Intermec Technologies Corporation

Galileo Modular Radio (TI) Model RC11

Report No. INMC0549.3

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2009Northwest EMC, Inc

Certificate of Test

Last Date of Test: August 11, 2009 Intermec Technologies Corporation Model: Galileo Modular Radio (TI)

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Spurious Radiated Emissions	FCC 15.247 (FHSS):2009	ANSI C63.4:2003 DA 00-705:2000	Pass	
Occupied Bandwidth	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
Output Power	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
Power Spectral Density	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
Spurious Conducted Emissions	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
Band Edge Compliance	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
AC Powerline Conducted Emissions	FCC 15.207:2009	ANSI C63.4:2003	Pass	
Band Edge Compliance	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
Duty Cycle Correction	FCC 15.247 (FHSS):2009	ANSI C63.4:2003 DA 00-705:2000	Pass	

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:
Donald Manchant
Don Facteau, IS Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2*)

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NVLAP LAB CODE 200629-0 NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0 NVLAP LAB CODE 200761-0

ſF

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294*).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

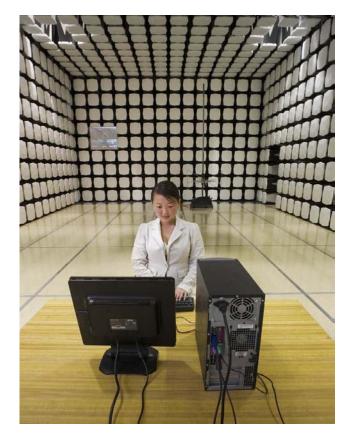
KCC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (*Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157*)

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u>

Revision 12/08/08

NEMKO

Northwest EMC Locations



Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Intermec Technologies Corporation	
Address:	6001 36th Avenue West	
City, State, Zip:	Everett, WA 98203-1264	
Test Requested By:	Wayne Rieger	
Model:	Galileo Modular Radio (TI) Model RC11	
First Date of Test:	June 4, 2009	
Last Date of Test:	August 11, 2009	
Receipt Date of Samples:	June 3, 2009	
Equipment Design Stage:	Preproduction	
Equipment Condition:	No Damage	

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test): One combination 802.11a/b/g - Bluetooth radio module

Testing Objective:

Seeking to demonstrate compliance of the Bluetooth portion of the radio to FCC 15.247 for operation in the 2.4 GHz band.

CONFIGURATION 1 INMC0519

Software/Firmware Running during test		
Description Version		
HCI Tester (Bluetooth)	2.3.1.0	
Radio Scope (802.11)	1.0	

EUT				
Description Manufacturer		Model/Part Number	Serial Number	
EUT - Combined 802.11bg and Bluetooth radio module	Intermec Technologies Corporation	Galileo Modular Radio	7	

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
Power Supply	Intermec Technologies Corporation	3-304029-Q1	01669	

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Remote PC	Dell	Latitude D600	Unknown	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC power	No	2.3m	No	AC Mains	Power Supply
DC power	PA	2.3m	PA	Power Supply	Test Module
USB	No	5.0m	No	EUT	Remote PC
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 3 INMC0519

Software/Firmware Running during test		
Description Version		
HCI Tester (Bluetooth)	2.3.1.0	
Radio Scope (802.11)	1.0	

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
EUT - Combined 802.11bg and Bluetooth radio module	Intermec Technologies Corporation	Galileo Modular Radio	None	

Peripherals in test setup boundary				
Description	escription Manufacturer Model/Part Number Serial Number			
Power Supply	Topward Electric Instruments Co. LTD.	TPS-2000	946425	

Remote Equipment Outside of Test Setup Boundary							
Description	Manufacturer Model/Part Number Serial Number						
Power Supply	Intermec Technologies Corporation	3-304029-Q1	590490				
Remote PC	Dell	Latitude D600	unknown				

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC power	No	2.3m	No	AC Mains	Power Supply
DC power	PA	2.3m	PA	Power Supply	Test Module
USB	No	5.0m	No	EUT	Remote PC
DC power	No	0.6m	No	EUT	Power Supply
AC power	No	1.8m	No	Power Supply	AC Mains
PA = Cable	e is permanently	attached to the devic	e. Shielding a	nd/or presence of ferrite	mav be unknown.

CONFIGURATION 6 INMC0546

Software/Firmware Running during test				
Description	Version			
Radio Scope (802.11)	1.0			
HCI Tester (Bluetooth)	2.3.1.0			

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
EUT - Combined 802.11bg and Bluetooth radio module	Intermec Technologies Corporation	Galileo Modular Radio	00-21-e8-70-09-c4				
Whip Antenna	Laird	MAF94367	None				

Remote Equipment Outside of Test Setup Boundary							
Description	Manufacturer Model/Part Number Serial Number						
Remote PC	Dell	Latitude D600	SAC 2				
Power Supply	Intermec Technologies Corporation	3-304029-01	690490				

Cables	Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
AC power	No	2.3m	No	AC Mains	Power Supply			
USB	No	5.0m	No	EUT	Remote PC			
DC power	PA	3.5m	PA	Power Supply	EUT - Combined 802.11bg and Bluetooth radio module			
Antenna Yes 0.6m No EUT - Combined 802.11bg and Bluetooth radio module Whip Antenna								
PA :	= Cable is p	permanently a	ttached to	the device. Shielding and/or presence	e of ferrite may be unknown.			

CONFIGURATION 8 INMC0546

Software/Firmware Running during test				
Description	Version			
Radio Scope (802.11)	1.0			
HCI Tester (Bluetooth)	2.3.1.0			

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
EUT - Combined 802.11bg and Bluetooth radio module	Intermec Technologies Corporation	Galileo Modular Radio	00-21-e8-70-09-c4				
Whip Antenna	Laird	MAF94367	None				

Peripherals in test setup boundary						
Description	Manufacturer Model/Part Number Serial Number					
Power Supply	Topward Electric Instruments Co., LTD.	TPS-2000	946425			

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Remote PC Dell Latitude D600 SAC 2						

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Antenna	Yes	0.6m	No	EUT - Combined 802.11bg and Bluetooth	Whip
Antenna	162	0.011	INU	radio module	Antenna
DC power	No	1.8m	No	EUT - Combined 802.11bg and Bluetooth	Power
	INU	1.011	INU	radio module	Supply
AC power	No	1.8m	No	Power Supply	AC Mains
USB	Yes	3.0m	No	EUT - Combined 802.11bg and Bluetooth radio module	Remote PC
PA =	Cable is pe	ermanently atta	ched to the	device. Shielding and/or presence of ferrite may be u	unknown.

