filter      |
| Combined standard uncertainty <i>u<sub>c</sub>(y)</i> | normal       | + 1.29<br>- 1.25 | + 1.38<br>- 1.35 |
| Expanded uncertainty $U$                              | normal (k=2) | + 2.57           | + 2.76           |
| (level of confidence $\approx 95\%$ )                 |              | - 2.51           | 2.70             |

| Conducted Emissions                                           |                |          |  |  |  |  |
|---------------------------------------------------------------|----------------|----------|--|--|--|--|
|                                                               | Probability    | Value    |  |  |  |  |
|                                                               | Distribution   | (+/- dB) |  |  |  |  |
| Combined standard uncertainty <i>uc(y)</i>                    | normal         | 1.48     |  |  |  |  |
| Expanded uncertainty <i>U</i><br>(level of confidence ≈ 95 %) | normal (k = 2) | 2.97     |  |  |  |  |

| Radiated Immunity                                             |                |          |
|---------------------------------------------------------------|----------------|----------|
|                                                               | Probability    | Value    |
|                                                               | Distribution   | (+/- dB) |
| Combined standard uncertainty <i>uc(y)</i>                    | normal         | 1.05     |
| Expanded uncertainty <b>U</b><br>(level of confidence ≈ 95 %) | normal (k = 2) | 2.11     |

| Conducted Immunity                                            |                |          |  |  |  |  |
|---------------------------------------------------------------|----------------|----------|--|--|--|--|
|                                                               | Probability    | Value    |  |  |  |  |
|                                                               | Distribution   | (+/- dB) |  |  |  |  |
| Combined standard uncertainty <i>uc(y</i> )                   | normal         | 1.05     |  |  |  |  |
| Expanded uncertainty <b>U</b><br>(level of confidence ≈ 95 %) | normal (k = 2) | 2.10     |  |  |  |  |

#### Legend

 $u_c(y)$  = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.



## **Facilities**









## California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

## Oregon

**Evergreen Facility** 22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

## Oregon

Trails End Facility 30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

## Washington

## Sultan Facility

14128 339<sup>th</sup> Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

| Party Requesting the Test |                                   |
|---------------------------|-----------------------------------|
| Company Name:             | Intermec Technologies Corporation |
| Address:                  | 550 Second St. SE                 |
| City, State, Zip:         | Cedar Rapids, IA 52401-2023       |
| Test Requested By:        | Scott Holub                       |
| Equipment Under Test:     | CDMA Radio                        |
| Model:                    | EM3420                            |
| First Date of Test:       | 06-22-2004                        |
| Last Date of Test:        | 07-07-2004                        |
| Receipt Date of Samples:  | 06-15-2004                        |
| Equipment Design Stage:   | Production                        |
| Equipment Condition:      | No visual damage.                 |

## Information Provided by the Party Requesting the Test

**Clocks/Oscillators:** Not provided at the time of test.

## Functional Description of the EUT (Equipment Under Test):

The EUT is a CDMA Radio Module installed in Intermec's 700C Handheld Computer. The radio can transmit alone or simultaneously with a Bluetooth radio and 802.11(b) radio that are also installed in the 700C. There are two other co-located radio configurations possible. The 700C can be installed in the Intermec IP3 Pistol Grip. When in this configuration, the CDMA Radio transmits simultaneously with the 802.11(b) radio in the 700C, as well as the RFID radio in the IP3. Finally, the 700C can be installed in the Intermec 6820 Printer. When in this configuration, the CDMA Radio transmits simultaneously with the 802.11(b) and Bluetooth radios in the 700C, as well as the Bluetooth radio transmits simultaneously with the 802.11(b) and Bluetooth radios in the 700C, as well as the Bluetooth radio in the 6820 Printer.

## Client Justification for EUT Selection:

The EUT is a representative production sample.

### **Client Justification for Test Selection:**

These tests satisfy the requirements FCC Part 22 for the CDMA Cellular band and FCC Part 24 for the CDMA PCS band..



## **Product Description**

## EUT Photo







## **Modifications**

|      | Equipment modifications                         |                            |                                                                           |                                        |                                                     |  |  |  |
|------|-------------------------------------------------|----------------------------|---------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|--|--|--|
| Item | Test                                            | Date                       | Modification                                                              | Note                                   | Disposition of<br>EUT                               |  |  |  |
| 1    | Spurious<br>Radiated<br>Emissions               | 06/21/2004 –<br>07/07/2004 | No EMI suppression<br>devices were added or<br>modified during this test. | Same<br>configuration as<br>delivered. | EUT remained at Northwest EMC.                      |  |  |  |
| 2    | Field<br>Strength of<br>Fundamental<br>Emission | 06/21/2004-<br>06/25/2004  | No EMI suppression<br>devices were added or<br>modified during this test. | Same<br>configuration as<br>delivered. | EUT remained at Northwest EMC.                      |  |  |  |
| 3    | Radiated<br>Emissions –<br>Receive<br>Mode      | 06/25/2004                 | No EMI suppression<br>devices were added or<br>modified during this test. | Same<br>configuration as<br>delivered. | EUT remained at Northwest EMC.                      |  |  |  |
| 4    | Frequency<br>Stability                          | 07/01/2004                 | No EMI suppression<br>devices were added or<br>modified during this test. | Same<br>configuration as<br>delivered. | EUT was returned<br>to client following<br>testing. |  |  |  |
| 5    | Output<br>Power                                 | 07/01/2004                 | No EMI suppression<br>devices were added or<br>modified during this test. | Same<br>configuration as<br>delivered. | EUT was returned<br>to client following<br>testing. |  |  |  |
| 6    | Occupied<br>Bandwidth                           | 07/01/2004                 | No EMI suppression<br>devices were added or<br>modified during this test. | Same<br>configuration as<br>delivered. | EUT was returned<br>to client following<br>testing. |  |  |  |
| 7    | Spurious<br>Conducted<br>Emissions              | 07/01/2004                 | No EMI suppression<br>devices were added or<br>modified during this test. | Same<br>configuration as<br>delivered. | EUT was returned<br>to client following<br>testing. |  |  |  |
| 8    | Conducted<br>Emissions –<br>Receive<br>Mode     | 07/07/2004                 | No EMI suppression<br>devices were added or<br>modified during this test. | Same<br>configuration as<br>delivered. | EUT was returned to client following testing.       |  |  |  |



#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| High                                     |
| Mid                                      |
| Low                                      |

**Operating Modes Investigated:** Receive

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

#### **Power Input Settings Investigated:**

120 VAC, 60 Hz.

## **Other Settings Investigated:**

Cellular Band

805-606-102 Dual Band CDMA 900/1900 MHz Antenna

| Software\Firmware Applied During Test                                                                |                         |    |   |  |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------|----|---|--|--|--|
| Exercise software CDMA FCC Test Version 6/7/04                                                       |                         |    |   |  |  |  |
| Description                                                                                          |                         |    |   |  |  |  |
| The system was tested using special test software to exercise the functions of the device during the |                         |    |   |  |  |  |
| testing including channel, I                                                                         | band, and operating mod | e. | - |  |  |  |

| EUT and Peripherals |                                   |                   |               |
|---------------------|-----------------------------------|-------------------|---------------|
| Description         | Manufacturer                      | Model/Part Number | Serial Number |
| CDMA Radio          | Intermec Technologies Corporation | EM3420            | Unknown       |
| Handheld Computer   | Intermec Technologies Corporation | 700C              | 13790400008   |
| AC Adapter          | Elpac Power Systems               | FW1812            | 014869        |



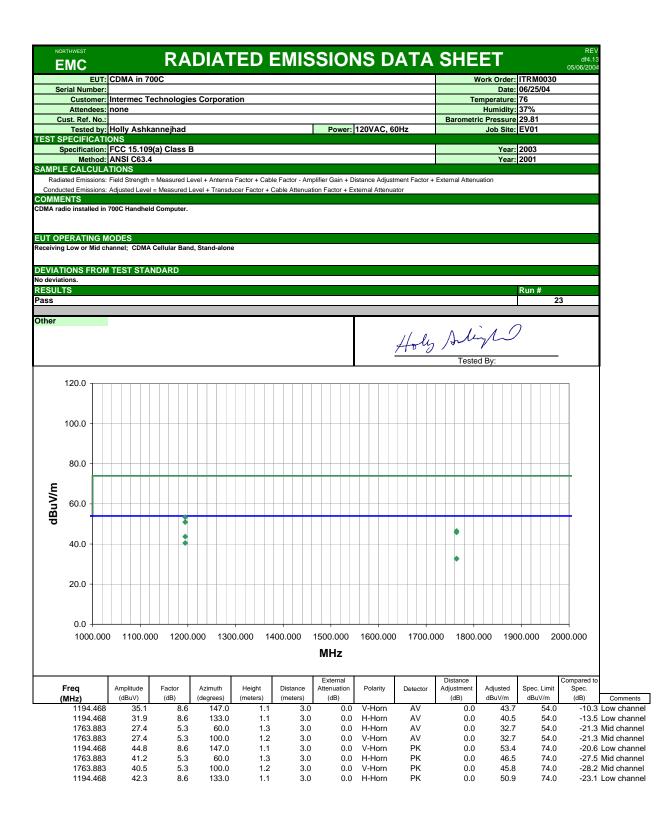
| Cables                                                                                                 |        |            |         |                   |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|-------------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1      | Connection 2 |
| DC Leads                                                                                               | PA     | 1.4        | No      | Handheld Computer | AC Adapter   |
| AC Power No 2.0 No AC Adapter AC Mains                                                                 |        |            |         |                   |              |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |                   |              |

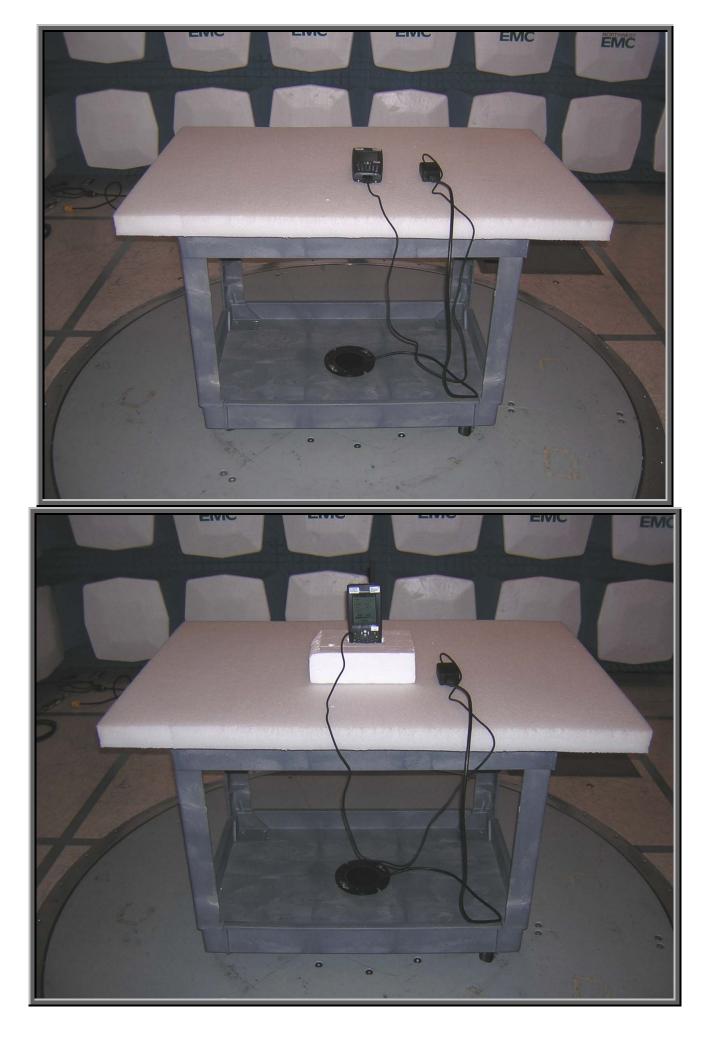
| Measurement Equipment           |                       |                              |            |            |          |
|---------------------------------|-----------------------|------------------------------|------------|------------|----------|
| Description                     | Manufacturer          | Model                        | Identifier | Last Cal   | Interval |
| Antenna, Horn                   | EMCO                  | 3160-09                      | AHG        | NCR        | NA       |
| Pre-Amplifier                   | Miteq                 | JSD4-18002600-26-<br>8P      | APU        | 10/08/2003 | 12 mo    |
| Antenna, Horn                   | EMCO                  | 3160-08                      | AHK        | NCR        | NA       |
| Pre-Amplifier                   | Miteq                 | AMF-4D-005180-<br>24-10P     | APC        | 10/08/2003 | 12 mo    |
| Antenna, Horn                   | EMCO                  | 3115                         | AHC        | 09/18/2003 | 12 mo    |
| Pre-Amplifier                   | Miteq                 | AMF-4D-005180-<br>24-10P APJ |            | 01/05/2004 | 13 mo    |
| Antenna, Biconilog              | EMCO                  | 3141                         | AXE        | 12/03/2003 | 24 mo    |
| Pre-Amplifier                   | Amplifier<br>Research | LN1000A                      | APS        | 02/05/2004 | 13 mo    |
| High Pass Filter                | Micro-Tronics         | HPM50111                     | HFO        | 04/13/2004 | 13 mo    |
| Attenuator                      | Pasternack            | PE7001-10 ATD                |            | 02/03/2004 | 13 mo    |
| Attenuator                      |                       | 2082-6148-20                 | ATE        | 02/03/2004 | 13 mo    |
| Antenna, Horn                   | EMCO                  | 3115                         | AHF        | 03/18/2004 | 24 mo    |
| Signal Generator                | Hewlett Packard       | 8341B                        | TGN        | 01/23/2004 | 13 mo    |
| Antenna, Dipole (ADAA included) | Roberts               | Roberts                      | ADA        | 12/27/2002 | 24 mo    |
| Spectrum Analyzer               | Hewlett-Packard       | ackard 8566B AAL 12          |            | 12/23/2003 | 13 mo    |
| Quasi-Peak Adapter              | Hewlett-Packard       | 85650A                       | AQF        | 12/23/2003 | 13 mo    |
| Spectrum Analyzer               | Tektronix             | 2784                         | AAO        | 02/26/2003 | 24 mo    |

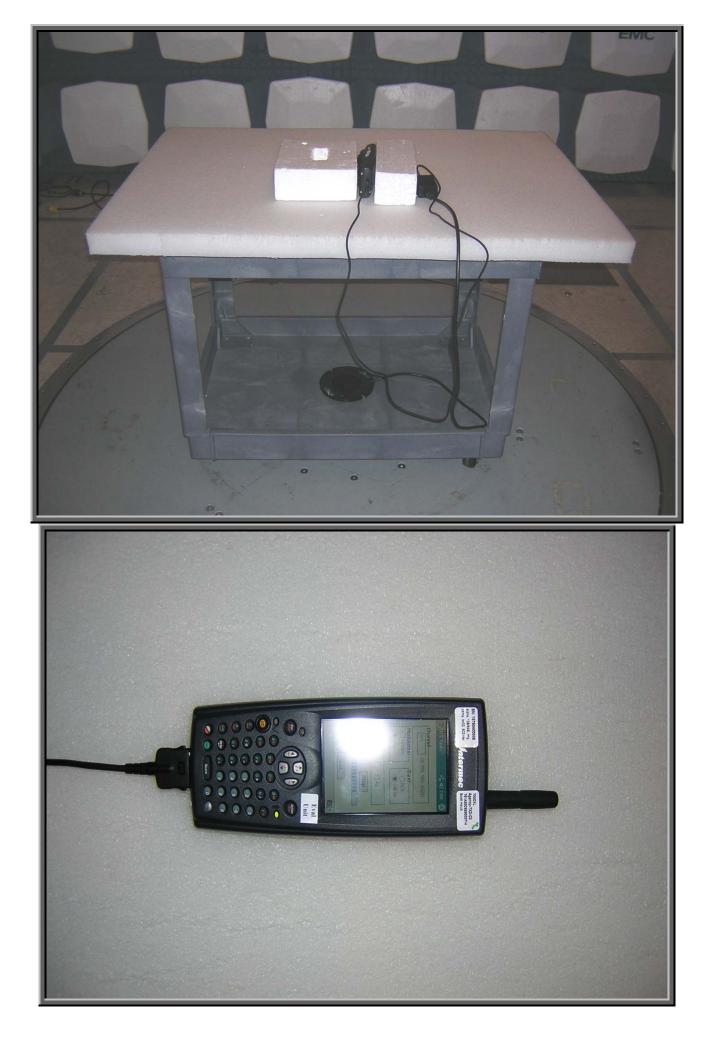
#### **Test Description**

The final radiated emissions test was performed using the parameters described above as worst case. That final test was conducted at a facility that meets the ANSI C63.4 NSA requirements. The frequency range noted in the data sheets was scanned/tested at that facility. Emissions were maximized as specified, by maximizing table azimuth, antenna height, and cable manipulation.

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.


Note: The specified distance is the horizontal separation between the closest periphery of the EUT and the center of the axis of the elements of the receiving antenna. However, if the receiving antenna is a log-periodic array, the specified distance shall be the distance between the closest periphery of the EUT and the front-to-back center of the array of elements.





Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 1 meter, 3 meters, 5 meters, 10 meters, or 30 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

| Bandwidths Used for Meas                                                                      | surements          |                          |                       |  |
|-----------------------------------------------------------------------------------------------|--------------------|--------------------------|-----------------------|--|
| Frequency Range<br>(MHz)                                                                      | Peak Data<br>(kHz) | Quasi-Peak Data<br>(kHz) | Average Data<br>(kHz) |  |
| 0.01 - 0.15                                                                                   | 1.0                | 0.2                      | 0.2                   |  |
| 0.15 – 30.0                                                                                   | 10.0               | 9.0                      | 9.0                   |  |
| 30.0 - 1000                                                                                   | 100.0              | 120.0                    | 120.0                 |  |
| Above 1000                                                                                    | 1000.0             | N/A                      | 1000.0                |  |
| Measurements were made using the bandwidths and detectors specified. No video filter was used |                    |                          |                       |  |

Completed by: Holy Arling









## Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

| Operating Modes Investigated: |
|-------------------------------|
| Receiving Low Channel         |
| Receiving Mid Channel         |
| Receiving High Channel        |

| Power  | Input Sett | tings | Invest | igated: |
|--------|------------|-------|--------|---------|
| 120 VA | C, 60 Hz   |       |        |         |

## Antennas Investigated:

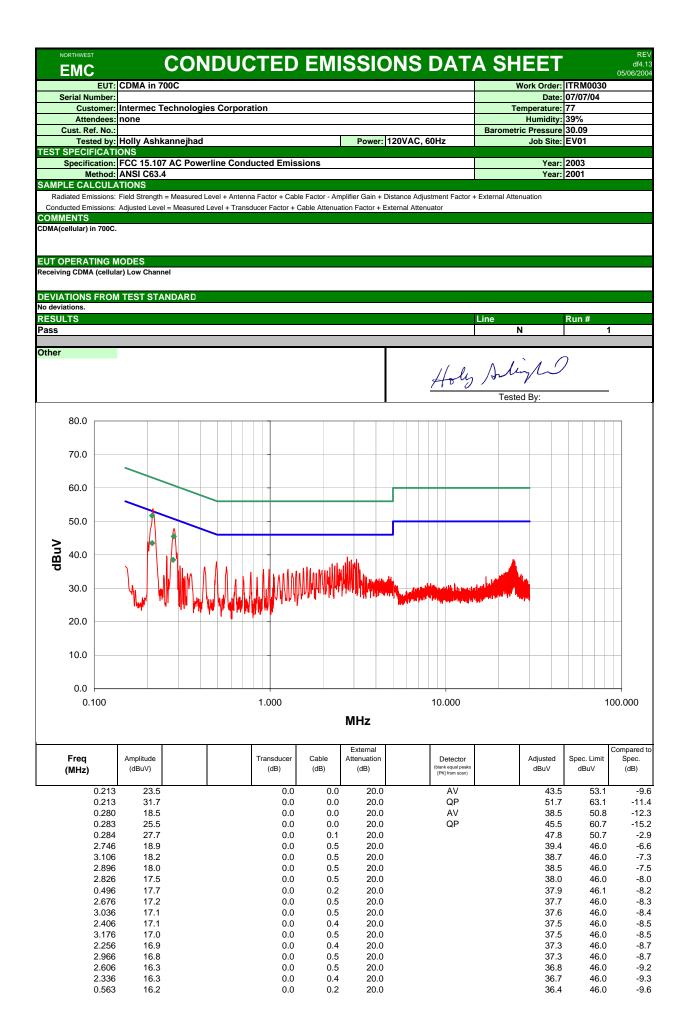
Dual Band CDMA 900/1900 MHz

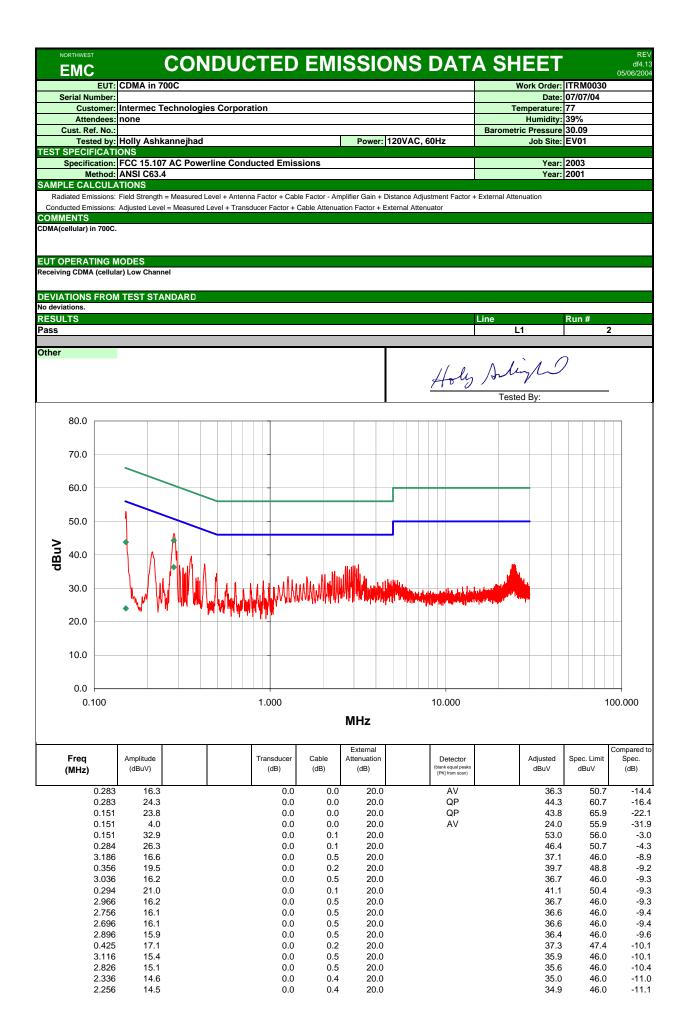
| Software Applied During Test                                                                         |               |         |        |  |  |  |
|------------------------------------------------------------------------------------------------------|---------------|---------|--------|--|--|--|
| Exercise software                                                                                    | CDMA FCC Test | Version | 6/7/04 |  |  |  |
| Description                                                                                          |               |         |        |  |  |  |
| The system was tested using special test software to exercise the functions of the device during the |               |         |        |  |  |  |
| testing including channel, modulation, and mode.                                                     |               |         |        |  |  |  |

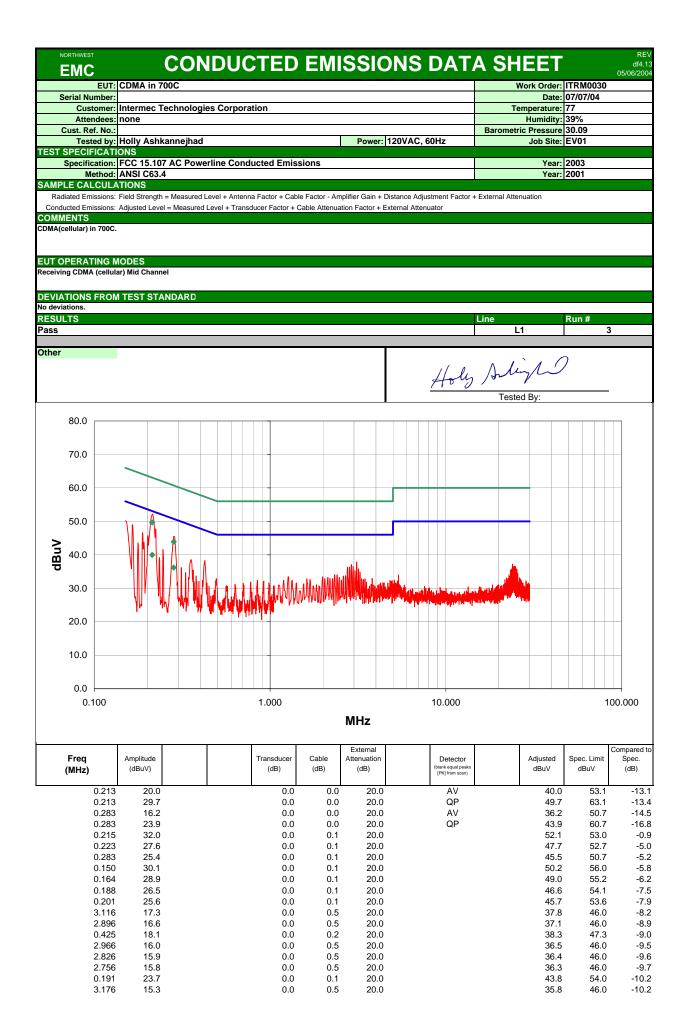
| EUT and Peripherals in Test Setup Boundary |                                   |                   |               |  |  |  |
|--------------------------------------------|-----------------------------------|-------------------|---------------|--|--|--|
| Description                                | Manufacturer                      | Model/Part Number | Serial Number |  |  |  |
| Handheld Computer                          | Intermec Technologies Corporation | 700C              | 13790400008   |  |  |  |
| AC Adapter                                 | Elpac Power Systems               | FW1812            | 014869        |  |  |  |
| CDMA Radio                                 | Intermec Technologies Corporation | EM3420            | Unknown       |  |  |  |

