

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated:	
Single channel continuous transmit	
Data Rates Investigated:	
1 Mbps (802.11b)	

5.5	5 Mbps (802.11b)
11	Mbps (802.11b)
6 N	/lbps (802.11g)
36	Mbps (802.11g)
54	Mbps (802.11g)

Output Power Setting(s) Investigated: Maximum default

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated:	
802.11(b)	
802.11(g)	

Frequency Range Investigated							
Start Frequency	0 MHz	Stop Frequency	25 GHz				

Software\Firmware Applied During Test						
Exercise software	Continuous Transmit- Receive (cTxRx)	Version	2.3.0.0			
Description						
The system was tested us	The system was tested using special software developed to test all functions of the device during the test.					

EUT and Peripherals							
Description	Manufacturer	Model/Part Number	Serial Number				
Host Device	Intermec Technologies Corporation	CV60	02932				
Keyboard	Cherry	G84- 4110PPAUS/00	C 000435 J50				
Mouse (USB)	Belkin	F8E201-USB 29U0	211006039				
DC Power Supply	Skynet	SNP-PA57	035228227				
EUT- 802.11(a)/(b)/(g) radio 802MIAG-CV60	PRISM	3886	000DF01504A8				

Cables									
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2				
DC Leads	Yes	2.0	PA	DC Power Supply	Host Device				
AC Power	No	2.0	No	DC Power Supply	AC Power				
Keyboard	PA	1.6	PA	Keyboard	Host Device				
Mouse (USB)	PA	1.2	PA	Mouse (USB)	Host Device				
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.									

Measurement Equipment								
Description	Manufacturer	Model	Identifier	Last Cal	Interval			
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo			

Test Description

Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at various data rates using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

Completed by:	
Rocky la	Peling

NORTHWEST						
EMC		EMISSIONS I	DATA SHEET			Rev BETA
						01/30/01
-	802MIAG-CV60				Work Order:	
	000DF01504A8					09/03/04
	INTERMEC Technologies				Temperature:	•
Attendees:			Tested by: Rod Pelo		Humidity:	
Customer Ref. No.:			Power: 120VAC/	/60Hz	Job Site:	EV06
TEST SPECIFICATION						1
	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-	114, ANSI C63.	4 Year:	1992
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MOI	DES					
Modulated by PRBS a	t 6 Mbps data rate, 802.11(g) modu	llation scheme				
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Porting to Reling					
DESCRIPTION OF TES						
Anter	nna Conducted Spu	rious Emissions 0	VIHz-3GHz - Low C	hannel -	· 802.11(g) 6	Mbps

Antenna Conducted Spurious Emissions 0MHz-3GHz - Low Channel - 802.11(g) 6 Mbps

										Tek
10.0	Ref Lvl'	10.0dBm			10dB/			Atten 10d	lB	
0.0										
-10.Q					· ·					
-20.Q										
-30.0					· · ·					
-40.0					· · · · · · · · ·					
-50.0					-					
-60.0	L. M. Holinson and M. Martin	willing	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	un frageles and the fight day there	nonalmananananahahaha	1444,1648,674,9×	und his water days are a proper	ant and a state of the state of	Know Karpen marks	dana ang kanalang kanang ka
-70.0										
-80.Q					•					
-90.0					•					
	OMHz		to	3.0	OOGHz					
	ResBW 10)0kHz		V:	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	≥f Lvl*10.0dBm					
	KINOB 2		KNOB 1	KI	EYPAD	Tek	tronix	2784		

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	802MIAG-CV60			Work Order:	ITRM0039
Serial Number:	000DF01504A8			Date:	09/03/04
Customer:	INTERMEC Technologies			Temperature:	72 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO					
-	t 6 Mbps data rate, 802.11(g) modu	llation scheme			
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS					
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.		
RESULTS					
Pass					
SIGNATURE					
	Rocky to Reling				
Tested By:					
DESCRIPTION OF TES	ST				
Anten	na Conducted Spur	ious Emissions 3G	Hz-6.5GHz - Low Channel	- 802.11(g) 6	Mbps

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Low Channel - 802.11(g) 6 Mbps

										Tek
10.0	Ref Lvl*	10.0dBm			t	LOdB/		Atten 100	1B	
0.0										
-10.0										
-20.0										
-30.0										
-40.0										
-50.0										
-60.0	adjacedately public villegithe	water	where an an an and the start of the	ys, fylderawdy, rafyl	number	internet the second states and	white the second	de hours and	ىلەيلەرلىرىلەر بەردە يەمەر يەرىكە يەرىپىلەر ئەردە يەرىلەرلىرىلەر يەردە يەرىپىلەرلىرىلەر يەرىپىلەر يەرىپىلەر يەر	and a start of the second start
-70.0										
-80.0										
-90.0										
	2.990	GHz	to	6.5	OOGHz					
	ResBW 10	OkHz		Vi	idBW 100kH	Iz		SWP	2.05	
	LEVEL		SPAN	St	cop 6.50)OGHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	802MIAG-CV60			Work Order:	ITRM0039
Serial Number:	000DF01504A8			Date:	09/03/04
Customer:	INTERMEC Technologies			Temperature:	72 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATI	ONS				
000005070					
COMMENTS					
EUT OPERATING MO	DES				
	t 6 Mbps data rate, 802.11(g) modu	llation scheme			
DEVIATIONS FROM T					
None					
REQUIREMENTS					
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.		
RESULTS					
Pass					
SIGNATURE					
Tested By:	Porting to Reling				
DESCRIPTION OF TES					
Antenr	na Conducted Spuri	ious Emissions 6.5	GHz-15GHz - Low Channe	i - 802.11(g) 6	5 Mbps

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Low Channel - 802.11(g) 6 Mbps

										Tek
10.0		*10.0dBm				10dB/		Atten 100	dB	
0.0										
-10.0						•				
-20.0										
-30.0						•				
-40.Q						•				
-50.0										
-60.Q	with the second the second second	and a start of the start of the	all works to a second for the	d	havely any more show	internation with the	War have been and	ware when be destroy	and and the states of the stat	www.water.water.water.co.
-70.0						:				
-80.0										
-90.0										
	6.49	9GHz	to	15.0	OOGHz					
	ResBW 1	OOkHz		V:	idBW 100k)	łz		SWP	4.85	
	LEVEL		SPAN	St	top 15.00	DOGHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST		EMICCIONO			
EMC		EMISSIONSI	DATA SHEET		Rev BETA 01/30/01
EUT:	802MIAG-CV60			Work Order: I	TRM0039
Serial Number:	000DF01504A8			Date: 0	9/03/04
Customer:	INTERMEC Technologies			Temperature: 7	2 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity: 4	13% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: E	EV06
TEST SPECIFICATION	NS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year: 1	992
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO					
-	at 6 Mbps data rate, 802.11(g) modu	liation scheme			
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS	spurious emission outside of the	outhorized band is 20 dB down fr	om the fundamental		
RESULTS	spurious emission outside of the	authorized band is 20 dB down in	om the fundamental.		
Pass SIGNATURE					
SIGNATURE					
	Rocky le Relings				
Tested By:	5 0				
DESCRIPTION OF TE	T				
		aua Emissiano 450		00244/>	Mhao
Antenn	ia Conducted Spuri	ous Emissions 150	Hz - 25GHz - Low Channe	ei - ou∠.11(g) t	s qaw s

Antenna Conducted Spurious Emissions 15GHz - 25GHz - Low Channel - 802.11(g) 6 Mbps

										Tek
10.0	Ref Lvl [;]	*10.0dBm			10	dB/		Atten 100	цВ	
0.0										
-10.0					· ·					
-20.0										
-30.0										
-40.0					· · · · · · ·					
-50.0							puttingunation	www.www.www.www.	www.	bereformed and a standard
-60.Q	www.	ĸŊĊĸĸĸĬŔĸĬŗŔĸĬŗŔ	watersonaldida	and the second	mught the affer and	and the dependence of the				
-70.0										
-80.0					:					
-90.0					-					
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OckHz		v	idBW 100kHz			SWP	5.7%	
	LEVEL		SPAN	SI	pan 10GHz					
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST		EMISSIONS	DATA SHEET		
EMC		EINISSICINS	DATA SHEET		Rev BETA 01/30/01
EUT:	802MIAG-CV60			Work Order: ITRM0039	
Serial Number:	000DF01504A8			Date: 09/03/04	
Customer:	INTERMEC Technologies			Temperature: 72 degrees	s F
Attendees:	None		Tested by: Rod Peloquin	Humidity: 43% RH	
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06	
TEST SPECIFICATION	IS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year: 1992	
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO					
-	t 6 Mbps data rate, 802.11(g) modu	ulation scheme			
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS					
,	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.		
RESULTS					
Pass					
SIGNATURE					
	Rocky to Reling				
Tested By:					
DESCRIPTION OF TES	ST				
		rious Emissions 0	MHz-3GHz - Mid Channel ·	802 11(g) 6 Mbps	
Ante	ina conducted Spt	LINUS EIIISSIONS U		-002.11(g) 0 mps	

Antenna Conducted Spurious Emissions 0MHz-3GHz - Mid Channel - 802.11(g) 6 Mbps

										Tek
10.0	Ref Lvl'	10.0dBm			10dB/	/		Atten 100	1B	
0.0										
0.0										
-10.Q					•				+	
-20.Q					:					
-30.0										
-40.Q										
-50. <u>0</u>										
-60.Q	have been always and a state	monorthe	How much washing	nhammhallan	-11-29/16-1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	whillowningert	you get the week week	1° "Walker alkan	^{1.2} 2444-144-14114414444
-70.0										
					- - -					
-80.Q					· · ·					
-90.0					:					
	OMHz		to	3.0	OOGHz					
	ResBW 10	OckHz		V:	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	≥f Lvl*10.0dBn	n				
	KNOB 2		KNOB 1	KI	EYPAD	Tel	ktronix	2784		

NORTHWEST		
EMC EMISSIONS	DATA SHEET	Rev BETA 01/30/01
EUT: 802MIAG-CV60		Work Order: ITRM0039
Serial Number: 000DF01504A8		Date: 09/03/04
Customer: INTERMEC Technologies		Temperature: 72 degrees F
Attendees: None	Tested by: Rod Peloquin	Humidity: 43% RH
Customer Ref. No.: N/A	Power: 120VAC/60Hz	Job Site: EV06
TEST SPECIFICATIONS		
Specification: FCC Part 15.247(c) Year: 2003	Method: FCC 97-114, ANSI C63.	4 Year: 1992
SAMPLE CALCULATIONS		
COMMENTS		
EUT OPERATING MODES		
Modulated by PRBS at 6 Mbps data rate, 802.11(g) modulation scheme		
DEVIATIONS FROM TEST STANDARD		
None		
REQUIREMENTS		
Maximum level of any spurious emission outside of the authorized band is 20 dB down	from the fundamental.	
RESULTS		
Pass		
SIGNATURE		
ROI P.C		
Rocky te Relengs		
Tested By:		
DESCRIPTION OF TEST		
Antenna Conducted Spurious Emissions 3	GHz-6.5GHz - Mid Channel	- 802.11(g) 6 Mbps

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Mid Channel - 802.11(g) 6 Mbps

										Tek
10.0	Ref Lvl*	10.0dBm				10dB/		Atten 10	dB	
						:				
0.0						•				
-10.0										
-20.0										
-30.0						: : :				
-40.0						· · · · · ·				
-50.0						· ·				
-60.0	(nhala-marked-average	ومديره وروي والمحالي ويدا	uhannumanin	havanananaha	ywanthan-an	Array and a construction and a second second	www.	₽ ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	······································	_{የተዋ} ትንቁሳቁጭት ሳ ትትንንን ትንን
-70.0										
-80.0										
-90.0										
	2.990)GHz	to	6.5	OOGHz					
	ResBW 10	0kHz		V:	idBW 10)0kHz		SWP	2.05	
	LEVEL		SPAN	St	cop 6	5.500GHz				
	KNOB 2		KNOB 1	кі	SYPAD	т	ektronix	2784		

NORTHWEST						
EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01
	802MIAG-CV60				Work Orde	r: ITRM0039
Serial Number:	000DF01504A8				Date	e: 09/03/04
Customer:	INTERMEC Technologies				Temperature	e: 72 degrees F
Attendees:	None		Tested by:	Rod Peloquin	Humidit	y: 43% RH
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site	e: EV06
TEST SPECIFICATION	IS					
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Yea	r: 1992
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MO						
-	t 6 Mbps data rate, 802.11(g) modu	llation scheme				
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.			
RESULTS						
Pass						
SIGNATURE						
	Rocky to Reling					
Tested By:						
DESCRIPTION OF TES	ST					
	na Conducted Spur	ious Emissions 6 5	GH7-15GH7	Mid Channe	L - 802 11(m)	6 Mbns
Anten	na conducted Spur		0112-130112 -		1 - 002. I I(y)	o mups

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Mid Channel - 802.11(g) 6 Mbps

										Tek
10.0	Ref Lvl	*10.0dBm			:	LOdB/		Atten 100	dB	
0.0										
-10.0						•				
-20.0										
-30.0										
-40.Q										
-50.0										
-60.0	the construction of the second s	and the man and	twww.	- whether the second	water	Mummun marte	and the group with	for the property the	winter bat growing with	humbhank
-70.0										
-80.0										
-90.0										
	6.49	9GHz	to	15.0	OOGHz					
	ResBW 10	OOkHz		V:	idBW 100kH	Iz		SWP	4.85	
	LEVEL		SPAN	St	top 15.00)OGHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	802MIAG-CV60			Work Order: I	TRM0039
Serial Number:	000DF01504A8			Date: 0	09/03/04
Customer:	INTERMEC Technologies			Temperature: 7	72 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year: 1	1992
SAMPLE CALCULATI	ONS				
000005070					
COMMENTS					
EUT OPERATING MO	DES				
	t 6 Mbps data rate, 802.11(g) modu	llation scheme			
DEVIATIONS FROM T					
None					
REQUIREMENTS					
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.		
RESULTS					
Pass					
SIGNATURE					
Tested By:	Rochy to Reling				
DESCRIPTION OF TES					
Antenr	na Conducted Spuri	ious Emissions 150	GHz - 25GHz - Mid Channe	el - 802.11(g) 6	6 Mbps

Antenna Conducted Spurious Emissions 15GHz - 25GHz - Mid Channel - 802.11(g) 6 Mbps

										Tek
10.0		*10.0dBm			1	OdB/	_	Atten 100	цВ	
0.0					- - -					
-10.Q										
-20.Q										
-30.Q					:					
-40.Q					· · · · · ·					
-50.Q							putmentioned	and a state when a state beau	neproversiontinution	adfullingly water a
-60.Q	aplet-gatestime-type-byp	physiol (1/1 ¹⁴⁻¹⁴ -41-4 ⁻⁴ 1/16-4)	a when a math a family and a	wales at the states	when have been approved approv	When the second se	where we have			
-70.Q										
-80.Q					-					
-90.0					• • •					
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OOkHz		v	idBW 100kH	z		SWP	5.7%	
	LEVEL		SPAN	sı	pan 10GHz					
	KINOB 2		KNOB 1	KI	EYPAD	Τe	≥ktronix	2784		