Modifications

	Equipment modifications						
Item	Date	Test	Modification	Note	Disposition of EUT		
		Spurious	Tested as	No EMI suppression	EUT remained at		
1	8/7/2009	Radiated	delivered to	devices were added or	Northwest EMC		
		Emissions	Test Station.	modified during this test.	following the test.		
		Output	Tested as	No EMI suppression	EUT remained at		
2	6/4/2009	Power	delivered to	devices were added or	Northwest EMC		
		FOWEI	Test Station.	modified during this test.	following the test.		
		Power	Tested as	No EMI suppression	EUT remained at		
3	6/4//2009	Spectral	delivered to	devices were added or	Northwest EMC		
		Density	Test Station.	modified during this test.	following the test.		
		Band Edge	Tested as	No EMI suppression	EUT remained at		
4	6/4/2009	Compliance	delivered to	devices were added or	Northwest EMC		
		Compliance	Test Station.	modified during this test.	following the test.		
		Occupied	Tested as	No EMI suppression	EUT remained at		
5	6/4/2009	Bandwidth	delivered to	devices were added or	Northwest EMC		
		Danuwidth	Test Station.	modified during this test.	following the test.		
		Duty Cycle	Tested as	No EMI suppression	EUT remained at		
6	6/11/2009	Correction	delivered to	devices were added or	Northwest EMC		
		Conection	Test Station.	modified during this test.	following the test.		
		Spurious	Tested as	No EMI suppression	EUT remained at		
7	7/31/2009	Conducted	delivered to	devices were added or	Northwest EMC		
		Emissions	Test Station.	modified during this test.	following the test.		
		AC	Tested as	No EMI suppression			
8	8/11/2009	Powerline	delivered to	devices were added or	Scheduled testing		
0	0/11/2009	Conducted	Test Station.	modified during this test.	was completed.		
		Emissions		modified during this test.			

BLUETOOTH APPROVALS

FCC Procedure Received from Joe Dichoso on 2-15-02

The following exhibit indicates the FCC Spread Spectrum requirements in Section 15.247 for devices meeting the Bluetooth Specifications in the 2.4 GHz band as of February 2001 operating in the USA. The purpose of this exhibit is to help expedite the approval process for Bluetooth devices. This exhibit provides items that vary for each device and also provides a list of items that are common to Bluetooth devices that explains the remaining requirements. The list of common items can be submitted for each application for equipment authorization. This exhibit only specifies requirements in Section 15.247, requirements in other rule Sections for intentional radiators such as in Section 15.203 or 15.207 must be also be addressed. A Bluetooth device is a FHSS transmitter in the data mode and applies as a Hybrid spread spectrum device in the acquisition mode.

For each individual device, the following items, 1-7 will vary from one device to another and must be submitted.

- 1) The occupied bandwidth in Section 15.247(a)(1)(ii).
- 2) Conducted output power specified in Section 15.247(b)(1).
- 3) EIRP limit in Section 15.247(b)(3).
- 4) RF safety requirement in Section 15.247(b)(4)
- 5) Spurious emission limits in Section 15.247(c).
- 6) Processing gain and requirements for Hybrids in Section 15.247(f) in the acquisition mode.
- 7) Power spectral density requirement in Section 15.247(f) in the acquisition mode.

For all devices, the following items, 1-12, are common to all Bluetooth devices and will not vary from one device to another. This list can be copied into the filing.

1 Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device don't influence the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters.

Only a different hopping sequence will be used. For this reason, the RF parameters in one op-mode is sufficient.

2 Frequency range of a Bluetooth device:

The maximum frequency of the device is: 2402 - 2480 MHz.

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for devices which will be operated in the USA. Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification must **not be** supported by the device.

3 Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organized in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from it's BD address which is unique for every Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4 Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode:

40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67, 56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59, 72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75, 09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06, 01, 51, 03, 55, 05, 04

5 Equally average use of frequencies in data mode and short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection

2. Internal master clock

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS. The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronization with other units, only the offsets are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 µs. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions, the Bluetooth system has the following behavior: The first connection between the two devices is established, a hopping sequence is generated. For transmitting the wanted data, the complete hopping sequence is not used and the connection ends. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 μ s). The hopping sequence will always differ from the first one.

6 Receiver input bandwidth, synchronization and repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz.

In every connection, one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection (e.g. single or multi-slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing is according to the packet type of the connection. Also, the slave of the connection uses these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence

7 Dwell time in data mode

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is a follows: Dwell time = time slot length * hop rate / number of hopping channels *30s Example for a DH1 packet (with a maximum length of one time slot) Dwell time = 625 μ s * 1600 1/s / 79 * 30s = 0.3797s (in a 30s period) For multi-slot packet the hopping is reduced according to the length of the packet. Example for a DH5 packet (with a maximum length of five time slots)

Dwell time = 5 * 625 μ s * 1600 * 1/5 *1/s / 79 * 30s = 0.3797s (in a 30s period) This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for all Bluetooth devices. Therefore, all Bluetooth devices **comply** with the FCC dwell time requirement in the data mode.

This was checked during the Bluetooth Qualification tests.

The Dwell time in hybrid mode is approximately 2.6 mS (in a 12.8s period)

8 Channel Separation in hybrid mode

The nominal channel spacing of the Bluetooth system is 1Mhz independent of the operating mode.

The maximum "initial carrier frequency tolerance" which is allowed for Bluetooth is fcenter = 75 kHz.

This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/07-E) for three frequencies (2402, 2441, 2480 MHz).

9 Derivation and examples for a hopping sequence in hybrid mode

For the generation of the inquiry and page hop sequences the same procedures as described for the data mode are used (see item 5), but this time with different input vectors:

**For the inquiry hop sequence, a predefined fixed address is always used. This results in the same 32 frequencies used by all devices doing an inquiry but every time with a different start frequency and phase in this sequence.