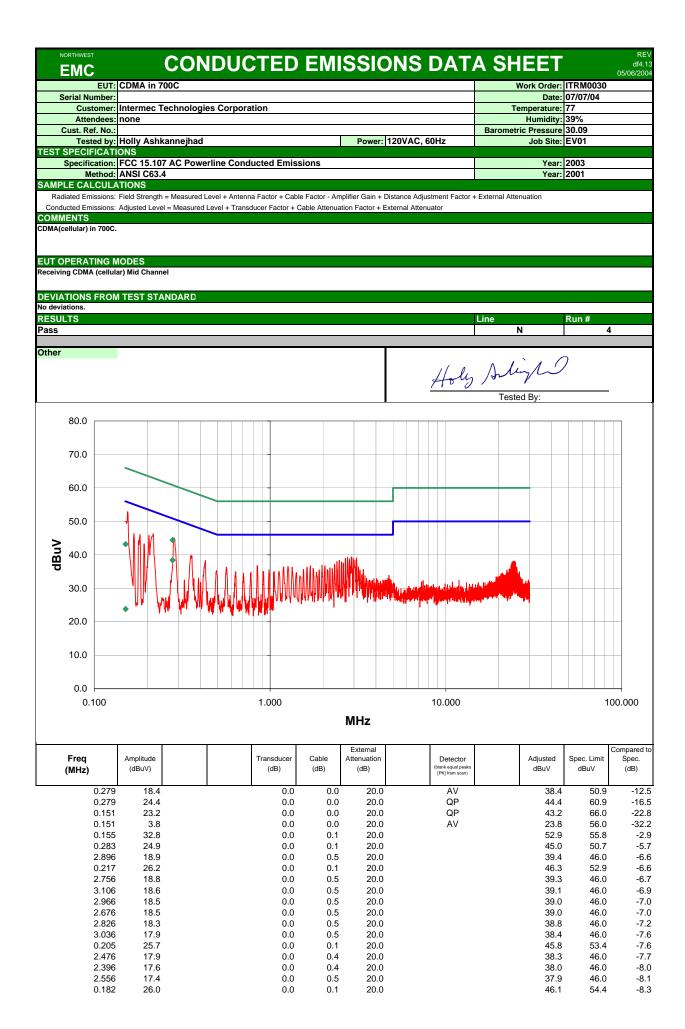
| Cables                                                                                                 |        |            |         |                   |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|-------------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1      | Connection 2 |
| DC Leads                                                                                               | PA     | 1.4        | No      | Handheld Computer | AC Adapter   |
| AC Power No 2.0 No AC Adapter AC Mains                                                                 |        |            |         |                   |              |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |                   |              |

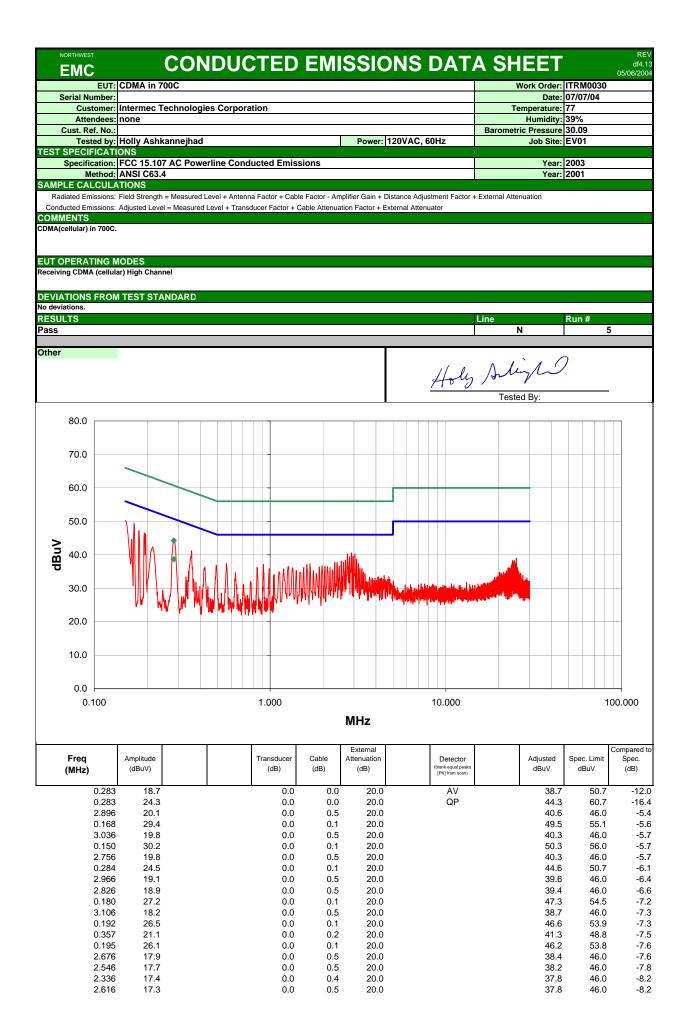
| Measurement Equipment     |                 |                  |            |            |          |
|---------------------------|-----------------|------------------|------------|------------|----------|
| Description               | Manufacturer    | Model            | Identifier | Last Cal   | Interval |
| LISN                      | Solar           | 9252-50-R-24-BNC | LIP        | 12/16/2003 | 13 mo    |
| High Pass Filter          | TTE             | H97-100k-50-720B | HFC        | 02/01/2004 | 13 mo    |
| Quasi-Peak Adapter        | Hewlett-Packard | 85650A           | AQF        | 12/23/2003 | 13 mo    |
| Spectrum Analyzer         | Hewlett-Packard | 8566B            | AAL        | 12/23/2003 | 13 mo    |
| Spectrum Analyzer Display | Hewlett Packard | 85662A           | AALD       | 12/23/2003 | 13 mo    |

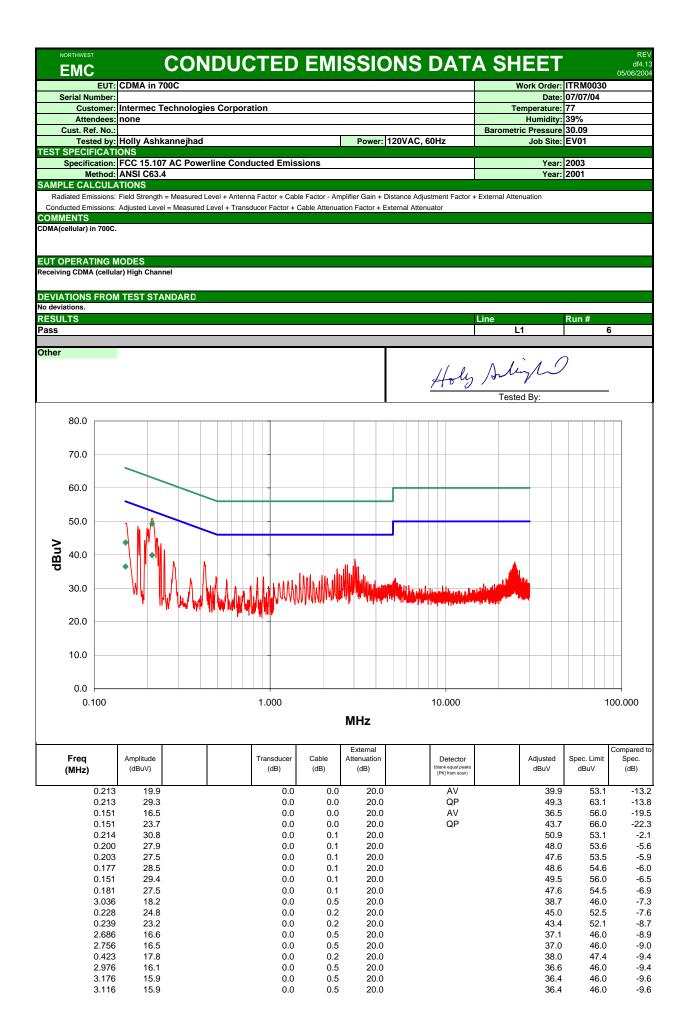




#### **Test Description**


Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50  $\Omega$  measuring port is terminated by a 50  $\Omega$  EMI meter or a 50  $\Omega$  resistive load. All 50  $\Omega$  measuring ports of the LISN are terminated by 50 $\Omega$ .


| Measurement Bandwidt                                                                           | hs                 |                          |                       |
|------------------------------------------------------------------------------------------------|--------------------|--------------------------|-----------------------|
| Frequency Range<br>(MHz)                                                                       | Peak Data<br>(kHz) | Quasi-Peak Data<br>(kHz) | Average Data<br>(kHz) |
| 0.01 – 0.15                                                                                    | 1.0                | 0.2                      | 0.2                   |
| 0.15 - 30.0                                                                                    | 10.0               | 9.0                      | 9.0                   |
| 30.0 - 1000                                                                                    | 100.0              | 120.0                    | 120.0                 |
| Above 1000                                                                                     | 1000.0             | N/A                      | 1000.0                |
| Measurements were made using the bandwidths and detectors specified. No video filter was used. |                    |                          |                       |


Completed by: Holy Arlingh




















#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| High                                     |
| Mid                                      |
| Low                                      |

## **Operating Modes Investigated:** Transmitting

## Antennas Investigated: 805-606-004 Single Band CDMA 1900 MHz Antenna 805-606-102 Dual Band CDMA 900/1900 MHz Antenna

## Output Power Setting(s) Investigated:

Maximum

## Power Input Settings Investigated: 120 VAC, 60 Hz.

| Other Settings Investigated: |
|------------------------------|
| Cellular                     |
| PCS                          |

| Software\Firmware Applied During Test                                                                |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Exercise softwareCDMA FCC TestVersion6/7/04                                                          |  |  |  |  |  |  |
| Description                                                                                          |  |  |  |  |  |  |
| The system was tested using special test software to exercise the functions of the device during the |  |  |  |  |  |  |
| testing including channel, band, and operating mode.                                                 |  |  |  |  |  |  |

| EUT and Peripherals |                                   |                   |               |  |  |  |
|---------------------|-----------------------------------|-------------------|---------------|--|--|--|
| Description         | Manufacturer                      | Model/Part Number | Serial Number |  |  |  |
| CDMA Radio          | Intermec Technologies Corporation | EM3420            | Unknown       |  |  |  |
| Handheld Computer   | Intermec Technologies Corporation | 700C              | 13790400008   |  |  |  |
| AC Adapter          | Elpac Power Systems               | FW1812            | 014869        |  |  |  |



| Cables                                                                                                 |        |            |         |                   |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|-------------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1      | Connection 2 |
| DC Leads                                                                                               | PA     | 1.4        | No      | Handheld Computer | AC Adapter   |
| AC Power                                                                                               | No     | 2.0        | No      | AC Adapter        | AC Mains     |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |                   |              |

| Measurement Equipment           |                       |                          |            |            |          |  |
|---------------------------------|-----------------------|--------------------------|------------|------------|----------|--|
| Description                     | Manufacturer          | Model                    | Identifier | Last Cal   | Interval |  |
| Antenna, Horn                   | EMCO                  | 3115                     | AHC        | 09/18/2003 | 12 mo    |  |
| Pre-Amplifier                   | Miteq                 | AMF-4D-005180-<br>24-10P | APJ        | 01/05/2004 | 13 mo    |  |
| Antenna, Biconilog              | EMCO                  | 3141                     | AXE        | 12/03/2003 | 24 mo    |  |
| Pre-Amplifier                   | Amplifier<br>Research | LN1000A                  | APS        | 02/05/2004 | 13 mo    |  |
| Attenuator                      | Pasternack            | PE7001-10                | ATD        | 02/03/2004 | 13 mo    |  |
| Attenuator                      |                       | 2082-6148-20             | ATE        | 02/03/2004 | 13 mo    |  |
| Antenna, Horn                   | EMCO                  | 3115                     | AHF        | 03/18/2004 | 24 mo    |  |
| Signal Generator                | Hewlett Packard       | 8341B                    | TGN        | 01/23/2004 | 13 mo    |  |
| Antenna, Dipole (ADAA included) | Roberts               | Roberts                  | ADA        | 12/27/2002 | 24 mo    |  |
| Spectrum Analyzer               | Hewlett-Packard       | 8566B                    | AAL        | 12/23/2003 | 13 mo    |  |
| Quasi-Peak Adapter              | Hewlett-Packard       | 85650A                   | AQF        | 12/23/2003 | 13 mo    |  |



#### **Test Description**

**<u>Requirement:</u>** Per 2.1046, the peak power of the modulated carrier was measured. The applicable limits are 22.913(a) for the cellular band, and 24.232(b) for the PCS band.

Per 22.913(a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

Per 24.232(b), Mobile/portable stations are limited to 2 Watts e.i.r.p. peak power.

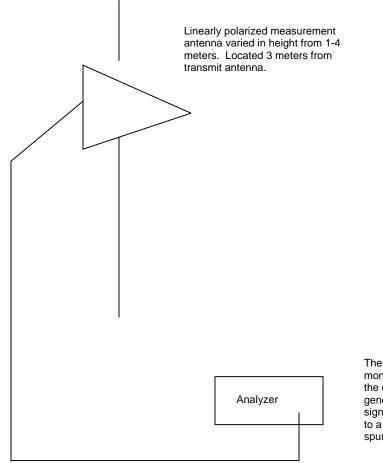
**Configuration:** Spectrum analyzer, signal generator, and linearly polarized antennas were used to measure the fundamental emissions. The orientation of the EUT was varied in 3 orthogonal axes to maximize the level of emissions. The EUT was configured to transmit at the highest output at low, mid, and high channels. The EUT was tested with each antenna. Only one antenna can be used at a time.

The substitution method as described in TIA/EIA-603 Section 2.2.12 was used.

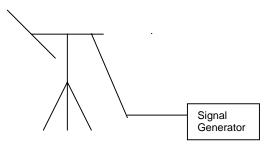
**Test Methodology:** For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the dipole antenna and its gain; the power (ERP or e.i.r.p) is determined for each radiated emission.



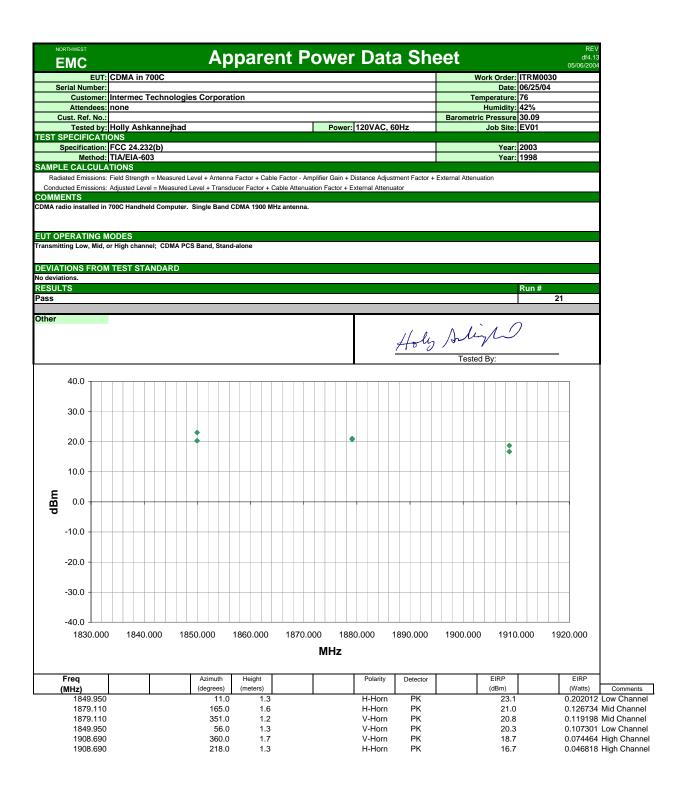

## **Test Setup Diagram**

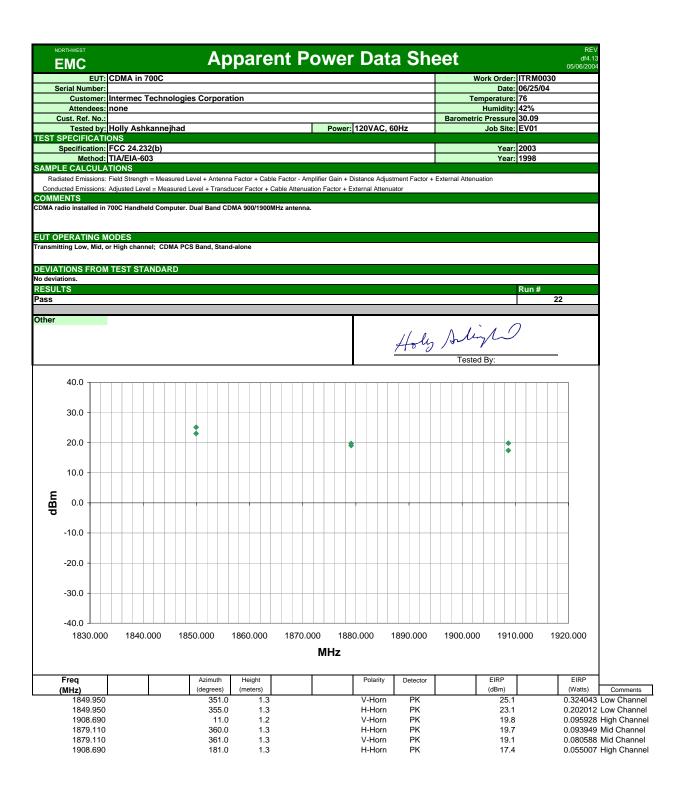
## **Test Setup for Field Strength Measurements**

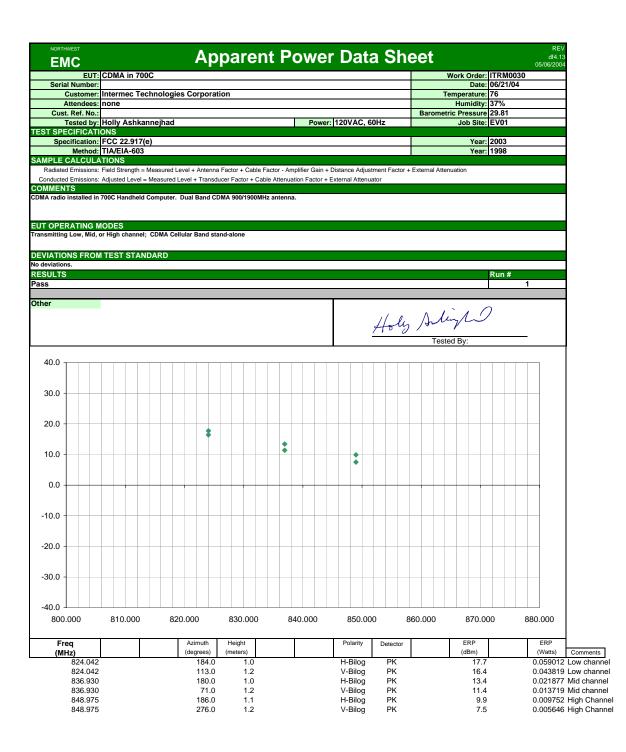


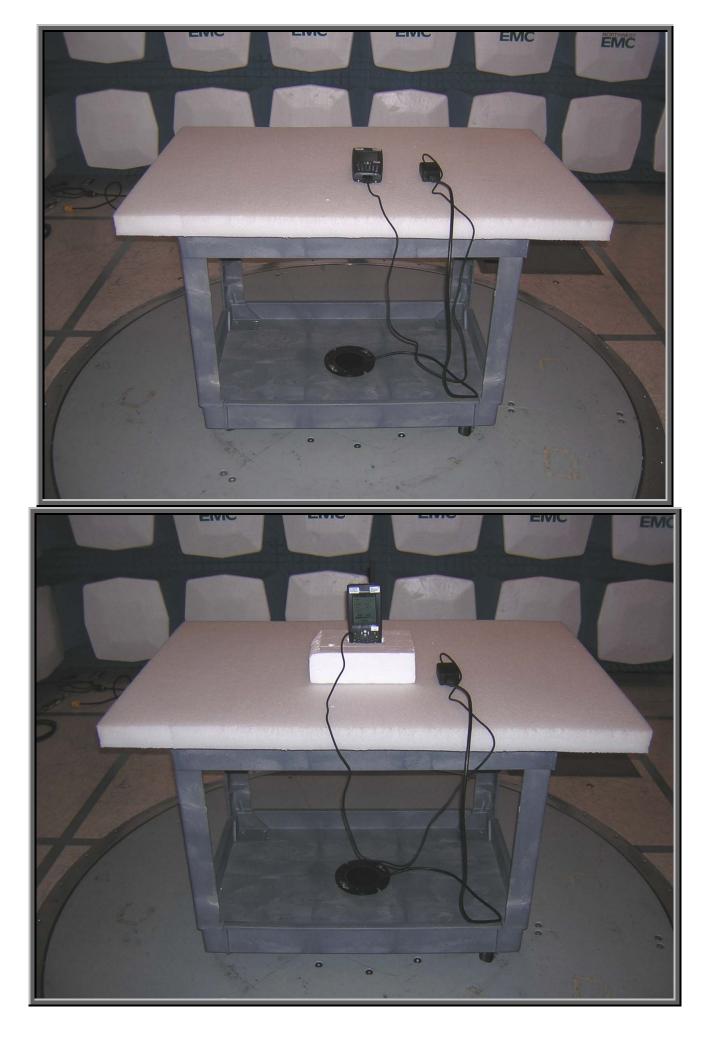


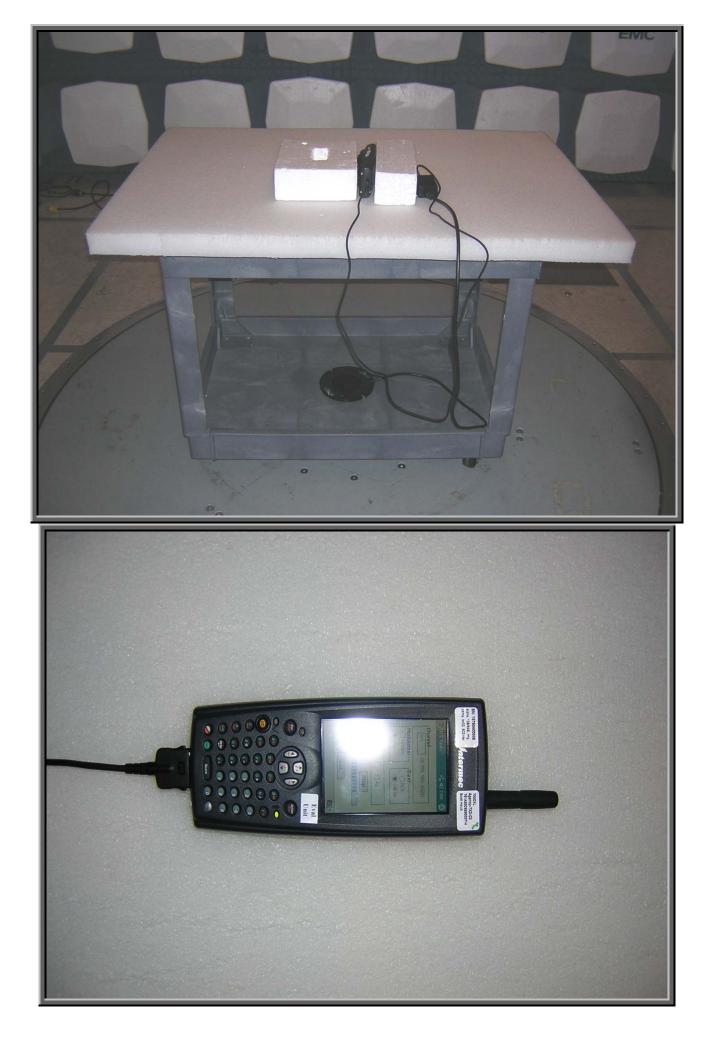

## Test Setup for Power Measurements Utilizing the Antenna Substitution Method





During field strength measurements, the amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole (at the same height) that is successively tuned to each of the highest spurious emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency.





The spectrum analyzer is monitored to verify that the output of the signal generator produces a signal equal in amplitude to a previously measured spurious emission.