NORTHWEST						
EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01
EUT:	802MIAG-CV60				Work Ore	der: ITRM0039
Serial Number:	000DF01504A8				Da	ate: 09/03/04
Customer:	INTERMEC Technologies				Temperatu	ure: 72 degrees F
Attendees:	None		Tested by:	Rod Peloquin	Humid	lity: 43% RH
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job S	ite: EV06
TEST SPECIFICATION	IS					
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Ye	ear: 1992
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MOI						
-	t 6 Mbps data rate, 802.11(g) modu	nation scheme				
DEVIATIONS FROM T None	EST STANDARD					
REQUIREMENTS						
	spurious emission outside of the	authorized hand is 20 dB down fro	om the fundamental			
RESULTS	spurious emission outside of the	authorized band is 20 dB down int	om the fundamental.			
Pass						
SIGNATURE						
Tested By:	Roly to Reling					
DESCRIPTION OF TES	т					
Anter	nna Conducted Spu	rious Emissions 0N	/Hz-3GHz - H	ligh Channel	- 802.11(g)	6 Mbps

Antenna Conducted Spurious Emissions 0MHz-3GHz - High Channel - 802.11(g) 6 Mbps

										Tek
10.0	Ref Lvl [;]	10.0dBm			10d)	в/		Atten 100	dB	
0.0					- - - -					
0.0										
-10.0					· ·					
-20.0					:					
-30.0										
-40.Q										
-50.0									ļļ	
-60.Q	mound	here and my masternet	un marine half and and a	maphinister	duesellubridgentiden	Aught	house and the	angun anna	W WANNY	and the state of the second state of the secon
-70.0										
					:					
-80.0					· ·					
-90.0					:					
	OMHz		to	3.0	OOGHz					
	ResBW 10	OckHz		V:	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	ef Lvl*10.0d)	3m				
	KNOB 2		KNOB 1	к	EYPAD	Te	ktronix	2784		

NORTHWEST					
EMC		EMISSIONS I	DATA SHEET		Rev BETA
	802MIAG-CV60			Work Order:	01/30/01
-	000DF01504A8				09/03/04
	INTERMEC Technologies				72 degrees F
Attendees:			Tested by: Rod Peloquin	Humidity:	
Customer Ref. No.:			Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION		Xaam 2002	Matha di 500.07.444 ANRI 0		4000
	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C	63.4 Year:	1992
SAMPLE CALCULATI					
0.011151170					
COMMENTS					
EUT OPERATING MO	DES				
	t 6 Mbps data rate, 802.11(g) modu	ulation schome			
DEVIATIONS FROM T					
None	EST STANDARD				
REQUIREMENTS					
	spurious emission outside of the	authorized hand is 20 dB down fr	om the fundamental		
RESULTS	spurious emission outside of the	authorized band is 20 dB down in	om the fundamental.		
Pass SIGNATURE					
	1				
	Rocky le Relings				
	and a man				
Tested By:					
DESCRIPTION OF TES					
Anten	na Conducted Spur	ious Emissions 3G	Hz-6.5GHz - High Chann	el - 802.11(g) (6 Mbps

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - High Channel - 802.11(g) 6 Mbps

									Tek
10.0	Ref Lvl*10.	OdBm		10dB/			Atten 100	1B	
0.0				- - - -					
0.0									
-10.0				· · ·					
-20.0									
-30.0									
-40.0									
-50.0									
-60.0	unperstanding	nymen and state attended	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	while the state of the second state of the sec	Hady ANH water	hadd on the Part of a second	d Antonia de anterior de la constante de	waan ahayadaa ahaa ahaa ahaa ahaa ahaa ahaa	yan badan fakaratire
				· ·					
-70.0									
-80.0				· · ·					
-90.0				: : :					
	2.990GHz	to	6.5	OOGHz					
	ResBW 100kH	Iz	v	idBW 100kHz			SWP	2.03	
	LEVEL	SPAN	S1	trt 2.990GHz					
	KNOB 2	KNOB 1	KI	EYPAD	Tek	tronix	2784		

NORTHWEST		EMICCIONE		EET		
EMC		EMISSIONS I				Rev BETA 01/30/01
EUT:	802MIAG-CV60				Work Order	ITRM0039
Serial Number:	000DF01504A8				Date:	09/03/04
Customer:	INTERMEC Technologies				Temperature:	72 degrees F
Attendees:	None		Tested by:	Rod Peloquin	Humidity	43% RH
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year	1992
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MO	DES					
Modulated by PRBS a	t 6 Mbps data rate, 802.11(g) modu	Ilation scheme				
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.			
RESULTS						
Pass						
SIGNATURE						
	Rocky to Relings					
Tested By:	- V					
DESCRIPTION OF TES	ST					
Antenr	na Conducted Spuri	ous Emissions 6.50	GHz-15GHz -	High Channe	el - 802.11(g)	6 Mbps

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - High Channel - 802.11(g) 6 Mbps

										Tek
10.0	Ref Lvl	*10.0dBm			:	LOdB/		Atten 100	dB	
0.0										
-10.0										
-20.0										
-30.0										
-40.Q										
-50.0										
-60.Q	he mandel mare	all all appropriate	-	terreterneterneterret	h halestelen stations and	Marthur was bound	albebern werden alber alber albe	with	errefeered there we of the	where the second
-70.0										
-70.0										
-80.0										
-90.0										
	6.49	ƏGHz	to	15.0	OOGHz					
	ResBW 1	DOkHz		v	idBW 100kH	Iz		SWP	4.85	
	LEVEL		SPAN	SI	top 15.00)OGHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

		EMISSIONS I	DATA SH	FFT		Rev BETA
EMC						01/30/01
EUT:	802MIAG-CV60				Work Order:	ITRM0039
Serial Number:	000DF01504A8				Date:	09/03/04
Customer:	INTERMEC Technologies				Temperature:	72 degrees F
Attendees:				Rod Peloquin	Humidity:	
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION						-
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATI	ONS					
COMMENTS						
COMMENTS						
EUT OPERATING MO	DES					
	t 6 Mbps data rate, 802.11(g) modu	llation scheme				
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Rocky to Reling					
DESCRIPTION OF TES	ST					
Antenn	a Conducted Spuri	ous Emissions 15G	Hz - 25GHz -	High Channe	el - 802.11(g)	6 Mbps

Antenna Conducted Spurious Emissions 15GHz - 25GHz - High Channel - 802.11(g) 6 Mbps

										Tek
10.0		*10.OdBm			1	.0dB/		Atten 100	ЗВ	
0.0										
-10.0										
-20.0										
-30.0										
-40.Q										
-50.0							MM MANAGAN	allenterstand	manner	with the state of
-60.Q	with the second stands	gelles to and strong to	elon about the second	ilengenter Marriage	-adatht-weather we	1 Nogerskiewigenerskie	ja ja			
-70.0										
-80.0										
-90.0										
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	DOkHz		V:	idBW 100kH	Iz		SWP	5.78	
	LEVEL		SPAN	SI	pan 10GHz					
	KINOB 2		KNOB 1	KI	EYPAD	Τe	ektronix	2784		

NORTHWEST			DATA SHEET		
EMC		EINISSICINS	DATA SHEET	Rev B 01/30	
EUT:	802MIAG-CV60			Work Order: ITRM0039	
Serial Number:	000DF01504A8			Date: 09/03/04	
Customer:	INTERMEC Technologies			Temperature: 72 degrees F	
Attendees:	None		Tested by: Rod Peloquin	Humidity: 43% RH	
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06	
TEST SPECIFICATION	NS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	4 Year: 1992	
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO					
	at 36 Mbps data rate, 802.11(g) mod	iulation scheme			
DEVIATIONS FROM T None	EST STANDARD				
REQUIREMENTS					
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental		
RESULTS	spurious chilission outside of the				
Pass					
SIGNATURE					
Tested By:	Rocky le Reling				
DESCRIPTION OF TES					
Anten	ina Conducted Spu	rious Emissions 0N	/IHz-3GHz - Low Channel -	802.11(g) 36 Mbps	

Antenna Conducted Spurious Emissions 0MHz-3GHz - Low Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl'	10.0dBm			10dB.	/		Atten 100	ŧВ	
0.0										
					: : :				ľ	
-10.0					· · ·					
-20.Q										
-30.Q										
-40.Q										
-50.Q										
-60.Q	en den den de la	munderstration	44~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	magazation and marked	reader operation () deprivated in	-tophyla daria	had a horal of the second second	der Nauf Warned was the read	ሻትሌሥትዓትናት _{ዋሪዎ}	
-70.0										
.0.0					:					
-80.Q					· ·					
-90.0					:					
	OMHz		to	3.0	OOGHz					
	ResBW 10	OkHz		V:	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	≥f Lvl*10.0dBr	m				
	KNOB 2		KNOB 1	к	EYPAD	Te	ktronix	2784		

NORTHWEST	RTHWEST EMISSIONS DATA SHEET REV BETA								
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01				
	802MIAG-CV60			Work Order:	ITRM0039				
Serial Number:	000DF01504A8			Date:	09/03/04				
Customer:	INTERMEC Technologies			Temperature:	72 degrees F				
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION	IS								
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MOI									
-	t 36 Mbps data rate, 802.11(g) mod	ulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Rocky le Relenge									
Tested By:									
DESCRIPTION OF TES	ST								
Antenr	na Conducted Spuri	ous Emissions 3G	Hz-6.5GHz - Low Channel	- 802.11(g) 3	6 Mbps				

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Low Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl*10	.OdBm				10dB/		Atten 10	цВ	
0.0										
0.0										
-10.0						•				
-20.0										
-30.0										
-40.Q										
-50.0										
-60.0	and the second state of th	depiserante	enter contractions that we	ntrape-traditional-tradition	ht-the-adaptition policy to	whether the strategies	maker Makada Arenard	neerendergelijdentent	frankater 14	y a flitt y ward of and start
						•				
-70.0						:				
-80.0						• •				
-90.0						•				
	2.990GH:	z	to	6.5	OOGHz					
	ResBW 100k)	Hz		V:	idBW 100k	Hz		SWP	2.05	
	LEVEL		SPAN	St	top 6.5	DOGHz				
	KINOB 2		KNOB 1	KI	EYPAD	Τe	ektronix	2784		

EMC		EMISSIONS [DATA SH	EEI		Rev BETA 01/30/01		
EUT:	802MIAG-CV60				Work Order:	ITRM0039		
Serial Number:	000DF01504A8				Date:	09/03/04		
Customer:	INTERMEC Technologies				Temperature:	72 degrees F		
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH		
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06		
TEST SPECIFICATION	IS							
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.	4 Year:	1992		
SAMPLE CALCULATI	ONS							
COMMENTS								
EUT OPERATING MO		dulation och ana						
,	t 36 Mbps data rate, 802.11(g) mo	dulation scheme						
DEVIATIONS FROM T None	EST STANDARD							
REQUIREMENTS								
	sourious omission outside of the	authorized band is 20 dB down fro	m the fundamental					
RESULTS	spundus enhosion outside of the		in the fundamental.					
Pass								
SIGNATURE								
ORATORE	20.00							
	Rocky to Reling							
	0 73							
Tested By:	5							
DESCRIPTION OF TES	ST							
		aua Emissiana 6 50		Low Channel	902.44(m) 2	C Mhno		
Antenn	a conducted Spuri	ous Emissions 6.5G	Inz-196HZ -	Low Channel	- ouz.11(g) 3	s nunhz		

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Low Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl	*10.0dBm			:	LOdB/		Atten 100	dB	
0.0										
-10.0										
-20.0										
-30.0										
-40.Q										
-50.0										
-60.Q	haved de velage of here	all and the particulation of	Hard March 18 March 19 March 19	YHAY MY MANARY	havenally	athe your server and the server server and the server server server server server server server server server s	and Warper they when	and the sent might for the	Newwww.	-mpaneralitide-atrage
-70.0										
-80.0						· ·				
-90.0										
	6.499	∋GHz	to	15.0	OOGHz					
	ResBW 10	OOkHz			idBW 100kH	Iz		SWP	4.85	
	LEVEL		SPAN		top 15.00)OGHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST EMISSIONS DATA SHEET Rev Beta										
EMC		EINISSIONSI	JATA SH			Rev BETA 01/30/01				
EUT:	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/03/04				
Customer:	INTERMEC Technologies				Temperature:	72 degrees F				
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION										
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MOI										
· · · ·	t 36 Mbps data rate, 802.11(g) mod	lulation scheme								
DEVIATIONS FROM T	EST STANDARD									
None										
REQUIREMENTS	spurious emission outside of the	authonizad hand is 00 dD dawn fa	un the fundamental							
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.							
RESULTS										
Pass SIGNATURE										
SIGNATURE	2 2									
	Portug la Pieling									
Tested By:										
DESCRIPTION OF TES	DESCRIPTION OF TEST									
Antenna	a Conducted Spuric	ous Emissions 15G	Hz - 25GHz -	Low Channe	l - 802.11(g) 3	36 Mbps				

Antenna Conducted Spurious Emissions 15GHz - 25GHz - Low Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl*	10.0dBm			t	OdB/		Atten 100	ЗВ	
0.0										
-10.0										
-20.0										
-30.0										
-40.0										
-50.0							prothindiappresente	a feel and the second second	an water	Amongounget
-60.Q	14 marthan warrant	-selection reported and	muthinghar	manhomment	Atter and and the second	^{all} and allan alland and a stand	North			
-70.0										
-80.0										
-90.0										
	14.99G	Hz	to	25.	OOGHz					
	ResBW 10	OkHz		V:	idBW 100kH	z		SWP	5.7%	
	LEVEL		SPAN	SI	pan 10GHz					
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST									
EMC		EMISSIONS	DATA SHEET	Rev BE 01/30/0					
EUT:	802MIAG-CV60			Work Order: ITRM0039					
Serial Number:	000DF01504A8			Date: 09/03/04					
Customer:	INTERMEC Technologies			Temperature: 72 degrees F					
Attendees:	None		Tested by: Rod Peloquin	Humidity: 43% RH					
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06					
TEST SPECIFICATION	NS								
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	4 Year: 1992					
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO									
	at 36 Mbps data rate, 802.11(g) mod	lulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS	spurious emission outside of the	authorized hand is 20 dB down fr	ion the fundamental						
RESULTS	spurious emission outside of the	authorized band is 20 dB down in	om the fundamental.						
Pass									
SIGNATURE									
Rocky to Pielings									
DESCRIPTION OF TES									
Anter	nna Conducted Spu	rious Emissions 0	MHz-3GHz - Mid Channel -	802.11(g) 36 Mbps					