**For the page hop sequence, the device address of the paged unit is used as the input vector. This results in the use of a subset of 32 frequencies which is specific for that initial state of the connection establishment between the two units. A page to different devices would result in a different subset of 32 frequencies.

So it is ensured that also in hybrid mode, the frequency is used equally on average. Example of a hopping sequence in inquiry mode:

48, 50, 09, 13, 52, 54,41, 45, 56, 58, 11, 15, 60, 62, 43, 47, 00, 02, 64, 68, 04, 06, 17, 21, 08, 10, 66, 70, 12, 14, 19, 23

Example of a hopping sequence in paging mode:

08, 57, 68, 70, 51, 02, 42, 40, 04, 61, 44, 46, 63, 14, 50, 48, 16, 65, 52, 54, 67, 18, 58, 56, 20, 53, 60, 62, 55, 06, 66, 64

10 Receiver input bandwidth and synchronization in hybrid mode:

The receiver input bandwidth is the same as in the data mode (1 MHz). When two Bluetooth devices establish contact for the first time, one device sends an inquiry access code and the other device is scanning for this inquiry access code. If two devices have been connected previously and want to start a new transmission, a similar procedure takes place. The only difference is, instead of the inquiry access code, a special access code, derived from the BD_ADDRESS of the paged device will be, will be sent by the master of this connection. Due to the fact that both units have been connected before (in the inquiry procedure) the paging unit has timing and frequency information about the page scan of the paged unit. For this reason the time to establish the connection is reduced.

11 Spread rate / data rate of the direct sequence signal

The Spread rate / Data rate in inquiry and paging mode can be defined via the access code. The access code is the only criterion for the system to check if there is a valid transmission or not. If you regard the presence of a valid access code as one bit of information, and compare it with the length of the access code of 68 bits, the Spread rate / Data rate will be 68/1.

12 Spurious emission in hybrid mode

The Dwell in hybrid mode is shorter than in data mode. For this reason the spurious emissions average level in data mode is worst case. The spurious emissions peak level is the same for both modes.

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting Bluetooth, High Channel, GFSK/DH5. Transmitting Bluetooth, Mid Channel, GFSK/DH5. Transmitting Bluetooth, Low Channel, GFSK/DH5.

POWER SETTINGS INVESTIGATED

5VDC (120V/60Hz)

