Intermec Technologies Corporation

IP30 with IM4

February 19, 2008

Report No. ITRM0173.1

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2008Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: February 19, 2008
Intermec Technologies Corporation
Model: IP30 with IM4

Emissions										
Test Description Specification Test Method Pass/Fail										
Spurious Radiated Emissions	FCC 15.247 (FHSS):2007	ANSI C63.4:2003 DA 00-705:2000	Pass							

Modifications made to the product
See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

Ethan Schoonover, Sultan Lab Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

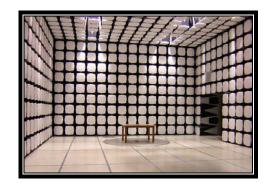
NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification


MIC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Dave Fry
Model:	IP30 with IM4
First Date of Test:	February 13, 2008
Last Date of Test:	February 13, 2008
Receipt Date of Samples:	February 13, 2008
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

The IP30 is a new pistol grip RFID scanner that mates with the CN3, CN3e and CK61. It uses the IM4 RFID module.

Testing Objective:

The IM4 RFID module has full modular approval under FCC ID: EHAIM4. This testing will demonstrate compliance to FCC 15.247 radiated emissions specifications when the IM4 uses a new antenna for the IP30.

Configurations

CONFIGURATION 1 ITRM0175

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
RFID radio	IntermecTechnologies Corporation	IP30	3207440109
RFID radio	IntermecTechnologies Corporation	IP30	3207440137

Remote Equipment Outside of Test Setup Boundary												
Description Manufacturer Model/Part Number Serial Number												
Hand Held Computer	IntermecTechnologies Corporation	CN3	29800701691									
Computer Dock	IntermecTechnologies Corporation	AD6	16450700134									
AC Adapter	IntermecTechnologies Corporation	073573	701002									

Modifications

Revision 4/28/03

	Equipment modifications										
Item	Date	Test	Modification	Note	Disposition of EUT						
1	2/13/2008	Radiated Spurious Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.						

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting max ouput power (29 dBm in software), PRASK Modulation

Transmitting max ouput power (29 dBm in software), OOK Modulation

CHANNELS TESTED

Low, Channel 5, 902.75 MHz

Mid, Channel 30, 915 MHz

High, Channel 54, 927.25 MHz

POWER SETTINGS INVESTIGATED

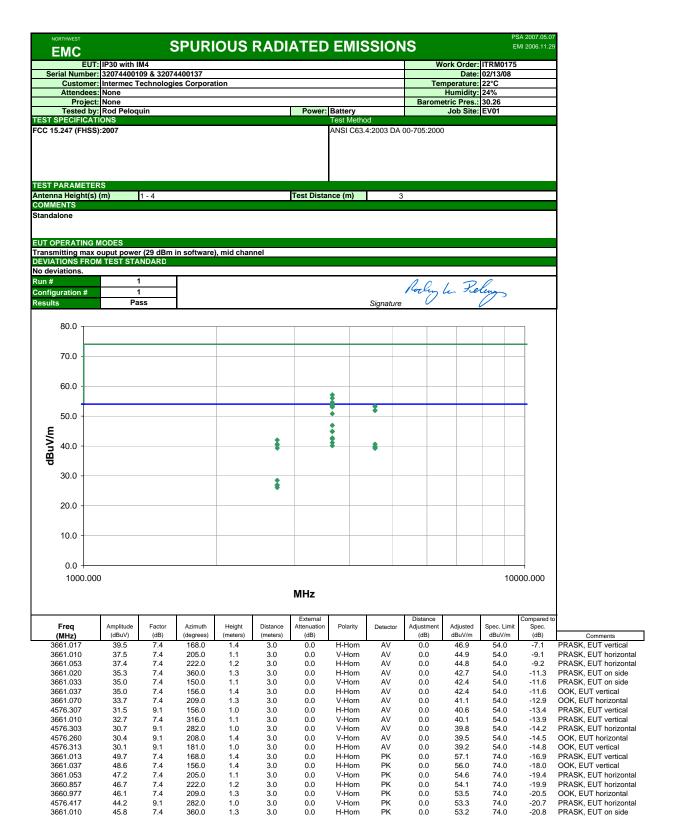
Battery

FREQUENCY RANGE INVESTIGATED									
Start Frequency	30 MHz	Stop Frequency	10 GHz						