Antenna Conducted Spurious Emissions 0MHz-3GHz - Mid Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl*	10.0dBm			10dB,	/		Atten 100	1B	
0.0										
									1	
-10.Q					· ·					
-20.Q					:					
-30.Q									Ц	
-40.Q										
-50.Q										
-60.Q	hydrograph and the state	1	when and	www.	uthorstories followed from the sol	the weather	hindred and the states	the law and	" Writhdure	naphatan ang sakasaka
-70. <u>0</u>										
-80.Q										
-90.Q	OMHz		to		OOGHz					
	ResBW 10	OkHz	τ0		idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	≘f Lvl*10.0dBr	m				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST	NTHWEST								
EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Wo	ork Order: ITRM0039			
Serial Number:	000DF01504A8					Date: 09/03/04			
Customer:	INTERMEC Technologies				Tem	perature: 72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin		Humidity: 43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz		Job Site: EV06			
TEST SPECIFICATION	15								
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.	4	Year: 1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
COMMENTS									
EUT OPERATING MO	DES								
	t 36 Mbps data rate, 802.11(g) mod	dulation scheme							
DEVIATIONS FROM T									
None	EST STANDARD								
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Tested By:	Roding to Reling								
DESCRIPTION OF TES	ST								
Anten	na Conducted Spur	ious Emissions 3G	Hz-6.5GHz - I	Mid Channel -	802.1	1(g) 36 Mbps			

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Mid Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl'	10.0dBm				10dB/		Atten 100	dB	
0.0						:				
-10.0										
-20.0										
-30.0										
00.0										
-40.Q						· · · · · · ·				
-50.0						· ·				
-60.0	have a monthly a new monthered	warness where the ye	million	herenandering	*****	hadright moveman production	and a destruction of the second	mh	ersentet and a straight an	"AG444An. Andrewski marie
-70.0										
-80.0										
-90.0						•				
	2.990)GHz	to	6.5	OOGHz					
	ResBW 10	OkHz		V:	idBW 100	lkHz		SWP	2.05	
	LEVEL		SPAN	St	cop 6.	.500GHz				
	KNOB 2		KNOB 1	KI	SYPAD	Τe	ektronix	2784		

NORTHWEST									
EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01			
	802MIAG-CV60				Work Order	: ITRM0039			
Serial Number:	000DF01504A8				Date	: 09/03/04			
Customer:	INTERMEC Technologies				Temperature	: 72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity	: 43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site	: EV06			
TEST SPECIFICATION	IS								
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year	: 1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO									
	t 36 Mbps data rate, 802.11(g) mod	lulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Rocky to Relenge									
Tested By:									
DESCRIPTION OF TEST									
Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Mid Channel - 802.11(g) 36 Mbps									
Anten	a conducted Spun				- 002. I I(g) 3	o winha			

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Mid Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl	*10.OdBm			:	10dB/		Atten 100	dB	
0.0										
-10.0						: ·				
-20.0						•				
-30.0						•				
-40.0						• • • • • • •				
-50.0										
-60.0	e and a special state of the special sp	when you with the		when the stand and the	un water and	inthe way and the second	and an an an an an	when the states of the states	www.wateraterater	warder and with
-70.0						•				
-70.0						•				
-80.0										
-90.0						•				
	6.499	ƏGHz	to	15.0	OOGHz					
	ResBW 10	DOkHz		Vi	idBW 100kI	Iz		SWP	4.85	
	LEVEL		SPAN	St	op 15.00	OGHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

EMISSIONS DATA SHEET								
						01/30/01		
EUI: Serial Number:	802MIAG-CV60				Work Order:			
						09/03/04		
Attendees:	INTERMEC Technologies		Tested buy	Rod Peloguin	Humidity:	72 degrees F		
Customer Ref. No.:				120VAC/60Hz	Job Site:			
TEST SPECIFICATION			Fower.	120VAC/00H2	Job Site.	2000		
	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	4 Year:	1992		
SAMPLE CALCULATIO		1601. 2000	Method.	10001-114, Altor 000	it i	1002		
COMMENTS								
EUT OPERATING MOD								
	t 36 Mbps data rate, 802.11(g) mod	ulation scheme						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS	spurious emission outside of the	authorized band is 20 dB down fro	m the fundamental					
RESULTS	spurious emission outside of the	autionzed band is zo db down inc	in the fundamental.					
Pass								
SIGNATURE								
Tested By:	Roly to Reling							
DESCRIPTION OF TES	эт							
Antenn	a Conducted Spurie	ous Emissions 15G	Hz - 25GHz -	Mid Channel	- 8 <mark>02.11(g)</mark> 3	36 Mbps		

Antenna Conducted Spurious Emissions 15GHz - 25GHz - Mid Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl ³	*10.OdBm			10	dB/		Atten 100	цВ	
0.0										
0.0										
-10.Q					•					
-20.Q										
-30.0					-					
-40.Q										
-50.Q							and an and a second second second second second	as hell the for the second	where we are a state of the second	white when the street
-60.Q	or weighter whether the states of the	performation of the former	and the state of t	toyunortoinihliy	ward Hanneldon Ha	Whynewingham	etetari			
-00.0										
-70.Q					· ·					
-80.Q					:					
-90.0										
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OOkHz		V:	idBW 100kHz			SWP	5.7%	
	LEVEL		SPAN	SI	pan 10GHz					
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST	RTHWEST EMISSIONS DATA SHEET REV BETA									
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01					
	802MIAG-CV60			Work Order:	ITRM0039					
Serial Number:	000DF01504A8			Date:	09/03/04					
Customer:	INTERMEC Technologies			Temperature:	72 degrees F					
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH					
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06					
TEST SPECIFICATION	IS									
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992					
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MO	DES It 36 Mbps data rate, 802.11(g) mod									
-		lulation scheme								
DEVIATIONS FROM T None	EST STANDARD									
REQUIREMENTS										
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental							
RESULTS	sparious christion outside of the									
Pass										
SIGNATURE										
Tested By:	Porting to Reling									
DESCRIPTION OF TE	ST									
		iouo Emissione OM	Uz 20Uz High Channel	902.11(a).26	Mhno					
Anten	na Conducted Spur	TOUS ETHISSIONS UN	IHz-3GHz - High Channel -	· ouz.11(g) 30	squin					

Antenna Conducted Spurious Emissions 0MHz-3GHz - High Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl [;]	10.0dBm			10dI	в/		Atten 100	ЗB	
0.0										
0.0					· · · · · · · · · · · · · · · · · · ·					
-10.0					· ·					
-20.0					:					
-30.0										
-40.0										
-50.0					:					
-60.Q		water water and the second	yer-man-draphener-draphener	nalisensekander	weterstonertoppdare.	hauther	waterhood	1. Africk Marker March	the second stands	18 miles and the standy
-70.0					• • •					
-80.0										
-90.0					· ·					1
	OMHz ResBW 10	10 5 87	to		OOGHz idBW 100kHz			SND	1.75	
	Kesbw Il				TADW TOOKNZ			JWP	1.(2	
	LEVEL		SPAN	Re	≘f Lvl*10.OdB	3m				
	KNOB 2		KNOB 1	к	EYPAD	Te	ktronix	2784		

NORTHWEST EMISSIONS DATA SHEET Rev Beta									
EMC		EINISSIONSI	JATA SHI			Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/03/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
	550								
EUT OPERATING MO	DES at 36 Mbps data rate, 802.11(g) mod	ulation ophome							
DEVIATIONS FROM T		iulation scheme							
None	EST STANDARD								
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental						
RESULTS									
Pass									
SIGNATURE									
Tested By:	Porting to Reling								
DESCRIPTION OF TE	ST								
Antenr	na Conducted Spuri	ous Emissions 3GI		igh Channel	- 802.11(a) 3	6 Mbps			

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - High Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl [;]	10.0dBm				10dB/		Atten 10	dB	
0.0										
-10.0										
-20.0										
-30.0										
-40.0						· · · · · · ·				
-50.0						:				
-60.Q		uderleighter lie an	entre langerage by the	mhanadhanta	nan nika kiduli ni	n milital atom when the second	and the second state of the second	and the states of the states o	phoneseller and a second	g/~Colorfo, father (father)th
-70.0						•				
-80.0										
-90.0										
	2.990)GHz	to	6.5	OOGHz					
	ResBW 10	OkHz		V:	idBW 10	OkHz		SWP	2.05	
	LEVEL		SPAN	St	cop 6	.500GHz				
	KNOB 2		KNOB 1	KI	TYPAD	Te	ektronix	2784		

NORTHWEST										
EMC		EMISSIONSI				01/30/01				
EUT:	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/03/04				
Customer:	INTERMEC Technologies				Temperature:	72 degrees F				
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION										
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MO	DES at 36 Mbps data rate, 802.11(g) mod	deletien esterne								
		Julation scheme								
DEVIATIONS FROM T None	EST STANDARD									
REQUIREMENTS										
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental							
RESULTS	spundus christion outside of the		sin the rundamental.							
Pass										
SIGNATURE										
	10:00									
	Rocky le Reling									
	0 0'									
Tested By:										
DESCRIPTION OF TE	ST									
		aue Emissione 6 50		Jigh Channel	<u>902 11/~) (</u>	26 Mbpc				
Antenn	a Conducted Spurio			ngn channe	i - ouz.11(g) .	so wups				

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - High Channel - 802.11(g) 36 Mbps

										Tek
10.0		*10.0dBm			1	OdB/		Atten 100	ЗВ	
0.0										
-10.0										
-10.0										
-20.0										
-30.0					- - -					
-40.Q										
-50.0										
-60.0	when the way have	a ^{t-Invision} terfease _{aut} -windefined	halvergenerging and	ifterted and the second second	man the source of	1. • • • • • • • • • • • • • • • • • • •	www.venterwer	www.www.and	Hy-JAN HUMAN MARK	warman and
-70.0					· · · · · · · · · · · · · · · · · · ·					
-70.0					:					
-80.0										
-90.0					-					
	6.499	∋GHz	to	15.0	OOGHz					
	ResBW 10	OOkHz		V:	idBW 100kH	z		SWP	4.85	
	LEVEL		SPAN	St	top 15.00	OGHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/03/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.	4 Year:	1992			
SAMPLE CALCULATION	ONS								
COMMENTS									
EUT OPERATING MOI	250								
	t 36 Mbps data rate, 802.11(g) mo	dulation scheme							
DEVIATIONS FROM T									
None	EST STANDARD								
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	m the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Portuge Roley to Release									
DESCRIPTION OF TES	т								
Antenna	a Conducted Spurio	ous Emissions 15GH	lz - 25GHz -	High Channe	l - 802.11(g)	36 Mbps			

Antenna Conducted Spurious Emissions 15GHz - 25GHz - High Channel - 802.11(g) 36 Mbps

										Tek
10.0	Ref Lvl [*]	10.0dBm			1	DdB/		Atten 100	ЗВ	
0.0										
-10.0					:					
-20.0										
-30.0										
-40.0										
-50.0								allo for the second second	mantputtionsta	unthe repeted
-60.Q	were the second and the second	North Antonia	an water and	Kalayyan denkara	way of the second of the second of the second s	wa worded where	****			
-70.0										
-80.0					:					
-90.0										
	14.990	Hz	to	25.	OOGHz					
	ResBW 10)0kHz		V:	idBW 100kH	z		SWP	5.7%	
	LEVEL		SPAN	SI	pan 10GHz					
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST										
EMC		EIVIISSIUNSI	DATA SHEET		Rev BETA 01/30/01					
EUT:	802MIAG-CV60			Work Order: ITRM0039)					
Serial Number:	000DF01504A8			Date: 09/03/04						
Customer:	INTERMEC Technologies			Temperature: 72 degree	es F					
Attendees:	None		Tested by: Rod Peloquin	Humidity: 43% RH						
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06						
TEST SPECIFICATION	NS									
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year: 1992						
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MO										
	at maximum data rate, 802.11(b) mo	odulation scheme								
DEVIATIONS FROM T	EST STANDARD									
None										
REQUIREMENTS										
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.							
RESULTS										
Pass										
SIGNATURE										
	Rocky le Relenge									
Tested By:										
DESCRIPTION OF TE	ST									
		rique Emissione A	H- 2CH- Low Channel	902 11(a) 51 Mbp						
Anten	ina conducted Spu	HOUS ETHISSIONS UN	Hz-3GHz - Low Channel -	· 002.11(y) 54 Mbps	>					

Antenna Conducted Spurious Emissions 0MHz-3GHz - Low Channel - 802.11(g) 54 Mbps

										Tek
10.0	Ref Lvl ³	*10.0dBm			10dB	/		Atten 100	lB	
0.0										
-10.Q					· ·					
-20.Q										
-30.Q										
-40.Q										
-50.Q										
-60.Q	handler and the property and	www.www.www.ww	Wanneshanna	hateraturation	ndramation where a start	water	windown	huld for the second second	Ward Market Market	Windowski
-70.0										
					- - -					
-80.0					:					
-90.0										
	OMHz		to	3.0	OOGHz					
	ResBW 10	OOkHz		Vi	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	≘f Lvl*10.0dB	m				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST								
EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01		
	802MIAG-CV60				Work Orde	r: ITRM0039		
Serial Number:	000DF01504A8					: 09/03/04		
	INTERMEC Technologies				Temperature	: 72 degrees F		
Attendees:			Tested by:	Rod Peloquin		/: 43% RH		
Customer Ref. No.:	N/A			120VAC/60Hz	Job Site			
TEST SPECIFICATION	IS							
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Yea	r: 1992		
SAMPLE CALCULATI	ONS							
COMMENTS								
EUT OPERATING MOI								
Modulated by PRBS a	t maximum data rate, 802.11(b) mo	dulation scheme						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.					
RESULTS								
Pass								
SIGNATURE								
Rocky le Relings								
	DESCRIPTION OF TEST							
Antenr	Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Low Channel - 802.11(g) 54 Mbps							

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Low Channel - 802.11(g) 54 Mbps

										Tek
10.0	Ref Lvl*	10.0dBm				10dB/		Atten 100	ЗB	
						· · ·				
0.0						:				
-10.0						: ·				
-20.0										
-30.0										
00.0										
-40.0						· · · · · · ·				
-50.0						:				
-60.0		whywasty why have	kulunan shikasi mataka	here from the state of the	mbleden/1469kehrunges	were and a more and a second	and the providence	envenereneteden alvede	, and an	ayunun ya Islan ya Karaka ku 199
						•				
-70.0						:				
-80.0										
-90.0						· ·				
	2.990	GHz	to	6.5	OOGHz					
	ResBW 10	OkHz		V:	idBW 100k	Hz		SWP	2.05	
	LEVEL		SPAN	St	top 6.5	OOGHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

EMISSIONS DATA SHEET									
EMC						01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/03/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:				Rod Peloquin	Humidity				
Customer Ref. No.:			Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
COMMENTS									
EUT OPERATING MO	DES								
	t maximum data rate, 802.11(b) mo	dulation scheme							
DEVIATIONS FROM T									
None									
REQUIREMENTS									
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Rocky te Relings									
DESCRIPTION OF TES									
Antenn	Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Low Channel - 802.11(g) 54 Mbps								

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Low Channel - 802.11(g) 54 Mbps

