Intermec Technologies Corporation

2610CF

July 12, 2005

Report No. ITRM0085

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2005 Northwest EMC, Inc

Certificate of Test

Issue Date: July 12, 2005 Intermec Technologies Corporation Model: 2610CF

Emissions				
Specification	Test Method	Pass	Fail	
FCC 15.207 AC Powerline Conducted Emissions:2005-04	ANSI C63.4:2003	\boxtimes		
FCC 15.247(d) Spurious Radiated Emissions:2005-04	ANSI C63.4:2003	\boxtimes		

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
AJU.K.P
Greg Kiemel, Director of Engineering

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

200630-0

200676-0

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment, Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

> SCOPE For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

BSMI

Revision 03/18/05

NEMKO

What is measurement uncertainty?

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and measurement uncertainty, then test results can be interpreted from the diagram below.

Case D: Product does not comply.

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability Biconical		Log Pe	eriodic	Di	pole	
	Distribution	n Antenna		Antenna		Antenna	
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence \approx 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29	+ 1.38
		- 1.25	- 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence \approx 95%)		- 2.51	2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty U	normal $(k - 2)$	2 11
(level of confidence \approx 95 %)	$\operatorname{Hormal}\left(R=2\right)$	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility Labs EV01 – EV10

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility Labs TE01 – TE03

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Party Requesting the Test		
Company Name:	Intermec Technologies Corporation	
Address:	550 Second St. SE	
City, State, Zip:	edar Rapids, IA 52401-2023	
Test Requested By:	cott Holub	
Model:	2610CF	
First Date of Test:)7-06-2005	
Last Date of Test:	07-11-2005	
Receipt Date of Samples:	07-06-2005	
Equipment Design Stage:	Stage: Production	
Equipment Condition:	No visual damage.	

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided.
I/O Ports:	USB and Serial on the docking cradle

Functional Description of the EUT (Equipment Under Test):

The 2610CF is an 802.11(b)/(g) radio module.

Client Justification for EUT Selection:

The product is an engineering sample, representative of the final product.

Client Justification for Test Selection:

The 2610CF and BTM210 radio modules are installed in Intermec's CN30 handheld computer. The radios can transmit simultaneously. The BTM210 is a Bluetooth module that has full modular approval so it does not require EMC testing in the CN30. The 2610CF has limited modular approval (EHA2610CF) so it needs to be tested in the new host device (Intermec CN30). It also has a new antenna that needs to be tested.

CN30 Radio/Antenna Placement

Front of CN30 with 56 key keyboard attached

Modifications

	Equipment modifications				
Item	Test	Date	Modification	Note	Disposition of EUT
1	Spurious Radiated Emissions	07/06/2005	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.
2	AC Powerline Conducted emissions	07/07/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.
3	Spurious Radiated Emissions	07/11/2005	Radio installed in modified CN30, SN: 17710517044 with new internal shielding. CN30 standalone with 56 button keypad attached.	Tested Hi channel only to 18GHz. Maximized highest emission.	EUT remained at Northwest EMC.

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
High
Mid

Operating Modes Investigated:	
Continuous transmit	
Data Rates Investigated:	
1 Mbps (802 11b)	

1 Mbps (802.11b)
11 Mbps (802.11b)
6 Mbps (802.11g)
36 Mbps (802.11g)
54 Mbps (802.11g)

Output Power Setting(s) Investigated: Maximum default

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated:
EUT standalone with 56 button keypad
EUT standalone with 14 button keypad
EUT charging in docking cradle

Frequency Range Investigated				
Start Frequency	30 MHz	Stop Frequency	25 GHz	

Software\Firmware Applied During Test					
Exercise software	Test Utility	Version	0.4		
Description					
The system was tested using special software developed to test all functions of the device during the test					
including channel, data rat	e, and mode.		_		