Completed by: Holy Arlingh















#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| High                                     |
| Mid                                      |
| Low                                      |

**Operating Modes Investigated:** Typical

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

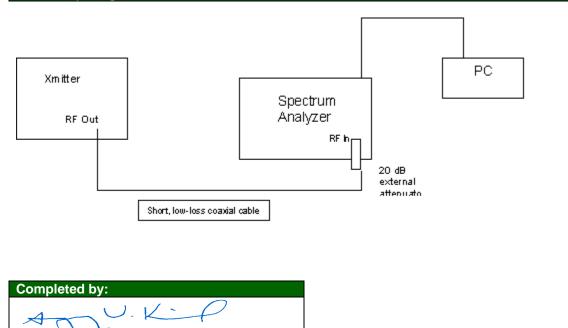
| Other Settings Investigated: |  |
|------------------------------|--|
| Cellular                     |  |
| PCS                          |  |

| Software\Firmware Applied During Test                                                                |                          |  |   |  |  |  |
|------------------------------------------------------------------------------------------------------|--------------------------|--|---|--|--|--|
| Exercise software CDMA FCC Test Version 6/7/04                                                       |                          |  |   |  |  |  |
| Description                                                                                          |                          |  |   |  |  |  |
| The system was tested using special test software to exercise the functions of the device during the |                          |  |   |  |  |  |
| testing including channel, I                                                                         | band, and operating mode |  | _ |  |  |  |

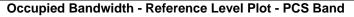
| EUT and Peripherals |                                   |                   |               |  |  |  |
|---------------------|-----------------------------------|-------------------|---------------|--|--|--|
| Description         | Manufacturer                      | Model/Part Number | Serial Number |  |  |  |
| Handheld Computer   | Intermec Technologies Corporation | 700C              | 13790400008   |  |  |  |
| AC Adapter          | Elpac Power Systems               | FW1812            | 014869        |  |  |  |
| CDMA Radio          | Intermec Technologies Corporation | EM3420            | Unknown       |  |  |  |

| Cables                                                                                                 |        |            |         |                   |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|-------------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1      | Connection 2 |
| DC Leads                                                                                               | PA     | 1.4        | No      | Handheld Computer | AC Adapter   |
| AC Power                                                                                               | No     | 2.0        | No      | AC Adapter        | AC Mains     |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |                   |              |

| Measurement Equipment |              |       |            |            |          |  |
|-----------------------|--------------|-------|------------|------------|----------|--|
| Description           | Manufacturer | Model | Identifier | Last Cal   | Interval |  |
| Spectrum Analyzer     | Tektronix    | 2784  | AAO        | 02/26/2003 | 24 mo    |  |


#### **Test Description**

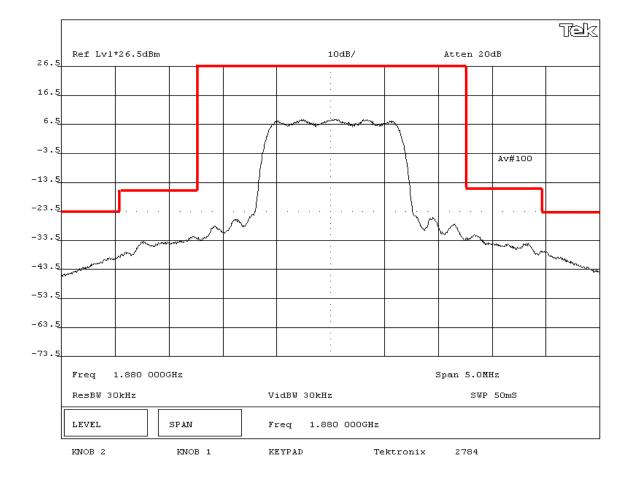
#### **Test Description**


**Requirement:** Per 47 CFR 22.917, and 24.238, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10log(P) dB. Per 47 CFR 2.1049, the occupied bandwidth was measured at the RF output terminals with analyzer plots made for each band.

**Configuration:** A spectrum analyzer was used to measure the occupied bandwidth. A 20dB external attenuator was used on the RF input of the spectrum analyzer. In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter was employed. The nominal carrier frequency was adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits. The emission power was measured relative to a reference baseline of the transmitter power.

#### **Test Setup Diagram**

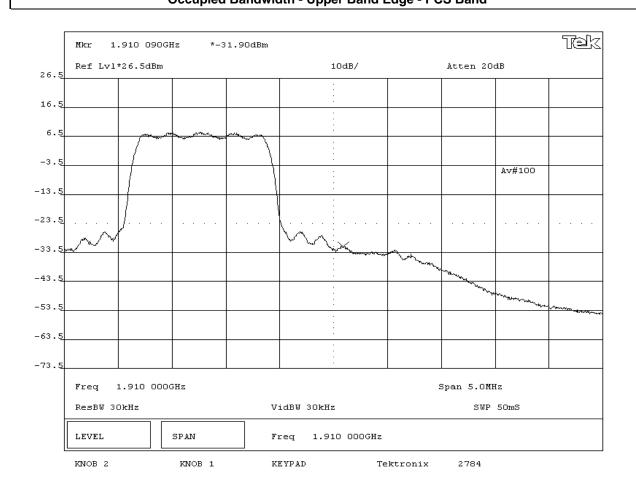



| NORTHWEST                                              |                                   |                        |                       |                         |                      |  |  |
|--------------------------------------------------------|-----------------------------------|------------------------|-----------------------|-------------------------|----------------------|--|--|
| EMC                                                    | EMISSIONS I                       | DATA SHI               | EET                   |                         | Rev BETA<br>01/30/01 |  |  |
| EUT: EM3420                                            |                                   |                        |                       | Work Order:             | ITRM0030             |  |  |
| Serial Number: 13790400008                             |                                   |                        |                       | Date:                   | 07/01/04             |  |  |
| Customer: Intermec Corporation                         |                                   |                        |                       | Temperature:            |                      |  |  |
| Attendees: none                                        |                                   |                        | Greg Kiemel           | Humidity:               |                      |  |  |
| Customer Ref. No.: N/A                                 |                                   | Power:                 | DC from Host Unit     | Job Site:               | EV06                 |  |  |
| TEST SPECIFICATIONS                                    |                                   |                        |                       |                         |                      |  |  |
| Specification: 47 CFR 2.1049, 22.917, 24.238           | Year: Most Current                | Method:                | TIA / EIA 603         | Year:                   | 2001                 |  |  |
| SAMPLE CALCULATIONS                                    |                                   |                        |                       |                         |                      |  |  |
|                                                        |                                   |                        |                       |                         |                      |  |  |
|                                                        |                                   |                        |                       |                         |                      |  |  |
| COMMENTS                                               |                                   |                        |                       |                         |                      |  |  |
| Tested in 700C Handheld Computer                       |                                   |                        |                       |                         |                      |  |  |
| EUT OPERATING MODES                                    |                                   |                        |                       |                         |                      |  |  |
| Modulated by PRBS at maximum data rate, at maximum     | output power.                     |                        |                       |                         |                      |  |  |
| DEVIATIONS FROM TEST STANDARD                          |                                   |                        |                       |                         |                      |  |  |
| None                                                   |                                   |                        |                       |                         |                      |  |  |
| REQUIREMENTS                                           |                                   |                        |                       |                         |                      |  |  |
| On any frequency outside a licensee's frequency block, | the power of any emission shall b | e attenuated below the | transmitter power (P) | by at least 43 + 10log( | P) db.               |  |  |
|                                                        |                                   |                        |                       |                         |                      |  |  |
| RESULTS                                                |                                   |                        |                       |                         |                      |  |  |
| Pass                                                   |                                   |                        |                       |                         |                      |  |  |
| SIGNATURE                                              |                                   |                        |                       |                         |                      |  |  |
| ATT V.K-P                                              |                                   |                        |                       |                         |                      |  |  |
| Tested By: 7                                           |                                   |                        |                       |                         |                      |  |  |
| DESCRIPTION OF TEST                                    |                                   |                        |                       |                         |                      |  |  |
| Occupie                                                | ed Bandwidth - Refe               | rence Level P          | Plot - PCS Ba         | nd                      |                      |  |  |
|                                                        |                                   |                        |                       |                         |                      |  |  |



| [     |                 |        |                  |               | Tek    |
|-------|-----------------|--------|------------------|---------------|--------|
| 26.5  | Ref Lv1*26.5dBm | 1      | 10dB/            | Atten 20      | dB     |
| 16.5  |                 |        |                  |               |        |
| 6.5   |                 |        |                  |               |        |
| -3.5  |                 |        |                  |               | Av#100 |
| -13.5 |                 |        |                  |               |        |
| -23.5 |                 |        |                  |               |        |
| -33.5 |                 |        |                  |               |        |
| -43.5 |                 |        |                  |               |        |
| -53.5 |                 |        | :                |               |        |
| -63.5 |                 |        |                  |               |        |
| -73.5 |                 |        | :                |               |        |
|       | Freq 1.880 00   | IGHz   |                  | Span 5.0M     | Hz     |
|       | ResBW 3MHz      |        | VidBW 7MHz       | SWP           | 50mS   |
|       | LEVEL           | SPAN   | Freq 1.880 OOGHz |               |        |
|       | KINOB 2         | KNOB 1 | KEYPAD Te        | ektronix 2784 |        |

| NORTHWEST            |                                             |                                   |                                              |                          |                      |  |  |  |
|----------------------|---------------------------------------------|-----------------------------------|----------------------------------------------|--------------------------|----------------------|--|--|--|
| EMC                  |                                             | EMISSIONS I                       | DATA SHEET                                   |                          | Rev BETA<br>01/30/01 |  |  |  |
| EUT:                 | EM3420                                      |                                   |                                              | Work Order:              | ITRM0030             |  |  |  |
| Serial Number:       | 13790400008                                 |                                   |                                              | Date:                    | 07/01/04             |  |  |  |
| Customer:            | Intermec Corporation                        |                                   |                                              | Temperature:             | 73 F                 |  |  |  |
| Attendees:           | none                                        |                                   | Tested by: Greg Kiemel                       | Humidity:                | 41%                  |  |  |  |
| Customer Ref. No.:   | N/A                                         |                                   | Power: DC from Host Unit                     | Job Site:                | EV06                 |  |  |  |
| TEST SPECIFICATION   | IS                                          |                                   |                                              |                          |                      |  |  |  |
| Specification:       | 47 CFR 2.1049, 22.917, 24.238               | Year: Most Current                | Method: TIA / EIA 603                        | Year:                    | 2001                 |  |  |  |
| SAMPLE CALCULATIO    | ONS                                         |                                   |                                              |                          |                      |  |  |  |
|                      |                                             |                                   |                                              |                          |                      |  |  |  |
| COMMENTS             |                                             |                                   |                                              |                          |                      |  |  |  |
| Tested in 700C Handh | eld Computer                                |                                   |                                              |                          |                      |  |  |  |
| EUT OPERATING MOD    | DES                                         |                                   |                                              |                          |                      |  |  |  |
| Modulated by PRBS a  | t maximum data rate, at maximum             | output power.                     |                                              |                          |                      |  |  |  |
| DEVIATIONS FROM TI   | EST STANDARD                                |                                   |                                              |                          |                      |  |  |  |
| None                 |                                             |                                   |                                              |                          |                      |  |  |  |
| REQUIREMENTS         |                                             |                                   |                                              |                          |                      |  |  |  |
| On any frequency out | side a licensee's frequency block,          | the power of any emission shall b | e attenuated below the transmitter power (P) | by at least 43 + 10log(F | ²) db.               |  |  |  |
| RESULTS              |                                             |                                   |                                              |                          |                      |  |  |  |
| Pass                 |                                             |                                   |                                              |                          |                      |  |  |  |
| SIGNATURE            |                                             |                                   |                                              |                          |                      |  |  |  |
| Tested By:           |                                             |                                   |                                              |                          |                      |  |  |  |
| DESCRIPTION OF TES   | ST                                          |                                   |                                              |                          |                      |  |  |  |
|                      | Occupied Bandwidth - Mid Channel - PCS Band |                                   |                                              |                          |                      |  |  |  |






| REVIEETA EMISSIONS DATA SHEET                                                 |                                   |                         |                         |          |  |  |  |
|-------------------------------------------------------------------------------|-----------------------------------|-------------------------|-------------------------|----------|--|--|--|
| EMO                                                                           | NO DATA ON                        |                         |                         | 01/30/01 |  |  |  |
| EUT: EM3420                                                                   |                                   |                         | Work Order:             | ITRM0030 |  |  |  |
| Serial Number: 13790400008                                                    |                                   |                         | Date:                   | 07/01/04 |  |  |  |
| Customer: Intermec Corporation                                                |                                   |                         | Temperature:            |          |  |  |  |
| Attendees: none                                                               |                                   | Greg Kiemel             | Humidity:<br>Job Site:  |          |  |  |  |
| Customer Ref. No.: N/A                                                        |                                   |                         |                         |          |  |  |  |
| TEST SPECIFICATIONS                                                           |                                   |                         |                         |          |  |  |  |
| Specification: 47 CFR 2.1049, 22.917, 24.238 Year: Most Curre                 | nt Method:                        | TIA / EIA 603           | Year:                   | 2001     |  |  |  |
| SAMPLE CALCULATIONS                                                           |                                   |                         |                         |          |  |  |  |
|                                                                               |                                   |                         |                         |          |  |  |  |
|                                                                               |                                   |                         |                         |          |  |  |  |
| COMMENTS                                                                      |                                   |                         |                         |          |  |  |  |
| Tested in 700C Handheld Computer                                              |                                   |                         |                         |          |  |  |  |
| EUT OPERATING MODES                                                           |                                   |                         |                         |          |  |  |  |
| Modulated by PRBS at maximum data rate, at maximum output power.              |                                   |                         |                         |          |  |  |  |
| DEVIATIONS FROM TEST STANDARD                                                 |                                   |                         |                         |          |  |  |  |
| None                                                                          |                                   |                         |                         |          |  |  |  |
| REQUIREMENTS                                                                  |                                   |                         |                         |          |  |  |  |
| On any frequency outside a licensee's frequency block, the power of any emiss | sion shall be attenuated below th | e transmitter power (P) | by at least 43 + 10log( | P) db.   |  |  |  |
|                                                                               |                                   |                         |                         |          |  |  |  |
| RESULTS                                                                       |                                   |                         |                         |          |  |  |  |
| Pass                                                                          |                                   |                         |                         |          |  |  |  |
| SIGNATURE                                                                     |                                   |                         |                         |          |  |  |  |
| ATT. K.P                                                                      |                                   |                         |                         |          |  |  |  |
| Tested By: V                                                                  |                                   |                         |                         |          |  |  |  |
| DESCRIPTION OF TEST                                                           |                                   |                         |                         |          |  |  |  |
| Occupied Bandwidt                                                             | h - Lower Band Ed                 | ge - PCS Ban            | d                       |          |  |  |  |

|       | Mkr 1.849 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GHz *-31.90dBm |                  |               | Tek       |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|---------------|-----------|
| 26.5  | Ref Lv1*26.5dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I.             | 10dB/            | Atten 20      | dB        |
| 16.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |               |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |               |           |
| 6.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |               | $\square$ |
| -3.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |               | Av#100    |
| -13.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |               |           |
| -23.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  | ¥             |           |
| -33.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Anna Martin      |               |           |
| -43.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | -                |               |           |
| -53.5 | and the second states | www.           |                  |               |           |
| -63.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |               |           |
| -73.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |               |           |
| -13.3 | Freq 1.850 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OGHz           |                  | Span 5.0M     | Hz        |
|       | ResBW 30kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | VidBW 30kHz      | SWP           | 50mS      |
|       | LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPAN           | Mkr 1.849 480GHz |               |           |
|       | KINOB 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KNOB 1         | KEYPAD Te        | ektronix 2784 |           |

| NORTHWEST            |                                    |                                    |                        |                         |                         |                      |  |
|----------------------|------------------------------------|------------------------------------|------------------------|-------------------------|-------------------------|----------------------|--|
| EMC                  |                                    | EMISSIONS [                        | DATA SH                | EET                     |                         | Rev BETA<br>01/30/01 |  |
| EUT:                 | EM3420                             |                                    |                        |                         | Work Order:             | ITRM0030             |  |
| Serial Number:       | 13790400008                        |                                    |                        |                         | Date:                   | 07/01/04             |  |
| Customer:            | Intermec Corporation               |                                    |                        |                         | Temperature:            | 73 F                 |  |
| Attendees:           | none                               |                                    | Tested by:             | Greg Kiemel             | Humidity:               | 41%                  |  |
| Customer Ref. No.:   | N/A Power: DC from Host Unit       |                                    |                        |                         | Job Site:               | EV06                 |  |
| TEST SPECIFICATION   |                                    |                                    |                        |                         |                         |                      |  |
| Specification:       | 47 CFR 2.1049, 22.917, 24.238      | Year: Most Current                 | Method:                | TIA / EIA 603           | Year:                   | 2001                 |  |
| SAMPLE CALCULATIO    | ONS                                |                                    |                        |                         |                         |                      |  |
|                      |                                    |                                    |                        |                         |                         |                      |  |
| COMMENTS             |                                    |                                    |                        |                         |                         |                      |  |
| Tested in 700C Handh | eld Computer                       |                                    |                        |                         |                         |                      |  |
| EUT OPERATING MOD    | DES                                |                                    |                        |                         |                         |                      |  |
| Modulated by PRBS a  | t maximum data rate, at maximum    | output power.                      |                        |                         |                         |                      |  |
| DEVIATIONS FROM TI   | EST STANDARD                       |                                    |                        |                         |                         |                      |  |
| None                 |                                    |                                    |                        |                         |                         |                      |  |
| REQUIREMENTS         |                                    |                                    |                        |                         |                         |                      |  |
| On any frequency out | side a licensee's frequency block, | the power of any emission shall be | e attenuated below the | e transmitter power (P) | by at least 43 + 10log( | P) db.               |  |
| RESULTS              |                                    |                                    |                        |                         |                         |                      |  |
| Pass                 |                                    |                                    |                        |                         |                         |                      |  |
| SIGNATURE            |                                    |                                    |                        |                         |                         |                      |  |
| Tested By:           |                                    |                                    |                        |                         |                         |                      |  |
| DESCRIPTION OF TES   | т                                  |                                    |                        |                         |                         |                      |  |
|                      | Occup                              | ied Bandwidth - Upp                | per Band Edg           | ge - PCS Band           | d                       |                      |  |



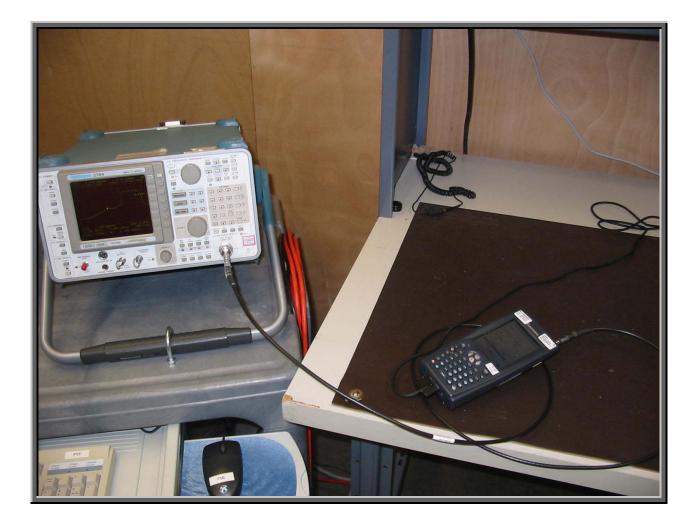

| NORTHWEST                                                                                 |                                             |                           |                      |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|----------------------|--|--|--|--|--|--|
| EMC                                                                                       | DATA SHEET                                  |                           | Rev BETA<br>01/30/01 |  |  |  |  |  |  |
| EUT: EM3420                                                                               |                                             | Work Order:               | ITRM0030             |  |  |  |  |  |  |
| Serial Number: 13790400008                                                                |                                             | Date:                     | 07/01/04             |  |  |  |  |  |  |
| Customer: Intermec Corporation                                                            |                                             | Temperature:              | 73 F                 |  |  |  |  |  |  |
| Attendees: none                                                                           | Tested by: Greg Kiemel                      | Humidity:                 |                      |  |  |  |  |  |  |
| Customer Ref. No.: N/A                                                                    | Power: DC from Host Unit                    | Job Site:                 | EV06                 |  |  |  |  |  |  |
| TEST SPECIFICATIONS                                                                       |                                             |                           |                      |  |  |  |  |  |  |
| Specification: 47 CFR 2.1049, 22.917, 24.238 Year: Most Current                           | Method: TIA / EIA 603                       | Year:                     | 2001                 |  |  |  |  |  |  |
| SAMPLE CALCULATIONS                                                                       |                                             |                           |                      |  |  |  |  |  |  |
|                                                                                           |                                             |                           |                      |  |  |  |  |  |  |
|                                                                                           |                                             |                           |                      |  |  |  |  |  |  |
| COMMENTS                                                                                  |                                             |                           |                      |  |  |  |  |  |  |
| Tested in 700C Handheld Computer                                                          |                                             |                           |                      |  |  |  |  |  |  |
| EUT OPERATING MODES                                                                       |                                             |                           |                      |  |  |  |  |  |  |
| Modulated by PRBS at maximum data rate, at maximum output power.                          |                                             |                           |                      |  |  |  |  |  |  |
| DEVIATIONS FROM TEST STANDARD                                                             |                                             |                           |                      |  |  |  |  |  |  |
| None                                                                                      |                                             |                           |                      |  |  |  |  |  |  |
| REQUIREMENTS                                                                              |                                             |                           |                      |  |  |  |  |  |  |
| On any frequency outside a licensee's frequency block, the power of any emission shall be | be attenuated below the transmitter power ( | ) by at least 43 + 10log( | P) db.               |  |  |  |  |  |  |
|                                                                                           | F (                                         | ,                         | ,                    |  |  |  |  |  |  |
| RESULTS                                                                                   |                                             |                           |                      |  |  |  |  |  |  |
| Pass                                                                                      |                                             |                           |                      |  |  |  |  |  |  |
| SIGNATURE                                                                                 |                                             |                           |                      |  |  |  |  |  |  |
|                                                                                           |                                             |                           |                      |  |  |  |  |  |  |
| And KI                                                                                    | Amukit                                      |                           |                      |  |  |  |  |  |  |
| Tested By:                                                                                |                                             |                           |                      |  |  |  |  |  |  |
| ······································                                                    |                                             |                           |                      |  |  |  |  |  |  |
| DESCRIPTION OF TEST                                                                       |                                             |                           |                      |  |  |  |  |  |  |
| Occupied Bandwidth - Reference Level Plot - Cellular Band                                 |                                             |                           |                      |  |  |  |  |  |  |

## Occupied Bandwidth - Reference Level Plot - Cellular Band

\_\_\_\_

|       |                |        |                                       |           |           | Tek |
|-------|----------------|--------|---------------------------------------|-----------|-----------|-----|
| 26.8  | Ref Lv1*26.8dB | m      | 10dB/                                 |           | tten 20dB |     |
| 16.8  |                |        |                                       |           |           |     |
| 10.0  |                |        |                                       |           |           |     |
| 6.8   |                |        | · ·                                   |           |           |     |
| -3.2  |                |        |                                       |           |           |     |
| -13.2 |                |        |                                       |           | Av#100    |     |
| -23.2 |                |        |                                       |           |           |     |
| -33.2 |                |        |                                       |           |           |     |
| -43.2 |                |        |                                       |           |           |     |
| -53.2 |                |        |                                       |           |           |     |
|       |                |        |                                       |           |           |     |
| -63.2 |                |        | · · · · · · · · · · · · · · · · · · · |           |           |     |
| -73.2 | Freq 835.89MHz |        |                                       | Sp:       | an 5.0MHz |     |
|       | ResBW 3MHz     |        | VidBW 7MHz                            |           | SWP 50mS  |     |
|       | LEVEL          | SPAN   | ResBW 3MHz                            |           |           |     |
| ·     | KNOB 2         | KNOB 1 | KEYPAD                                | Tektronix | 2784      |     |

| NORTHWEST                                        |                                    |                                   |                        |                         |                          |                      |  |  |
|--------------------------------------------------|------------------------------------|-----------------------------------|------------------------|-------------------------|--------------------------|----------------------|--|--|
| EMC                                              |                                    | EMISSIONS [                       | DATA SH                | EET                     |                          | Rev BETA<br>01/30/01 |  |  |
| EUT:                                             | EM3420                             |                                   |                        |                         | Work Order:              | ITRM0030             |  |  |
| Serial Number:                                   | 13790400008                        |                                   |                        |                         | Date:                    | 07/01/04             |  |  |
| Customer:                                        | Intermec Corporation               |                                   |                        |                         | Temperature:             | 73 F                 |  |  |
| Attendees:                                       | none                               |                                   | Tested by:             | Greg Kiemel             | Humidity:                | 41%                  |  |  |
| Customer Ref. No.:                               | N/A                                |                                   | Power:                 | DC from Host Unit       | Job Site:                | EV06                 |  |  |
| TEST SPECIFICATION                               | IS                                 |                                   |                        |                         |                          |                      |  |  |
| Specification:                                   | 47 CFR 2.1049, 22.917, 24.238      | Year: Most Current                | Method:                | TIA / EIA 603           | Year:                    | 2001                 |  |  |
| SAMPLE CALCULATIO                                | ONS                                |                                   |                        |                         |                          |                      |  |  |
|                                                  |                                    |                                   |                        |                         |                          |                      |  |  |
| COMMENTS                                         |                                    |                                   |                        |                         |                          |                      |  |  |
| Tested in 700C Handh                             | eld Computer                       |                                   |                        |                         |                          |                      |  |  |
| EUT OPERATING MOD                                | DES                                |                                   |                        |                         |                          |                      |  |  |
| Modulated by PRBS a                              | t maximum data rate, at maximum    | output power.                     |                        |                         |                          |                      |  |  |
| DEVIATIONS FROM T                                | EST STANDARD                       |                                   |                        |                         |                          |                      |  |  |
| None                                             |                                    |                                   |                        |                         |                          |                      |  |  |
| REQUIREMENTS                                     |                                    |                                   |                        |                         |                          |                      |  |  |
|                                                  | side a licensee's frequency block, | the power of any emission shall b | e attenuated below the | e transmitter power (P) | by at least 43 + 10log(l | P) db.               |  |  |
| RESULTS                                          |                                    |                                   |                        |                         |                          |                      |  |  |
| Pass                                             |                                    |                                   |                        |                         |                          |                      |  |  |
| SIGNATURE                                        |                                    |                                   |                        |                         |                          |                      |  |  |
| Tested By:                                       |                                    |                                   |                        |                         |                          |                      |  |  |
| DESCRIPTION OF TES                               | DESCRIPTION OF TEST                |                                   |                        |                         |                          |                      |  |  |
| Occupied Bandwidth - Mid Channel - Cellular Band |                                    |                                   |                        |                         |                          |                      |  |  |