										Tek
10.0	Ref Lvl	*10.0dBm			1	LOdB/		Atten 100	dB	
0.0										
-10.0										
-10.0										
-20.Q					· · · · ·					
-30.0										
-40.Q										
-50.Q										
-60.Q	hele-slowing agent	and the party of the second	nun want	mantheman	magnussemalit	u ^{ht} uludhuyapashokendeya	and the second	- Addington and a second	Low How and so and	*~~~~~************
-70.0										
-80.0						·				
-90.Q										
	6.499	ƏGHz	to	15.0	OOGHz					
	ResBW 10	DOkHz		V:	idBW 100kH	Iz		SWP	4.85	
	LEVEL		SPAN	S1	top 15.00)OGHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST									
EMC		EMISSIONS I	JATA SH	EEI		Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/03/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION	IS								
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO									
	t maximum data rate, 802.11(b) mo	odulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS									
,	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Rocky to Reling									
Tested By:	Tested By:								
DESCRIPTION OF TES	ST								
Antenn	Antenna Conducted Spurious Emissions 15GHz-25GHz - Low Channel - 802.11(g) 54 Mbps								

Antenna Conducted Spurious Emissions 15GHz-25GHz - Low Channel - 802.11(g) 54 Mbps

										Tek
10.0	Ref Lvl ³	*10.0dBm			10	dB/		Atten 100	ЗВ	
0.0					-					
-10.Q					•					
-20.Q										
-30.Q					- - -					
-40.Q					· · · · · · ·					
-50.0							phar-munited aparton	y - Muler and	mynamilian	end the phone of the de
-60.Q	pop-la. Indexed and a second population of the	way on the stand	www.hanalway.waharana	pmayddadalladfadaada	Kaldoningkarthu.Art	voyy.w.zw.ehayyy.howed	dyta			
-70.0										
-80.Q					:					
-90.0										
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OOkHz		V:	idBW 100kHz			SWP	5.7%	
	LEVEL		SPAN	SI	pan 10GHz					
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST									
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01				
EUT:	802MIAG-CV60			Work Order: ITRM0039					
Serial Number:	000DF01504A8			Date: 09/03/04					
Customer:	INTERMEC Technologies			Temperature: 72 degrees F	F				
Attendees:	None		Tested by: Rod Peloquin	Humidity: 43% RH					
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06					
TEST SPECIFICATION	NS								
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year: 1992					
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO									
	at maximum data rate, 802.11(b) mo	odulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Rocky to Relenge									
Tested By:	Tested By:								
DESCRIPTION OF TEST									
Anter	Antenna Conducted Spurious Emissions 0MHz-3GHz - Mid Channel - 802.11(g) 54 Mbps								

Antenna Conducted Spurious Emissions 0MHz-3GHz - Mid Channel - 802.11(g) 54 Mbps

										Tek
10.0	Ref Lvl [*]	10.0dBm			10dB/			Atten 100	ЗB	
0.0										
-10.Q					· · ·					
-20.Q										
-30.Q										
-40.Q										
-50.Q									<u> </u>	
-60.Q	have the straight and	multility the set	ndanimation after the states		waterall	Mr. when	-solar-advise-advise	When the work of the strength of the strengtho	" "herein wary	When you down hand
-70.0										
-80.Q					· · ·					
-90.0										
	OMHz		to	3.0	OOGHz					
	ResBW 10)0kHz		۷:	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	≥f Lvl*10.0dBm					
	KNOB 2		KNOB 1	KI	EYPAD	Tek	tronix	2784		

NORTHWEST							
EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01	
EUT:	802MIAG-CV60				Wo	rk Order: ITRM0039	
Serial Number:	000DF01504A8					Date: 09/03/04	
Customer:	INTERMEC Technologies				Tem	perature: 72 degrees F	
Attendees:	None		Tested by:	Rod Peloquin	H	Humidity: 43% RH	
Customer Ref. No.:	N/A		Power:	120VAC/60Hz		Job Site: EV06	
TEST SPECIFICATION	IS						
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.	4	Year: 1992	
SAMPLE CALCULATI	ONS						
COMMENTS							
EUT OPERATING MO	DES						
Modulated by PRBS a	t maximum data rate, 802.11(b) mo	odulation scheme					
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.				
RESULTS							
Pass							
SIGNATURE							
Tested By:	Rocky Le Feling						
DESCRIPTION OF TES	DESCRIPTION OF TEST						
Anten	Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Mid Channel - 802.11(g) 54 Mbps						

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Mid Channel - 802.11(g) 54 Mbps

										Tek
10.0	Ref Lvl'	10.0dBm				10dB/		Atten 10	dB	
						:				
0.0						:				
-10.0						: ·				
-20.0										
-30.0										
						:				
-40.0										
-50.0						:				
-60.0	on the second	white and the property of the second	www.weither	have a second state of the	hadd and have been	had the ward by reary	whistody property all all and	where we are a second and the second	had the second	here and the state of the state
-70.0										
-80.0										
-90.0						:				
	2.990)GHz	to	6.5	OOGHz					
	ResBW 10)0kHz		V:	idBW 100	kHz		SWP	2.05	
	LEVEL		SPAN	St	cop 6.	500GHz				
	KNOB 2		KNOB 1	KI	SYPAD	Te	≥ktronix	2784		

EMISSIONS DATA SHEET									
EMC			JATA SH			Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/03/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO	250								
	t maximum data rate, 802.11(b) mc	dulation schome							
DEVIATIONS FROM T		dulation scheme							
None	EST STANDARD								
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Tested By:	Roching her Reling								
DESCRIPTION OF TES	DESCRIPTION OF TEST								
Antenn	a Conducted Spuri	ous Emissions 6.50	GHz-15GHz -	Mid Channel	- 802.11(q) 5	54 Mbps			

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Mid Channel - 802.11(g) 54 Mbps

										Tek
10.0	Ref Lvl	*10.OdBm			:	10dB/		Atten 100	цВ	
0.0										
-10.0										
-20.Q										
-30.Q						•				
-40.Q										
-50.0										
-60.Q	and the second second second	an water the second	444164441447.442-dept.18	www.wathleumanah	the manufally the file	ind water against an and	- and the second and	Walan managendra walan		vilarnannannannan
-70.0										
-80.Q										
-90.0										
	6.49	∋GHz	to	15.0	OOGHz					
	ResBW 10	DOkHz		v	idBW 100kH	Iz		SWP	4.85	
	LEVEL		SPAN	SI	top 15.00	DOGHz				
	KNOB 2		KNOB 1	KI	EYPAD	T∈	ktronix	2784		

NORTHWEST		EMICOLONIC							
EMC		EMISSIONSI	DATA SHEET		Rev BETA 01/30/01				
	802MIAG-CV60			Work Order:	ITRM0039				
Serial Number:	000DF01504A8	000DF01504A8 Date							
Customer:	INTERMEC Technologies			Temperature:	72 degrees F				
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION	NS								
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO	DES								
	at maximum data rate, 802.11(b) mo	odulation scheme							
DEVIATIONS FROM T	, , , , ,								
None	LOT OTANDARD								
REQUIREMENTS									
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down from	om the fundamental.						
RESULTS	·								
Pass									
SIGNATURE									
Norly le Reling									
DESCRIPTION OF TES	ST								
		ious Emissions 450	CH- 25CH- Mid Channel	902 11/m E	1 Mbpo				
Antenr	na Conducted Spur	IOUS EINISSIONS 150	GHz-25GHz - Mid Channel	- 002.11(g) 54	+ wops				

Antenna Conducted Spurious Emissions 15GHz-25GHz - Mid Channel - 802.11(g) 54 Mbps

										Tek
10.0	Ref Lvl'	10.0dBm			:	LOdB/		Atten 100	цВ	
0.0										
-10.0						•				
-20.0										
-30.0						•				
-40.0										
-50.0							whenthere	_{\$10}	the should be	de the based on the state of th
-60.Q	more the fitter ver	wanger of the state of the stat	white the state of	1848ppp.pr.m.24616494	WELF BROWN BY JUNPALAN	in aftertradigithe	arywing .			
-70.0										
-80.0										
-90.0						•				
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OkHz		Vi	idBW 100kH	Iz		SWP	5.7%	
	LEVEL		SPAN	sı	pan 10GHz					
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST		EMICOLONIC							
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01				
	802MIAG-CV60			Work Order:	ITRM0039				
Serial Number:	000DF01504A8	000DF01504A8 Date							
Customer:	INTERMEC Technologies			Temperature:	72 degrees F				
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION	NS								
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO									
	at maximum data rate, 802.11(b) mo	odulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Porting to Relenge									
Tested By:									
DESCRIPTION OF TES	DESCRIPTION OF TEST								
Anten	na Conducted Spur	rious Emissions 0N	1Hz-3GHz - High Channel ·	- 80 <mark>2.11(a) 5</mark> 4	Mbps				

Antenna Conducted Spurious Emissions 0MHz-3GHz - High Channel - 802.11(g) 54 Mbps

											Tek
10.0	Ref Lvl*	10.0dBm			10dB	Z		Atten 100	dB		
0.0											
0.0									l 1		
-10.0					•				╞╢		
-20.0					· · ·						
-30.0					:						
-40.0					· · · · · · ·						
-50.0									'		
-60.0	herbert warman where	nourmandment	www.	Mahaman	nameran far deflacting of a	in mutility	akalantaturung	en particular to the stand of the	<i></i>	Katha and a state of the state	^{WAN} WUMMANNIN
-70.0					• • •						
-70.0											
-80.0											
-90.0					•						
	OMHz		to	3.0	OOGHz						
	ResBW 10)0kHz		V:	idBW 100kHz			SWP	1.7	75	
	LEVEL		SPAN	Re	≥f Lvl*10.0dB	m					
	KNOB 2		KNOB 1	к	EYPAD	Te	ktronix	2784			