CONFIGURATIONS INVESTIGATED

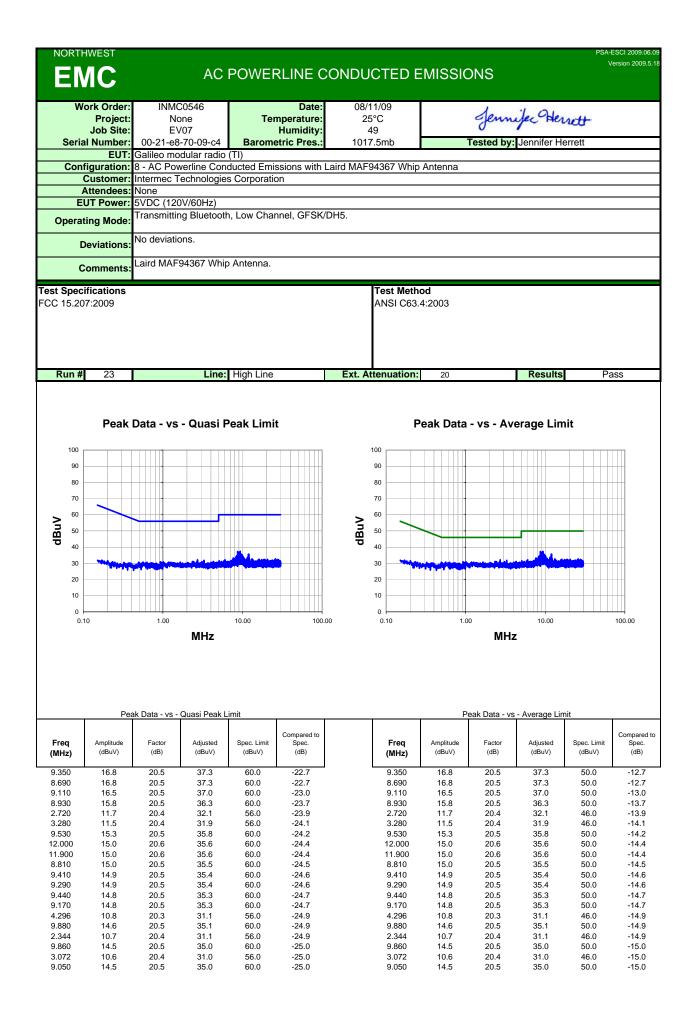
INMC0546 - 8

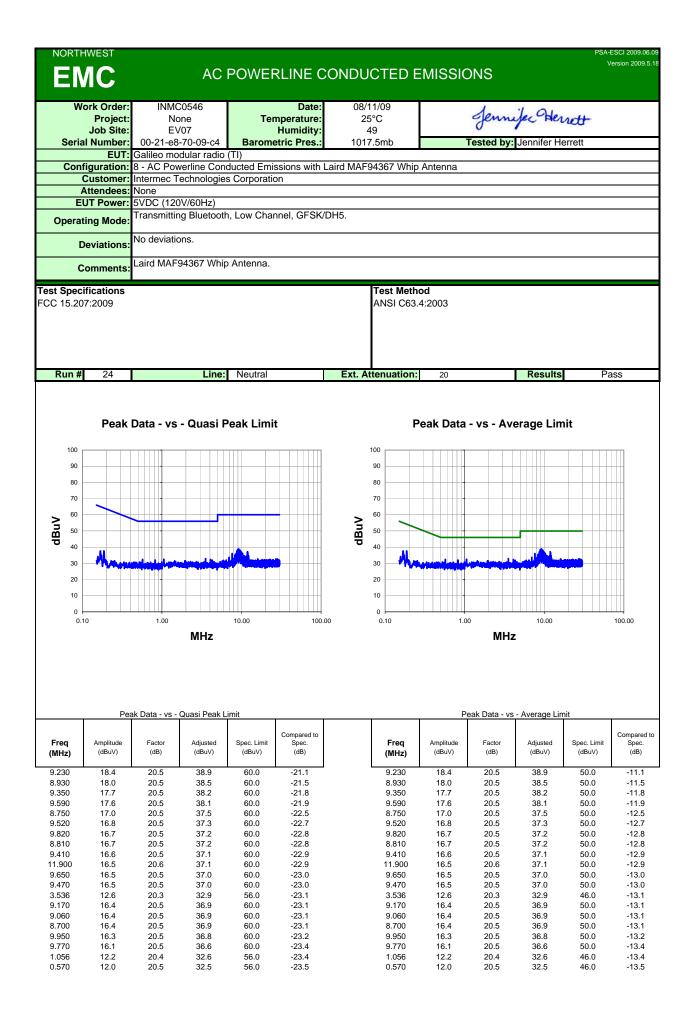
SAMPLE CALCULATIONS

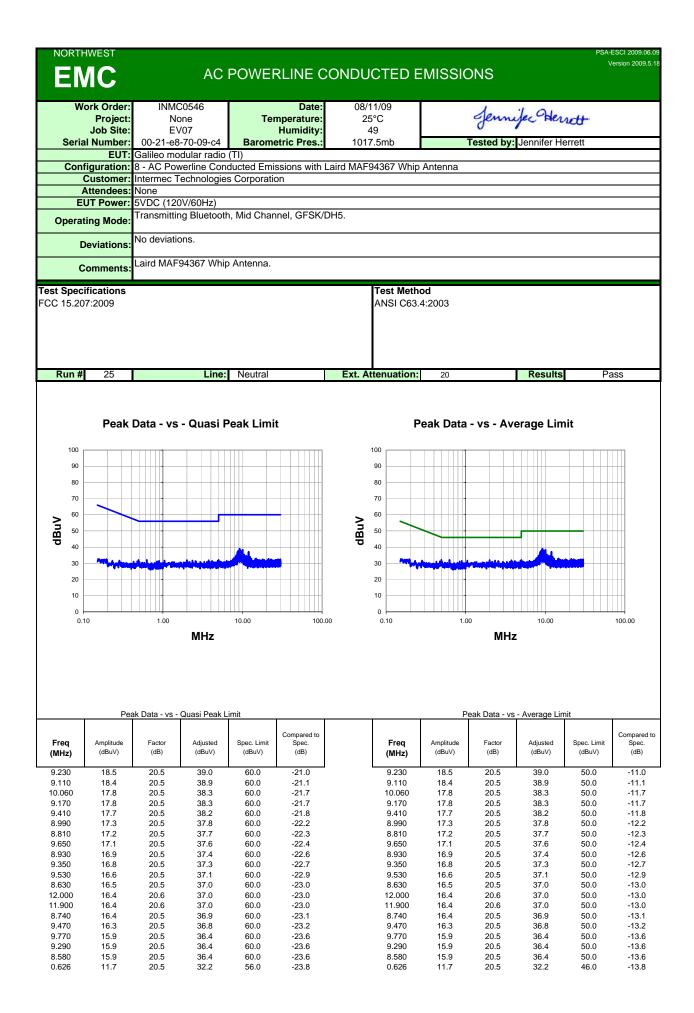
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

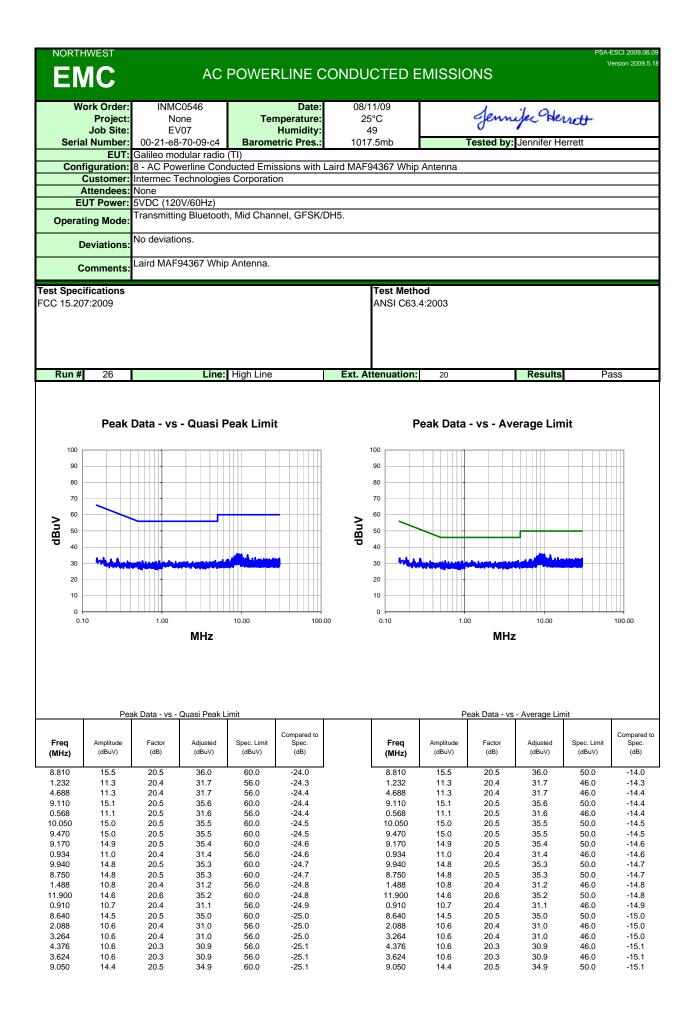
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESCI	ARH	8/28/2008	24 mo
EV07 Cables		Conducted Cables	EVG	6/1/2009	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	7/21/2009	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HFX	5/27/2009	13 mo
LISN	Solar	9252-50-R-24-BNC	LIR	2/4/2009	13 mo