| NORTHWEST                                                  |                                                      |                        |                       |                         |                      |  |  |  |
|------------------------------------------------------------|------------------------------------------------------|------------------------|-----------------------|-------------------------|----------------------|--|--|--|
| EMC                                                        | EMISSIONS                                            |                        | EET                   |                         | Rev BETA<br>01/30/01 |  |  |  |
| EUT: EM3420                                                |                                                      |                        |                       | Work Order:             | ITRM0030             |  |  |  |
| Serial Number: 13790400008                                 |                                                      |                        |                       | Date:                   | 07/01/04             |  |  |  |
| Customer: Intermec Corporation                             |                                                      |                        |                       | Temperature:            | 73 F                 |  |  |  |
| Attendees: none                                            |                                                      |                        | Greg Kiemel           | Humidity:               |                      |  |  |  |
| Customer Ref. No.: N/A                                     |                                                      | Power:                 | DC from Host Unit     | Job Site:               | EV06                 |  |  |  |
| TEST SPECIFICATIONS                                        |                                                      |                        |                       |                         |                      |  |  |  |
| Specification: 47 CFR 2.1049, 22.917, 24.238               | Year: Most Current                                   | Method:                | TIA / EIA 603         | Year:                   | 2001                 |  |  |  |
| SAMPLE CALCULATIONS                                        |                                                      |                        |                       |                         |                      |  |  |  |
|                                                            |                                                      |                        |                       |                         |                      |  |  |  |
|                                                            |                                                      |                        |                       |                         |                      |  |  |  |
| COMMENTS                                                   |                                                      |                        |                       |                         |                      |  |  |  |
| Tested in 700C Handheld Computer                           |                                                      |                        |                       |                         |                      |  |  |  |
| EUT OPERATING MODES                                        |                                                      |                        |                       |                         |                      |  |  |  |
| Modulated by PRBS at maximum data rate, at maximum o       | utput power.                                         |                        |                       |                         |                      |  |  |  |
| DEVIATIONS FROM TEST STANDARD                              |                                                      |                        |                       |                         |                      |  |  |  |
| None                                                       |                                                      |                        |                       |                         |                      |  |  |  |
| REQUIREMENTS                                               |                                                      |                        |                       |                         |                      |  |  |  |
| On any frequency outside a licensee's frequency block, the | e power of any emission shall b                      | e attenuated below the | transmitter power (P) | by at least 43 + 10log( | P) db.               |  |  |  |
| RESULTS                                                    |                                                      |                        |                       |                         |                      |  |  |  |
| Pass                                                       |                                                      |                        |                       |                         |                      |  |  |  |
| SIGNATURE                                                  |                                                      |                        |                       |                         |                      |  |  |  |
| ATTUK                                                      |                                                      |                        |                       |                         |                      |  |  |  |
| Tested By:                                                 |                                                      |                        |                       |                         |                      |  |  |  |
| DESCRIPTION OF TEST                                        |                                                      |                        |                       |                         |                      |  |  |  |
| Occupied                                                   | Occupied Bandwidth - Lower Band Edge - Cellular Band |                        |                       |                         |                      |  |  |  |

|       | Mkr 824.             | .000MHz                | *-2:   | 2.19dBm                                                                                                        |                                       |        |                       |            |           | Tek                 |
|-------|----------------------|------------------------|--------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-----------------------|------------|-----------|---------------------|
| 26.8  | Ref Lvl <sup>†</sup> | *26.8dBm               |        |                                                                                                                | 100                                   | 1B/    |                       | Atten 20   | dB        |                     |
| 16.8  |                      |                        |        |                                                                                                                |                                       |        |                       |            |           |                     |
|       |                      |                        |        |                                                                                                                |                                       |        |                       |            |           |                     |
| 6.8   |                      |                        |        |                                                                                                                | ÷                                     | $\sim$ | and the second second | $\sim$     |           |                     |
| -3.2  |                      |                        |        |                                                                                                                |                                       |        |                       |            | Av#100    |                     |
| -13.2 |                      |                        |        |                                                                                                                |                                       |        |                       | +          |           |                     |
| -23.2 |                      |                        |        |                                                                                                                | <del> </del> .                        |        |                       |            |           |                     |
| -33.2 |                      |                        |        |                                                                                                                | $\Delta \Delta^{!}$                   |        |                       | ۲<br>۲     |           |                     |
| -43.2 |                      |                        |        | for a second | · · · · · · · · · · · · · · · · · · · |        |                       |            | <u>بر</u> | and manager and and |
| -53.2 | مر                   | wellower where a start |        |                                                                                                                |                                       |        |                       |            |           |                     |
|       | martin               |                        |        |                                                                                                                |                                       |        |                       |            |           |                     |
| -63.2 |                      |                        |        |                                                                                                                | •                                     |        |                       |            |           |                     |
| -73.2 |                      |                        |        |                                                                                                                |                                       |        |                       |            |           |                     |
|       | Freq 824             | ł.000MHz               |        |                                                                                                                |                                       |        |                       | Span 5.0MI | Iz        |                     |
|       | ResBW 10             | )kHz                   |        | V:                                                                                                             | idBW 10kHz                            |        |                       | SWP        | 280mS     |                     |
|       | LEVEL                |                        | SPAN   | Fı                                                                                                             | req 824.000M                          | IHz    |                       |            |           |                     |
|       | KNOB 2               |                        | KNOB 1 | KI                                                                                                             | EYPAD                                 | Te     | ktronix               | 2784       |           |                     |

| NORTHWEST                                            |                                    |                                   |                        |                         |                         |                      |  |  |
|------------------------------------------------------|------------------------------------|-----------------------------------|------------------------|-------------------------|-------------------------|----------------------|--|--|
| EMC                                                  |                                    | EMISSIONS I                       | DATA SH                | EET                     |                         | Rev BETA<br>01/30/01 |  |  |
| EUT:                                                 | EM3420                             |                                   |                        |                         | Work Order:             | ITRM0030             |  |  |
| Serial Number:                                       | 13790400008                        |                                   |                        |                         | Date:                   | 07/01/04             |  |  |
| Customer:                                            | Intermec Corporation               |                                   |                        |                         | Temperature:            | 73 F                 |  |  |
| Attendees:                                           | none                               |                                   | Tested by:             | Greg Kiemel             | Humidity:               | 41%                  |  |  |
| Customer Ref. No.:                                   |                                    |                                   | Power:                 | DC from Host Unit       | Job Site:               | EV06                 |  |  |
| TEST SPECIFICATION                                   |                                    |                                   |                        |                         |                         |                      |  |  |
|                                                      | 47 CFR 2.1049, 22.917, 24.238      | Year: Most Current                | Method:                | TIA / EIA 603           | Year:                   | 2001                 |  |  |
| SAMPLE CALCULATION                                   | ONS                                |                                   |                        |                         |                         |                      |  |  |
|                                                      |                                    |                                   |                        |                         |                         |                      |  |  |
| COMMENTS                                             |                                    |                                   |                        |                         |                         |                      |  |  |
| Tested in 700C Handh                                 | eld Computer                       |                                   |                        |                         |                         |                      |  |  |
| EUT OPERATING MOI                                    | DES                                |                                   |                        |                         |                         |                      |  |  |
| Modulated by PRBS a                                  | t maximum data rate, at maximum    | output power.                     |                        |                         |                         |                      |  |  |
| DEVIATIONS FROM T                                    | EST STANDARD                       |                                   |                        |                         |                         |                      |  |  |
| None                                                 |                                    |                                   |                        |                         |                         |                      |  |  |
| REQUIREMENTS                                         |                                    |                                   |                        |                         |                         |                      |  |  |
| On any frequency out                                 | side a licensee's frequency block, | the power of any emission shall b | e attenuated below the | e transmitter power (P) | by at least 43 + 10log( | P) db.               |  |  |
| RESULTS                                              |                                    |                                   |                        |                         |                         |                      |  |  |
| Pass                                                 |                                    |                                   |                        |                         |                         |                      |  |  |
| SIGNATURE                                            |                                    |                                   |                        |                         |                         |                      |  |  |
| Tested By:                                           |                                    |                                   |                        |                         |                         |                      |  |  |
| DESCRIPTION OF TEST                                  |                                    |                                   |                        |                         |                         |                      |  |  |
| Occupied Bandwidth - Upper Band Edge - Cellular Band |                                    |                                   |                        |                         |                         |                      |  |  |
|                                                      |                                    |                                   |                        |                         |                         |                      |  |  |

|       | Mkr 849. | OOOMHz                                 | *-1         | 3.70dBm                  |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tek           |
|-------|----------|----------------------------------------|-------------|--------------------------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 26.8  | Ref Lvl* | 26.8dBm                                |             |                          | :          | LOdB/       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Atten 20   | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| 16.8  |          |                                        |             |                          |            | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 6.8   |          |                                        |             |                          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -3.2  |          |                                        | $\bigwedge$ | We wanted and the second | m          | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1 // 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| -13.2 |          |                                        |             |                          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Av#100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| -23.2 |          |                                        |             |                          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -33.2 |          | $-\Lambda$                             | 4           |                          |            | have        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -43.2 | $\sim$   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |             |                          |            | •           | the way was a set of the set of t | - Marine   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -53.2 |          |                                        |             |                          |            | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | and the state of t | ~             |
| -63.2 |          |                                        |             |                          |            | -<br>-<br>- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Har Maray and |
| -73.2 |          |                                        |             |                          |            | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|       | Freq 849 | .000MHz                                |             |                          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span 5.0MH | Iz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|       | ResBW 10 | kHz                                    |             | v                        | idBW 10kH: | :           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SWP        | 280mS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
|       | LEVEL    |                                        | SPAN        | F                        | req 849.00 | )OMHz       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|       | KINOB 2  |                                        | KNOB 1      | KI                       | EYPAD      | Τe          | ektronix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2784       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |





# **Output Power**

#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| High                                     |
| Mid                                      |
| Low                                      |

**Operating Modes Investigated:** Typical

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

| Other Settings Investigated: |  |
|------------------------------|--|
| Cellular                     |  |
| PCS                          |  |

| Software\Firmware Applied During Test                                                                |                          |  |   |  |  |  |  |
|------------------------------------------------------------------------------------------------------|--------------------------|--|---|--|--|--|--|
| Exercise software CDMA FCC Test Version 6/7/04                                                       |                          |  |   |  |  |  |  |
| Description                                                                                          |                          |  |   |  |  |  |  |
| The system was tested using special test software to exercise the functions of the device during the |                          |  |   |  |  |  |  |
| testing including channel, I                                                                         | band, and operating mode |  | _ |  |  |  |  |

| EUT and Peripherals |                                   |                   |               |  |  |  |  |  |
|---------------------|-----------------------------------|-------------------|---------------|--|--|--|--|--|
| Description         | Manufacturer                      | Model/Part Number | Serial Number |  |  |  |  |  |
| Handheld Computer   | Intermec Technologies Corporation | 700C              | 13790400008   |  |  |  |  |  |
| AC Adapter          | Elpac Power Systems               | FW1812            | 014869        |  |  |  |  |  |
| CDMA Radio          | Intermec Technologies Corporation | EM3420            | Unknown       |  |  |  |  |  |

| Cables            |             |                    |             |                                |                 |
|-------------------|-------------|--------------------|-------------|--------------------------------|-----------------|
| Cable Type        | Shield      | Length (m)         | Ferrite     | Connection 1                   | Connection 2    |
| DC Leads          | PA          | 1.4                | No          | Handheld Computer              | AC Adapter      |
| AC Power          | No          | 2.0                | No          | AC Adapter                     | AC Mains        |
| PA = Cable is per | manently at | ached to the devic | e. Shieldin | g and/or presence of ferrite m | nay be unknown. |

| Measurement Equipment |                    |          |            |            |          |  |  |
|-----------------------|--------------------|----------|------------|------------|----------|--|--|
| Description           | Manufacturer       | Model    | Identifier | Last Cal   | Interval |  |  |
| Power Meter           | Hewlett Packard    | E4418A   | SPA        | 06/21/2002 | 27 mo    |  |  |
| Power Sensor          | Hewlett-Packard    | 8481H    | SPB        | 06/21/2002 | 27 mo    |  |  |
| Signal Generator      | Hewlett Packard    | 8341B    | TGN        | 01/23/2004 | 13 mo    |  |  |
| RF Amplifier          | Amplifier Research | 25S1G4A  | TRO        | NCR        | NA       |  |  |
| RF Detector           | RLC Electronics    | CR-133-R | ZZA        | NCR        | NA       |  |  |
| Oscilloscope          | Tektronix          | TDS 3052 | TOF        | 07/16/2003 | 12 mo    |  |  |

### **Test Description**

**Requirement:** Per 47 CFR 2.1046, the conducted power output was measured at the RF output terminals after the tune-up procedure.

**Configuration:** The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The peak measurement was made using a direct connection between the RF output of the EUT and a RF detector diode. The output of the diode was measured with the oscilloscope. The signal generator and amplifier, tuned to the transmit frequency, were then substituted for the EUT. The CW output of the signal generator was adjusted until the output of the RF detector diode match the level produced when connected to the EUT. The power meter and sensor were then used to measure the output power level of the signal generator.

| Completed by: |  |
|---------------|--|
| ADJU.K.P      |  |

| NORTHWEST<br>EMC                         |                                  | <b>EMISSIONS</b>   | DATA SH              | EET                 |              | Rev BETA<br>01/30/01 |
|------------------------------------------|----------------------------------|--------------------|----------------------|---------------------|--------------|----------------------|
|                                          | EM3420                           |                    |                      |                     | Work Order:  | ITRM0030             |
| Serial Number:                           | 13790400008                      |                    |                      |                     | Date:        | 07/01/04             |
| Customer:                                | Intermec Corporation             |                    |                      |                     | Temperature: | 73 F                 |
| Attendees:                               | none                             |                    | Tested by:           | Greg Kiemel         | Humidity     | 41%                  |
| Customer Ref. No.:                       | N/A                              |                    | Power:               | DC from Host Unit   | Job Site:    | EV06                 |
| TEST SPECIFICATION                       | NS                               |                    |                      |                     |              |                      |
| Specification:                           | 47 CFR 2.1046                    | Year: Most Current | Method:              | TIA / EIA 603       | Year:        | 2001                 |
| SAMPLE CALCULATI                         | ONS                              |                    |                      |                     |              |                      |
| COMMENTS                                 |                                  |                    |                      |                     |              |                      |
| Tested in 700C Handh                     | ald Computer                     |                    |                      |                     |              |                      |
| EUT OPERATING MO                         |                                  |                    |                      |                     |              |                      |
|                                          | it maximum data rate, at maximur | m output power.    |                      |                     |              |                      |
| DEVIATIONS FROM T                        |                                  |                    |                      |                     |              |                      |
| None                                     |                                  |                    |                      |                     |              |                      |
| REQUIREMENTS                             |                                  |                    |                      |                     |              |                      |
| Maximum peak condu                       | cted output power is measured.   |                    |                      |                     |              |                      |
| RESULTS                                  |                                  |                    | AMPLITUDE            |                     |              |                      |
| Pass                                     |                                  |                    | 480 mW (Cellular bar | nd), 447 mW (PCS ba | and)         |                      |
| SIGNATURE                                |                                  |                    |                      |                     |              |                      |
| Tested By:                               | ADU.K.P                          |                    |                      |                     |              |                      |
| DESCRIPTION OF TE                        | ST                               |                    |                      |                     |              |                      |
| Output Power - Low, Mid, & High Channels |                                  |                    |                      |                     |              |                      |

# Cellular Band

| Frequency (MHz) | Power (mW) |
|-----------------|------------|
| 824.70          | 480        |
| 835.89          | 444        |
| 848.31          | 468        |

## PCS Band

| Frequency (MHz) | Power (mW) |
|-----------------|------------|
| 1851.25         | 393        |
| 1880.00         | 447        |
| 1908.75         | 342        |





#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

### Channels in Specified Band Investigated: Mid

Operating Modes Investigated: No Modulation

Data Rates Investigated:

n/a

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated: Varied both mains voltage to AC adapter and DC voltage to host (700C)

Other Settings Investigated: Cellular PCS

| Software\Firmware Applied During Test                                                                |                          |         |        |  |  |  |
|------------------------------------------------------------------------------------------------------|--------------------------|---------|--------|--|--|--|
| Exercise software                                                                                    | CDMA FCC Test            | Version | 6/7/04 |  |  |  |
| Description                                                                                          |                          |         |        |  |  |  |
| The system was tested using special test software to exercise the functions of the device during the |                          |         |        |  |  |  |
| testing including channel, I                                                                         | band, and operating mode | э.      | _      |  |  |  |

| EUT and Peripherals |                                   |                   |               |
|---------------------|-----------------------------------|-------------------|---------------|
| Description         | Manufacturer                      | Model/Part Number | Serial Number |
| Handheld Computer   | Intermec Technologies Corporation | 700C              | 13790400007   |
| AC Adapter          | Elpac Power Systems               | FW1812            | 014869        |
| CDMA Radio          | Intermec Technologies Corporation | EM3420            | Unknown       |



| Cables            |             |                    |             |                                |                |
|-------------------|-------------|--------------------|-------------|--------------------------------|----------------|
| Cable Type        | Shield      | Length (m)         | Ferrite     | Connection 1                   | Connection 2   |
| DC Leads          | PA          | 1.4                | No          | Handheld Computer              | AC Adapter     |
| AC Power          | No          | 2.0                | No          | AC Adapter                     | AC Mains       |
| PA = Cable is per | manently at | ached to the devic | e. Shieldin | g and/or presence of ferrite m | ay be unknown. |

| Measurement Equipment              |                              |                    |            |            |          |
|------------------------------------|------------------------------|--------------------|------------|------------|----------|
| Description                        | Manufacturer                 | Model              | Identifier | Last Cal   | Interval |
| Spectrum Analyzer                  | Tektronix                    | 2784               | AAO        | 02/26/2003 | 24 mo    |
| Chamber, Temp./Humidity<br>Chamber | Cincinnati Sub Zero<br>(CSZ) | ZH-32-2-2-<br>H/AC | ТВА        | 09/25/2003 | 12 mo    |
| Multimeter                         | Fluke                        | 79                 | MMC        | 09/09/2003 | 12 mo    |
| DC Power Supply                    | Topward                      | TPS-2000           | TPD        | NCR        | NA       |
| Harmonic/Flicker Test<br>System    | Hewlett-Packard              | 6843A              | THB        | 03/05/2004 | 12 mo    |

#### **Test Description**

**<u>Requirement:</u>** Per 47 CFR 2.1055 and 24.235, the frequency stability shall be measured with variation of ambient temperature and primary supply voltage. A spectrum analyzer or frequency counter can be used to measure the frequency stability. If using a spectrum analyzer, it must have a precision frequency reference that exceeds the stability requirement of the transmitter. A temperature / humidity chamber is required.

#### **Configuration:**

#### Variation of AC Mains Supply Voltage

The primary supply voltage was varied from 85% to 115% of nominal. The EUT can be operated while the host unit is charging, so an AC lab supply was used to vary the supply voltage from 115% to 85% of 120 V, 60 Hz.

#### Variation of Battery Supply Voltage

The EUT can be battery operated without connection to the AC mains, so a DC lab supply was used to vary the supply voltage up to 115% of 7.2 Vdc and down to the EUT's voltage end point of 7.1 V dc.

#### Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30° to +60° C) and at 10°C intervals.

Measurements were made at mid frequency in both the cellular and PCS bands. A radiated measurement was made using a spectrum analyzer and a near field probe. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

| Completed by: |
|---------------|
| ADJU.K.P      |

| NODTUNE               |                                       |                                    |                          |                    |              |          |                      |
|-----------------------|---------------------------------------|------------------------------------|--------------------------|--------------------|--------------|----------|----------------------|
| NORTHWEST<br>EMC      |                                       | EMISSIONS                          | DATA SH                  | EET                |              |          | Rev BETA<br>01/30/01 |
| EUT:                  | EM3420                                |                                    |                          |                    | Work Order:  | ITRM0030 |                      |
| Serial Number:        | 13790400008                           |                                    |                          |                    | Date:        | 06/29/04 |                      |
| Customer:             | Intermec Corporation                  |                                    |                          |                    | Temperature: | 73 F     |                      |
| Attendees:            | none                                  |                                    | Tested by:               | Greg Kiemel        | Humidity:    |          |                      |
| Customer Ref. No.:    | N/A                                   |                                    |                          | DC from Host Unit  | Job Site:    | EV09     |                      |
| TEST SPECIFICATION    | IS                                    |                                    |                          |                    |              |          |                      |
| Specification:        | 47 CFR 2.1055                         | Year: Most Current                 | Method:                  | TIA/EIA - 603      | Year:        | 2001     |                      |
| SAMPLE CALCULATIO     | ONS                                   |                                    |                          |                    |              |          |                      |
|                       |                                       |                                    |                          |                    |              |          |                      |
| COMMENTS              |                                       |                                    |                          |                    |              |          |                      |
|                       |                                       |                                    |                          |                    |              |          |                      |
| EUT OPERATING MOI     |                                       |                                    |                          |                    |              |          |                      |
| Transmitting mid band | d with no modulation (CW mode).       |                                    |                          |                    |              |          |                      |
| DEVIATIONS FROM T     | EST STANDARD                          |                                    |                          |                    |              |          |                      |
| None                  |                                       |                                    |                          |                    |              |          |                      |
| REQUIREMENTS          |                                       |                                    |                          |                    |              |          |                      |
|                       | tability of 2.5 parts per million (pp | m) for variations of temperature a | and supply voltage (AC a | and battery power) |              |          |                      |
| RESULTS               |                                       |                                    | MINIMUM FREQUENC         | Y STABILITY        |              |          |                      |
| Pass                  |                                       |                                    | 1.42 ppm                 |                    |              |          |                      |
| SIGNATURE             |                                       |                                    |                          |                    |              |          |                      |
| Tested By:            | A BU.K.P                              |                                    |                          |                    |              |          |                      |
| DESCRIPTION OF TES    | бт                                    |                                    |                          |                    |              |          |                      |
|                       |                                       | Frequen                            | cy Stability             |                    |              |          |                      |

#### Frequency Stability with Variation of Ambient Temperature (Primary Supply = 120V, 60Hz)

| Temp<br>(°C) | Assigned Frequency<br>(MHz) | Measured Frequency<br>(MHz) | Tolerance<br>(ppm) | Specification<br>(ppm) |
|--------------|-----------------------------|-----------------------------|--------------------|------------------------|
| -30          | 836.52000                   | 836.520076                  | 0.09               | 2.5                    |
| -20          | 836.52000                   | 836.520068                  | 0.08               | 2.5                    |
| -10          | 836.52000                   | 836.519949                  | 0.06               | 2.5                    |
| 0            | 836.52000                   | 836.519866                  | 0.16               | 2.5                    |
| 10           | 836.52000                   | 836.519726                  | 0.33               | 2.5                    |
| 20           | 836.52000                   | 836.520248                  | 0.30               | 2.5                    |
| 30           | 836.52000                   | 836.520857                  | 1.02               | 2.5                    |
| 40           | 836.52000                   | 836.521192                  | 1.42               | 2.5                    |
| 50           | 836.52000                   | 836.520199                  | 0.24               | 2.5                    |
| 60           | 836.52000                   | 836.520185                  | 0.22               | 2.5                    |

Frequency Stability with Variation of Primary Supply Voltage (Ambient Temperature = 20°C)

| Voltage<br>(VAC, 60Hz) | Assigned Frequency<br>(MHz) | Measured Frequency<br>(MHz) | Tolerance<br>(ppm) | Specification<br>(ppm) |
|------------------------|-----------------------------|-----------------------------|--------------------|------------------------|
| 138 (115%)             | 836.52000                   | 836.520248                  | 0.30               | 2.5                    |
| 132 (110%)             | 836.52000                   | 836.520248                  | 0.30               | 2.5                    |
| 126 (105%)             | 836.52000                   | 836.520248                  | 0.30               | 2.5                    |
| 120 (100%)             | 836.52000                   | 836.520248                  | 0.30               | 2.5                    |
| 114 (95%)              | 836.52000                   | 836.520248                  | 0.30               | 2.5                    |
| 108 (90%)              | 836.52000                   | 836.520248                  | 0.30               | 2.5                    |
| 102 (85%)              | 836.52000                   | 836.520248                  | 0.30               | 2.5                    |

Frequency Stability with Variation of Battery Voltage (Ambient Temperature = 20°C)

| Voltage<br>(VDC) | Assigned Frequency<br>(MHz) | Measured Frequency<br>(MHz) | Tolerance<br>(ppm) | Specification<br>(ppm) |
|------------------|-----------------------------|-----------------------------|--------------------|------------------------|
| 8.28 (115%)      | 836.52000                   | 836.520282                  | 0.34               | 2.5                    |
| 7.92 (110%)      | 836.52000                   | 836.520243                  | 0.29               | 2.5                    |
| 7.56 (105%)      | 836.52000                   | 836.520204                  | 0.24               | 2.5                    |
| 7.2 (100%)       | 836.52000                   | 836.520248                  | 0.30               | 2.5                    |
| 7.1 (end point)  | 836.52000                   | 836.520137                  | 0.16               | 2.5                    |

| NORTHWEST<br>EMC    |                                       | EMISSIONS                          | DATA SH                  | EET                |              |          | Rev BETA<br>01/30/01 |
|---------------------|---------------------------------------|------------------------------------|--------------------------|--------------------|--------------|----------|----------------------|
| EUT:                | EM3420                                |                                    |                          |                    | Work Order:  | ITRM0030 |                      |
| Serial Number:      | 13790400008                           |                                    |                          |                    | Date:        | 06/29/04 |                      |
| Customer:           | Intermec Corporation                  |                                    |                          |                    | Temperature: | 73 F     |                      |
| Attendees:          | none                                  |                                    | Tested by:               | Greg Kiemel        | Humidity:    | 41%      |                      |
| Customer Ref. No.:  | N/A                                   |                                    | Power:                   | DC from Host Unit  | Job Site:    | EV09     |                      |
| TEST SPECIFICATION  | IS                                    |                                    |                          |                    |              |          |                      |
| Specification:      | 47 CFR 2.1055 , 24.235                | Year: Most Current                 | Method:                  | TIA/EIA - 603      | Year:        | 2001     |                      |
| SAMPLE CALCULATIO   | ONS                                   |                                    |                          |                    |              |          |                      |
| COMMENTS            |                                       |                                    |                          |                    |              |          |                      |
| EUT OPERATING MOI   | DES                                   |                                    |                          |                    |              |          |                      |
|                     | d with no modulation (CW mode).       |                                    |                          |                    |              |          |                      |
| DEVIATIONS FROM T   | EST STANDARD                          |                                    |                          |                    |              |          |                      |
| None                |                                       |                                    |                          |                    |              |          |                      |
| REQUIREMENTS        |                                       |                                    |                          |                    |              |          |                      |
| Minimum frequency s | tability of 2.5 parts per million (pp | m) for variations of temperature a | and supply voltage (AC a | and battery power) |              |          |                      |
| RESULTS             |                                       |                                    | MINIMUM FREQUENC         | Y STABILITY        |              |          |                      |
| Pass                |                                       |                                    | 2.19 ppm                 |                    |              |          |                      |
| SIGNATURE           |                                       |                                    |                          |                    |              |          |                      |
| Tested By:          | ADU.K.P                               |                                    |                          |                    |              |          |                      |
| DESCRIPTION OF TES  | ST                                    |                                    |                          |                    |              |          |                      |
|                     |                                       | Frequen                            | cy Stability             |                    |              |          |                      |