REC. EMISSIONS DATA SHEET									
EMC		EINISSIONSI	JATA SH			Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8 Date: 09/0								
Customer:	INTERMEC Technologies	INTERMEC Technologies Temperature: 72 degr							
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
	~~~								
EUT OPERATING MO	DES it maximum data rate, 802.11(b) mc								
		odulation scheme							
DEVIATIONS FROM T None	EST STANDARD								
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental						
RESULTS									
Pass									
SIGNATURE									
	Rocky le Relings								
Tested By:	0 0								
rested by:									
DESCRIPTION OF TES	ST								
Antenna Conducted Spurious Emissions 3GHz-6.5GHz - High Channel - 802.11(g) 54 Mbps									
Anten	ia conducted opun		12-0.00112 - 1	ingir Grianner	- 002.11(g) 3	equin F			

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - High Channel - 802.11(g) 54 Mbps

										Tek
10.0	Ref Lvl	*10.OdBm				10dB/		Atten 10	dB	
0.0										
-10.0						•				
-20.0						· ·				
-30.0						· ·				
-40.Q										
-50.0						:				
-60.Q	yerstylin the well	manhoraborytheme	morningle	ture for the second second	belle portange have	when man man	a where a she what we have	design terms that the set	รุ่ง ¹ ี่ไองระสีขางขางเสีย _{ต่} างกังรู้เป็นหา	Allen Marine Marine
-70.0										
-80.0						· ·				
-90.0						•				
	2.99(	DGHz	to	6.5	OOGHz					
	ResBW 10	DOkHz		v	idBW 100)	tHz		SWP	2.05	
	LEVEL		SPAN	SI	top 6.!	500GHz				
	KINOB 2		KNOB 1	KI	EYPAD	Т	ektronix	2784		

Rev BETA EMISSIONS DATA SHEET Rev BETA									
EMC		EINISSIONSI	JATA SH			Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/03/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO									
-	t maximum data rate, 802.11(b) mc	dulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS	spurious emission outside of the	authorized band is 20 dB down fr	m the fundamental						
RESULTS	spurious emission outside of the	authorized band is 20 dB down ind	om the fundamental.						
Pass									
SIGNATURE									
SIGNATURE									
	Rocky le Relings								
Tested By:									
DESCRIPTION OF TE	ST.								
				Link Oher is	000 44(-)				
Antenn	a Conducted Spuric	ous Emissions 6.50	Hz-15GHz - H	Hign Channel	i - 802.11(g) (	54 MDPS			

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - High Channel - 802.11(g) 54 Mbps

										Tek
10.0		*10.0dBm				10dB/		Atten 100	dB	
0.0										
-10.0						:				
-20.0										
-30.0										
-40.Q						· · · · · · · ·				
-50.0										
-60.Q	hall and a state of the second and the	erstalling and prevality of a	annado trailige and	ty in the second of the second	where we are a second to the second	and the many production	and an analysis of the	Human ware way	mpayor beton sparting symbol	for the state of the serve
-70.0						:				
-80.0										
-90.0										
	6.499	ƏGHz	to	15.0	OOGHz					
	ResBW 10	DOkHz		V:	idBW 100k	Hz		SWP	4.85	
	LEVEL		SPAN	St	cop 15.0	DOGHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST EMISSIONS DATA SHEET REV BET/									
EMC						01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/03/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO									
	t maximum data rate, 802.11(b) mo	dulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental						
RESULTS	spurious emission outside of the	authorized band is 20 dB down int	om the fundamental.						
Pass									
SIGNATURE									
SIGNATORE	2								
	Rocky to Reling								
Tested By:	5 5								
DESCRIPTION OF TE	ST								
		ava Emissians 150			000 44/>	4 Mhaa			
Antenn	a Conducted Spuri	ous Emissions 15G	HZ-25GHZ - F	lign Channel	- 802.11(g) t	o4 wops			

Antenna Conducted Spurious Emissions 15GHz-25GHz - High Channel - 802.11(g) 54 Mbps

										Tek
10.0		*10.0dBm			1	OdB/		Atten 100	ЗВ	
0.0										
-10.0										
-10.0					:					
-20.Q										
-30.Q					:					
-40.Q					· · · · · ·					
-50.Q					:		frity/morrowpulse	a water and the states of the states	marker of the set	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60.Q	erstration in the	abolition and a state day	and when a strange by when we	madentithere	anger her sector	^{La} arento (Landa (Marila	he with			
-70.0					· · ·					
-80.0					:					
-90.Q					:					
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	DOkHz		V:	idBW 100kH	z		SWP	5.75	
	LEVEL		SPAN	SI	pan 10GHz					
	KINOB 2		KNOB 1	кі	EYPAD	Τe	ektronix	2784		

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	802MIAG-CV60			Work Order: I	TRM0039
Serial Number:	000DF01504A8			Date: 0	09/02/04
Customer:	INTERMEC Technologies			Temperature: 7	72 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity: 4	43% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: I	EV06
TEST SPECIFICATION	IS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year: 1	1992
SAMPLE CALCULATI	ONS				
COMMENTO					
COMMENTS					
EUT OPERATING MO	DES				
	t 1 Mbps data rate, 802.11(b) modu	ulation scheme			
DEVIATIONS FROM T					
None					
REQUIREMENTS					
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.		
RESULTS					
Pass					
SIGNATURE					
Tested By:	Rocky to Reling				
DESCRIPTION OF TES	ст.				
				000 44/b) 4	
Antei	nna Conducted Spu	Irious Emissions of	MHz-3GHz - Low Channel	- 802.11(b) 1 I	viops

Antenna Conducted Spurious Emissions 0MHz-3GHz - Low Channel - 802.11(b) 1 Mbps

									Tek
10.0	Ref Lvl*	10.0dBm			10dB/		Atten 10d	ıв	
0.0									
0.0								1	
-10.0									
-20.0					•			ll	
-30.Q									
-40.Q									
-50.Q					•				
-60.0	have many and	White of the state	when your way		where the second s	Haward and a grade the second	المديني تعاريه والمحالي والمحالي والمحالي والمعالي	"Hanthalitigular and a faith of	halift og hilf var angen af ster
-70.0									
-80.Q									
					•				
-90.0									
-90.Q			to	3.0	ODGHz				
-90.Q		)0kHz	to		OOGHz idBW 100kHz		SWP	1.75	
-90.Q	OMHz		to	v:			SWP	1.75	

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	802MIAG-CV60			Work Order:	ITRM0039
Serial Number:	000DF01504A8			Date:	09/02/04
Customer:	INTERMEC Technologies			Temperature:	72 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	NS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO	DES at 1 Mbps data rate, 802.11(b) modu				
-		liation scheme			
DEVIATIONS FROM T None	EST STANDARD				
REQUIREMENTS					
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental		
RESULTS	spurious emission outside of the	authorized band is 20 dB down in	om the fundamental.		
Pass					
SIGNATURE					
SIGNATORE	2				
	Rocky to Kelings				
Tested By:	5 0				
DESCRIPTION OF TE	ст.				
				000 44/61 4	Man
Anten	na Conducted Spur	Tous Emissions 3G	Hz-6.5GHz - Low Channel	- 802.11(D) 1	equivi

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Low Channel - 802.11(b) 1 Mbps

										Tek
10.0	Ref Lvl*1	10.0dBm				10dB/		Atten 10	dB	
						:				
0.0						•				
-10.0						:				
-20.0						:				
-30.0										
-40.0						· · · · · ·				
-50.0						:				
-60.0	agardlaraptedagaitradlar	www.angray.org.	raldranesister	ryonardan an a	have a second and the second	white the fully when	mp haboration of the second	here when the work of the second	and mathematical sectors	and the fail factor of the second
-70.0						· :				
-80.0						:				
-90.0						•				
	2.9900	Hz	to	6.5	OOGHz					
	ResBW 100	)kHz		v:	idBW 100	kHz		SWP	2.05	
	LEVEL		SPAN	St	cop 6.	500GHz				
	KINOB 2		KNOB 1	KI	SYPAD	г	[ektronix	2784		

NORTHWEST		<b>EMISSIONS</b>		EET		
EMC		EINISSIONSI	JATA SH			Rev BETA 01/30/01
EUT:	802MIAG-CV60				Work Order:	ITRM0039
Serial Number:	000DF01504A8				Date:	09/02/04
Customer:	INTERMEC Technologies				Temperature:	72 degrees F
Attendees:	None		Tested by:	Rod Peloquin	Humidity	43% RH
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION						
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MO	DES at 1 Mbps data rate, 802.11(b) modu	uction acheme				
	1 1 1	nation scheme				
DEVIATIONS FROM T None	EST STANDARD					
REQUIREMENTS						
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
	10:00					
	Rocky to Reling					
	0 0'					
Tested By:						
DESCRIPTION OF TES	ѕт					
	na Conducted Spuri	ious Emissions 6 5		Low Channo	L 802 11/b)	1 Mbps
Antenn	la conducted Spun	1003 E1113510115 0.3	GHZ-190HZ -	Low Channe	=	i winha

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Low Channel - 802.11(b) 1 Mbps

										Tek
10.0		*10.0dBm			1	.0dB/		Atten 100	iB	
0.0										
-10.0										
-20.0					:					
-30.Q					-					
-40.Q										
-50. <u>0</u>										
-60.Q	and and an all in the second	and a support	and tool to a second	habert to set and really	volatania la la varagete	when the second	when the state of the sector	white the providence	What Berth Harrison and a start and	have a state of the state of th
-70.0										
-70.0										
-80.0										
-90.Q										
	6.499	∋GHz	to	15.0	OOGHz					
	ResBW 10	DOkHz		V	idBW 100kH	Iz		SWP	4.85	
	LEVEL		SPAN	SI	top 15.00	OGHz				
	KINOB 2		KNOB 1	KI	EYPAD	T∈	ktronix	2784		

NORTHWEST		EMISSIONS I		EET		
EMC		EINISSIONSI	JATA SH			Rev BETA 01/30/01
EUT:	802MIAG-CV60				Work Order	ITRM0039
Serial Number:	000DF01504A8				Date:	09/02/04
Customer:	INTERMEC Technologies				Temperature:	72 degrees F
Attendees:	None		Tested by:	Rod Peloquin	Humidity	43% RH
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION						
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year	1992
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MO	DES at 1 Mbps data rate, 802.11(b) modu	uction acheme				
	1 1 1	nation scheme				
DEVIATIONS FROM T None	EST STANDARD					
REQUIREMENTS						
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
	10:00					
	Rocky le Reling					
	0 0'					
Tested By:						
DESCRIPTION OF TES	ST					
		ous Emissions 150		Low Channe	002 11/b)	1 Mhne
Antenn	na Conducted Spuri	ous Emissions 156	PULT - 720ULT -	Low Channe	# - 002.11(D)	r wups

Antenna Conducted Spurious Emissions 15GHz - 25GHz - Low Channel - 802.11(b) 1 Mbps

										Tek
10.0		*10.0dBm			1	OdB/		Atten 10	ЗB	
0.0										
-10.Q					•					
-20.Q					•					
-30.Q										
-40.Q					• • • • • • •					
-50.Q							production	pression thread presents	Hurry Arises and	manner
-60.Q	Norme Hart Mary Har	Mundleman	ulason and	dooglagesportstallerkerse	with the search the state	[๛] ไหนูของจะเสรีย์ส่ง _ไ ห้เขามูระ ¹	ht.			
					•					
-70.Q										
-80.Q					:					
-90.Q										
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	DOkHz		V:	idBW 100kH	z		SWP	5.75	
	LEVEL		SPAN	Re	ef Lvl*10.	OdBm				
	KINOB 2		KNOB 1	KI	EYPAD	Te	≥ktronix	2784		

NORTHWEST		EMICCIONC			
EMC		EINISSIONS	DATA SHEET		Rev BETA 01/30/01
EUT:	802MIAG-CV60			Work Order: ITRM0039	
Serial Number:	000DF01504A8			Date: 09/02/04	
Customer:	INTERMEC Technologies			Temperature: 72 degrees	s F
Attendees:	None		Tested by: Rod Peloquin	Humidity: 43% RH	
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06	
TEST SPECIFICATION	IS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year: 1992	
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO					
-	t 1 Mbps data rate, 802.11(b) modu	ulation scheme			
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental		
RESULTS	spurious emission outside of the	authorized band is 20 dB down in	om the fundamental.		
Pass SIGNATURE					
	Rocky to Reling				
Tested By:	- V				
DESCRIPTION OF TE	ST				
		urious Emissions 0	MHz-3GHz - Mid Channel ·	- 802.11(b) 1 Mbps	
				······································	

Antenna Conducted Spurious Emissions 0MHz-3GHz - Mid Channel - 802.11(b) 1 Mbps

									Tek
10.0	Ref Lvl	*10.0dBm			10dB/		Atten 10d	1B	
0.0									
0.0								1	
-10.Q					•				
-20.Q									
-30.Q					•				
-40.Q									
-50.Q					•			<u></u>	
	and the second section in the	<b>.</b>	dollar worker all	مر والارد والارد والارد و		he text any and the second	and the second second	r markeninging with	addudaaanddaaraanse
-60.Q	AN ACC IN TANK IN A	a a line a line a de adrese di		- Weight					
		na fara suna su angena di			: 				
-60.Q		und and some of a set			······································				
-70.Q									
-70.0 -80.0			to		ODGHz				
-70.0 -80.0				3.0			SWP		
-70.0 -80.0	OMHz	D0kHz		3.0 V:	OOGHz				

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	802MIAG-CV60			Work Order:	ITRM0039
Serial Number:	000DF01504A8			Date:	09/02/04
Customer:	INTERMEC Technologies			Temperature:	72 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATI	ONS				
0.011151170					
COMMENTS					
EUT OPERATING MO	DES				
	it 1 Mbps data rate, 802.11(b) modu	llation scheme			
DEVIATIONS FROM T					
None					
REQUIREMENTS					
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.		
RESULTS					
Pass					
SIGNATURE					
Tested By:	Rocky to Reling				
DESCRIPTION OF TE	ST				
		rique Emissions 20	CH7 6 5CH7 Mid Channel	000 11/h) 4	Mhno
Anten	ina Conducted Spu	rious Emissions 30	GHz-6.5GHz - Mid Channel	- 0UZ.11(D) 1	squivi

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Mid Channel - 802.11(b) 1 Mbps

										Tek
10.0		*10.0dBm				10dB/		Atten 100	цВ	
0.0						•				
0.0										
-10.0						· :				
-20.0						:				
-30.0										
-40.0										
-50.0						•				
-60.0		restuberentetoretet	arronation at a start	an angolithan diplaces	www.weekana	wanter of half and	municano and	4-166-474-18-18-474-1848	when the second	hosphan draw drived all
-70.0						· · ·				
-80.0										
-90.0										
	2.99(	DGHz	to	6.5	OOGHz					
	ResBW 10	DOkHz		Vi	idBW 100	kHz		SWP	2.05	
	LEVEL		SPAN	St	cop 6.	500GHz				
	KNOB 2		KNOB 1	KI	EYPAD	Т	ektronix	2784		

NORTHWEST		ENIO			
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	802MIAG-CV60			Work Order:	ITRM0039
Serial Number:	000DF01504A8			Date:	09/02/04
Customer:	INTERMEC Technologies			Temperature:	72 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	NS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO					
-	t 1 Mbps data rate, 802.11(b) modu	ulation scheme			
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS					
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.		
RESULTS					
Pass					
SIGNATURE					
	Rocky to Reling				
Tested By:	· V				
DESCRIPTION OF TES	ST				
Anten	na Conducted Spur	ious Emissions 6.5	GHz-15GHz - Mid Channe	I - 802.11(b) 1	Mbps

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Mid Channel - 802.11(b) 1 Mbps

										Tek
10.0	Ref Lvl	*10.OdBm			:	LOdB/		Atten 100	ЗB	
0.0										
-10.0										
-20.0										
-30.0										
-40.Q										
-50.0										
-60.Q	www.warashing.com	readed advised the rest	munnun	WANDAR HANNA	44 mary Mapure	Munnerfreeter	munny	Laftin Maly Antoine	Aler Harrison and the second	they we have been a state of the second
-70.0										
-80.0										
-90.0										
	6.499	ƏGHz	to	15.0	OOGHz					
	ResBW 10	OOkHz		v	idBW 100kH	Iz		SWP	4.85	
	LEVEL		SPAN	SI	top 15.00	)OGHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	802MIAG-CV60			Work Order: I	TRM0039
Serial Number:	000DF01504A8			Date: 0	9/02/04
Customer:	INTERMEC Technologies			Temperature: 7	2 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity: 4	13% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: E	EV06
TEST SPECIFICATION	IS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year: 1	992
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO					
-	t 1 Mbps data rate, 802.11(b) modu	lation scheme			
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS	spurious emission outside of the	with a size of bound in 20 dD down for	ann tha fruin de mainteil		
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.		
RESULTS					
Pass SIGNATURE					
SIGNATURE	1 - 3				
	Rocky le Reling				
Tested By:	0 0				
DESCRIPTION OF TES	0 <b>7</b>				
Antenr	ha Conducted Spuri	ious Emissions 150	GHz - 25GHz - Mid Channe	ei - 802.11(b) 1	Mbps

Antenna Conducted Spurious Emissions 15GHz - 25GHz - Mid Channel - 802.11(b) 1 Mbps

										Tek
10.0		*10.OdBm			1	OdB/		Atten 100	цВ	
0.0										
0.0										
-10.Q										
-20.Q										
-30.0										
-40.Q										
-50.Q							understanding	monthemand	White water and	which have made
-60.Q	mountedurity	www.deenthuburyedune	Helen when the light of the second of the	haldenthe The Part at a star	Han work & and which and	Multherman	, and the second se			
					:					
-70.0										
-80.0										
-90.Q										
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OOkHz		Vi	idBW 100kH	z		SWP	5.7%	
	LEVEL		SPAN	Re	ef Lvl*10.	OdBm				
	KINOB 2		KNOB 1	KI	EYPAD	T	ektronix	2784		

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	802MIAG-CV60			Work Order:	ITRM0039
Serial Number:	000DF01504A8			Date:	09/02/04
Customer:	INTERMEC Technologies			Temperature:	72 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MO	DES It 1 Mbps data rate, 802.11(b) modu				
-		liation scheme			
DEVIATIONS FROM T None	EST STANDARD				
REQUIREMENTS					
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental		
RESULTS	spurious emission outside of the	authorized band is zo db down in	om me fundamental.		
Pass					
SIGNATURE					
SIGNATORE	2.2. 0.8				
	Rocky le Relings				
	0 03				
Tested By:	5				
DESCRIPTION OF TE	ST				
		rique Emissions A	MHz-3GHz - High Channel	- 802 11/b) 1	Mbpe
Anter	ma conducted Spu		winz-sonz - nigh channel	- 002.11(D) 1	winha

Antenna Conducted Spurious Emissions 0MHz-3GHz - High Channel - 802.11(b) 1 Mbps

										Tek
10.0	Ref Lvl'	10.0dBm			10df	3/		Atten 100	ЗB	
0.0										
0.0										
-10.0										
-20. <u>0</u>										
-30.0					· · · · · · · · · · · · · · · · · · ·					
-40.0										
-50.0					:					
-60.0	March	Marin Marine Ala	when the work of	water	montenant	where we are the second s	hourself below the states	Hunned Contraction	n ^{a sana} katala	a have we wanted
-70.0					· ·					
-80.0					:					
-90.0										
	OMHz		to	3.0	OOGHz					
	ResBW 10	)0kHz		V:	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	ef Lvl*10.0dE	m				
	KNOB 2		KNOB 1	к	EYPAD	Te	ktronix	2784		

NORTHWEST					
EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	802MIAG-CV60			Work Order:	ITRM0039
Serial Number:	000DF01504A8			Date:	09/02/04
Customer:	INTERMEC Technologies			Temperature:	72 degrees F
Attendees:	None		Tested by: Rod Peloquin	Humidity:	43% RH
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION	IS				
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATI	ONS				
COMMENTS					
EUT OPERATING MOI					
-	t 1 Mbps data rate, 802.11(b) modu	llation scheme			
DEVIATIONS FROM T	EST STANDARD				
None					
REQUIREMENTS					
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.		
RESULTS					
Pass					
SIGNATURE					
	Rocky to Reling				
Tested By:					
DESCRIPTION OF TES	ST				
Anten	na Conducted Spur	ious Emissions 3G	Hz-6.5GHz - High Channe	l - 802.11(b) 1	Mbps

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - High Channel - 802.11(b) 1 Mbps

										Tek
10.0	Ref Lvl	*10.OdBm			1	DdB/		Atten 100	iB	
0.0					:					
					:					
-10.0										
-20.0					:					
-30.0					:					
-40.0					· · · · · ·					
-50.0					:					
-60.0	h-1/~h444mm-wheemer	when the and	www.www.	whatered	mpon Much more	alter investigation of the second sec	haman	ndanananah	WANNON ANAGAN ANA ANA ANA ANA ANA ANA ANA ANA	user when the second
-70.0										
-80.0										
-90.0										
	2.99(	DGHz	to	6.5	OOGHz					
	ResBW 10	DOkHz		V:	idBW 100kH:	z		SWP	2.05	
	LEVEL		SPAN	St	top 6.500	)GHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

Rev BET/									
EMC						01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/02/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:				Rod Peloquin	Humidity:				
Customer Ref. No.:			Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATION	ONS								
COMMENTS									
COMMENTS									
EUT OPERATING MO	DES								
	it 1 Mbps data rate, 802.11(b) modu	ulation scheme							
DEVIATIONS FROM T									
None									
REQUIREMENTS									
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Tested By:	Rocky he Reling								
DESCRIPTION OF TES	ST								
Antenn	na Conducted Spuri	ous Emissions 6.5	GHz-15GHz -	High Channe	el - 802.11(b)	1 Mbps			

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - High Channel - 802.11(b) 1 Mbps

										Tek
10.0		*10.0dBm			10	ldB/		Atten 100	ЗB	
0.0										
0.0					:					
-10.0					· ·					
-20.Q					:					
-30.Q										
-40.Q										
-50.Q										
-60.Q	Alon Marchard	North Hawker and for the state of the state		which the state of the second	mannesser	hanna an	hall the share and the states of the states	white ward white	wither wear and a state of the	Whaterhandshington
-70.Q					:					
-80.Q										
-90.Q					· ·					
	6.499	∋GHz	to	15.0	OOGHz					
	ResBW 10	DOkHz		v	idBW 100kHz			SWP	4.85	
	LEVEL		SPAN	s1	top 15.000	GHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

		EMISSIONS I	DATA SH	FFT		Rev BETA
EMC						01/30/01
	802MIAG-CV60				Work Order:	
Serial Number:	000DF01504A8				Date:	09/02/04
	INTERMEC Technologies				Temperature:	
Attendees:				Rod Peloquin	Humidity:	
Customer Ref. No.:			Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATION						0
	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATI	ONS					
COMMENTS						
COMMENTS						
EUT OPERATING MOI	DES					
Modulated by PRBS a	t 1 Mbps data rate, 802.11(b) modu	llation scheme				
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Rocky he Reling					
DESCRIPTION OF TES	ST					
Antenn	a Conducted Spuri	ous Emissions 15G	Hz - 25GHz -	High Channe	el - 802.11(b)	1 Mbps

Antenna Conducted Spurious Emissions 15GHz - 25GHz - High Channel - 802.11(b) 1 Mbps

										Tek
10.0		*10.OdBm			1	OdB/		Atten 100	dB	
0.0					- - - -					
-10.0										
-20.Q										
-30.0										
-40.Q										
-50.Q							provident	ad place have been ade after an	4-9 march and and and	where have a start
-60.Q	hald the set of the second	when when the the	and the second states and a second states of the second states of the second states of the second states of the	the with the other that	.dhe.on.manywellewala	He Marine and Antiberry	, h++844			
-70.0										
-80.0										
-90.0										
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OOkHz		V:	idBW 100kH	z		SWP	5.78	
	LEVEL		SPAN	SI	pan 10GHz					
	KINOB 2		KNOB 1	KI	EYPAD	Τe	ektronix	2784		

NORTHWEST										
EMC		EMISSIONS	DATA SHEET	Rev BETA 01/30/01						
EUT:	802MIAG-CV60			Work Order: ITRM0039						
Serial Number:	000DF01504A8			Date: 09/02/04						
Customer:	INTERMEC Technologies			Temperature: 72 degrees F						
Attendees:	None		Tested by: Rod Peloquin	Humidity: 43% RH						
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06						
TEST SPECIFICATION	NS									
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year: 1992						
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MO		11.2								
	at 5.5 Mbps data rate, 802.11(b) mo	dulation scheme								
DEVIATIONS FROM T None	EST STANDARD									
REQUIREMENTS	spurious emission outside of the	outhorized band is 20 dB down fr	ion the fundamental							
RESULTS	spurious emission outside of the	authorized band is 20 dB down in	on the fundamental.							
Pass										
SIGNATURE										
Rocky to Reling										
DESCRIPTION OF TES										
Anten	na Conducted Spur	rious Emissions 0N	Hz-3GHz - Low Channel -	802.11(b) 5.5 Mbps						

Antenna Conducted Spurious Emissions 0MHz-3GHz - Low Channel - 802.11(b) 5.5 Mbps

									Tek
10.0		*10.0dBm			10dB/		Atten 100	1B	
0.0									
-10.Q					•				
-20.Q					•				
-30.Q									
-40.Q					· · · · · · · · · · · · · · · · · · ·				
-50.Q					:				
-60.Q	hourses	Lethyperiosianstations.	Herman	monitoria	rhenalnerstrations, and repaired and a	minensplannestyles	all and all star and the star and a	Mar Contraction of the second	^{vi_vi_} k_k_fy ^d fok ^k a+ravievg ^e
-70.0									
10.0									
					•				
-80.Q									
-80.Q -90.Q									
			to	3.0	OOGHz				
		DOkHz	to		OOGHz idBW 100kHz		SWP	1.75	
	OMHz		to	v:			SWP	1.75	

NORTHWEST										
EMC		EMISSIONSI	JATA SH			Rev BETA 01/30/01				
EUT:	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/02/04				
Customer:	INTERMEC Technologies				Temperature:	72 degrees F				
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION										
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS									
COMMENTS										
	~~~									
EUT OPERATING MO	DES It 5.5 Mbps data rate, 802.11(b) mod									
	1 / 1/	dulation scheme								
DEVIATIONS FROM T None	EST STANDARD									
REQUIREMENTS										
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental							
RESULTS										
Pass										
SIGNATURE										
	10:00									
	Rocky to Reling									
	0 03									
Tested By:										
DESCRIPTION OF TE	ST									
		aus Emissions 2CL		ow Channel	902 11/b) 5	5 Mbpc				
Antenn	a Conducted Spuri	ous Ennissions 3Gr	12-0.30HZ - L	ow channel	- ouz. i 1(b) 5	s wups				