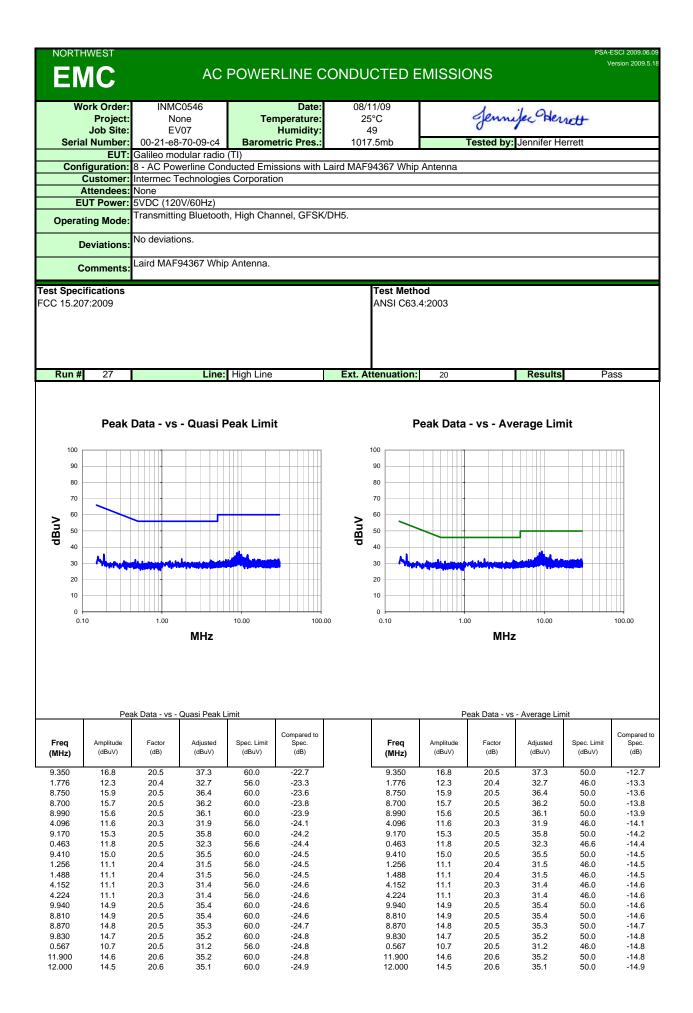
MEASUREMENT BANDWIDTHS

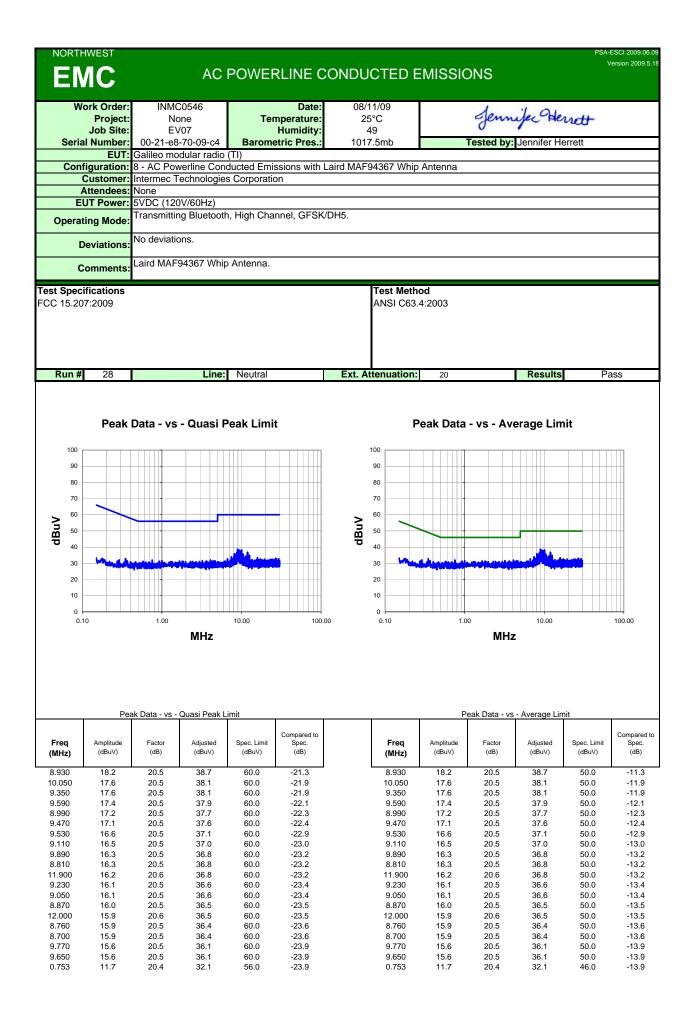

	Frequency Range	Peak Data	Quasi-Peak Data	Average Data (kHz) 0.2	
	(MHz)	(kHz)	(kHz)		
	0.01 - 0.15	1.0	0.2		
	0.15 - 30.0	10.0	9.0	9.0	
	30.0 - 1000	100.0	120.0	120.0	
	Above 1000	1000.0	N/A	1000.0	
Mea	surements were made usir	ng the bandwidths and deter	ctors specified. No video filter	r was used.	