#### Frequency Stability with Variation of Ambient Temperature (Primary Supply = 120V, 60Hz)

| Temp<br>(°C) | Assigned Frequency<br>(MHz) | Measured Frequency<br>(MHz) | Tolerance<br>(ppm) | Specification<br>(ppm) |
|--------------|-----------------------------|-----------------------------|--------------------|------------------------|
| -30          | 1880.00000                  | 1879.999399                 | 0.32               | 2.5                    |
| -20          | 1880.00000                  | 1879.998923                 | 0.57               | 2.5                    |
| -10          | 1880.00000                  | 1879.997677                 | 1.24               | 2.5                    |
| 0            | 1880.00000                  | 1879.996016                 | 2.12               | 2.5                    |
| 10           | 1880.00000                  | 1879.995879                 | 2.19               | 2.5                    |
| 20           | 1880.00000                  | 1879.997115                 | 1.53               | 2.5                    |
| 30           | 1880.00000                  | 1879.998244                 | 0.93               | 2.5                    |
| 40           | 1880.00000                  | 1879.999610                 | 0.21               | 2.5                    |
| 50           | 1880.00000                  | 1879.999750                 | 0.13               | 2.5                    |
| 60           | 1880.00000                  | 1879.999800                 | 0.11               | 2.5                    |

#### Frequency Stability with Variation of Primary Supply Voltage (Ambient Temperature = 20°C)

| Voltage<br>(VAC, 60Hz) | Assigned Frequency<br>(MHz) | Measured Frequency<br>(MHz) | Tolerance<br>(ppm) | Specification<br>(ppm) |
|------------------------|-----------------------------|-----------------------------|--------------------|------------------------|
| 138 (115%)             | 1880.00000                  | 1879.997115                 | 1.53               | 2.5                    |
| 132 (110%)             | 1880.00000                  | 1879.997115                 | 1.53               | 2.5                    |
| 126 (105%)             | 1880.00000                  | 1879.997115                 | 1.53               | 2.5                    |
| 120 (100%)             | 1880.00000                  | 1879.997115                 | 1.53               | 2.5                    |
| 114 (95%)              | 1880.00000                  | 1879.997115                 | 1.53               | 2.5                    |
| 108 (90%)              | 1880.00000                  | 1879.997115                 | 1.53               | 2.5                    |
| 102 (85%)              | 1880.00000                  | 1879.997115                 | 1.53               | 2.5                    |

Frequency Stability with Variation of Battery Voltage (Ambient Temperature = 20°C)

| Voltage<br>(VDC) | Assigned Frequency<br>(MHz) | Measured Frequency<br>(MHz) | Tolerance<br>(ppm) | Specification<br>(ppm) |
|------------------|-----------------------------|-----------------------------|--------------------|------------------------|
| 8.28 (115%)      | 1880.00000                  | 1879.997801                 | 1.17               | 2.5                    |
| 7.92 (110%)      | 1880.00000                  | 1879.997547                 | 1.30               | 2.5                    |
| 7.56 (105%)      | 1880.00000                  | 1879.997230                 | 1.47               | 2.5                    |
| 7.2 (100%)       | 1880.00000                  | 1879.997115                 | 1.53               | 2.5                    |
| 7.1 (end point)  | 1880.00000                  | 1879.997085                 | 1.55               | 2.5                    |







#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| High                                     |
| Mid                                      |
| Low                                      |

Operating Modes Investigated: Typical

| Data Rates Investigated: |  |
|--------------------------|--|
| Maximum                  |  |
|                          |  |

| Output Power Setting(s) Investigated: |  |
|---------------------------------------|--|
| Maximum                               |  |

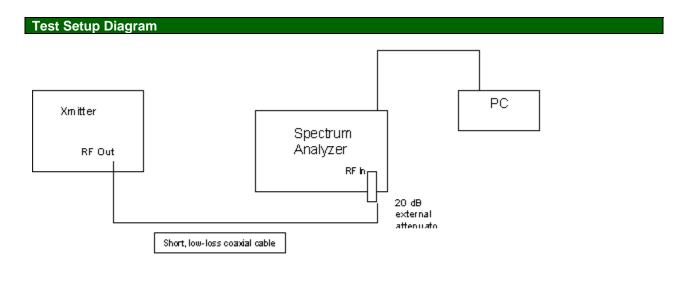
Power Input Settings Investigated: 120 VAC, 60 Hz.

| Other Settings Investigated: |  |
|------------------------------|--|
| Cellular                     |  |
| PCS                          |  |

| Frequency Range Invest | gated |                |        |
|------------------------|-------|----------------|--------|
| Start Frequency        | 0 MHz | Stop Frequency | 20 GHz |

| Software\Firmware Applied During Test                                                                |                          |  |   |  |  |  |
|------------------------------------------------------------------------------------------------------|--------------------------|--|---|--|--|--|
| Exercise software CDMA FCC Test Version 6/7/04                                                       |                          |  |   |  |  |  |
| Description                                                                                          |                          |  |   |  |  |  |
| The system was tested using special test software to exercise the functions of the device during the |                          |  |   |  |  |  |
| testing including channel, I                                                                         | band, and operating mode |  | - |  |  |  |

| EUT and Peripherals |                                   |                   |               |  |  |  |  |  |
|---------------------|-----------------------------------|-------------------|---------------|--|--|--|--|--|
| Description         | Manufacturer                      | Model/Part Number | Serial Number |  |  |  |  |  |
| Handheld Computer   | Intermec Technologies Corporation | 700C              | 13790400008   |  |  |  |  |  |
| AC Adapter          | Elpac Power Systems               | FW1812            | 014869        |  |  |  |  |  |
| CDMA Radio          | Intermec Technologies Corporation | EM3420            | Unknown       |  |  |  |  |  |


| Cables                                                                                                 |        |            |         |                   |              |  |  |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|-------------------|--------------|--|--|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1      | Connection 2 |  |  |
| DC Leads                                                                                               | PA     | 1.4        | No      | Handheld Computer | AC Adapter   |  |  |
| AC Power                                                                                               | No     | 2.0        | No      | AC Adapter        | AC Mains     |  |  |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |                   |              |  |  |

| Measurement Equipment |              |       |            |            |          |  |
|-----------------------|--------------|-------|------------|------------|----------|--|
| Description           | Manufacturer | Model | Identifier | Last Cal   | Interval |  |
| Spectrum Analyzer     | Tektronix    | 2784  | AAO        | 02/26/2003 | 24 mo    |  |

### **Test Description**

**Requirement:** Per 47 CFR 22.917, and 24.238, the peak conducted power of spurious emissions, up to the  $10^{th}$  harmonic of the transmit frequency, must be less than or equal to -13 dBm. Per 47 CFR 2.1051, the spurious emissions were measured at the RF output terminals with analyzer plots made for each modulation type.

**Configuration:** A spectrum analyzer was used to scan from 0 to 20 GHz. A 1MHz resolution bandwidth was used. No video filtering was employed. A 20dB external attenuator was used on the RF input of the spectrum analyzer.



| Completed by: |
|---------------|
| ADJU.K.P      |

| NORTHWEST                                                  |                                    |                                    |                                                 |              |                      |  |  |  |
|------------------------------------------------------------|------------------------------------|------------------------------------|-------------------------------------------------|--------------|----------------------|--|--|--|
| EMC                                                        |                                    | EMISSIONS I                        | DATA SHEET                                      |              | Rev BETA<br>01/30/01 |  |  |  |
| EUT:                                                       | EM3420                             |                                    |                                                 | Work Order:  | ITRM0030             |  |  |  |
| Serial Number:                                             | 13790400008                        |                                    |                                                 | Date:        | 07/01/04             |  |  |  |
| Customer:                                                  | Intermec Corporation               |                                    |                                                 | Temperature: | 73 F                 |  |  |  |
| Attendees:                                                 | none                               |                                    | Tested by: Greg Kiemel                          | Humidity:    |                      |  |  |  |
| Customer Ref. No.:                                         | N/A                                |                                    | Power: DC from Host Unit                        | Job Site:    | EV06                 |  |  |  |
| TEST SPECIFICATION                                         | IS                                 |                                    |                                                 |              |                      |  |  |  |
| Specification:                                             | 47 CFR 2.1051, 22.917, 24.238      | Year: Most Current                 | Method: TIA / EIA 603                           | Year:        | 2001                 |  |  |  |
| SAMPLE CALCULATIO                                          | ONS                                |                                    |                                                 |              |                      |  |  |  |
|                                                            |                                    |                                    |                                                 |              |                      |  |  |  |
|                                                            |                                    |                                    |                                                 |              |                      |  |  |  |
| COMMENTS                                                   |                                    |                                    |                                                 |              |                      |  |  |  |
| Tested in 700C Handh                                       | eld Computer                       |                                    |                                                 |              |                      |  |  |  |
| EUT OPERATING MOD                                          |                                    |                                    |                                                 |              |                      |  |  |  |
| Modulated by PRBS a                                        | t maximum data rate, at maximum    | output power.                      |                                                 |              |                      |  |  |  |
| DEVIATIONS FROM T                                          | EST STANDARD                       |                                    |                                                 |              |                      |  |  |  |
| None                                                       |                                    |                                    |                                                 |              |                      |  |  |  |
| REQUIREMENTS                                               |                                    |                                    |                                                 |              |                      |  |  |  |
| The peak conducted r                                       | oower of spurious emissions, up to | o the 10th harmonic of the transmi | it frequency, must be less than or equal to -13 | dBm          |                      |  |  |  |
| RESULTS                                                    |                                    |                                    |                                                 |              |                      |  |  |  |
| Pass                                                       |                                    |                                    |                                                 |              |                      |  |  |  |
| SIGNATURE                                                  |                                    |                                    |                                                 |              |                      |  |  |  |
| Tested By:                                                 |                                    |                                    |                                                 |              |                      |  |  |  |
| DESCRIPTION OF TES                                         | бТ                                 |                                    |                                                 |              |                      |  |  |  |
| Spurious Conducted Emissions - Low Channel - Cellular Band |                                    |                                    |                                                 |              |                      |  |  |  |

|       | Mkr 850MHz    | *-14.4                                                        | OdBm                                          |                                              |                          | Tek             |
|-------|---------------|---------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------|-----------------|
| 26.8  | Ref Lv1*26.8d | Bm                                                            | 10dB/                                         |                                              | Atten 20dB               |                 |
| 16.8  |               |                                                               |                                               |                                              |                          |                 |
|       |               |                                                               |                                               |                                              |                          |                 |
| 6.8   |               |                                                               |                                               |                                              |                          |                 |
| -3.2  |               |                                                               |                                               |                                              |                          |                 |
| -13.2 |               |                                                               |                                               |                                              |                          |                 |
| -23.2 |               |                                                               |                                               |                                              |                          |                 |
| -33.2 |               |                                                               | :                                             |                                              |                          |                 |
| -43.2 | manustrations | haddleyd yn olan y han yn | deprocession of the property of the second of | hower have been and the second second second | in the strategy that had | / M manufacture |
| -53.2 |               |                                                               |                                               |                                              |                          |                 |
| -63.2 |               |                                                               |                                               |                                              |                          |                 |
| -73.2 |               |                                                               |                                               |                                              |                          |                 |
|       | OMHz          | to                                                            | 1.000GHz                                      |                                              |                          |                 |
|       | ResBW 1MHz    |                                                               | VidBW 7MHz                                    |                                              | SWP 20                   | lmS             |
|       | LEVEL         | SPAN                                                          | Ref Lv1*26.8dBm                               |                                              |                          |                 |
|       | KINOB 2       | KNOB 1                                                        | KEYPAD                                        | Tektronix                                    | 2784                     |                 |

| NORTHWEST                                                  |                                    |                                    |                                                 |              |                      |  |  |  |
|------------------------------------------------------------|------------------------------------|------------------------------------|-------------------------------------------------|--------------|----------------------|--|--|--|
| EMC                                                        |                                    | EMISSIONS I                        | DATA SHEET                                      |              | Rev BETA<br>01/30/01 |  |  |  |
| EUT:                                                       | EM3420                             |                                    |                                                 | Work Order:  | ITRM0030             |  |  |  |
| Serial Number:                                             | 13790400008                        |                                    |                                                 | Date:        | 07/01/04             |  |  |  |
| Customer:                                                  | Intermec Corporation               |                                    |                                                 | Temperature: | 73 F                 |  |  |  |
| Attendees:                                                 | none                               |                                    | Tested by: Greg Kiemel                          | Humidity:    |                      |  |  |  |
| Customer Ref. No.:                                         | N/A                                |                                    | Power: DC from Host Unit                        | Job Site:    | EV06                 |  |  |  |
| TEST SPECIFICATION                                         | IS                                 |                                    |                                                 |              |                      |  |  |  |
| Specification:                                             | 47 CFR 2.1051, 22.917, 24.238      | Year: Most Current                 | Method: TIA / EIA 603                           | Year:        | 2001                 |  |  |  |
| SAMPLE CALCULATIO                                          | ONS                                |                                    |                                                 |              |                      |  |  |  |
|                                                            |                                    |                                    |                                                 |              |                      |  |  |  |
|                                                            |                                    |                                    |                                                 |              |                      |  |  |  |
| COMMENTS                                                   |                                    |                                    |                                                 |              |                      |  |  |  |
| Tested in 700C Handh                                       | eld Computer                       |                                    |                                                 |              |                      |  |  |  |
| EUT OPERATING MOD                                          |                                    |                                    |                                                 |              |                      |  |  |  |
| Modulated by PRBS a                                        | t maximum data rate, at maximum    | output power.                      |                                                 |              |                      |  |  |  |
| DEVIATIONS FROM T                                          | EST STANDARD                       |                                    |                                                 |              |                      |  |  |  |
| None                                                       |                                    |                                    |                                                 |              |                      |  |  |  |
| REQUIREMENTS                                               |                                    |                                    |                                                 |              |                      |  |  |  |
| The peak conducted r                                       | oower of spurious emissions, up to | o the 10th harmonic of the transmi | it frequency, must be less than or equal to -13 | dBm          |                      |  |  |  |
| RESULTS                                                    |                                    |                                    |                                                 |              |                      |  |  |  |
| Pass                                                       |                                    |                                    |                                                 |              |                      |  |  |  |
| SIGNATURE                                                  |                                    |                                    |                                                 |              |                      |  |  |  |
| Tested By:                                                 |                                    |                                    |                                                 |              |                      |  |  |  |
| DESCRIPTION OF TES                                         | бТ                                 |                                    |                                                 |              |                      |  |  |  |
| Spurious Conducted Emissions - Low Channel - Cellular Band |                                    |                                    |                                                 |              |                      |  |  |  |

|       |                                       |                                         |                                                         |                            |                        |                         | Tek                         |
|-------|---------------------------------------|-----------------------------------------|---------------------------------------------------------|----------------------------|------------------------|-------------------------|-----------------------------|
| 26.8  | Ref Lv1*26.8dB                        | m                                       | 10dB/                                                   |                            | Atten 200              | iB                      |                             |
| -     |                                       |                                         |                                                         |                            |                        |                         |                             |
| 16.8  |                                       |                                         |                                                         |                            |                        |                         |                             |
| 6.8   |                                       |                                         | · ·                                                     |                            |                        |                         |                             |
| -3.2  |                                       |                                         |                                                         |                            |                        |                         |                             |
| -13.2 |                                       |                                         |                                                         |                            |                        |                         |                             |
| -23.2 |                                       |                                         |                                                         |                            |                        |                         |                             |
| -33.2 |                                       |                                         |                                                         |                            |                        |                         |                             |
| -43.2 | with the and the second of the second | and a lead of the second and the second | information of the second and the second of the Marcana | where have a strong states | hen in the star of the | ulphines/here-alphabele | hayada a tanınının ayanının |
| -43.4 |                                       |                                         |                                                         |                            |                        |                         |                             |
| -53.2 |                                       |                                         |                                                         |                            |                        |                         |                             |
| -63.2 |                                       |                                         |                                                         |                            |                        |                         |                             |
| -73.2 |                                       |                                         | · · · · · · · · · · · · · · · · · · ·                   |                            |                        |                         |                             |
|       | 999MHz                                | to                                      | 6.500GHz                                                |                            |                        |                         |                             |
|       | ResBW 1MHz                            |                                         | VidBW 7MHz                                              |                            | SWP                    | 55mS                    |                             |
|       | LEVEL                                 | SPAN                                    | Strt 999MHz                                             |                            |                        |                         |                             |
|       | KINOB 2                               | KNOB 1                                  | KEYPAD                                                  | Tektronix                  | 2784                   |                         |                             |

| NORTHWEST                                                  |                                    |                                    |                                                 |              |                      |  |  |  |
|------------------------------------------------------------|------------------------------------|------------------------------------|-------------------------------------------------|--------------|----------------------|--|--|--|
| EMC                                                        |                                    | EMISSIONS I                        | DATA SHEET                                      |              | Rev BETA<br>01/30/01 |  |  |  |
| EUT:                                                       | EM3420                             |                                    |                                                 | Work Order:  | ITRM0030             |  |  |  |
| Serial Number:                                             | 13790400008                        |                                    |                                                 | Date:        | 07/01/04             |  |  |  |
| Customer:                                                  | Intermec Corporation               |                                    |                                                 | Temperature: | 73 F                 |  |  |  |
| Attendees:                                                 | none                               |                                    | Tested by: Greg Kiemel                          | Humidity:    |                      |  |  |  |
| Customer Ref. No.:                                         | N/A                                |                                    | Power: DC from Host Unit                        | Job Site:    | EV06                 |  |  |  |
| TEST SPECIFICATION                                         | IS                                 |                                    |                                                 |              |                      |  |  |  |
| Specification:                                             | 47 CFR 2.1051, 22.917, 24.238      | Year: Most Current                 | Method: TIA / EIA 603                           | Year:        | 2001                 |  |  |  |
| SAMPLE CALCULATIO                                          | ONS                                |                                    |                                                 |              |                      |  |  |  |
|                                                            |                                    |                                    |                                                 |              |                      |  |  |  |
|                                                            |                                    |                                    |                                                 |              |                      |  |  |  |
| COMMENTS                                                   |                                    |                                    |                                                 |              |                      |  |  |  |
| Tested in 700C Handh                                       | eld Computer                       |                                    |                                                 |              |                      |  |  |  |
| EUT OPERATING MOD                                          |                                    |                                    |                                                 |              |                      |  |  |  |
| Modulated by PRBS a                                        | t maximum data rate, at maximum    | output power.                      |                                                 |              |                      |  |  |  |
| DEVIATIONS FROM T                                          | EST STANDARD                       |                                    |                                                 |              |                      |  |  |  |
| None                                                       |                                    |                                    |                                                 |              |                      |  |  |  |
| REQUIREMENTS                                               |                                    |                                    |                                                 |              |                      |  |  |  |
| The peak conducted r                                       | oower of spurious emissions, up to | o the 10th harmonic of the transmi | it frequency, must be less than or equal to -13 | dBm          |                      |  |  |  |
| RESULTS                                                    |                                    |                                    |                                                 |              |                      |  |  |  |
| Pass                                                       |                                    |                                    |                                                 |              |                      |  |  |  |
| SIGNATURE                                                  |                                    |                                    |                                                 |              |                      |  |  |  |
| Tested By:                                                 |                                    |                                    |                                                 |              |                      |  |  |  |
| DESCRIPTION OF TES                                         | бТ                                 |                                    |                                                 |              |                      |  |  |  |
| Spurious Conducted Emissions - Low Channel - Cellular Band |                                    |                                    |                                                 |              |                      |  |  |  |

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                               |                       |           |                                       | Tek                             |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|-----------------------|-----------|---------------------------------------|---------------------------------|
| 26.8  | Ref Lv1*26.8dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m                               | 10dB/                                         |                       | Atten 200 | 1B                                    |                                 |
| 16.8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                               |                       |           |                                       |                                 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | :                                             |                       |           |                                       |                                 |
| 6.8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | · · · · · · · · · · · · · · · · · · ·         |                       |           |                                       |                                 |
| -3.2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                               |                       |           |                                       |                                 |
| -13.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | :                                             |                       |           |                                       |                                 |
| -23.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                               |                       |           |                                       |                                 |
| -33.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                               |                       |           |                                       |                                 |
| -43.2 | whether a state and a state and a state of the state of t | with the second with the second | dether you we are not so don't him any reason | monthal monormulation | www.www.  | utupanghigas <sup>ang</sup> rainangak | edenter der ster for the second |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                               |                       |           |                                       |                                 |
| -53.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                               |                       |           |                                       |                                 |
| -63.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                               |                       |           |                                       |                                 |
| -73.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                               |                       |           |                                       |                                 |
|       | 6.499GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to                              | 10.000GHz                                     |                       |           |                                       |                                 |
|       | ResBW 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | VidBW 7MHz                                    |                       | SWP       | 35mS                                  |                                 |
|       | LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPAN                            | Stop 10.000GHz                                |                       |           |                                       |                                 |
|       | KINOB 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KNOB 1                          | KEYPAD                                        | Tektronix             | 2784      |                                       |                                 |

| NORTHWEST                                                  |                                   |                                  |                                                 |              |                      |  |  |
|------------------------------------------------------------|-----------------------------------|----------------------------------|-------------------------------------------------|--------------|----------------------|--|--|
| EMC                                                        |                                   | EMISSIONS I                      | DATA SHEET                                      |              | Rev BETA<br>01/30/01 |  |  |
| EUT:                                                       | EM3420                            |                                  |                                                 | Work Order:  | ITRM0030             |  |  |
| Serial Number:                                             | 13790400008                       |                                  |                                                 | Date:        | 07/01/04             |  |  |
| Customer:                                                  | Intermec Corporation              |                                  |                                                 | Temperature: | 73 F                 |  |  |
| Attendees:                                                 |                                   |                                  | Tested by: Greg Kiemel                          | Humidity:    |                      |  |  |
| Customer Ref. No.:                                         | N/A                               |                                  | Power: DC from Host Unit                        | Job Site:    | EV06                 |  |  |
| TEST SPECIFICATION                                         | S                                 |                                  |                                                 |              |                      |  |  |
| Specification:                                             | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current               | Method: TIA / EIA 603                           | Year:        | 2001                 |  |  |
| SAMPLE CALCULATIO                                          | ONS                               |                                  |                                                 |              |                      |  |  |
|                                                            |                                   |                                  |                                                 |              |                      |  |  |
|                                                            |                                   |                                  |                                                 |              |                      |  |  |
| COMMENTS                                                   |                                   |                                  |                                                 |              |                      |  |  |
| Tested in 700C Handh                                       | eld Computer                      |                                  |                                                 |              |                      |  |  |
| EUT OPERATING MOD                                          |                                   |                                  |                                                 |              |                      |  |  |
| Modulated by PRBS at                                       | t maximum data rate, at maximum   | output power.                    |                                                 |              |                      |  |  |
| <b>DEVIATIONS FROM T</b>                                   | EST STANDARD                      |                                  |                                                 |              |                      |  |  |
| None                                                       |                                   |                                  |                                                 |              |                      |  |  |
| REQUIREMENTS                                               |                                   |                                  |                                                 |              |                      |  |  |
| The peak conducted p                                       | ower of spurious emissions, up to | the 10th harmonic of the transmi | it frequency, must be less than or equal to -13 | dBm          |                      |  |  |
| RESULTS                                                    |                                   |                                  |                                                 |              |                      |  |  |
| Pass                                                       |                                   |                                  |                                                 |              |                      |  |  |
| SIGNATURE                                                  |                                   |                                  |                                                 |              |                      |  |  |
| ATT.K.P                                                    |                                   |                                  |                                                 |              |                      |  |  |
| Tested By: V V                                             |                                   |                                  |                                                 |              |                      |  |  |
| DESCRIPTION OF TES                                         | т                                 |                                  |                                                 |              |                      |  |  |
| Spurious Conducted Emissions - Mid Channel - Cellular Band |                                   |                                  |                                                 |              |                      |  |  |