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Low Channel - 802.11(b) 5.5 Mbps

										Tek
10.0		*10.0dBm			1	OdB/		Atten 100	1B	
0.0										
0.0										
-10.0										
-20.0										
-30.0					•					
-40.Q					• • • • • • • •					
-50.0										
-60.Q	anoral and the second	the strate way the second s	w/herbeendersertungdyt	man	- the second second	home when the stores	and he reliaged the work	up reterment	y-neeuvelen, Myerry av	rader of the second
-70. <u>0</u>										
-80.Q										
-90.0					-					
	2.99	OGHz	to	6.5	OOGHz					
	ResBW 10	OOkHz		V:	idBW 100kH	z		SWP	2.05	
	LEVEL		SPAN	St	top 6.50	OGHz				
	KNOB 2		KNOB 1	KI	EYPAD	Τe	ektronix	2784		

NORTHWEST										
EMC		EMISSIONSI	JATA SH	EEI		Rev BETA 01/30/01				
	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/02/04				
Customer:	INTERMEC Technologies				Temperature:	72 degrees F				
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION	IS									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS									
COMMENTS	COMMENTS									
EUT OPERATING MOI										
· · · ·	t 5.5 Mbps data rate, 802.11(b) mo	dulation scheme								
DEVIATIONS FROM T	EST STANDARD									
None										
REQUIREMENTS										
-	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.							
RESULTS										
Pass										
SIGNATURE										
	Rocky to Reling									
	and a comp									
Tested By:										
DESCRIPTION OF TES										
Antenna	a Conducted Spurie	ous Emissions 6.5G	iHz-15GHz - l	Low Channel	- 802.11(b) 5	.5 Mbps				

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Low Channel - 802.11(b) 5.5 Mbps

										Tek
10.0		*10.0dBm				10dB/		Atten 100	dB	
0.0										
-10.0						•				
-20.0										
-30.0										
-40.Q										
-50.0						:				
-60.0	fedgeteristation	alteren vara personalio		p.solution-anitic-market	Kullerder with a date	Munum	11-streetystresternetter	www.hupartanaled	ANTHING AND	44.1444.444.4.4444.4.
-70.0						•				
-80.0										
-90.0										
	6.499	∋GHz	to	15.0	OOGHz					
	ResBW 10	DOkHz		v	idBW 100k	Hz		SWP	4.85	
	LEVEL		SPAN	SI	top 15.0	DOGHz				
	KINOB 2		KNOB 1	KI	EYPAD	T∈	ktronix	2784		

ORTHWEST EMISSIONS DATA SHEET Rev BETA									
EMC		EINISSIONSI	JATA SH			Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/02/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:				Rod Peloquin	Humidity:				
Customer Ref. No.:			Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATION	ONS								
COMMENTS									
	222								
EUT OPERATING MOI	t 5.5 Mbps data rate, 802.11(b) mod	dulation schome							
DEVIATIONS FROM T		dulation scheme							
None	EST STANDARD								
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
	Porting to Relings								
Tested By:									
DESCRIPTION OF TES	ST								
Antenn	a Conducted Spurio	ous Emissions 15G	Hz-25GHz - L	ow Channel	- 802.11(b) 5	.5 Mbps			

Antenna Conducted Spurious Emissions 15GHz-25GHz - Low Channel - 802.11(b) 5.5 Mbps

										Tek
10.0		*10.0dBm			:	LOdB/		Atten 10	ЗB	
0.0						•				
-10.Q						•				
-20.Q										
-30.Q										
-40.Q										
-50.Q						•	Mittachilder	Alther Martine	huller retained	M. Malken physics and the
-60.Q	page of the state	which all marked and	with the adjust of the state of	Y WY WHATHING	released by for so and	the has a produced the second of the	www.			
-70.Q										
-80.Q							_			
-90.Q						•				
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OOkHz		Vi	idBW 100kH	Iz		SWP	5.7%	
	LEVEL		SPAN	Re	ef Lvl*10.	OdBm				
	KINOB 2		KNOB 1	KI	EYPAD	Т	Sektronix	2784		

NORTHWEST										
EMC		EMISSIONS	DATA SHEET	Rev E 01/30	BETA 0/01					
EUT:	802MIAG-CV60			Work Order: ITRM0039						
Serial Number:	000DF01504A8			Date: 09/02/04						
Customer:	INTERMEC Technologies			Temperature: 72 degrees F						
Attendees:	None		Tested by: Rod Peloquin	Humidity: 43% RH						
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06						
TEST SPECIFICATION	15									
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	4 Year: 1992						
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MO										
	t 5.5 Mbps data rate, 802.11(b) mo	dulation scheme								
DEVIATIONS FROM T	EST STANDARD									
None										
REQUIREMENTS	spurious emission outside of the	outhorized band is 20 dB down fr	om the fundamental							
RESULTS	spurious emission outside of the	authorized band is 20 dB down in	om the fundamental.							
Pass SIGNATURE										
Rocky to Pielings										
······································										
DESCRIPTION OF TES	ST									
Anten	ina Conducted Spu	rious Emissions 0N	/Hz-3GHz - Mid Channel -	802.11(b) 5.5 Mbps						

Antenna Conducted Spurious Emissions 0MHz-3GHz - Mid Channel - 802.11(b) 5.5 Mbps

										Tek
10.0	Ref Lvl*	10.0dBm			10dB/	,		Atten 100	1B	
0.0										
-10.0					:					
-20.Q										
-30.Q										
-40.Q					· · · · · ·					
-50.0					:					
-60.Q	under and work of the	enterenter and a lar	warter Harry further and	1-utri-grafer-april	uteninkenselsenenselsen	leader New York	ingoaner-gradeallight	magnariletingeria	" "mummulu	when we proved a serve
-70.0					• • •					
-80.0										
-90.Q										
	OMHz		to	3.0	OOGHz					
	ResBW 10	OkHz		V:	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	≥f Lvl*10.0dBm	n				
	KNOB 2		KNOB 1	KI	EYPAD	Tel	ktronix	2784		

EMISSIONS DATA SHEET									
EMC						Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/02/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:				Rod Peloquin	Humidity:				
Customer Ref. No.:			Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO	250								
	t 5.5 Mbps data rate, 802.11(b) mod	dulation scheme							
DEVIATIONS FROM T	1 / 1/								
None	EST STANDARD								
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Rocky to Relenge									
DESCRIPTION OF TEST									
Antenr	na Conducted Spuri	ous Emissions 3G	Hz-6.5GHz - N	/lid Channel -	802.11(b) 5.	5 Mbps			

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Mid Channel - 802.11(b) 5.5 Mbps

										j S
10.0		*10.OdBm				10dB/		Atten 10	цВ	
0.0										
0.0						:				
-10.Q						•				
-20.Q										
-30.Q										
-30.0										
-40.Q						· · · · · · ·				
-50.Q						:				
-60.0		epotterstrandization	Monorgania	heller and the second	ahimperiy/predicteday	apart the strawthe days	rendered the second	en and the state of the second state of the se	fert-laftelor-gh-gr-hytelo	delady. An or over the algorithm
						:				
-70.Q						· ·				
-80.Q						:				
-90.0						:				
	2.99	DGHz	to	6.5	OOGHz					
	ResBW 10	DOkHz		V:	idBW 100	kHz		SWP	2.05	
	LEVEL		SPAN		top 6.	500GHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	≥ktronix	2784		

EMISSIONS DATA SHEET									
EMC						Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/02/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION						-			
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
	250								
EUT OPERATING MO	DES It 5.5 Mbps data rate, 802.11(b) mod	dulation schome							
DEVIATIONS FROM T	1 / 1/	dulation scheme							
None	EST STANDARD								
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.						
RESULTS									
Pass									
SIGNATURE									
Rocky to Relenge									
DESCRIPTION OF TEST									
Antenn	a Conducted Spuri	ous Emissions 6.50	GHz-15GHz -	Mid Channel	- 802.11(b) 5	.5 Mbps			

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Mid Channel - 802.11(b) 5.5 Mbps

										Tek
10.0		*10.OdBm			10	dB/		Atten 100	цВ	
0.0					:					
0.0					:					
-10.0										
-20.Q					:					
-30.0					-					
					:					
-40.Q										
-50.Q					:					
-60.Q	persilenter the setting	when when the	Yohead and a stranger of a	had an a second and a second second	notransportant	"have for more that and	mannersterra	white shore with	warman manufacture	wilderstrikeringerike
-70.0					:					
-80.Q					•					
-90.0										
	6.499	ƏGHz	to	15.0	OOGHz					
	ResBW 10	OOkHz		v	idBW 100kHz			SWP	4.85	
	LEVEL		SPAN	SI	top 15.000	GHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