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	12/29/2006	16
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24
EV01 Cables		Bilog Cables	EVA	10/23/2007	13
High Pass Filter 1.2 - 18 GHz	Micro-Tronics	HPM50108	HFV	4/29/2008	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	1/16/2008	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	1/3/2008	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	24
EV01 Cables		Double Ridge Horn Cables	EVB	1/3/2008	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	6/22/2007	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13


Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
(MHz)	(kHz)	(kHz)	(kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

4576.387

44.1

9.1

156.0

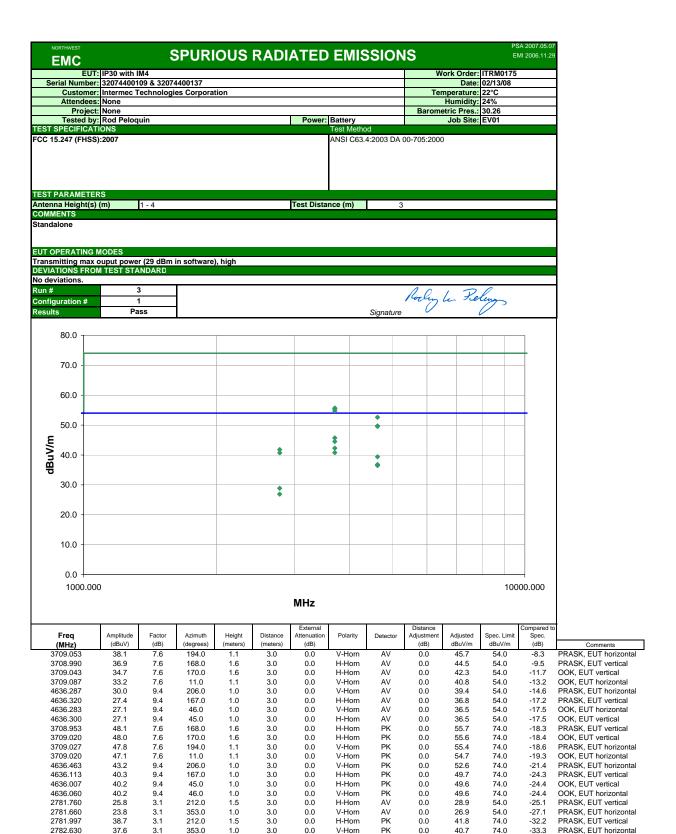
1.0

3.0

0.0

H-Horn

0.0


53.2

74.0

-20.8

PRASK, EUT vertical

NORTHWE EM			5	SPURI	ous	RADI	ATED	EN	ΛIS	SIO	NS					.2007.05.07 2006.11.29	
		IP30 with I										W	ork Order:]
		320744001												02/13/	80]
		Intermec T	echnologi	es Corpora	tion							Ten	nperature:				4
	endees: Project:										Ra	roma	Humidity: tric Pres.:				1
		Rod Pelog	uin				Power:	Batter	v		Ба	Offic	Job Site:				†
TEST SPEC								Test N		d							
FCC 15.247	(FHSS)	:2007						ANSI (C63.4	4:2003 D	A 00-705	:2000					
TEST PARA	METER	s															
Antenna He COMMENTS	8	(m)	1 - 4				Test Dista	nce (m	1)		3						
Standalone																	
EUT OPERA Transmitting	g max o	uput powe		in software), low chan	inel											
DEVIATION: No deviatio Run #		I TEST STA		ı							1	^	. 0	0			
หนท # Configuratio	on #	1		1							Rock	in.	le Re	lena			
Comiguration Results	OII #	Pa								Signatu		0		0.)		
	0									Olgridia	70						1
80.0																	
70.0	0 —																
60.0	0 -																
50.0	0																
₩/ /ngp	0									*							
9 30.0	0							•		•	•						
						•											
20.0																	
10.0	0															-	
0.0	000.000	<u> </u>													1000	0.000	
10	00.000	,					MHz								1000	0.000	