|       | Mkr 821MHz             | *-21.1                                                                                                         | OdBm                        |                                        |                        | Tek                             |
|-------|------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|------------------------|---------------------------------|
| 26.8  | Ref Lv1*26.8dB         | dm                                                                                                             | 100                         | 1B/                                    | Atten 20dB             |                                 |
| 16.8  |                        |                                                                                                                |                             |                                        |                        |                                 |
| 6.8   |                        |                                                                                                                |                             |                                        |                        |                                 |
| -3.2  |                        |                                                                                                                |                             |                                        |                        |                                 |
| -13.2 |                        |                                                                                                                |                             |                                        |                        |                                 |
| -23.2 |                        |                                                                                                                |                             |                                        | ]                      | ſ                               |
| -33.2 |                        |                                                                                                                |                             |                                        |                        |                                 |
| -43.2 | handerprovingeridation | warehoused and a start and a start and a start and a start a start and a start a start a start a start a start | weather and the shares with | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | historenandianitherite | r y harden not have an internet |
| -53.2 |                        |                                                                                                                |                             |                                        |                        |                                 |
| -63.2 |                        |                                                                                                                |                             |                                        |                        |                                 |
| -73.2 |                        |                                                                                                                |                             |                                        |                        |                                 |
|       | OMHz                   | to                                                                                                             | 1.000GHz                    |                                        |                        |                                 |
|       | ResBW 1MHz             |                                                                                                                | VidBW 7MHz                  |                                        | SWP 20                 | )mS                             |
|       | LEVEL                  | SPAN                                                                                                           | Mkr 821MHz                  |                                        |                        |                                 |
|       | KINOB 2                | KNOB 1                                                                                                         | KEYPAD                      | Tektronix                              | 2784                   |                                 |

| NORTHWEST                |                                   |                                  |                                                 |              |                      |  |  |  |  |
|--------------------------|-----------------------------------|----------------------------------|-------------------------------------------------|--------------|----------------------|--|--|--|--|
| EMC                      |                                   | EMISSIONS I                      | DATA SHEET                                      |              | Rev BETA<br>01/30/01 |  |  |  |  |
| EUT:                     | EM3420                            |                                  |                                                 | Work Order:  | ITRM0030             |  |  |  |  |
| Serial Number:           | 13790400008                       |                                  |                                                 | Date:        | 07/01/04             |  |  |  |  |
| Customer:                | Intermec Corporation              |                                  |                                                 | Temperature: | 73 F                 |  |  |  |  |
| Attendees:               |                                   |                                  | Tested by: Greg Kiemel                          | Humidity:    |                      |  |  |  |  |
| Customer Ref. No.:       | N/A                               |                                  | Power: DC from Host Unit                        | Job Site:    | EV06                 |  |  |  |  |
| TEST SPECIFICATION       | S                                 |                                  |                                                 |              |                      |  |  |  |  |
| Specification:           | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current               | Method: TIA / EIA 603                           | Year:        | 2001                 |  |  |  |  |
| SAMPLE CALCULATIO        | ONS                               |                                  |                                                 |              |                      |  |  |  |  |
|                          |                                   |                                  |                                                 |              |                      |  |  |  |  |
|                          |                                   |                                  |                                                 |              |                      |  |  |  |  |
| COMMENTS                 |                                   |                                  |                                                 |              |                      |  |  |  |  |
| Tested in 700C Handh     | eld Computer                      |                                  |                                                 |              |                      |  |  |  |  |
| EUT OPERATING MOD        |                                   |                                  |                                                 |              |                      |  |  |  |  |
| Modulated by PRBS at     | t maximum data rate, at maximum   | output power.                    |                                                 |              |                      |  |  |  |  |
| <b>DEVIATIONS FROM T</b> | EST STANDARD                      |                                  |                                                 |              |                      |  |  |  |  |
| None                     |                                   |                                  |                                                 |              |                      |  |  |  |  |
| REQUIREMENTS             |                                   |                                  |                                                 |              |                      |  |  |  |  |
| The peak conducted p     | ower of spurious emissions, up to | the 10th harmonic of the transmi | it frequency, must be less than or equal to -13 | dBm          |                      |  |  |  |  |
| RESULTS                  |                                   |                                  |                                                 |              |                      |  |  |  |  |
| Pass                     |                                   |                                  |                                                 |              |                      |  |  |  |  |
| SIGNATURE                |                                   |                                  |                                                 |              |                      |  |  |  |  |
| Tested By:               | ATTUKIP                           |                                  |                                                 |              |                      |  |  |  |  |
| resteu by.               |                                   |                                  |                                                 |              |                      |  |  |  |  |
| DESCRIPTION OF TES       | т                                 |                                  |                                                 |              |                      |  |  |  |  |
|                          | Spurious Co                       | onducted Emission                | s - Mid Channel - Cellular                      | Band         |                      |  |  |  |  |

|       |                                         |                               |                                       |                                           |                        |                       |                | Tek               |
|-------|-----------------------------------------|-------------------------------|---------------------------------------|-------------------------------------------|------------------------|-----------------------|----------------|-------------------|
| 26.8  | Ref Lv1*26.8dBm                         |                               |                                       | 10dB/                                     |                        | Atten 200             | iB             |                   |
| 16.8  |                                         |                               |                                       |                                           |                        |                       |                |                   |
|       |                                         |                               |                                       | :                                         |                        |                       |                |                   |
| 6.8   |                                         |                               |                                       | ·<br>·                                    |                        |                       |                |                   |
| -3.2  |                                         |                               |                                       |                                           |                        |                       |                |                   |
| -13.2 |                                         |                               |                                       |                                           |                        |                       |                |                   |
| -23.2 |                                         |                               |                                       | •<br>•<br>•<br>•                          |                        |                       |                |                   |
| -33.2 |                                         |                               |                                       | :                                         | 14-0.11.41.00          |                       |                |                   |
| -43.2 | manaporter of the bill many reasons and | mounderstored with the second | many the when the whole a started the | tyranijaytubartettikontegostaftikont<br>: | Printer of an order of | grafr-vizar-popation. | Mardon I Marda | - 11 <b>- 1</b> - |
|       |                                         |                               |                                       |                                           |                        |                       |                |                   |
| -53.2 |                                         |                               |                                       | :                                         |                        |                       |                |                   |
| -63.2 |                                         |                               |                                       | ·<br>·                                    |                        |                       |                |                   |
| -73.2 |                                         |                               |                                       | •                                         |                        |                       |                |                   |
|       | 999MHz                                  | to                            | 6.500GHz                              |                                           |                        |                       |                |                   |
|       | ResBW 1MHz                              |                               | VidBW 7MH                             | Iz                                        |                        | SWP                   | 55mS           |                   |
|       | LEVEL                                   | SPAN                          |                                       | IHz                                       |                        |                       |                |                   |
|       | KNOB 2                                  | KNOB 1                        | KEYPAD                                | Te                                        | ktronix                | 2784                  |                |                   |

| NORTHWEST                |                                   |                                  |                                                 |              |                      |  |  |  |  |
|--------------------------|-----------------------------------|----------------------------------|-------------------------------------------------|--------------|----------------------|--|--|--|--|
| EMC                      |                                   | EMISSIONS I                      | DATA SHEET                                      |              | Rev BETA<br>01/30/01 |  |  |  |  |
| EUT:                     | EM3420                            |                                  |                                                 | Work Order:  | ITRM0030             |  |  |  |  |
| Serial Number:           | 13790400008                       |                                  |                                                 | Date:        | 07/01/04             |  |  |  |  |
| Customer:                | Intermec Corporation              |                                  |                                                 | Temperature: | 73 F                 |  |  |  |  |
| Attendees:               |                                   |                                  | Tested by: Greg Kiemel                          | Humidity:    |                      |  |  |  |  |
| Customer Ref. No.:       | N/A                               |                                  | Power: DC from Host Unit                        | Job Site:    | EV06                 |  |  |  |  |
| TEST SPECIFICATION       | S                                 |                                  |                                                 |              |                      |  |  |  |  |
| Specification:           | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current               | Method: TIA / EIA 603                           | Year:        | 2001                 |  |  |  |  |
| SAMPLE CALCULATIO        | ONS                               |                                  |                                                 |              |                      |  |  |  |  |
|                          |                                   |                                  |                                                 |              |                      |  |  |  |  |
|                          |                                   |                                  |                                                 |              |                      |  |  |  |  |
| COMMENTS                 |                                   |                                  |                                                 |              |                      |  |  |  |  |
| Tested in 700C Handh     | eld Computer                      |                                  |                                                 |              |                      |  |  |  |  |
| EUT OPERATING MOD        |                                   |                                  |                                                 |              |                      |  |  |  |  |
| Modulated by PRBS at     | t maximum data rate, at maximum   | output power.                    |                                                 |              |                      |  |  |  |  |
| <b>DEVIATIONS FROM T</b> | EST STANDARD                      |                                  |                                                 |              |                      |  |  |  |  |
| None                     |                                   |                                  |                                                 |              |                      |  |  |  |  |
| REQUIREMENTS             |                                   |                                  |                                                 |              |                      |  |  |  |  |
| The peak conducted p     | ower of spurious emissions, up to | the 10th harmonic of the transmi | it frequency, must be less than or equal to -13 | dBm          |                      |  |  |  |  |
| RESULTS                  |                                   |                                  |                                                 |              |                      |  |  |  |  |
| Pass                     |                                   |                                  |                                                 |              |                      |  |  |  |  |
| SIGNATURE                |                                   |                                  |                                                 |              |                      |  |  |  |  |
| Tested By:               | ATTUKIP                           |                                  |                                                 |              |                      |  |  |  |  |
| resteu by.               |                                   |                                  |                                                 |              |                      |  |  |  |  |
| DESCRIPTION OF TES       | т                                 |                                  |                                                 |              |                      |  |  |  |  |
|                          | Spurious Co                       | onducted Emission                | s - Mid Channel - Cellular                      | Band         |                      |  |  |  |  |

|       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                 | Tek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26.8  | Ref Lv1*26.8dB  | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10dB/                                 | Atten 20                        | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16.8  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.8   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · · |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -3.2  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -13.2 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -23.2 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -33.2 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | malifestrations | wigeally and the second s | market and and a stand and a second   | manhousenstationed allow months | restationed to a state of the second state of |
| -43.2 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -53.2 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -63.2 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -73.2 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 6.499GHz        | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.000GHz                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | ResBW 1MHz      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VidBW 7MHz                            | SUP                             | 35mS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | LEVEL           | SPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stop 10.000GHz                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | KNOB 2          | KNOB 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KEYPAD Te                             | ktronix 2784                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| NORTHWEST                  |                                         |                                   |                                         |                |                      |
|----------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------|----------------|----------------------|
| EMC                        |                                         | <b>EMISSIONS</b>                  | DATA SHEET                              |                | Rev BETA<br>01/30/01 |
| EUT:                       | EM3420                                  |                                   |                                         | Work Order:    | ITRM0030             |
| Serial Number:             | 13790400008                             |                                   |                                         | Date:          | 07/01/04             |
| Customer:                  | Intermec Corporation                    |                                   |                                         | Temperature:   | 73 F                 |
| Attendees:                 | none                                    |                                   | Tested by: Greg Kiemel                  | Humidity:      | : 41%                |
| Customer Ref. No.:         | N/A                                     |                                   | Power: DC from Host U                   | Jnit Job Site: | EV06                 |
| TEST SPECIFICATION         | NS                                      |                                   |                                         |                |                      |
| Specification:             | 47 CFR 2.1051, 22.917, 24.238           | Year: Most Current                | Method: TIA / EIA 603                   | Year:          | 2001                 |
| SAMPLE CALCULATIO          | ONS                                     |                                   |                                         |                |                      |
|                            |                                         |                                   |                                         |                |                      |
|                            |                                         |                                   |                                         |                |                      |
| COMMENTS                   |                                         |                                   |                                         |                |                      |
| Tested in 700C Handh       | •                                       |                                   |                                         |                |                      |
| EUT OPERATING MOI          | DES<br>at maximum data rate, at maximum |                                   |                                         |                |                      |
| -                          |                                         | output power.                     |                                         |                |                      |
| DEVIATIONS FROM TI<br>None | EST STANDARD                            |                                   |                                         |                |                      |
| REQUIREMENTS               |                                         |                                   |                                         |                |                      |
|                            | nower of spurious emissions up to       | o the 10th barmonic of the transm | it frequency, must be less than or equa | l to -13 dBm   |                      |
| RESULTS                    | Jower of aparious emissions, up to      |                                   | I frequency, must be less than or equa  | 110-13 0.511   |                      |
| Pass                       |                                         |                                   |                                         |                |                      |
| SIGNATURE                  |                                         |                                   |                                         |                |                      |
| SIGNATORE                  |                                         |                                   |                                         |                |                      |
| Tested By:                 | ADU.K.P                                 |                                   |                                         |                |                      |
|                            |                                         |                                   |                                         |                |                      |
| DESCRIPTION OF TES         | ST                                      |                                   |                                         |                |                      |
|                            | Spurious Co                             | nducted Emission                  | s - High Channel - Cell                 | ular Band      |                      |

## Spurious Conducted Emissions - High Channel - Cellular Band

|       | Mkr 834MHz                                | *-15.8                                                                                                         | OdBm              |                      |                                  |                    |                  | Tek                         |
|-------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------------------------------|--------------------|------------------|-----------------------------|
| 26.8  | Ref Lv1*26.8dBm                           |                                                                                                                |                   | 10dB/                |                                  | Atten 200          | 1B               |                             |
| 16.8  |                                           |                                                                                                                |                   |                      |                                  |                    |                  |                             |
| 6.8   |                                           |                                                                                                                |                   |                      |                                  |                    |                  |                             |
| -3.2  |                                           |                                                                                                                |                   |                      |                                  |                    |                  |                             |
| -13.2 |                                           |                                                                                                                |                   |                      |                                  |                    |                  |                             |
| -23.2 |                                           |                                                                                                                |                   | · · · · · · · · ·    |                                  |                    |                  |                             |
| -33.2 |                                           |                                                                                                                |                   |                      |                                  |                    |                  |                             |
| -43.2 | hading here from the most of the material | warmen and a second | ulwinned to an an | marrienderson Marine | logithyl di hailysi a galada a g | shipen when my man | mand in hardware | water and the second second |
| -53.2 |                                           |                                                                                                                |                   |                      |                                  |                    |                  |                             |
| -63.2 |                                           |                                                                                                                |                   |                      |                                  |                    |                  |                             |
| -73.2 |                                           |                                                                                                                |                   | -<br>-<br>-          |                                  |                    |                  |                             |
|       | OMHz                                      | to                                                                                                             | 1.000GHz          |                      |                                  |                    |                  |                             |
|       | ResBW 1MHz                                |                                                                                                                | VidBW '           | 7MHz                 |                                  | SWP                | 20mS             |                             |
|       | LEVEL                                     | SPAN                                                                                                           | Mkr 834           | 4MHz                 |                                  |                    |                  |                             |
|       | KNOB 2                                    | KNOB 1                                                                                                         | KEYPAD            | Te                   | ktronix                          | 2784               |                  |                             |

| NORTHWEST            |                                   |                                  |                         |                          |              |                      |  |  |
|----------------------|-----------------------------------|----------------------------------|-------------------------|--------------------------|--------------|----------------------|--|--|
| EMC                  |                                   | EMISSIONS [                      | DATA SH                 | EET                      |              | Rev BETA<br>01/30/01 |  |  |
| EUT:                 | EM3420                            |                                  |                         |                          | Work Order:  | ITRM0030             |  |  |
| Serial Number:       | 13790400008                       |                                  |                         |                          | Date:        | 07/01/04             |  |  |
| Customer:            | Intermec Corporation              |                                  |                         |                          | Temperature: | 73 F                 |  |  |
| Attendees:           | none                              |                                  | Tested by:              | Greg Kiemel              | Humidity:    | 41%                  |  |  |
| Customer Ref. No.:   | N/A                               |                                  | Power:                  | DC from Host Unit        | Job Site:    | EV06                 |  |  |
| TEST SPECIFICATION   | s                                 |                                  |                         |                          |              |                      |  |  |
| Specification:       | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current               | Method:                 | TIA / EIA 603            | Year:        | 2001                 |  |  |
| SAMPLE CALCULATIO    | DNS                               |                                  |                         |                          |              |                      |  |  |
|                      |                                   |                                  |                         |                          |              |                      |  |  |
|                      |                                   |                                  |                         |                          |              |                      |  |  |
|                      |                                   |                                  |                         |                          |              |                      |  |  |
| COMMENTS             |                                   |                                  |                         |                          |              |                      |  |  |
| Tested in 700C Handh |                                   |                                  |                         |                          |              |                      |  |  |
| EUT OPERATING MOD    |                                   |                                  |                         |                          |              |                      |  |  |
| Modulated by PRBS at | t maximum data rate, at maximum   | output power.                    |                         |                          |              |                      |  |  |
| DEVIATIONS FROM T    | EST STANDARD                      |                                  |                         |                          |              |                      |  |  |
| None                 |                                   |                                  |                         |                          |              |                      |  |  |
| REQUIREMENTS         |                                   |                                  |                         |                          |              |                      |  |  |
| The peak conducted p | ower of spurious emissions, up to | the 10th harmonic of the transmi | t frequency, must be le | ess than or equal to -13 | dBm          |                      |  |  |
| RESULTS              |                                   |                                  |                         |                          |              |                      |  |  |
| Pass                 |                                   |                                  |                         |                          |              |                      |  |  |
| SIGNATURE            |                                   |                                  |                         |                          |              |                      |  |  |
| A D V. K. P          |                                   |                                  |                         |                          |              |                      |  |  |
|                      |                                   |                                  |                         |                          |              |                      |  |  |
| DESCRIPTION OF TES   |                                   |                                  |                         |                          |              |                      |  |  |
|                      | Spurious Co                       | nducted Emissions                | s - High Char           | inel - Cellulai          | r Band       |                      |  |  |

# Spurious Conducted Emissions - High Channel - Cellular Band

|       |                            |                                     |                                   |                                          |                                     |                    |                                        | Tek         |
|-------|----------------------------|-------------------------------------|-----------------------------------|------------------------------------------|-------------------------------------|--------------------|----------------------------------------|-------------|
| 26.8  | Ref Lv1*26.8d              | Bm                                  |                                   | 10dB/                                    |                                     | Atten 200          | iB                                     |             |
| 16.8  |                            |                                     |                                   | •<br>•<br>•                              |                                     |                    |                                        |             |
| 10.0  |                            |                                     |                                   |                                          |                                     |                    |                                        |             |
| 6.8   |                            |                                     |                                   | •                                        |                                     |                    |                                        |             |
| -3.2  |                            |                                     |                                   |                                          |                                     |                    |                                        |             |
| -13.2 |                            |                                     |                                   | :                                        |                                     |                    |                                        |             |
| -23.2 |                            |                                     |                                   | •<br>•<br>•<br>•                         |                                     |                    |                                        |             |
| -33.2 |                            |                                     |                                   |                                          |                                     |                    | on the states                          |             |
| -43.2 | ennew grand with the share | Manales and a second and the second | healing and a state of the second | gollunge have been an af a free bookstop | had a superior of the second second | ww.yabahapanyaanyi | /~~,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Maxey - · · |
|       |                            |                                     |                                   | •                                        |                                     |                    |                                        |             |
| -53.2 |                            |                                     |                                   |                                          |                                     |                    |                                        |             |
| -63.2 |                            |                                     |                                   | :                                        |                                     |                    |                                        |             |
| -73.2 |                            |                                     |                                   | :                                        |                                     |                    |                                        |             |
|       | 999MHz                     | to                                  | 6.500GHz                          |                                          |                                     |                    |                                        |             |
|       | ResBW 1MHz                 |                                     | VidBW 7MHz                        |                                          |                                     | SWP                | 55mS                                   |             |
|       | LEVEL                      | SPAN                                | Strt 999MH                        | z                                        |                                     |                    |                                        |             |
|       | KINOB 2                    | KNOB 1                              | KEYPAD                            | Te                                       | ktronix                             | 2784               |                                        |             |

| NORTHWEST                  |                                         |                                   |                                         |                |                      |
|----------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------|----------------|----------------------|
| EMC                        |                                         | <b>EMISSIONS</b>                  | DATA SHEET                              |                | Rev BETA<br>01/30/01 |
| EUT:                       | EM3420                                  |                                   |                                         | Work Order:    | ITRM0030             |
| Serial Number:             | 13790400008                             |                                   |                                         | Date:          | 07/01/04             |
| Customer:                  | Intermec Corporation                    |                                   |                                         | Temperature:   | 73 F                 |
| Attendees:                 | none                                    |                                   | Tested by: Greg Kiemel                  | Humidity:      | : 41%                |
| Customer Ref. No.:         | N/A                                     |                                   | Power: DC from Host U                   | Init Job Site: | EV06                 |
| TEST SPECIFICATION         | NS                                      |                                   |                                         |                |                      |
| Specification:             | 47 CFR 2.1051, 22.917, 24.238           | Year: Most Current                | Method: TIA / EIA 603                   | Year:          | 2001                 |
| SAMPLE CALCULATIO          | ONS                                     |                                   |                                         |                |                      |
|                            |                                         |                                   |                                         |                |                      |
|                            |                                         |                                   |                                         |                |                      |
| COMMENTS                   |                                         |                                   |                                         |                |                      |
| Tested in 700C Handh       | •                                       |                                   |                                         |                |                      |
| EUT OPERATING MOI          | DES<br>at maximum data rate, at maximum |                                   |                                         |                |                      |
| -                          |                                         | output power.                     |                                         |                |                      |
| DEVIATIONS FROM TI<br>None | EST STANDARD                            |                                   |                                         |                |                      |
| REQUIREMENTS               |                                         |                                   |                                         |                |                      |
|                            | nower of spurious emissions up to       | o the 10th barmonic of the transm | it frequency, must be less than or equa | l to -13 dBm   |                      |
| RESULTS                    | Jower of aparious emissions, up to      |                                   | I frequency, must be less than or equa  | 110-13 0.511   |                      |
| Pass                       |                                         |                                   |                                         |                |                      |
| SIGNATURE                  |                                         |                                   |                                         |                |                      |
| SIGNATORE                  |                                         |                                   |                                         |                |                      |
| Tested By:                 | ADU.K.P                                 |                                   |                                         |                |                      |
|                            |                                         |                                   |                                         |                |                      |
| DESCRIPTION OF TES         | ST                                      |                                   |                                         |                |                      |
|                            | Spurious Co                             | nducted Emission                  | s - High Channel - Cell                 | ular Band      |                      |

## Spurious Conducted Emissions - High Channel - Cellular Band

|               |                                           |                             |                                               |                           |                       |                                                |                          | Tek                         |
|---------------|-------------------------------------------|-----------------------------|-----------------------------------------------|---------------------------|-----------------------|------------------------------------------------|--------------------------|-----------------------------|
| 26.8          | Ref Lv1*26.8dBm                           |                             |                                               | 10dB/                     |                       | Atten 200                                      | 1B                       |                             |
| 16.8          |                                           |                             |                                               |                           |                       |                                                |                          |                             |
| 10.0          |                                           |                             |                                               | :                         |                       |                                                |                          |                             |
| 6.8           |                                           |                             |                                               | •                         |                       |                                                |                          |                             |
| -3.2          |                                           |                             |                                               |                           |                       |                                                |                          |                             |
| -13.2         |                                           |                             |                                               | •                         |                       |                                                |                          |                             |
|               |                                           |                             |                                               |                           |                       |                                                |                          |                             |
| -23.2         |                                           |                             |                                               |                           |                       |                                                |                          |                             |
| -33.2 <u></u> | an particular and particular and a second | Million                     |                                               |                           |                       |                                                |                          | a markal days a shere where |
| -43.2         |                                           | and her dere and the second | aranakarpidetyegtaturkeri menintari menintari | ፟ቚጞኯኯጞጜጜጚጜኯኯኯኯኯ፟፟፟፟ጞጜጚኯኯኯ | <b>*****</b> ******** | `~~ <sup>\$\$*```1</sup> ``\\$U; _15\$\$+1```` | adouration of the second |                             |
|               |                                           |                             |                                               | •                         |                       |                                                |                          |                             |
| -53.2 <u></u> |                                           |                             |                                               | ·<br>:                    |                       |                                                |                          |                             |
| -63.2 <u></u> |                                           |                             |                                               | ·<br>·                    |                       |                                                |                          |                             |
| -73.2         |                                           |                             |                                               | :<br>:<br>:               |                       |                                                |                          |                             |
|               | 6.499GHz                                  | to                          | 10.000GHz                                     |                           |                       |                                                |                          |                             |
|               | ResBW 1MHz                                |                             | VidBW 7MH                                     | Iz                        |                       | SWP                                            | 35mS                     |                             |
|               | LEVEL                                     | SPAN                        |                                               | OOOGHz                    |                       |                                                |                          |                             |
|               | KNOB 2                                    | KNOB 1                      | KEYPAD                                        | Te                        | ktronix               | 2784                                           |                          |                             |

| NORTHWEST            |                                   |                                   |                                           |              |                      |  |  |  |  |
|----------------------|-----------------------------------|-----------------------------------|-------------------------------------------|--------------|----------------------|--|--|--|--|
| EMC                  |                                   | EMISSIONS [                       | DATA SHEET                                |              | Rev BETA<br>01/30/01 |  |  |  |  |
| EUT:                 | EM3420                            |                                   |                                           | Work Order:  | ITRM0030             |  |  |  |  |
| Serial Number:       | 13790400008                       |                                   |                                           | Date:        | 07/01/04             |  |  |  |  |
| Customer:            | Intermec Corporation              |                                   |                                           | Temperature: | 73 F                 |  |  |  |  |
| Attendees:           | none                              |                                   | Tested by: Greg Kiemel                    | Humidity:    | 41%                  |  |  |  |  |
| Customer Ref. No.:   | N/A                               |                                   | Power: DC from Host Un                    | t Job Site:  | EV06                 |  |  |  |  |
| TEST SPECIFICATION   | IS                                |                                   |                                           |              |                      |  |  |  |  |
| Specification:       | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current                | Method: TIA / EIA 603                     | Year:        | 2001                 |  |  |  |  |
| SAMPLE CALCULATIO    | ONS                               |                                   |                                           |              |                      |  |  |  |  |
|                      |                                   |                                   |                                           |              |                      |  |  |  |  |
| COMMENTS             |                                   |                                   |                                           |              |                      |  |  |  |  |
| Tested in 700C Handh | eld Computer                      |                                   |                                           |              |                      |  |  |  |  |
| EUT OPERATING MOD    |                                   |                                   |                                           |              |                      |  |  |  |  |
| Modulated by PRBS at | t maximum data rate, at maximum   | output power.                     |                                           |              |                      |  |  |  |  |
| DEVIATIONS FROM TE   | EST STANDARD                      |                                   |                                           |              |                      |  |  |  |  |
| None                 |                                   |                                   |                                           |              |                      |  |  |  |  |
| REQUIREMENTS         |                                   |                                   |                                           |              |                      |  |  |  |  |
| The peak conducted p | ower of spurious emissions, up to | the 10th harmonic of the transmit | t frequency, must be less than or equal t | o -13 dBm    |                      |  |  |  |  |
| RESULTS              |                                   |                                   |                                           |              |                      |  |  |  |  |
| Pass                 |                                   |                                   |                                           |              |                      |  |  |  |  |
| SIGNATURE            |                                   |                                   |                                           |              |                      |  |  |  |  |
| Tested By:           | Tested By:                        |                                   |                                           |              |                      |  |  |  |  |
| DESCRIPTION OF TES   | ST                                |                                   |                                           |              |                      |  |  |  |  |
|                      | Spurious (                        | Conducted Emissio                 | ns - Low Channel - PC                     | S Band       |                      |  |  |  |  |