EMISSIONS DATA SHEET									
EMC						Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/02/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
	~~~								
EUT OPERATING MO	DES it 5.5 Mbps data rate, 802.11(b) mod	dulation acheme							
-		duration scheme							
DEVIATIONS FROM T None	EST STANDARD								
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental						
RESULTS									
Pass									
SIGNATURE									
	10, Pl								
	Rocky to Reling								
Tested By:									
DESCRIPTION OF TES	DESCRIPTION OF TEST								
Antonn	a Conducted Spuri	ous Emissione 150	H7-25GH7 -	Mid Channel	- 802 11(b) 5	5 Mbns			
Anten	a soliausted opuli				002. I (D) 0				

Antenna Conducted Spurious Emissions 15GHz-25GHz - Mid Channel - 802.11(b) 5.5 Mbps

										Tek
10.0		*10.0dBm			10	dB/		Atten 100	ЗB	
0.0										
					:					
-10.Q					· ·					
-20.Q					:					
-30.0										
-40.Q										
-50.Q					:		obuchaterion	nor when dry has grown on the	mummum	at white the general services
-60.Q	www.	mapping	Wheelow Manhatran	han and the second s	ward and and the start	wheelpool is the product of the second				
					:					
-70.0					· ·					
-80.0					· ·					
-90.Q					: : :					
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	DOkHz		Vi	idBW 100kHz			SWP	5.78	
	LEVEL		SPAN	Re	ef Lvl*10.0	dBm				
	KINOB 2		KNOB 1	KI	EYPAD	Te	≥ktronix	2784		

NORTHWEST								
EMC		EMISSIONS [	DATA SH	EET		Rev BETA 01/30/01		
EUT:	: 802MIAG-CV60				Wo	ork Order: ITRM0039		
Serial Number:	: 000DF01504A8					Date: 09/02/04		
Customer:	INTERMEC Technologies				Tem	perature: 72 degrees F		
Attendees:	None		Tested by:	Rod Peloquin		Humidity: 43% RH		
Customer Ref. No.:	. N/A		Power:	120VAC/60Hz		Job Site: EV06		
TEST SPECIFICATION	NS							
Specification:	: FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.4		Year: 1992		
SAMPLE CALCULATION	ONS							
COMMENTS								
EUT OPERATING MOD	DES							
Modulated by PRBS a	at 5.5 Mbps data rate, 802.11(b) mod	dulation scheme				· · · · · · · · · · · · · · · · · · ·		
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
Maximum level of any	y spurious emission outside of the	authorized band is 20 dB down from	om the fundamental.					
RESULTS								
Pass								
SIGNATURE								
Rocky to Relenge								
DESCRIPTION OF TES	ST							
Anten	na Conducted Spur	ious Emissions 0M	Hz-3GHz - Hi	gh Channel - 8	802.11	(b) 5.5 Mbps		

Antenna Conducted Spurious Emissions 0MHz-3GHz - High Channel - 802.11(b) 5.5 Mbps

										Tek
10.0	Ref Lvl'	10.0dBm			10d	в/		Atten 100	ЗB	
0.0										
0.0										
-10.0					· · ·					
-20.0					:					
-30.Q					· · · · · · · · · · · · · · · · · · ·					
-40.Q										
-50.0					:					
-60.Q	1 Anna phane	mandahantinahana	ALTONIA 44444	nen mannak	midsonallengrahad	Lunghat from	₩₽ſ <b>₩₽</b> ſ\₽ <mark>ϟ</mark> ₩₩₩₩₽₽	WHAT HANKING	na wanapah	the the water and the state of
-70.0										
-70.0					· · ·					
-80.0					· ·					
-90.0										
	OMHz		to	3.0	OOGHz					
	ResBW 10	)0kHz		Vi	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	≘f Lvl≭10.Od	Bm				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

EMC		EMISSIONS [	JATA SH	EEI		Rev BETA 01/30/01				
EUT:	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/02/04				
Customer:	INTERMEC Technologies				Temperature:	72 degrees F				
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION	IS									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.	4 Year:	1992				
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MOI										
	t 5.5 Mbps data rate, 802.11(b) mo	dulation scheme								
DEVIATIONS FROM T None	EST STANDARD									
REQUIREMENTS										
	anumieus emission euteide of the	authorized band is 20 dB down fro	m the fundamental							
RESULTS	spurious emission outside of the	autionzed band is 20 dB down inc	in the fundamental.							
Pass										
SIGNATURE										
SIGNATURE	1									
	Rola L. Pelin									
	Rocky to Releng									
Tested By:										
DESCRIPTION OF TES					000 4441 5 -					
Antenn	a Conducted Spuri	ous Emissions 3GH	IZ-6.5GHZ - H	ligh Channel	- 802.11(b) 5.	.5 Mbps				

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - High Channel - 802.11(b) 5.5 Mbps

										Tek
10.0	Ref Lvl*	10.0dBm				10dB/		Atten 100	iB	
0.0										
0.0										
-10.0										
-20.0										
-30.0										
-40.Q						• • • • • • • •				
-50.0						•				
-60.Q	havenness	<b>⋏</b> ₩₳₽₳ <b>₽</b> ₩₩₩	analashandharasharashar	water and	www.halke	becaused with a state	and a construction of the second	har farmer	ushtelesesses	al warden in the help for
-70.0										
-80.0										
-90.0										
	2.990	GHz	to	6.5	OOGHz					
	ResBW 10	OkHz		V:	idBW 100kH	Hz		SWP	2.05	
	LEVEL		SPAN	St	top 6.50	DOGHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST										
EMC		EMISSIONS I	JATA SH	EEI		Rev BETA 01/30/01				
EUT:	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/02/04				
Customer:	INTERMEC Technologies			-	Temperature:	72 degrees F				
Attendees:			Tested by:	Rod Peloquin	Humidity:					
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION										
	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS									
COMMENTS	COMMENTS									
EUT OPERATING MO										
	t 5.5 Mbps data rate, 802.11(b) mo	dulation scheme								
DEVIATIONS FROM T None	EST STANDARD									
REQUIREMENTS	anurious omission sutside of the	authorized band is 20 dB down fro	m the fundamental							
RESULTS	spurious emission outside of the	authorized band is 20 dB down ind	om the fundamental.							
Pass SIGNATURE										
SIGNATURE	2									
	Rocky to Releng									
	in the second									
Tested By:										
DESCRIPTION OF TES	ST									
		Emissions 2.50			000 44/1-1 5					
Antenna	a Conducted Spurio	ous Emissions 6.5G	HZ-15GHZ - F	lign Channel	- 802.11(b) 5	o.5 Mbps				

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - High Channel - 802.11(b) 5.5 Mbps

										Tek
10.0		*10.OdBm			t	.0dB/		Atten 100	dB	
0.0										
-10.Q					:					
-20.Q					:					
-30.Q										
-40.Q										
-50.Q										
-60.0	Muriter Maryan Am	kundunda katakatakatakatakatakatakatakatakataka	Margaretray, and Agreed	WANT MANY MARKET	the space of the second	^{PC} U.UrgwijkAlikowsky	here when you when some	where the make and	Maguna	www.weekaddithelay.ea
-70.0					:					
-80.Q					:					
-90.0										
	6.499	9GHz	to	15.0	OOGHz					
	ResBW 10	OOkHz		v:	idBW 100kH	Iz		SWP	4.85	
	LEVEL		SPAN	s	top 15.00	OGHz				
	KNOB 2		KNOB 1	KI	EYPAD	T∈	ktronix	2784		

NORTHWEST									
EMC		EMISSIONS [	DATA SH	EET		Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/02/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION	IS								
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.	4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS	COMMENTS								
EUT OPERATING MOI									
,	t 5.5 Mbps data rate, 802.11(b) mo	dulation scheme							
DEVIATIONS FROM T None	EST STANDARD								
REQUIREMENTS									
	anurious omission outside of the	authorized band is 20 dB down fro	m the fundamental						
RESULTS	spurious emission outside of the	authorized baild is 20 dB down iro	in the fundamental.						
Pass									
SIGNATURE									
SIGNATORE									
	Rocky to Reling								
	in the second								
Tested By:									
DESCRIPTION OF TES	27								
Antenn	a Conducted Spur	ious Emissions 15G	Hz-25GHz - I	Mid Channel -	· 802.11(b) 5.	5 Mbps			

Antenna Conducted Spurious Emissions 15GHz-25GHz - Mid Channel - 802.11(b) 5.5 Mbps

										Tek
10.0		*10.OdBm			10	dB/		Atten 100	1B	
					-					
0.0					· · ·					
-10.Q					•					
-20.Q										
-30.0					-					
40.0										
-40.0										
-50.0					. the appellant-the	المديورومية ورما	providente ante	for allow the dear of	₦ĸĸĸ┫ġġĸĸĸĕĕ₽ ^ĸ ₩₩₽₩₽₽₽₩Ĭ	w ^{they} shives of the shift
-60.Q	hills and a stand and a stand a	nstan var de	Montenanter	<b>⋔</b> ₱ <b>⋎⋈⋒</b> ⋹⋖ ^{⋎⋏⋗⋎} ⋗⋎⋬⋏⋳⋺⋰⋖⋫	HUND WIND	ar a ha ann an a				
-70.0										
-80.0					:					
-90.0					• • •					
<u>-</u>	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OOkHz		v:	idBW 100kHz			SWP	5.7%	
	LEVEL		SPAN	SI	pan 10GHz					
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST										
EMC		EIVIISSIUNSI	DATA SHEET	Rev BETA 01/30/01						
EUT:	802MIAG-CV60			Work Order: ITRM0039						
Serial Number:	000DF01504A8			Date: 09/02/04						
Customer:	INTERMEC Technologies			Temperature: 72 degrees F						
Attendees:	None		Tested by: Rod Peloquin	Humidity: 43% RH						
Customer Ref. No.:	N/A		Power: 120VAC/60Hz	Job Site: EV06						
TEST SPECIFICATION	NS									
Specification:	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year: 1992						
SAMPLE CALCULATI	ONS									
COMMENTS	COMMENTS									
EUT OPERATING MO										
	at maximum data rate, 802.11(b) mo	odulation scheme								
DEVIATIONS FROM T	EST STANDARD									
None										
REQUIREMENTS	spurious emission outside of the	outhorized band is 20 dB down fr	ion the fundamental							
RESULTS	spurious emission outside of the	authorized band is 20 dB down in	on the fundamental.							
Pass SIGNATURE										
Rocky to Relings										
rested By:	Tested By:									
DESCRIPTION OF TES	ST									
Anten	ina Conducted Spu	rious Emissions 0M	/Hz-3GHz - Low Channel -	802.11(b) 11 Mbps						

Antenna Conducted Spurious Emissions 0MHz-3GHz - Low Channel - 802.11(b) 11 Mbps

										Tek
10.0	Ref Lvl ³	*10.OdBm			10dB/	/		Atten 100	lB	
									1	
0.0										
-10.Q					•					
-20.Q					:					
-30.Q										
-40.Q										
-50.0					-					
-60.0	han an a	hadoth-Adamshatanta	Hudhar Marina	manun	phatropatheoretenessingle	-1/14.000.01.00.01	marita	above the till and the second	When when the week	⁴ 44447-921%htv&artisk
-70.Q					· · ·					
-80.Q					· · ·					
-90.Q										
	OMHz		to	3.0	OOGHz					
	ResBW 10	)0kHz		V	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	ef Lvl*10.0dBn	ń				
	KINOB 2		KNOB 1	KI	EYPAD	Tel	ktronix	2784		

NORTHWEST										
EMC		EINISSIONSI	JATA SH			Rev BETA 01/30/01				
EUT:	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/02/04				
Customer:	INTERMEC Technologies				Temperature:	72 degrees F				
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION										
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MO	DES									
	it maximum data rate, 802.11(b) mc	dulation scheme								
DEVIATIONS FROM T										
None	LOT GTANDARD									
REQUIREMENTS										
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.							
RESULTS	-									
Pass										
SIGNATURE										
Rocky te Relings										
DESCRIPTION OF TES					000 4441 > 4	4 8 8 1				
Antenr	na Conducted Spuri	ious Emissions 3GI	HZ-6.5GHZ - L	ow Channel.	- 802.11(b) 1	1 Mbps				

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Low Channel - 802.11(b) 11 Mbps

										Tek
10.0	Ref Lvl*	10.0dBm				10dB/		Atten 100	dB	
0.0										
0.0										
-10.0						•				
-20.0										
-30.0										
-40.Q										
-50.0							1		لمريام	a ta sa dalamba ang masiki
-60.Q	ylugan Hardel Harrinson	et Helensteren Auropatie	whether	ngulangal duntan (jatilish	Antipation and	warm the ward	an for the state of the state o	VVANUAR CONSTITUTION	htelistanikensadarenda	August Parlowers
-70.0						•				
-70.0										
-80.0						•				
-90.0						•				
	2.990	)GHz	to	6.5	OOGHz					
	ResBW 10	)0kHz		V:	idBW 100	OkHz		SWP	2.05	
	LEVEL		SPAN	St	cop 6	.500GHz				
	KNOB 2		KNOB 1	KI	SYPAD	т	ektronix	2784		

NORTHWEST										
EMC						01/30/01				
EUT:	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/02/04				
Customer:	INTERMEC Technologies				Temperature:	72 degrees F				
Attendees:				Rod Peloquin	Humidity:					
Customer Ref. No.:			Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION										
	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS									
000005070										
COMMENTS										
EUT OPERATING MO	DES									
	t maximum data rate, 802.11(b) mc	dulation scheme								
DEVIATIONS FROM T										
None	LOT GTANDARD									
REQUIREMENTS										
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.							
RESULTS	-									
Pass										
SIGNATURE										
Rocky to Relings										
DESCRIPTION OF TES	ST									
	a Conducted Spurio	ous Emissions 6 50	H7-15GH7 -	ow Channel	- 802 11(b) 1	11 Mbns				
	a conducted opund				- 002.11(D)	i i mpha				

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Low Channel - 802.11(b) 11 Mbps

										Tek
10.0	Ref Lvl	*10.0dBm			:	LOdB/		Atten 100	dB	
0.0						•				
-10.0										
-20.0						•				
-30.0										
-40.Q										
-50.0						•				
-60.Q	ntonina langa langa kanad	and and a second states of the	Have been have the	and preserve and a second	www.pypyhaluyaph	M was an analytic of	www.	elevelue, to we faither when	North Martin and	4 hours of the states and the same
-70.0						•				
-80.0						•				
-90.0										
	6.499	ƏGHz	to	15.0	OOGHz					
	ResBW 10	OOkHz		V	idBW 100kH	Iz		SWP	4.85	
	LEVEL		SPAN	SI	top 15.00	)OGHz				
	KINOB 2		KNOB 1	KI	EYPAD	T∈	ktronix	2784		

EMC		EMISSIONS [	DATA SH	EEI		Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/02/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH			
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION	IS								
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.	4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS	COMMENTS								
EUT OPERATING MO									
	t maximum data rate, 802.11(b) m	odulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS		authorized band is 20 dB down fro	m the fundamental						