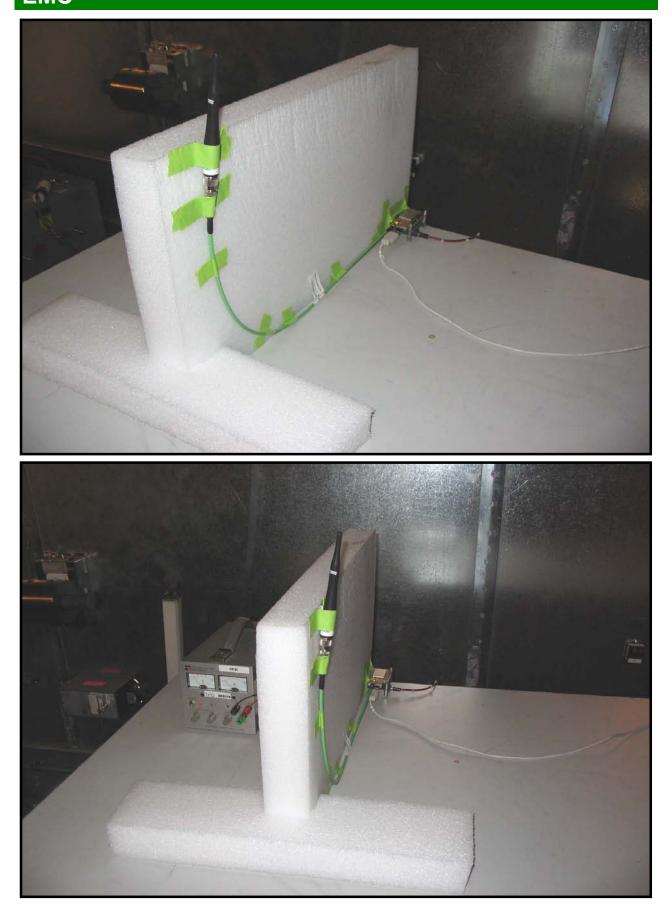

MEASUREMENT UNCERTAINTY

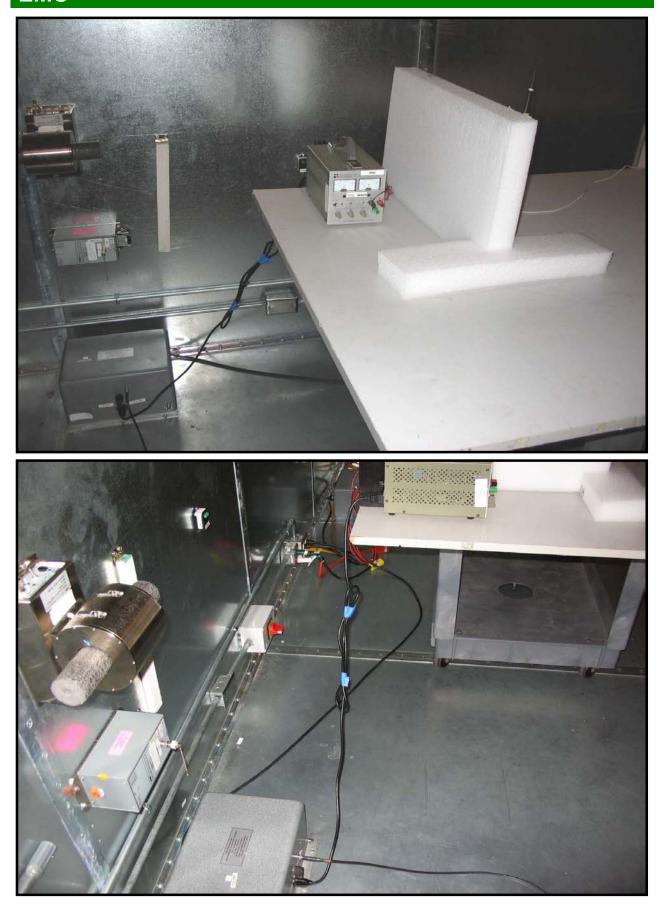

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION


The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-2003.






EMC AC POWERLINE CONDUCTED EMISSIONS

PSA-ESCI 2009.06.09

EMC AC POWERLINE CONDUCTED EMISSIONS

PSA-ESCI 2009.06.09

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test

organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Continuous Tx Bluetooth @ GFSK/DH5, QPSK/2DH5, 8DPSK/3DH5

POWER SETTINGS INVESTIGATED

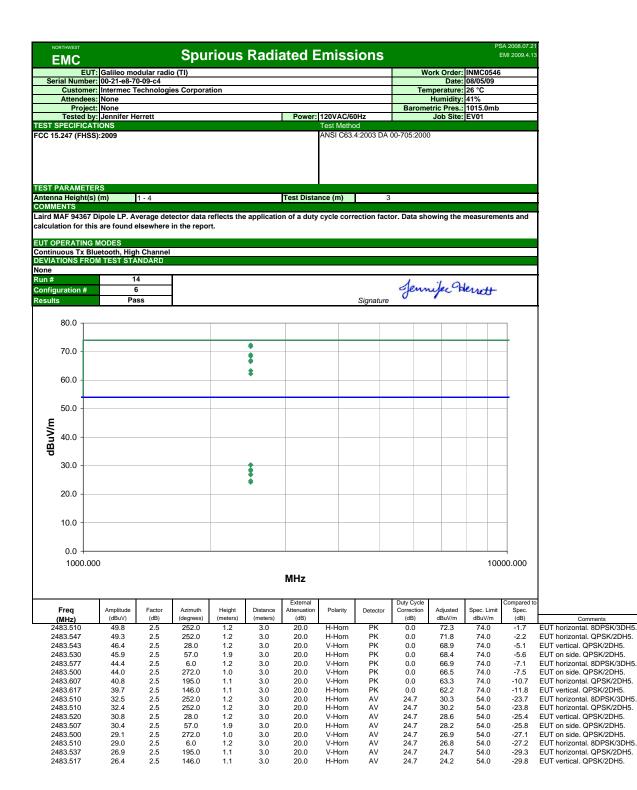
120VAC/60Hz

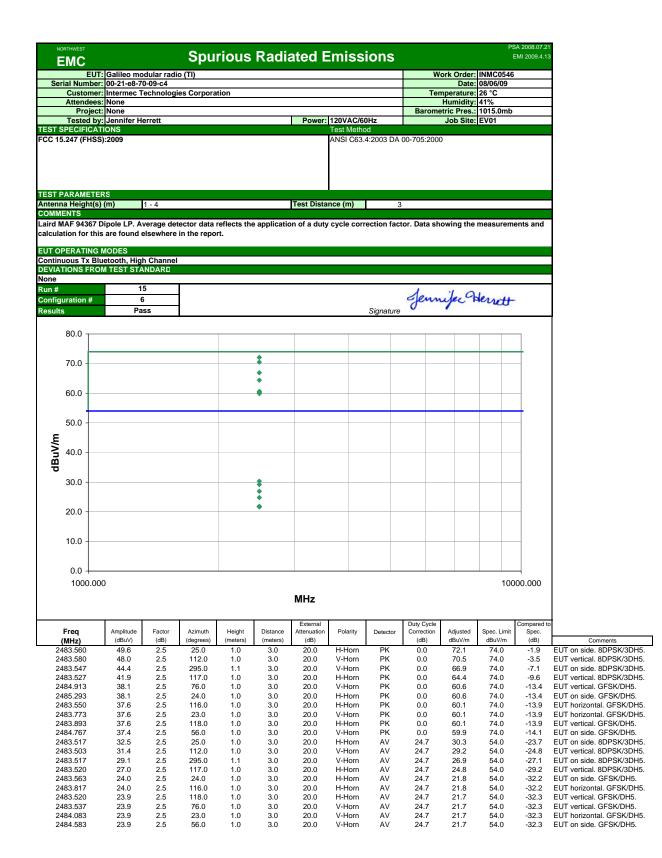
FREQUENCY RANGE INV	'ESTIGATED		
Start Frequency	30MHz	Stop Frequency	25GHz