|               |                                    |                             |                                        |                            |                            |                                 | Tek            |
|---------------|------------------------------------|-----------------------------|----------------------------------------|----------------------------|----------------------------|---------------------------------|----------------|
| 26.5          | Ref Lv1*26.5dH                     | Bm                          | 10                                     | dB/                        | Atten 200                  | iB                              |                |
| 16.5          |                                    |                             |                                        |                            |                            |                                 |                |
|               |                                    |                             |                                        |                            |                            |                                 |                |
| 6.5           |                                    |                             |                                        |                            |                            |                                 |                |
| -3.5          |                                    |                             |                                        |                            |                            |                                 |                |
| -13. <u>5</u> |                                    |                             |                                        |                            |                            |                                 |                |
| -23.5 <u></u> |                                    |                             |                                        |                            |                            |                                 |                |
| -33.5         |                                    |                             | :                                      |                            |                            |                                 |                |
| -43.5         | benerdernonen ander and the second | war and the address and the | provention from which the state of the | wenter the more more thank | and an anneal the appendix | www.www.washinarationarationara | hallowedically |
| 10.0          |                                    |                             |                                        |                            |                            |                                 |                |
| -53. <u>5</u> |                                    |                             | · ·                                    |                            |                            |                                 |                |
| -63.5         |                                    |                             |                                        |                            |                            |                                 |                |
| -73.5         |                                    |                             |                                        |                            |                            |                                 |                |
|               | OMHz                               | to                          | 1.000GHz                               |                            |                            |                                 |                |
|               | ResBW 1MHz                         |                             | VidBW 7MHz                             |                            | SWP                        | 20mS                            |                |
|               | LEVEL                              | SPAN                        | Strt OMHz                              |                            |                            |                                 |                |
|               | KNOB 2                             | KNOB 1                      | KEYPAD                                 | Tektroni                   | ix 2784                    |                                 |                |

| NORTHWEST            |                                   |                                   |                                           |              |                      |  |  |
|----------------------|-----------------------------------|-----------------------------------|-------------------------------------------|--------------|----------------------|--|--|
| EMC                  |                                   | EMISSIONS [                       | DATA SHEET                                |              | Rev BETA<br>01/30/01 |  |  |
| EUT:                 | EM3420                            |                                   |                                           | Work Order:  | ITRM0030             |  |  |
| Serial Number:       | 13790400008                       |                                   |                                           | Date:        | 07/01/04             |  |  |
| Customer:            | Intermec Corporation              |                                   |                                           | Temperature: | 73 F                 |  |  |
| Attendees:           | none                              |                                   | Tested by: Greg Kiemel                    | Humidity:    | 41%                  |  |  |
| Customer Ref. No.:   | N/A                               |                                   | Power: DC from Host Un                    | t Job Site:  | EV06                 |  |  |
| TEST SPECIFICATION   | IS                                |                                   |                                           |              |                      |  |  |
| Specification:       | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current                | Method: TIA / EIA 603                     | Year:        | 2001                 |  |  |
| SAMPLE CALCULATIO    | ONS                               |                                   |                                           |              |                      |  |  |
|                      |                                   |                                   |                                           |              |                      |  |  |
| COMMENTS             |                                   |                                   |                                           |              |                      |  |  |
| Tested in 700C Handh | eld Computer                      |                                   |                                           |              |                      |  |  |
| EUT OPERATING MOD    |                                   |                                   |                                           |              |                      |  |  |
| Modulated by PRBS at | t maximum data rate, at maximum   | output power.                     |                                           |              |                      |  |  |
| DEVIATIONS FROM TE   | EST STANDARD                      |                                   |                                           |              |                      |  |  |
| None                 |                                   |                                   |                                           |              |                      |  |  |
| REQUIREMENTS         |                                   |                                   |                                           |              |                      |  |  |
| The peak conducted p | ower of spurious emissions, up to | the 10th harmonic of the transmit | t frequency, must be less than or equal t | o -13 dBm    |                      |  |  |
| RESULTS              |                                   |                                   |                                           |              |                      |  |  |
| Pass                 |                                   |                                   |                                           |              |                      |  |  |
| SIGNATURE            |                                   |                                   |                                           |              |                      |  |  |
| Tested By:           |                                   |                                   |                                           |              |                      |  |  |
| DESCRIPTION OF TES   | ST                                |                                   |                                           |              |                      |  |  |
|                      | Spurious (                        | Conducted Emissio                 | ns - Low Channel - PC                     | S Band       |                      |  |  |

|               |               |                                       |                                                                                                                 |              | Tek                                               |
|---------------|---------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------|
| 26.5          | Ref Lv1*26.50 | dBm                                   | 10dB/                                                                                                           | Atten 20     | dB                                                |
| 16.5          |               |                                       |                                                                                                                 |              |                                                   |
|               |               |                                       |                                                                                                                 |              |                                                   |
| 6.5           |               |                                       |                                                                                                                 |              |                                                   |
| -3.5          |               |                                       |                                                                                                                 |              |                                                   |
| -13.5         |               | ļ.                                    |                                                                                                                 |              |                                                   |
| -23.5         |               |                                       |                                                                                                                 |              |                                                   |
| -33. <u>5</u> |               | A                                     | when an analytic and the whole and the second |              | and the second and the second set in a fairly set |
| -43.5         |               | Inth'of the second of a second second |                                                                                                                 |              |                                                   |
| -53.5         |               |                                       |                                                                                                                 |              |                                                   |
|               |               |                                       | · · · · · · · · · · · · · · · · · · ·                                                                           |              |                                                   |
| -63.5         |               |                                       |                                                                                                                 |              |                                                   |
| -73.5         |               |                                       |                                                                                                                 |              |                                                   |
|               | 999MHz        | to                                    | 6.500GHz                                                                                                        |              |                                                   |
|               | ResBW 1MHz    |                                       | VidBW 7MHz                                                                                                      | SWP          | 55mS                                              |
|               | LEVEL         | SPAN                                  | Strt 999MHz                                                                                                     |              |                                                   |
|               | KNOB 2        | KNOB 1                                | KEYPAD Te                                                                                                       | ktronix 2784 |                                                   |

| NORTHWEST            |                                   |                                   |                                           |              |                      |  |  |
|----------------------|-----------------------------------|-----------------------------------|-------------------------------------------|--------------|----------------------|--|--|
| EMC                  |                                   | EMISSIONS [                       | DATA SHEET                                |              | Rev BETA<br>01/30/01 |  |  |
| EUT:                 | EM3420                            |                                   |                                           | Work Order:  | ITRM0030             |  |  |
| Serial Number:       | 13790400008                       |                                   |                                           | Date:        | 07/01/04             |  |  |
| Customer:            | Intermec Corporation              |                                   |                                           | Temperature: | 73 F                 |  |  |
| Attendees:           | none                              |                                   | Tested by: Greg Kiemel                    | Humidity:    | 41%                  |  |  |
| Customer Ref. No.:   | N/A                               |                                   | Power: DC from Host Un                    | t Job Site:  | EV06                 |  |  |
| TEST SPECIFICATION   | IS                                |                                   |                                           |              |                      |  |  |
| Specification:       | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current                | Method: TIA / EIA 603                     | Year:        | 2001                 |  |  |
| SAMPLE CALCULATIO    | ONS                               |                                   |                                           |              |                      |  |  |
|                      |                                   |                                   |                                           |              |                      |  |  |
| COMMENTS             |                                   |                                   |                                           |              |                      |  |  |
| Tested in 700C Handh | eld Computer                      |                                   |                                           |              |                      |  |  |
| EUT OPERATING MOD    |                                   |                                   |                                           |              |                      |  |  |
| Modulated by PRBS at | t maximum data rate, at maximum   | output power.                     |                                           |              |                      |  |  |
| DEVIATIONS FROM TE   | EST STANDARD                      |                                   |                                           |              |                      |  |  |
| None                 |                                   |                                   |                                           |              |                      |  |  |
| REQUIREMENTS         |                                   |                                   |                                           |              |                      |  |  |
| The peak conducted p | ower of spurious emissions, up to | the 10th harmonic of the transmit | t frequency, must be less than or equal t | o -13 dBm    |                      |  |  |
| RESULTS              |                                   |                                   |                                           |              |                      |  |  |
| Pass                 |                                   |                                   |                                           |              |                      |  |  |
| SIGNATURE            |                                   |                                   |                                           |              |                      |  |  |
| Tested By:           |                                   |                                   |                                           |              |                      |  |  |
| DESCRIPTION OF TES   | ST                                |                                   |                                           |              |                      |  |  |
|                      | Spurious (                        | Conducted Emissio                 | ns - Low Channel - PC                     | S Band       |                      |  |  |

|       |                                                  |                              |                                            |                            |                                  | Tek                       |
|-------|--------------------------------------------------|------------------------------|--------------------------------------------|----------------------------|----------------------------------|---------------------------|
| 26.5  | Ref Lv1*26.5dBn                                  | n                            | 10dB/                                      | At                         | ten 20dB                         |                           |
| 16.5  |                                                  |                              |                                            |                            |                                  |                           |
|       |                                                  |                              | · · ·                                      |                            |                                  |                           |
| 6.5   |                                                  |                              |                                            |                            |                                  |                           |
| -3.5  |                                                  |                              |                                            |                            |                                  |                           |
| -13.5 |                                                  |                              |                                            |                            |                                  |                           |
| -23.5 |                                                  |                              |                                            |                            |                                  |                           |
| -33.5 | Last M. M. Laster Marcally and Marcally Marcally | water wer have the thing the | warred for the share and the stand and the | when a car and the hard by | Autor Margaret Approximation and | Hellen and with the state |
| -43.5 | THE SECTION                                      |                              |                                            |                            |                                  |                           |
| -53.5 |                                                  |                              |                                            |                            |                                  |                           |
|       |                                                  |                              |                                            |                            |                                  |                           |
| -63.5 |                                                  |                              |                                            |                            |                                  |                           |
| -73.5 |                                                  |                              |                                            |                            |                                  | 1                         |
|       | 6.499GHz                                         | to                           | 10.000GHz                                  |                            |                                  |                           |
|       | ResBW 1MHz                                       |                              | VidBW 7MHz                                 |                            | SWP 35mS                         |                           |
|       | LEVEL                                            | SPAN                         | Ref Lv1*26.5dBm                            |                            |                                  |                           |
|       | KINOB 2                                          | KNOB 1                       | KEYPAD                                     | Tektronix                  | 2784                             |                           |

| NORTHWEST            |                                   |                                   |                                           |              |                      |  |  |
|----------------------|-----------------------------------|-----------------------------------|-------------------------------------------|--------------|----------------------|--|--|
| EMC                  |                                   | EMISSIONS [                       | DATA SHEET                                |              | Rev BETA<br>01/30/01 |  |  |
| EUT:                 | EM3420                            |                                   |                                           | Work Order:  | ITRM0030             |  |  |
| Serial Number:       | 13790400008                       |                                   |                                           | Date:        | 07/01/04             |  |  |
| Customer:            | Intermec Corporation              |                                   |                                           | Temperature: | 73 F                 |  |  |
| Attendees:           | none                              |                                   | Tested by: Greg Kiemel                    | Humidity:    | 41%                  |  |  |
| Customer Ref. No.:   | N/A                               |                                   | Power: DC from Host Un                    | t Job Site:  | EV06                 |  |  |
| TEST SPECIFICATION   | IS                                |                                   |                                           |              |                      |  |  |
| Specification:       | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current                | Method: TIA / EIA 603                     | Year:        | 2001                 |  |  |
| SAMPLE CALCULATIO    | ONS                               |                                   |                                           |              |                      |  |  |
|                      |                                   |                                   |                                           |              |                      |  |  |
| COMMENTS             |                                   |                                   |                                           |              |                      |  |  |
| Tested in 700C Handh | eld Computer                      |                                   |                                           |              |                      |  |  |
| EUT OPERATING MOD    |                                   |                                   |                                           |              |                      |  |  |
| Modulated by PRBS at | t maximum data rate, at maximum   | output power.                     |                                           |              |                      |  |  |
| DEVIATIONS FROM TE   | EST STANDARD                      |                                   |                                           |              |                      |  |  |
| None                 |                                   |                                   |                                           |              |                      |  |  |
| REQUIREMENTS         |                                   |                                   |                                           |              |                      |  |  |
| The peak conducted p | ower of spurious emissions, up to | the 10th harmonic of the transmit | t frequency, must be less than or equal t | o -13 dBm    |                      |  |  |
| RESULTS              |                                   |                                   |                                           |              |                      |  |  |
| Pass                 |                                   |                                   |                                           |              |                      |  |  |
| SIGNATURE            |                                   |                                   |                                           |              |                      |  |  |
| Tested By:           |                                   |                                   |                                           |              |                      |  |  |
| DESCRIPTION OF TES   | ST                                |                                   |                                           |              |                      |  |  |
|                      | Spurious (                        | Conducted Emissio                 | ns - Low Channel - PC                     | S Band       |                      |  |  |

|               |                                                 |                          |               |                                           | Tek                                                           |
|---------------|-------------------------------------------------|--------------------------|---------------|-------------------------------------------|---------------------------------------------------------------|
| 26.5          | Ref Lv1*26.5dE                                  | dm                       | 10dB/         | Atten 20                                  | )dB                                                           |
| 16 5          |                                                 |                          |               |                                           |                                                               |
| 16. <u>5</u>  |                                                 |                          | :             |                                           |                                                               |
| 6.5           |                                                 |                          |               |                                           |                                                               |
| -3.5          |                                                 |                          |               |                                           |                                                               |
| -13.5         |                                                 |                          |               |                                           |                                                               |
| -23.5         |                                                 |                          |               |                                           |                                                               |
| -33.5         | how do at a man and a start a france of a start | Wards we will be a start | w-weiner.     | water and the second second second second | 194914-174914-14-174914-14-14-14-14-14-14-14-14-14-14-14-14-1 |
| -43.5         |                                                 |                          |               |                                           |                                                               |
| -53. <u>5</u> |                                                 |                          |               |                                           |                                                               |
| -63.5         |                                                 |                          |               |                                           |                                                               |
| -73.5         |                                                 |                          |               |                                           |                                                               |
|               | 9.90GHz                                         | to                       | 20.00GHz      |                                           | ·                                                             |
|               | ResBW 1MHz                                      |                          | VidBW 7MHz    | SWP                                       | 100mS                                                         |
|               | LEVEL                                           | SPAN                     | Stop 20.00GHz |                                           |                                                               |
|               | KNOB 2                                          | KNOB 1                   | KEYPAD 7      | Tektronix 2784                            |                                                               |

| NORTHWEST            |                                   |                                  |                                                 |              |                      |  |  |
|----------------------|-----------------------------------|----------------------------------|-------------------------------------------------|--------------|----------------------|--|--|
| EMC                  |                                   | EMISSIONS I                      | DATA SHEET                                      |              | Rev BETA<br>01/30/01 |  |  |
| EUT:                 | EM3420                            |                                  |                                                 | Work Order:  | ITRM0030             |  |  |
| Serial Number:       | 13790400008                       | 3790400008 Date: 07/01/04        |                                                 |              |                      |  |  |
| Customer:            | Intermec Corporation              |                                  |                                                 | Temperature: | 73 F                 |  |  |
| Attendees:           | none                              |                                  | Tested by: Greg Kiemel                          | Humidity:    | 41%                  |  |  |
| Customer Ref. No.:   | N/A                               |                                  | Power: DC from Host Unit                        | Job Site:    | EV06                 |  |  |
| TEST SPECIFICATION   | IS                                |                                  |                                                 |              |                      |  |  |
| Specification:       | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current               | Method: TIA / EIA 603                           | Year:        | 2001                 |  |  |
| SAMPLE CALCULATI     | ONS                               |                                  |                                                 |              |                      |  |  |
|                      |                                   |                                  |                                                 |              |                      |  |  |
|                      |                                   |                                  |                                                 |              |                      |  |  |
|                      |                                   |                                  |                                                 |              |                      |  |  |
| COMMENTS             |                                   |                                  |                                                 |              |                      |  |  |
| Tested in 700C Handh |                                   |                                  |                                                 |              |                      |  |  |
| EUT OPERATING MOI    |                                   |                                  |                                                 |              |                      |  |  |
| -                    | t maximum data rate, at maximum   | output power.                    |                                                 |              |                      |  |  |
| DEVIATIONS FROM T    | EST STANDARD                      |                                  |                                                 |              |                      |  |  |
| None                 |                                   |                                  |                                                 |              |                      |  |  |
| REQUIREMENTS         |                                   |                                  |                                                 |              |                      |  |  |
|                      | ower of spurious emissions, up to | the 10th harmonic of the transmi | it frequency, must be less than or equal to -13 | dBm          |                      |  |  |
| RESULTS              |                                   |                                  |                                                 |              |                      |  |  |
| Pass                 |                                   |                                  |                                                 |              |                      |  |  |
| SIGNATURE            |                                   |                                  |                                                 |              |                      |  |  |
| Tested By:           |                                   |                                  |                                                 |              |                      |  |  |
| DESCRIPTION OF TES   | ST                                |                                  |                                                 |              |                      |  |  |
|                      | Spurious                          | Conducted Emissic                | ons - Mid Channel - PCS B                       | and          |                      |  |  |

|               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                                  |                          |                           | Tek                |
|---------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|----------------------------------|--------------------------|---------------------------|--------------------|
| 26.5          | Ref Lv1*26.5dBm                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 10dB/                                 |                                  | Atten 200                | цВ                        |                    |
|               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                                  |                          |                           |                    |
| 16.5          |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | :                                     |                                  |                          |                           |                    |
| 6.5           |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                                  |                          |                           |                    |
| -3.5          |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                                  |                          |                           |                    |
| -13.5         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | :                                     |                                  |                          |                           |                    |
|               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | :                                     |                                  |                          |                           |                    |
| -23.5         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | · · · · · · · · · · · · · · · · · · · |                                  |                          |                           |                    |
| -33.5         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | :                                     |                                  |                          |                           |                    |
| -43.5         | budy to share an | or and the strategy of the state of the stat | hatedinitiation |                                       | ุกมาร์มุทูฟอิมุกประมาร์ของประการ | www.analestatestrume.com | enderstand and the second | araya.chikharanaki |
|               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                                  |                          |                           |                    |
| -53. <u>5</u> |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | · · · · · · · · · · · · · · · · · · · |                                  |                          |                           |                    |
| -63.5         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                                  |                          |                           |                    |
| -73.5         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | :                                     |                                  |                          |                           |                    |
|               | OMHz                                                 | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00            | OGHz                                  |                                  |                          |                           |                    |
|               | ResBW 1MHz                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vi              | dBW 7MHz                              |                                  | SWP                      | 20mS                      |                    |
|               | LEVEL                                                | SPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Re              | f Lv1*26.5dBm                         |                                  |                          |                           |                    |
|               | KINOB 2                                              | KNOB 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KE              | YPAD                                  | Tektronix                        | 2784                     |                           |                    |

| NORTHWEST            |                                   |                                  |                                                 |              |                      |  |  |
|----------------------|-----------------------------------|----------------------------------|-------------------------------------------------|--------------|----------------------|--|--|
| EMC                  |                                   | EMISSIONS I                      | DATA SHEET                                      |              | Rev BETA<br>01/30/01 |  |  |
| EUT:                 | EM3420                            |                                  |                                                 | Work Order:  | ITRM0030             |  |  |
| Serial Number:       | 13790400008                       | 3790400008 Date: 07/01/04        |                                                 |              |                      |  |  |
| Customer:            | Intermec Corporation              |                                  |                                                 | Temperature: | 73 F                 |  |  |
| Attendees:           | none                              |                                  | Tested by: Greg Kiemel                          | Humidity:    | 41%                  |  |  |
| Customer Ref. No.:   | N/A                               |                                  | Power: DC from Host Unit                        | Job Site:    | EV06                 |  |  |
| TEST SPECIFICATION   | IS                                |                                  |                                                 |              |                      |  |  |
| Specification:       | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current               | Method: TIA / EIA 603                           | Year:        | 2001                 |  |  |
| SAMPLE CALCULATI     | ONS                               |                                  |                                                 |              |                      |  |  |
|                      |                                   |                                  |                                                 |              |                      |  |  |
|                      |                                   |                                  |                                                 |              |                      |  |  |
|                      |                                   |                                  |                                                 |              |                      |  |  |
| COMMENTS             |                                   |                                  |                                                 |              |                      |  |  |
| Tested in 700C Handh |                                   |                                  |                                                 |              |                      |  |  |
| EUT OPERATING MOI    |                                   |                                  |                                                 |              |                      |  |  |
| -                    | t maximum data rate, at maximum   | output power.                    |                                                 |              |                      |  |  |
| DEVIATIONS FROM T    | EST STANDARD                      |                                  |                                                 |              |                      |  |  |
| None                 |                                   |                                  |                                                 |              |                      |  |  |
| REQUIREMENTS         |                                   |                                  |                                                 |              |                      |  |  |
|                      | ower of spurious emissions, up to | the 10th harmonic of the transmi | it frequency, must be less than or equal to -13 | dBm          |                      |  |  |
| RESULTS              |                                   |                                  |                                                 |              |                      |  |  |
| Pass                 |                                   |                                  |                                                 |              |                      |  |  |
| SIGNATURE            |                                   |                                  |                                                 |              |                      |  |  |
| Tested By:           |                                   |                                  |                                                 |              |                      |  |  |
| DESCRIPTION OF TES   | ST                                |                                  |                                                 |              |                      |  |  |
|                      | Spurious                          | Conducted Emissic                | ons - Mid Channel - PCS B                       | and          |                      |  |  |

|               |                                                                                                                  |                                   |                                                                                                                  |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tek          |
|---------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 26.5          | Ref Lv1*26.5dB                                                                                                   | m                                 | 10dB/                                                                                                            |                     | Atten 200 | iB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| 16.5          |                                                                                                                  |                                   |                                                                                                                  |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|               |                                                                                                                  |                                   |                                                                                                                  |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| 6.5           |                                                                                                                  |                                   | · · · · · · · · · · · · · · · · · · ·                                                                            |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| -3.5          |                                                                                                                  |                                   |                                                                                                                  |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| -13.5         |                                                                                                                  |                                   |                                                                                                                  |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| -23.5         |                                                                                                                  |                                   |                                                                                                                  |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| -33.5         |                                                                                                                  |                                   |                                                                                                                  | يد موجد معاد مرجد م |           | and an and the state of the sta | Adreaman the |
|               | when we are a second and the second | a begin when a work of the second | terrenerstationstructure and the second states and the second states and the second states and the second states |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| -43.5         |                                                                                                                  |                                   | :                                                                                                                |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| -53. <u>5</u> |                                                                                                                  |                                   | · ·                                                                                                              |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| -63.5         |                                                                                                                  |                                   | · · ·                                                                                                            |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| -73.5         |                                                                                                                  |                                   |                                                                                                                  |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|               | 999MHz                                                                                                           | to                                | 6.500GHz                                                                                                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|               | ResBW 1MHz                                                                                                       |                                   | VidBW 7MHz                                                                                                       |                     | SWP       | 55mS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|               | LEVEL                                                                                                            | SPAN                              | Ref Lv1*26.5dBm                                                                                                  |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|               | KNOB 2                                                                                                           | KNOB 1                            | KEYPAD                                                                                                           | Tektronix           | 2784      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

| NORTHWEST            |                                   |                                  |                                                 |              |                      |  |  |
|----------------------|-----------------------------------|----------------------------------|-------------------------------------------------|--------------|----------------------|--|--|
| EMC                  |                                   | EMISSIONS I                      | DATA SHEET                                      |              | Rev BETA<br>01/30/01 |  |  |
| EUT:                 | EM3420                            |                                  |                                                 | Work Order:  | ITRM0030             |  |  |
| Serial Number:       | 13790400008                       | 3790400008 Date: 07/01/04        |                                                 |              |                      |  |  |
| Customer:            | Intermec Corporation              |                                  |                                                 | Temperature: | 73 F                 |  |  |
| Attendees:           | none                              |                                  | Tested by: Greg Kiemel                          | Humidity:    | 41%                  |  |  |
| Customer Ref. No.:   | N/A                               |                                  | Power: DC from Host Unit                        | Job Site:    | EV06                 |  |  |
| TEST SPECIFICATION   | IS                                |                                  |                                                 |              |                      |  |  |
| Specification:       | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current               | Method: TIA / EIA 603                           | Year:        | 2001                 |  |  |
| SAMPLE CALCULATI     | ONS                               |                                  |                                                 |              |                      |  |  |
|                      |                                   |                                  |                                                 |              |                      |  |  |
|                      |                                   |                                  |                                                 |              |                      |  |  |
|                      |                                   |                                  |                                                 |              |                      |  |  |
| COMMENTS             |                                   |                                  |                                                 |              |                      |  |  |
| Tested in 700C Handh |                                   |                                  |                                                 |              |                      |  |  |
| EUT OPERATING MOI    |                                   |                                  |                                                 |              |                      |  |  |
| -                    | t maximum data rate, at maximum   | output power.                    |                                                 |              |                      |  |  |
| DEVIATIONS FROM T    | EST STANDARD                      |                                  |                                                 |              |                      |  |  |
| None                 |                                   |                                  |                                                 |              |                      |  |  |
| REQUIREMENTS         |                                   |                                  |                                                 |              |                      |  |  |
|                      | ower of spurious emissions, up to | the 10th harmonic of the transmi | it frequency, must be less than or equal to -13 | dBm          |                      |  |  |
| RESULTS              |                                   |                                  |                                                 |              |                      |  |  |
| Pass                 |                                   |                                  |                                                 |              |                      |  |  |
| SIGNATURE            |                                   |                                  |                                                 |              |                      |  |  |
| Tested By:           |                                   |                                  |                                                 |              |                      |  |  |
| DESCRIPTION OF TES   | ST                                |                                  |                                                 |              |                      |  |  |
|                      | Spurious                          | Conducted Emissic                | ons - Mid Channel - PCS B                       | and          |                      |  |  |