,	spurious emission outside of the	authorized band is 20 dB down inc	om the fundamental.						
RESULTS									
Pass SIGNATURE									
SIGNATURE									
	Rocky to Reling								
	0 73								
Tested By:	5								
DESCRIPTION OF TES	ST								
Antonn	a Conducted Spuri	ous Emissions 15G	H7 - 25GH7 -	Low Channel	- 802 11/h) 1	11 Mbns			
AIIteIIII	a conducted Spun		12 - 230112 -		- 002.11(D)	i i minha			

Antenna Conducted Spurious Emissions 15GHz - 25GHz - Low Channel - 802.11(b) 11 Mbps

										Tek
10.0	Ref Lvl ³	*10.0dBm			:	LOdB/		Atten 100	dB	
0.0										
-10.Q										
-20.Q										
-30.0						•	_			
-40.Q										
-50.0							1. Mariana Maria	spital million appropriate	Anther and the second second	general magnetices
-60.Q	where we have been and been any	aftered to the second second	my when the stranger	edinger and the sea	here and a service of the	and and a state of the state of	hand the second			
-60.0										
-70.0										
-80.0										
-90.0						•				
	14.990	GHz	to	25.	OOGHz					
	ResBW 10	OckHz		V:	idBW 100kH	Iz		SWP	5.78	
	LEVEL		SPAN	Re	≥f Lvl*10.	OdBm				
	KINOB 2		KNOB 1	KI	EYPAD		Tektronix	2784		

NORTHWEST										
					01/30/01					
	802MIAG-CV60			Work Order:						
	000DF01504A8				09/02/04					
	INTERMEC Technologies			Temperature:						
Attendees:			Tested by: Rod Peloquin	Humidity: 43% RH						
Customer Ref. No.:			Power: 120VAC/60Hz	Job Site:	EV06					
TEST SPECIFICATION										
	FCC Part 15.247(c)	Year: 2003	Method: FCC 97-114, ANSI C63	.4 Year:	1992					
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MO	DES									
Modulated by PRBS a	t maximum data rate, 802.11(b) mo	odulation scheme								
DEVIATIONS FROM T	EST STANDARD									
None										
REQUIREMENTS										
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental.							
RESULTS										
Pass										
SIGNATURE										
Rocky to Reling										
DESCRIPTION OF TEST										
Anter	nna Conducted Spu	rious Emissions 0	MHz-3GHz - Mid Channel -	802.11(b) 11	Mbps					

Antenna Conducted Spurious Emissions 0MHz-3GHz - Mid Channel - 802.11(b) 11 Mbps

										Tek
10.0	Ref Lvl*:	10.0dBm			10d	в/		Atten 100	1B	
0.0									,	
0.0										
-10.0					•					
-20.0					· · ·					
-30.0									Ω	
-40.0										
-50.0										
-60.0	an and the second second	hwww.hatathathayayatha	Kringlether and the state	white a strate with the state	hispedopertonestichicstell	- Andrew Alater	h.r	WHM I AND A WARMAN AND A SHALE	n natalik wijhely ala	mununum
-70.0										
-70.0					: : :					
-80.0					· · ·					
-90.0										
	OMHz		to	3.0	OOGHz					
	ResBW 100	)kHz		V:	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	≥f Lvl*10.0d	Bm				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST						
EMC		EMISSIONS [	DATA SH	EET		Rev BETA 01/30/01
EUT:	802MIAG-CV60				Wo	rk Order: ITRM0039
Serial Number:	000DF01504A8					Date: 09/02/04
Customer:	INTERMEC Technologies				Tem	perature: 72 degrees F
Attendees:	None		Tested by:	Rod Peloquin	1	Humidity: 43% RH
Customer Ref. No.:	N/A		Power:	120VAC/60Hz		Job Site: EV06
TEST SPECIFICATION	IS					
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.	.4	Year: 1992
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MOI	DES					
Modulated by PRBS a	t maximum data rate, 802.11(b) mo	odulation scheme				
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.			
RESULTS						
Pass						
SIGNATURE						
Tested By:	Porty le Reling					
DESCRIPTION OF TES	ST					
Anten	na Conducted Spur	ious Emissions 3G	Hz-6.5GHz - I	Mid Channel	- 802.11	(b) 11 Mbps

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - Mid Channel - 802.11(b) 11 Mbps

										Tek
10.0		*10.OdBm				10dB/		Atten 10	цВ	
						:				
0.0						:				
-10.0						•				
-20.0						:				
-30.0										
-40.0										
-50.0										
-60.0		epotterside and advect	Mananananana	han and the second	dingut/pretables	prospherition halves	hundred and the	eren freksteren str	yearlyblangh-gardybla	phaseconnertation
						•				
-70.0						· ·				
-80.0						•				
-90.0						•				
	2.99(	DGHz	to	6.5	OOGHz					
	ResBW 10	DOkHz		V:	idBW 100}	Hz		SWP	2.05	
	LEVEL		SPAN	St	cop 6.5	iOOGHz				
	KINOB 2		KNOB 1	KI	EYPAD	Т	ektronix	2784		

NORTHWEST										
EMC						01/30/01				
EUT:	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/02/04				
Customer:	INTERMEC Technologies				Temperature:	72 degrees F				
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION										
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS									
COMMENTS										
	222									
EUT OPERATING MOI	t maximum data rate, 802.11(b) mc	dulation schome								
DEVIATIONS FROM T		dulation scheme								
None	EST STANDARD									
REQUIREMENTS										
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.							
RESULTS										
Pass										
SIGNATURE										
Tested By:	Roly to Reling									
DESCRIPTION OF TES	ST									
Antenn	a Conducted Spuri	ous Emissions 6.50	GHz-15GHz -	Mid Channel	- 802.11(b) 1	1 Mbps				

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - Mid Channel - 802.11(b) 11 Mbps

										Tek
10.0	Ref Lvl	*10.0dBm			:	10dB/		Atten 10	dB	
0.0						•				
						•				
-10.0										
-20.Q										
-30.Q						• • •				
-40.Q										
-50.0										
-60.Q	ylopdy-adensespekyetsi	and an address of the set	unandentroperistication	with	high glass and a start of the	and have been all and the second	ad the second with	alwater station and a state of the state of	Marrial Colorador	ntytegenerallenteration
-70.0						•				
-70.0										
-80.Q										
-90.Q						•				
	6.49	ƏGHz	to	15.0	OOGHz					
	ResBW 1	DOkHz		v	idBW 100kH	łz		SWP	4.85	
	LEVEL		SPAN	SI	top 15.00	OGHz				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST										
EMC		EINISSIONSI	JATA SH			Rev BETA 01/30/01				
EUT:	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/02/04				
Customer:	INTERMEC Technologies				Temperature:	72 degrees F				
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION										
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MO										
-	t maximum data rate, 802.11(b) mo	odulation scheme								
DEVIATIONS FROM T	EST STANDARD									
None										
REQUIREMENTS										
,	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.							
RESULTS										
Pass SIGNATURE										
SIGNATURE										
Rocky to Relenge										
Tested By:										
DESCRIPTION OF TES										
Antenn	a Conducted Spuri	ous Emissions 15G	Hz - 25GHz -	Mid Channel	- 802.11(b) ′	11 Mbps				

Antenna Conducted Spurious Emissions 15GHz - 25GHz - Mid Channel - 802.11(b) 11 Mbps

										Tek
10.0	Ref Lvl*	10.0dBm			1	OdB/		Atten 100	ЗB	
0.0										
					:					
-10.0										
-20.0										
-30.0					:					
-40.0										
-50.0						<b>h</b>	pret-themasses	for the of the of the owned and the owned	when the white the	the when the second
-60.Q	proven and the second start	former with the second	want the standing of	Angen befor skilder 1980	ن	Newserver	phanders.			
-00.0										
-70.0										
-80.0										
-90.0					-					
	14.990	Hz	to	25.	OOGHz					
	ResBW 10	OkHz		Vi	idBW 100kH	z		SWP	5.7%	
	LEVEL		SPAN	Re	≘f Lvl*10.	OdBm				
	KINOB 2		KNOB 1	KI	EYPAD	Te	≥ktronix	2784		

NORTHWEST							
EMC		EMISSIONS [	DATA SH	EET		Rev BETA 01/30/01	
EUT:	802MIAG-CV60				Wor	k Order: ITRM0039	
Serial Number:	000DF01504A8					Date: 09/02/04	
Customer:	INTERMEC Technologies				Temp	erature: 72 degrees F	
Attendees:	None		Tested by:	Rod Peloquin	Humidity: 43% RH		
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	J	lob Site: EV06	
TEST SPECIFICATION							
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63.	4	Year: 1992	
SAMPLE CALCULATI	ONS						
COMMENTS							
EUT OPERATING MOI	DES						
Modulated by PRBS a	t maximum data rate, 802.11(b) mo	odulation scheme					
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.				
RESULTS							
Pass							
SIGNATURE							
Tested By:	Porty le Reling						
DESCRIPTION OF TES	ST						
Anten	na Conducted Spur	rious Emissions 0M	Hz-3GHz - Hi	igh Channel -	802.11(	(b) 11 Mbps	

Antenna Conducted Spurious Emissions 0MHz-3GHz - High Channel - 802.11(b) 11 Mbps

											Tek
10.0		*10.0dBm			10d)	в/		Atten 100	dB		
0.0											
									Π		
-10.Q					· ·				$\left  \right $		
-20.Q					· · ·				H		
-30.Q											
-40.Q										 	
-50.Q					:				ļļ	Į	
-60.Q	which the and the state	nongworthaling	Howahandre	when the second	unandrondersonderstelling	warder for matched	anna an	weither	N ¹	What should be	whether and the fear
-70.0											
-70.0					· · · · · · · · · · · · · · · · · · ·						
-80.Q					· ·						
-90.0					:						
	OMHz		to	3.0	OOGHz						
	ResBW 10	DOkHz		V:	idBW 100kHz			SWP	1.	75	
	LEVEL		SPAN	Re	≘f Lvl*10.OdB	3m					
	KINOB 2		KNOB 1	кі	EYPAD	Te	ktronix	2784			

NORTHWEST										
EMC			JATA SH	551		01/30/01				
EUT:	802MIAG-CV60				Work Order:	ITRM0039				
Serial Number:	000DF01504A8				Date:	09/02/04				
Customer:	INTERMEC Technologies				Temperature:	72 degrees F				
Attendees:	None		Tested by:	Rod Peloquin	Humidity:	43% RH				
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06				
TEST SPECIFICATION						-				
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992				
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT OPERATING MO	250									
	t maximum data rate, 802.11(b) mc	dulation schome								
DEVIATIONS FROM T		dulation scheme								
None	EST STANDARD									
REQUIREMENTS										
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental.							
RESULTS										
Pass										
SIGNATURE										
Norty to Relings										
DESCRIPTION OF TES	ST									
Antenr	na Conducted Spuri	ous Emissions 3GI	Iz-6.5GHz - H	ligh Channel	- 802.11(b) 1	1 Mbps				

Antenna Conducted Spurious Emissions 3GHz-6.5GHz - High Channel - 802.11(b) 11 Mbps

										Tek
10.0	Ref Lvl*	10.0dBm				10dB/		Atten 10	dB	
0.0										
-10.0						:				
-20.0						:				
-30.0										
-40.0										
-50.0										
-60.0	revelopedition	nproversiter the the	the above the stander of	p-anghletoriantal happed	<i>\\\</i>	and all marked and	ap the month	er appleter and a state of	apara ang karang panang a	and an an Alland
-70.0										
-70.0						:				
-80.0						:				
-90.0						•				
	2.990	GHz	to	6.5	OOGHz					
	ResBW 10	OkHz		V	idBW 100	kHz		SWP	2.05	
	LEVEL		SPAN	SI	top 6.	500GHz				
	KNOB 2		KNOB 1	KI	EYPAD	Τe	≥ktronix	2784		

NORTHWEST									
EMC		EINISSIONSI	JATA SH			Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/02/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None	None Tested by: Rod Peloquin							
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO									
-	t maximum data rate, 802.11(b) mo	dulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fr	m the fundamental						
RESULTS	spurious emission outside of the	authorized band is 20 dB down int	on the fundamental.						
Pass									
SIGNATURE									
OIGNATORE	2.2. 0.2								
Porting to Reling									
Tested By:	5 0								
DESCRIPTION OF TE	ST								
Antenna Conducted Spurious Emissions 6.5GHz-15GHz - High Channel - 802.11(b) 11 Mbps									

Antenna Conducted Spurious Emissions 6.5GHz-15GHz - High Channel - 802.11(b) 11 Mbps

										Tek
10.0		*10.0dBm			t	.0dB/		Atten 100	dB	
0.0										
-10.0										
10.0										
-20.0					· · · ·					
-30.0										
-40.Q										
-50.0										
-60.Q	manantanalam	and the property of the	normal plan in the second of the	ward warden	Very methyland i the methyland	ha wanter the second	white the service where the	witter work which the state	waysold the property of	malinamethymatic
-70.0					:					
-80.0										
-90.0										
	6.499	ƏGHz	to	15.0	OOGHz					
	ResBW 10	DOkHz		v:	idBW 100kH	[z		SWP	4.85	
	LEVEL		SPAN	s	top 15.00	OGHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

EMC		ENISSIONSI	JATA SH			Rev BETA 01/30/01			
EUT:	802MIAG-CV60				Work Order:	ITRM0039			
Serial Number:	000DF01504A8				Date:	09/02/04			
Customer:	INTERMEC Technologies				Temperature:	72 degrees F			
Attendees:	None	None Tested by: Rod Peloquin							
Customer Ref. No.:	N/A		Power:	120VAC/60Hz	Job Site:	EV06			
TEST SPECIFICATION									
Specification:	FCC Part 15.247(c)	Year: 2003	Method:	FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATI	ONS								
COMMENTS									
EUT OPERATING MO	DES at maximum data rate, 802.11(b) mo								
-		odulation scheme							
DEVIATIONS FROM T None	EST STANDARD								
REQUIREMENTS									
	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental						
RESULTS									
Pass									
SIGNATURE									
	10:00								
Porting to Relenge									
	0 03								
Tested By:	-								
DESCRIPTION OF TEST									
		ue Emissione 15C		High Channe	1 002 11/b)	11 Mhno			
Antenna Conducted Spurious Emissions 15GHz - 25GHz - High Channel - 802.11(b) 11 Mbps									

Antenna Conducted Spurious Emissions 15GHz - 25GHz - High Channel - 802.11(b) 11 Mbps

										Tek
10.0	Ref Lvl [;]	10.0dBm			10	)dB/		Atten 100	1B	
0.0										
-10.0					· · ·					
-10.0					:					
-20.Q					•					
-30.Q					· ·					
-40.Q										
-50.0							pulloundersty	estration was dreadly	when had a solution	kinder approximate a second
	watter with strange	where and and we	where we are a start and a	Angen anger and an and an	when dered my of the gathe	wy fither and the second	edual			
-60.Q										
-70.0										
-80.0										
-90.0					· · ·					
	14.990	Hz	to	25.	OOGHz					
	ResBW 100kHz		Vi	VidBW 100kHz		SWP 5.7S				
	LEVEL		SPAN	sı	pan 10GHz					
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