Freq		Amplitude	Factor	Azimuth	Height	Distance	External Attenuation	Polar	rity	Detecto		ment	Adjusted	Spec. L	imit	Compared to Spec.	
(MHz	2)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	L		A17	(dE		dBuV/m	dBuV.		(dB)	Comments DDACK FUT vertical
3611.0		32.7	7.2	187.0	1.2	3.0	0.0	H-Ho		ΑV	0.		39.9 39.7	54.0		-14.1 -14.3	PRASK, EUT vertical OOK, EUT horizontal
5416.5 4513.7		27.5 30.3	12.2 8.6	47.0 214.0	1.2 1.0	3.0 3.0	0.0 0.0	V-Ho V-Ho		AV AV	0.0 0.		39.7 38.9	54.0 54.0		-14.3 -15.1	OOK, EUT horizontal OOK, EUT horizontal
5416.5		26.6	12.2	151.0	1.0	3.0	0.0	V-Ho		AV	0.		38.8	54.0		-15.1	OOK, EUT horizontal
4513.8		30.1	8.6	188.0	1.2	3.0	0.0	V-Ho		AV	0.		38.7	54.0		-15.3	OOK, EUT horizontal
5416.5	23	26.5	12.2	109.0	1.2	3.0	0.0	V-Ho	orn	AV	0.	0	38.7	54.0	0	-15.3	PRASK, EUT horizontal
4513.7	87	29.3	8.6	196.0	1.0	3.0	0.0	V-Ho		AV	0.		37.9	54.0		-16.1	PRASK, EUT horizontal
4513.7		29.2	8.6	251.0	1.2	3.0	0.0	H-Ho		AV	0.		37.8	54.0		-16.2	PRASK, EUT vertical
3611.0		30.5	7.2	340.0	1.0	3.0	0.0	V-Ho		AV	0.0		37.7	54.0		-16.3	PRASK, EUT horizontal
3611.0		29.7	7.2	153.0	1.1	3.0	0.0	V-Ho		ΑV	0.0		36.9 34.6	54.0		-17.1 -19.4	OOK, EUT horizontal
5416.2° 3610.9		22.4 27.3	12.2 7.2	171.0 159.0	1.2 1.0	3.0 3.0	0.0 0.0	H-Ho V-Ho		AV AV	0.0 0.		34.6 34.5	54.0 54.0		-19.4 -19.5	PRASK, EUT vertical OOK, EUT horizontal
3611.0		45.1	7.2 7.2	340.0	1.0	3.0	0.0	V-Ho		PK	0.		52.3	74.0		-19.5 -21.7	PRASK, EUT horizontal
5416.6		39.7	12.2	47.0	1.2	3.0	0.0	V-Ho		PK	0.		51.9	74.0		-22.1	OOK, EUT horizontal
5416.3		39.0	12.2	151.0	1.0	3.0	0.0	V-Ho		PK	0.		51.2	74.0		-22.8	OOK, EUT horizontal
4513.6		42.6	8.6	214.0	1.0	3.0	0.0	V-Ho	orn	PK	0.	0	51.2	74.0	0	-22.8	OOK, EUT horizontal
4513.8		42.5	8.6	188.0	1.2	3.0	0.0	V-Ho		PK	0.		51.1	74.0		-22.9	OOK, EUT horizontal
4513.7		42.2	8.6	196.0	1.0	3.0	0.0	V-Ho		PK	0.		50.8	74.0		-23.2	PRASK, EUT horizontal
3611.0		43.4	7.2	187.0	1.2	3.0	0.0	H-Ho		PK	0.0		50.6	74.0		-23.4	PRASK, EUT vertical
5417.2	.00	38.1	12.2	109.0	1.2	3.0	0.0	V-Ho	וווט	PK	0.	U	50.3	74.0	U	-23.7	PRASK, EUT horizontal

SPURIOUS RADIATED EMISSIONS

SPURIOUS RADIATED EMISSIONS