|       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     | Tek                                                       |
|-------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 26.5  | Ref Lv1*26.5dBm               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10dB/                                      |                              | Atten 200                                       | iB                                                                                                                                                                                                                                  |                                                           |
| 16.5  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
| 10.5  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
| 6.5   |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
| -3.5  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
|       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
| -13.5 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · ·                                      |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
| -23.5 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
| -33.5 |                               | الابند                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
|       | had a sub-state of the second | a for the state of | internet and a second second second second | when the public and range as | WHAT BE AND | ynterstaal yn derstad yn de baren yn de<br>General yn de baren yn de ba | ┖┥ <sub>┶</sub> ┿╊┯╌┲╌┄ <sup>┎┲</sup> ╖ <sup>╻┍</sup> ┫┚╵ |
| -43.5 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
| -53.5 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                          |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
| -63.5 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
| -00.2 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
| -73.5 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
|       | 6.499GHz                      | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.000GHz                                  |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
|       | ResBW 1MHz                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VidBW 7MHz                                 |                              | SWP                                             | 35mS                                                                                                                                                                                                                                |                                                           |
|       | LEVEL                         | SPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ref Lv1*26.5dBm                            |                              |                                                 |                                                                                                                                                                                                                                     |                                                           |
|       | KNOB 2                        | KNOB 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KEYPAD                                     | Tektronix                    | 2784                                            |                                                                                                                                                                                                                                     |                                                           |

| NORTHWEST                                             |                                   |                                   |                                                |              |                      |  |  |  |  |
|-------------------------------------------------------|-----------------------------------|-----------------------------------|------------------------------------------------|--------------|----------------------|--|--|--|--|
| EMC                                                   |                                   | EMISSIONS I                       | DATA SHEET                                     |              | Rev BETA<br>01/30/01 |  |  |  |  |
| EUT:                                                  | EM3420                            |                                   |                                                | Work Order:  | ITRM0030             |  |  |  |  |
| Serial Number:                                        | 13790400008                       | 13790400008 Date: 07/01/04        |                                                |              |                      |  |  |  |  |
| Customer:                                             | Intermec Corporation              |                                   |                                                | Temperature: | 73 F                 |  |  |  |  |
| Attendees:                                            | none                              |                                   | Tested by: Greg Kiemel                         | Humidity:    | 41%                  |  |  |  |  |
| Customer Ref. No.:                                    | N/A                               |                                   | Power: DC from Host Unit                       | Job Site:    | EV06                 |  |  |  |  |
| TEST SPECIFICATION                                    | IS                                |                                   |                                                |              |                      |  |  |  |  |
| Specification:                                        | 47 CFR 2.1051, 22.917, 24.238     | Year: Most Current                | Method: TIA / EIA 603                          | Year:        | 2001                 |  |  |  |  |
| SAMPLE CALCULATIO                                     | ONS                               |                                   |                                                |              |                      |  |  |  |  |
|                                                       |                                   |                                   |                                                |              |                      |  |  |  |  |
|                                                       |                                   |                                   |                                                |              |                      |  |  |  |  |
|                                                       |                                   |                                   |                                                |              |                      |  |  |  |  |
| COMMENTS                                              |                                   |                                   |                                                |              |                      |  |  |  |  |
| Tested in 700C Handh                                  | -                                 |                                   |                                                |              |                      |  |  |  |  |
| EUT OPERATING MOD                                     |                                   |                                   |                                                |              |                      |  |  |  |  |
| -                                                     | t maximum data rate, at maximum   | output power.                     |                                                |              |                      |  |  |  |  |
| DEVIATIONS FROM T                                     | EST STANDARD                      |                                   |                                                |              |                      |  |  |  |  |
| None                                                  |                                   |                                   |                                                |              |                      |  |  |  |  |
| REQUIREMENTS                                          |                                   |                                   |                                                |              |                      |  |  |  |  |
| · · ·                                                 | ower of spurious emissions, up to | the 10th harmonic of the transmit | t frequency, must be less than or equal to -13 | dBm          |                      |  |  |  |  |
| RESULTS                                               |                                   |                                   |                                                |              |                      |  |  |  |  |
| Pass                                                  |                                   |                                   |                                                |              |                      |  |  |  |  |
| SIGNATURE                                             |                                   |                                   |                                                |              |                      |  |  |  |  |
| Tested By:                                            | Tested By:                        |                                   |                                                |              |                      |  |  |  |  |
| DESCRIPTION OF TES                                    | ST                                |                                   |                                                |              |                      |  |  |  |  |
| Spurious Conducted Emissions - Mid Channel - PCS Band |                                   |                                   |                                                |              |                      |  |  |  |  |

|               |                                         |                                                                                                                |                                                                                |                                           | Tek                                    |
|---------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|
| 26.5          | Ref Lv1*26.5dBm                         | 1                                                                                                              | 10dB/                                                                          | Atten 20                                  | DdB                                    |
|               |                                         |                                                                                                                |                                                                                |                                           |                                        |
| 16.5          |                                         |                                                                                                                |                                                                                |                                           |                                        |
| 6.5           |                                         |                                                                                                                |                                                                                |                                           |                                        |
| -3.5          |                                         |                                                                                                                |                                                                                |                                           |                                        |
| -13.5         |                                         |                                                                                                                |                                                                                |                                           |                                        |
| -10.5         |                                         |                                                                                                                |                                                                                |                                           |                                        |
| -23.5         |                                         |                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                          |                                           |                                        |
| -33.5         | Vern an warrely of the second south and | mine and the sec                                                                                               | inder advert of the on a law to all the commences of the contract of the other | may a link the hope and a super the state | 1. Julian marine male and a marine and |
| -43.5         |                                         | The second s |                                                                                |                                           |                                        |
|               |                                         |                                                                                                                |                                                                                |                                           |                                        |
| -53. <u>5</u> |                                         |                                                                                                                |                                                                                |                                           |                                        |
| -63. <u>5</u> |                                         |                                                                                                                |                                                                                |                                           |                                        |
| -73.5         |                                         |                                                                                                                |                                                                                |                                           |                                        |
|               | 9.90GHz                                 | to                                                                                                             | 20.00GHz                                                                       |                                           |                                        |
|               | ResBW 1MHz                              |                                                                                                                | VidBW 7MHz                                                                     | SWF                                       | 9 100mS                                |
|               | LEVEL                                   | SPAN                                                                                                           | Stop 20.00GHz                                                                  |                                           |                                        |
|               | KINOB 2                                 | KNOB 1                                                                                                         | KEYPAD                                                                         | Tektronix 2784                            |                                        |

| NORTHWEST                        |                                        |                                     |                         |                          |              |                      |  |  |  |
|----------------------------------|----------------------------------------|-------------------------------------|-------------------------|--------------------------|--------------|----------------------|--|--|--|
| EMC                              |                                        | EMISSIONS [                         | DATA SH                 | EET                      |              | Rev BETA<br>01/30/01 |  |  |  |
| EUT:                             | EM3420                                 |                                     |                         |                          | Work Order:  | ITRM0030             |  |  |  |
| Serial Number:                   | 13790400008                            |                                     |                         |                          | Date:        | 07/01/04             |  |  |  |
| Customer:                        | Intermec Corporation                   |                                     |                         |                          | Temperature: | 73 F                 |  |  |  |
| Attendees:                       | none                                   |                                     | Tested by:              | Greg Kiemel              | Humidity:    | 41%                  |  |  |  |
| Customer Ref. No.:               | N/A                                    |                                     | Power:                  | DC from Host Unit        | Job Site:    | EV06                 |  |  |  |
| TEST SPECIFICATION               | IS                                     |                                     |                         |                          |              |                      |  |  |  |
| Specification:                   | 47 CFR 2.1051, 22.917, 24.238          | Year: Most Current                  | Method:                 | TIA / EIA 603            | Year:        | 2001                 |  |  |  |
| SAMPLE CALCULATIO                | ONS                                    |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
| COMMENTS<br>Tested in 700C Handh | ald Computer                           |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
| EUT OPERATING MOD                | DES<br>t maximum data rate, at maximum | output power                        |                         |                          |              |                      |  |  |  |
| DEVIATIONS FROM T                |                                        | output power.                       |                         |                          |              |                      |  |  |  |
| None                             | EST STANDARD                           |                                     |                         |                          |              |                      |  |  |  |
| REQUIREMENTS                     |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  | ower of spurious emissions, up to      | o the 10th harmonic of the transmit | t frequency, must be le | ess than or equal to -13 | dBm          |                      |  |  |  |
| RESULTS                          |                                        |                                     |                         | 100 tilan 01 - 4         |              |                      |  |  |  |
| Pass                             |                                        |                                     |                         |                          |              |                      |  |  |  |
| SIGNATURE                        |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  | ATU.K.P                                |                                     |                         |                          |              |                      |  |  |  |
|                                  | () <del>()</del>                       |                                     |                         |                          |              |                      |  |  |  |
| Tested By:                       | Tested By: VV                          |                                     |                         |                          |              |                      |  |  |  |
| DESCRIPTION OF TES               | ST                                     |                                     |                         |                          |              |                      |  |  |  |
|                                  | Spurious (                             | Conducted Emissio                   | ns - High Ch            | annel - PCS F            | Rand         |                      |  |  |  |
| 1                                | opunous c                              |                                     | na - riigii Oik         |                          | Jana         |                      |  |  |  |

|       |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             | Tek         |
|-------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|-------------|
| 26.5  | Ref Lv1*26.5dBm                                                                                                 |                                    | 10d                                         | в/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Atten 20d                     | IB                          |             |
| 16.5  |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
| 10.5  |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
| 6.5   |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
| -3.5  |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
| -13.5 |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
|       |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
| -23.5 |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
| -33.5 |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
| -43.5 | managener and the second states and the second s | washed a second dream with book of | entersonan allerander and an and an article | eardedar and the second and the seco | helestapel. Minor subjections | qahagaalayooyoofalaanaaaaaa | washaranaya |
|       |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
| -53.5 |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
| -63.5 |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
| -73.5 |                                                                                                                 |                                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
|       | OMHz                                                                                                            | to                                 | 1.000GHz                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                             |             |
|       | ResBW 1MHz                                                                                                      |                                    | VidBW 7MHz                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SWP                           | 20mS                        |             |
|       | LEVEL                                                                                                           | SPAN                               | Ref Lv1*26.5d                               | Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                             |             |
|       | KINOB 2                                                                                                         | KNOB 1                             | KEYPAD                                      | Tektronix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2784                          |                             |             |

| NORTHWEST                        |                                        |                                     |                         |                          |              |                      |  |  |  |
|----------------------------------|----------------------------------------|-------------------------------------|-------------------------|--------------------------|--------------|----------------------|--|--|--|
| EMC                              |                                        | EMISSIONS [                         | DATA SH                 | EET                      |              | Rev BETA<br>01/30/01 |  |  |  |
| EUT:                             | EM3420                                 |                                     |                         |                          | Work Order:  | ITRM0030             |  |  |  |
| Serial Number:                   | 13790400008                            |                                     |                         |                          | Date:        | 07/01/04             |  |  |  |
| Customer:                        | Intermec Corporation                   |                                     |                         |                          | Temperature: | 73 F                 |  |  |  |
| Attendees:                       | none                                   |                                     | Tested by:              | Greg Kiemel              | Humidity:    | 41%                  |  |  |  |
| Customer Ref. No.:               | N/A                                    |                                     | Power:                  | DC from Host Unit        | Job Site:    | EV06                 |  |  |  |
| TEST SPECIFICATION               | IS                                     |                                     |                         |                          |              |                      |  |  |  |
| Specification:                   | 47 CFR 2.1051, 22.917, 24.238          | Year: Most Current                  | Method:                 | TIA / EIA 603            | Year:        | 2001                 |  |  |  |
| SAMPLE CALCULATIO                | ONS                                    |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
| COMMENTS<br>Tested in 700C Handh | ald Computer                           |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
| EUT OPERATING MOD                | DES<br>t maximum data rate, at maximum | output power                        |                         |                          |              |                      |  |  |  |
| DEVIATIONS FROM T                |                                        | output power.                       |                         |                          |              |                      |  |  |  |
| None                             | EST STANDARD                           |                                     |                         |                          |              |                      |  |  |  |
| REQUIREMENTS                     |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  | ower of spurious emissions, up to      | o the 10th harmonic of the transmit | t frequency, must be le | ess than or equal to -13 | dBm          |                      |  |  |  |
| RESULTS                          |                                        |                                     |                         | 100 tilan 01 - 4         |              |                      |  |  |  |
| Pass                             |                                        |                                     |                         |                          |              |                      |  |  |  |
| SIGNATURE                        |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  | ATTU.K.P                               |                                     |                         |                          |              |                      |  |  |  |
|                                  | () <del>()</del>                       |                                     |                         |                          |              |                      |  |  |  |
| Tested By:                       | Tested By: VV                          |                                     |                         |                          |              |                      |  |  |  |
| DESCRIPTION OF TES               | ST                                     |                                     |                         |                          |              |                      |  |  |  |
|                                  | Spurious (                             | Conducted Emissio                   | ns - High Ch            | annel - PCS F            | Rand         |                      |  |  |  |
| 1                                | opunous c                              |                                     | na - riigii Oik         |                          | Jana         |                      |  |  |  |

Spurious Conducted Emissions - High Channel - PCS Band

|               |                 |                                     |                                                          |                                                                                                                | Tek                                 |
|---------------|-----------------|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 26.5          | Ref Lv1*26.5dBm |                                     | 10dB/                                                    | Atten 20                                                                                                       | dB                                  |
| 16.5          |                 |                                     |                                                          |                                                                                                                |                                     |
|               |                 |                                     |                                                          |                                                                                                                |                                     |
| 6.5           |                 |                                     | · · · · · · · · · · · · · · · · · · ·                    |                                                                                                                |                                     |
| -3.5          |                 |                                     | · · · · · · · · · · · · · · · · · · ·                    |                                                                                                                |                                     |
| -13.5         |                 |                                     |                                                          |                                                                                                                |                                     |
| -23.5         |                 |                                     |                                                          |                                                                                                                |                                     |
| -33. <u>5</u> |                 |                                     | www.www.walantimeters.andersty with a more approximation | han af a character and the factor of the second | any water and the presenter marined |
| -43.5         |                 | T- AND T- CLUB CLUTTER IN THE COLOR |                                                          |                                                                                                                |                                     |
| -53.5         |                 |                                     |                                                          |                                                                                                                |                                     |
| -63.5         |                 |                                     |                                                          |                                                                                                                |                                     |
| -73.5         |                 |                                     |                                                          |                                                                                                                |                                     |
|               | 999MHz          | to                                  | 6.500GHz                                                 | · I                                                                                                            | · /                                 |
|               | ResBW 1MHz      |                                     | VidBW 7MHz                                               | SWP                                                                                                            | 55mS                                |
|               | LEVEL           | SPAN                                | Ref Lv1*26.5dBm                                          |                                                                                                                |                                     |
|               | KNOB 2          | KNOB 1                              | KEYPAD Te                                                | ktronix 2784                                                                                                   |                                     |

| NORTHWEST                        |                                        |                                     |                         |                          |              |                      |  |  |  |
|----------------------------------|----------------------------------------|-------------------------------------|-------------------------|--------------------------|--------------|----------------------|--|--|--|
| EMC                              |                                        | EMISSIONS [                         | DATA SH                 | EET                      |              | Rev BETA<br>01/30/01 |  |  |  |
| EUT:                             | EM3420                                 |                                     |                         |                          | Work Order:  | ITRM0030             |  |  |  |
| Serial Number:                   | 13790400008                            |                                     |                         |                          | Date:        | 07/01/04             |  |  |  |
| Customer:                        | Intermec Corporation                   |                                     |                         |                          | Temperature: | 73 F                 |  |  |  |
| Attendees:                       | none                                   |                                     | Tested by:              | Greg Kiemel              | Humidity:    | 41%                  |  |  |  |
| Customer Ref. No.:               | N/A                                    |                                     | Power:                  | DC from Host Unit        | Job Site:    | EV06                 |  |  |  |
| TEST SPECIFICATION               | IS                                     |                                     |                         |                          |              |                      |  |  |  |
| Specification:                   | 47 CFR 2.1051, 22.917, 24.238          | Year: Most Current                  | Method:                 | TIA / EIA 603            | Year:        | 2001                 |  |  |  |
| SAMPLE CALCULATIO                | ONS                                    |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
| COMMENTS<br>Tested in 700C Handh | ald Computer                           |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
| EUT OPERATING MOD                | DES<br>t maximum data rate, at maximum | output power                        |                         |                          |              |                      |  |  |  |
| DEVIATIONS FROM T                |                                        | output power.                       |                         |                          |              |                      |  |  |  |
| None                             | EST STANDARD                           |                                     |                         |                          |              |                      |  |  |  |
| REQUIREMENTS                     |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  | ower of spurious emissions, up to      | o the 10th harmonic of the transmit | t frequency, must be le | ess than or equal to -13 | dBm          |                      |  |  |  |
| RESULTS                          |                                        |                                     |                         | 100 tilan 01 - 4         |              |                      |  |  |  |
| Pass                             |                                        |                                     |                         |                          |              |                      |  |  |  |
| SIGNATURE                        |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  | ATTU.K.P                               |                                     |                         |                          |              |                      |  |  |  |
|                                  | () <del>()</del>                       |                                     |                         |                          |              |                      |  |  |  |
| Tested By:                       | Tested By: VV                          |                                     |                         |                          |              |                      |  |  |  |
| DESCRIPTION OF TES               | ST                                     |                                     |                         |                          |              |                      |  |  |  |
|                                  | Spurious (                             | Conducted Emissio                   | ns - High Ch            | annel - PCS F            | Rand         |                      |  |  |  |
| 1                                | opunous c                              |                                     | na - riigii Oik         |                          | Jana         |                      |  |  |  |

Spurious Conducted Emissions - High Channel - PCS Band

|               |                                                                                                                 |                                          |                                    |                  |                                          |                |                            | Tek            |
|---------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------|------------------|------------------------------------------|----------------|----------------------------|----------------|
| 26.5          | Ref Lv1*26.5dBm                                                                                                 |                                          |                                    | 10dB/            |                                          | Atten 200      | ЗB                         |                |
| 16.5          |                                                                                                                 |                                          |                                    |                  |                                          |                |                            |                |
|               |                                                                                                                 |                                          |                                    | :                |                                          |                |                            |                |
| 6.5           |                                                                                                                 |                                          |                                    | •                |                                          |                |                            |                |
| -3.5          |                                                                                                                 |                                          |                                    | :                |                                          |                |                            |                |
| -13.5         |                                                                                                                 |                                          |                                    |                  |                                          |                |                            |                |
| -23.5         |                                                                                                                 |                                          |                                    | ·<br>·<br>·<br>· |                                          |                |                            |                |
| -33.5 <u></u> | to be a super of the second | . Hear marked the offer and any the work | watur war was destinguted by wards | udh              | M. I I.                                  | adame her. the | ~shipment provide the spin | and the second |
| -43.5         |                                                                                                                 |                                          |                                    |                  | ~~ »~~(«~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ar:            |                            |                |
| -53.5         |                                                                                                                 |                                          |                                    | :<br>:<br>:      |                                          |                |                            |                |
|               |                                                                                                                 |                                          |                                    |                  |                                          |                |                            |                |
| -63.5         |                                                                                                                 |                                          |                                    | ·<br>·           |                                          |                |                            |                |
| -73.5         |                                                                                                                 |                                          |                                    |                  |                                          |                |                            |                |
|               | 6.499GHz                                                                                                        | to                                       | 10.000GHz                          |                  |                                          |                |                            |                |
|               | ResBW 1MHz                                                                                                      |                                          | VidBW 7MH                          | z                |                                          | SWP            | 35mS                       |                |
|               | LEVEL                                                                                                           | SPAN                                     | Ref Lv1*2                          | 6.5dBm           |                                          |                |                            |                |
|               | KNOB 2                                                                                                          | KNOB 1                                   | KEYPAD                             | Te               | ktronix                                  | 2784           |                            |                |

| NORTHWEST                        |                                        |                                     |                         |                          |              |                      |  |  |  |
|----------------------------------|----------------------------------------|-------------------------------------|-------------------------|--------------------------|--------------|----------------------|--|--|--|
| EMC                              |                                        | EMISSIONS [                         | DATA SH                 | EET                      |              | Rev BETA<br>01/30/01 |  |  |  |
| EUT:                             | EM3420                                 |                                     |                         |                          | Work Order:  | ITRM0030             |  |  |  |
| Serial Number:                   | 13790400008                            |                                     |                         |                          | Date:        | 07/01/04             |  |  |  |
| Customer:                        | Intermec Corporation                   |                                     |                         |                          | Temperature: | 73 F                 |  |  |  |
| Attendees:                       | none                                   |                                     | Tested by:              | Greg Kiemel              | Humidity:    | 41%                  |  |  |  |
| Customer Ref. No.:               | N/A                                    |                                     | Power:                  | DC from Host Unit        | Job Site:    | EV06                 |  |  |  |
| TEST SPECIFICATION               | IS                                     |                                     |                         |                          |              |                      |  |  |  |
| Specification:                   | 47 CFR 2.1051, 22.917, 24.238          | Year: Most Current                  | Method:                 | TIA / EIA 603            | Year:        | 2001                 |  |  |  |
| SAMPLE CALCULATIO                | ONS                                    |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
| COMMENTS<br>Tested in 700C Handh | ald Computer                           |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
| EUT OPERATING MOD                | DES<br>t maximum data rate, at maximum | output power                        |                         |                          |              |                      |  |  |  |
| DEVIATIONS FROM T                |                                        | output power.                       |                         |                          |              |                      |  |  |  |
| None                             | EST STANDARD                           |                                     |                         |                          |              |                      |  |  |  |
| REQUIREMENTS                     |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  | ower of spurious emissions, up to      | o the 10th harmonic of the transmit | t frequency, must be le | ess than or equal to -13 | dBm          |                      |  |  |  |
| RESULTS                          |                                        |                                     |                         | 100 tilan 01 : 4         |              |                      |  |  |  |
| Pass                             |                                        |                                     |                         |                          |              |                      |  |  |  |
| SIGNATURE                        |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  |                                        |                                     |                         |                          |              |                      |  |  |  |
|                                  | ATU.K.P                                |                                     |                         |                          |              |                      |  |  |  |
|                                  | () <del>()</del>                       |                                     |                         |                          |              |                      |  |  |  |
| Tested By:                       | Tested By: VV                          |                                     |                         |                          |              |                      |  |  |  |
| DESCRIPTION OF TES               | ST                                     |                                     |                         |                          |              |                      |  |  |  |
|                                  | Spurious (                             | Conducted Emissio                   | ns - High Ch            | annel - PCS F            | Rand         |                      |  |  |  |
| 1                                | opunous c                              |                                     | na - riigii Oik         |                          | Jana         |                      |  |  |  |

Spurious Conducted Emissions - High Channel - PCS Band

|               |                                                 |        |                                                                                                                |                             |                              |                         | Tek                         |
|---------------|-------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|-------------------------|-----------------------------|
| 26.5          | Ref Lv1*26.5dBm                                 |        | 10dB/                                                                                                          |                             | Atten 20d                    | В                       |                             |
| 16.5          |                                                 |        |                                                                                                                |                             |                              |                         |                             |
|               |                                                 |        | · · · · · · · · · · · · · · · · · · ·                                                                          |                             |                              |                         |                             |
| 6. <u>5</u>   |                                                 |        |                                                                                                                |                             |                              |                         |                             |
| -3. <u>5</u>  |                                                 |        |                                                                                                                |                             |                              |                         |                             |
| -13.5         |                                                 |        |                                                                                                                |                             |                              |                         |                             |
| -23.5 <u></u> |                                                 |        |                                                                                                                |                             |                              |                         |                             |
| -33. <u>5</u> | musiden whether whether had a particulation and |        | and marine and the second and the second of the second second second second second second second second second | with the west of the within | 14/44.11/14-17-44-6-41/14-47 | in and provident of the | ere gively way and a second |
| -43.5         |                                                 |        |                                                                                                                |                             |                              |                         |                             |
| -53.5         |                                                 |        |                                                                                                                |                             |                              |                         |                             |
| -63.5         |                                                 |        |                                                                                                                |                             |                              |                         |                             |
| -73.5         |                                                 |        |                                                                                                                |                             |                              |                         |                             |
|               | 9.90GHz                                         | to     | 20.00GHz                                                                                                       | ·                           | , ,                          |                         |                             |
|               | ResBW 1MHz                                      |        | VidBW 7MHz                                                                                                     |                             | SWP :                        | 100mS                   |                             |
|               | LEVEL                                           | SPAN   | Stop 20.00GHz                                                                                                  |                             |                              |                         |                             |
|               | KINOB 2                                         | KNOB 1 | KEYPAD                                                                                                         | Tektronix                   | 2784                         |                         |                             |