EUT and Peripherals						
Description	Manufacturer	Model/Part Number	Serial Number			
EUT- 2610CF	Intermec Technologies Corporation	2610CF	Unknown			
Host Device	Intermec Technologies Corporation	CN30	16710517055			
Keyboard module, 14 key	Intermec Technologies Corporation	VE0009-60029	N/A			
Keyboard module, 56 key	Intermec Technologies Corporation	VE0009-60028	N/A			
Docking Station	Intermec Technologies Corporation	AD9	168B0500160			
AC Adapter	Elpac Power Systems	073573-003	6132256			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	PA	1.9	Yes	AC Power Adapter	Docking Station
AC Power	No	1.8	No	AC Power Adapter	AC Mains
USB	Yes	1.6	No	Docking Station	Unterminated
Serial	Yes	1.2	No	Docking Station	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA	
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	02/15/2005	13 mo	
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA	
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	02/17/2005	13 mo	
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo	
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	05/05/2005	3 mo	
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo	
Pre-Amplifier	Amplifier Research	LN1000A	APS	03/01/2005	13 mo	
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo	
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo	
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/02/2004	13 mo	
High Pass Filter	Micro-Tronics	HPM50111	HFO	03/09/2005	13 mo	
Attenuator	Coaxicom	66702 5910-20	RBJ	02/25/2005	13 mo	

Test Description

Requirement: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

Configuration: The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Bandwidths Used for Measurements			
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made using the bandwidths and detectors specified. No video filter was used.			

Completed by:	
Holy !	Lingh

27.4

27.3 47.0 41.9 41.3

2483.500

2483.500 2483.500 2483.500 2483.500

2483.500

1.3 1.0 1.3 1.3

1.1

3.0

3.0 3.0

3.0

3.0

20.0 V-Horn

20.0 20.0

20.0

20.0 H-Horn

V-Horn V-Horn V-Horn

45.0 64.7 59.6

59.0

0.0

54.0 74.0 74.0 74.0

243.0

232.0 234.0

146.0

189.0

-2.3 -2.3 -2.3 -2.3

-2.3

-8.0 EUI in cradie, 802.11(b) 1Mbps -8.9 Standalone w/56 keys, Vertical, 802.11(b) 11Mbps -9.0 EUT in cradie, 802.11(b) 1Mbps -9.3 Standalone w/56 keys, Vertical, 802.11(g) 6Mbps -14.4 Standalone w/56 keys, Vertical, 802.11(b) 1Mbps

-15.0 Standalone w/ 56 keys, On side, 802.11(b) 1Mbps

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:			
Low			
High			
Mid			

Operating Modes Investigated: Continuous transmit

Data Rates Investigated: 54 Mbps (802.11g)

Output Power Setting(s) Investigated:

Maximum default

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated:

EUT charging in docking cradle

Software\Firmware Applied During Test					
Exercise software	Test Utility	Version	0.4		
Description					
The system was tested using special software developed to test all functions of the device during the test					
including channel, data rate, and mode.					

EUT and Peripherals								
Description	Manufacturer	Model/Part Number	Serial Number					
EUT- 2610CF	Intermec Technologies Corporation	2610CF	Unknown					
Host Device	Intermec Technologies Corporation	CN30	16710517055					
Keyboard module, 56 key	Intermec Technologies Corporation	VE0009-60028	N/A					
Docking Station	Intermec Technologies Corporation	AD9	168B0500160					
AC Adapter	Elpac Power Systems	073573-003	6132256					

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Leads	PA	1.9	Yes	AC Power Adapter	Docking Station	
AC Power	No	1.8	No	AC Power Adapter	AC Mains	
USB	Yes	1.6	No	Docking Station	Unterminated	
Serial	Yes	1.2	No	Docking Station	Unterminated	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

Measurement Equipment									
Description	Manufacturer	Model	Identifier	Last Cal	Interval				
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo				
LISN	Solar	9252-50-R-24-BNC	LIN	12/29/2004	13 mo				
High Pass Filter	TTE	H97-100k-50-720B	HFC	12/29/2004	13 mo				

Test Description

Requirement: Per 47 15.207(c), in addition to devices which are powered directly from the AC power line, conducted emissions measurements shall also be made on battery operated devices that can transmit while charging, as well as on devices that are powered from AC adaptors, or devices that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines. All of these devices shall be tested to demonstrate compliance with the conducted limits of 15.207.

Configuration: The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-2003.

Completed by: Porting to Reling