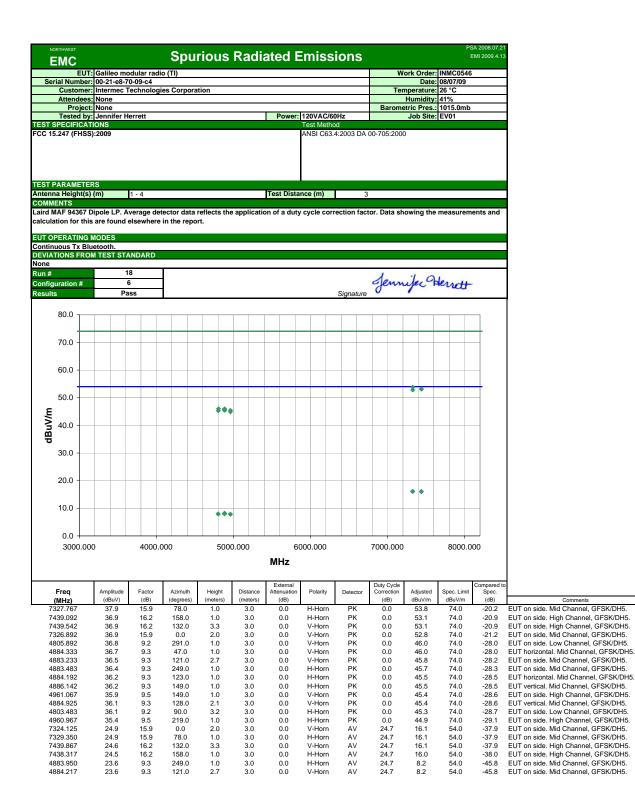
SAMPLE CALCULATIONS

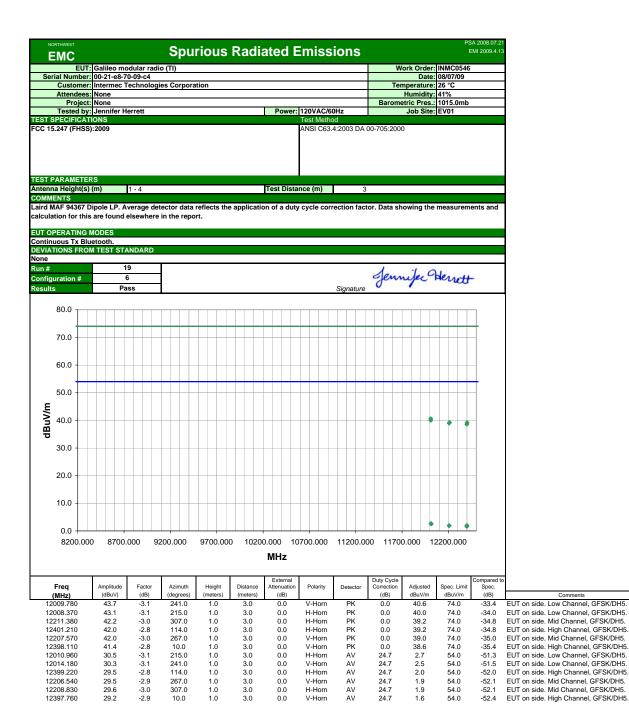
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/11/2008	13
EV01 Cables		18-26GHz Standard Gain Horn Cable	EVD	12/2/2008	13
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	12/2/2008	13
Antenna, Horn	ETS	3160-09	AHG	NCR	0
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	7/10/2009	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	11/13/2008	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	7/10/2009	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
High Pass Filter	Micro-Tronics	HPM50111	HFO	7/10/2009	13
EV01 Cables		Double Ridge Horn Cables	EVB	7/10/2009	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/10/2009	13
Antenna, Horn	EMCO	3115	AHC	8/12/2008	24
EV01 Cables		Bilog Cables	EVA	7/10/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/10/2009	13
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24

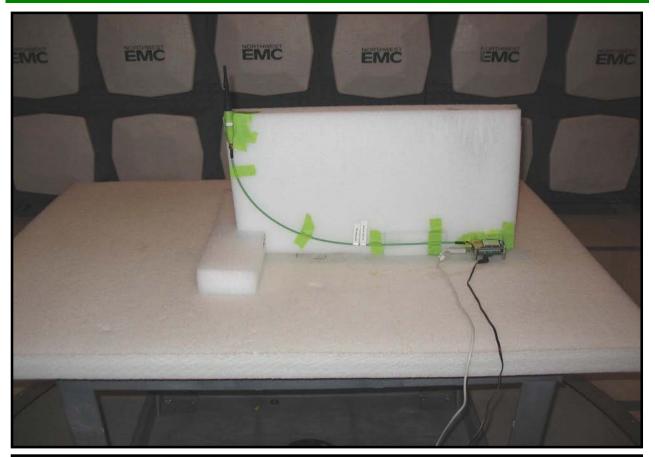

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


MEASUREMENT UNCERTAINTY

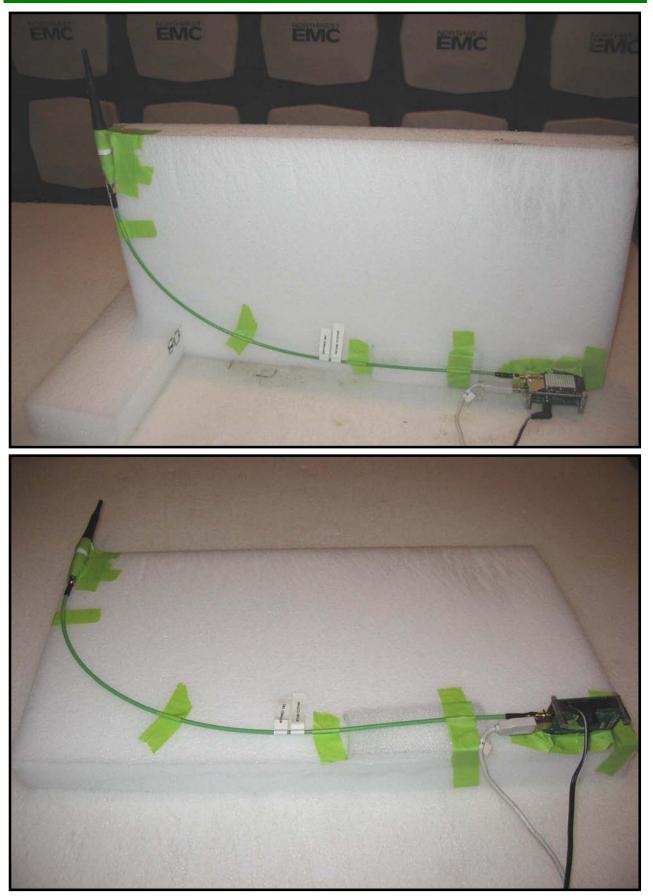

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

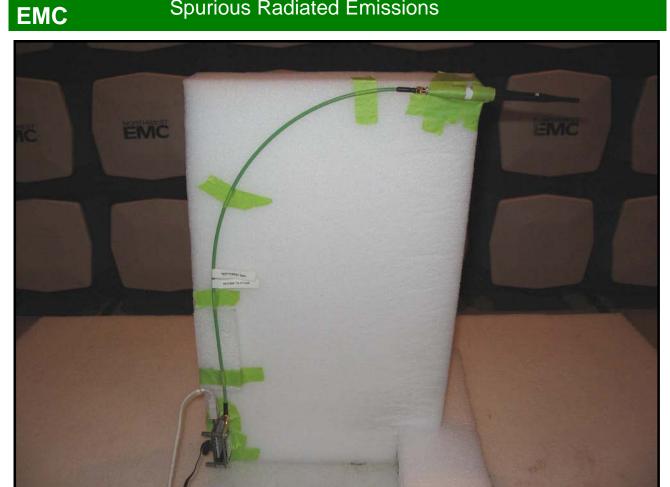

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.



NORTHWEST


Spurious Radiated Emissions



Spurious Radiated Emissions

Spurious Radiated Emissions

NORTHWEST

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

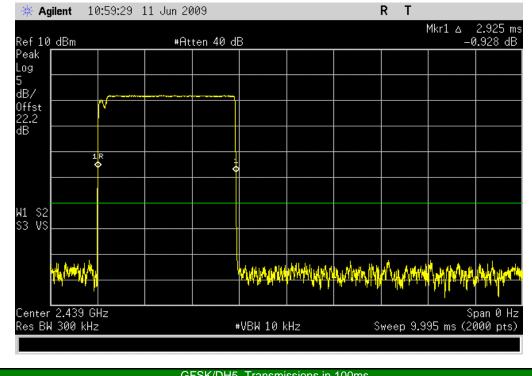
Therefore, Duty Cycle = (N1L1 + N2L2 + ...)/100 ms. Where T is the period of the pulse train.

The measured values for the all the EUT's modes are as follows:

Period = 100 mSec

Pulsewidth of Type 1 Pulse = 2.925 mSec

Number of Type 1 Pulses = 2

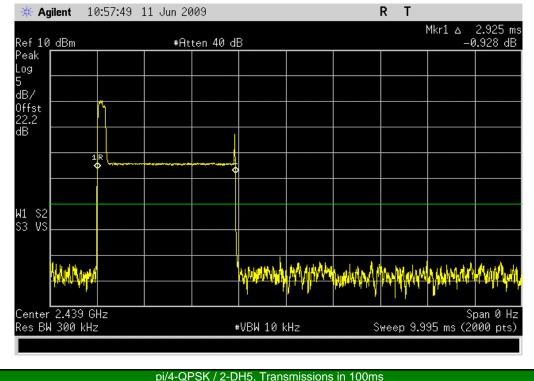

Duty Cycle = 20 log [(2)(2.925))/100] = -24.7 dB

NORTHWEST			CODDI			XMit 2008.12.29
EMC		DUTY CYCLE	CORRE	ECTION		
EUT:	Galileo modular radio (TI)				Work Order	r: INMC0519
Serial Number:	7				Date	: 06/11/09
Customer:	Intermec Technologies Cor	poration			Temperature	: 22.8°C
Attendees:	None				Humidity	: 49%
Project:	None				Barometric Pres.	.: 29.76 in
	Rod Peloquin		Power: 5		Job Site	: EV06
TEST SPECIFICATI	IONS		1	Test Method		
FCC 15.247 (FHSS)	:2009		A	ANSI C63.4:2003 DA 00-7	05:2000	
COMMENTS						
Transmitting in a h	opping mode on all channel	s: Duty Cycle Correction to be ap	olied to average	e measurements. Duty (Cycle Correction is calcu	ulated by taking all the
		st case 100ms period, dividing that				
LOG((T1+T2)/100m	s) .	1 / 0				c
DEVIATIONS FROM	I TEST STANDARD					
No Deviations						
Configuration #	1	Pocky le	Reling			
		Signature	0.			
				Val	ue L	.imit Results
GFSK/DH5, 339 pac	cket length					
	Pulse Width			2.9	25 1	N/A -24.7
	Transmissions in 100ms			2	2 1	N/A
pi/4-QPSK / 2-DH5,	679 packet length					
	Pulse Width			2.9	25 1	N/A -24.7
	Transmissions in 100ms			2	2 1	N/A
8DQPSK / 3-DH5, 1	021 packet length					
	Pulse Width			2.9	25	N/A -24.7
	Transmissions in 100ms			2	2 1	N/A

DUTY CYCLE CORRECTION

XMit 2008.12.2

		GFSK/DH5	5, Pulse Width		
Result:	-24.7 dB	Value:	2.925 ms	Limit:	N/A

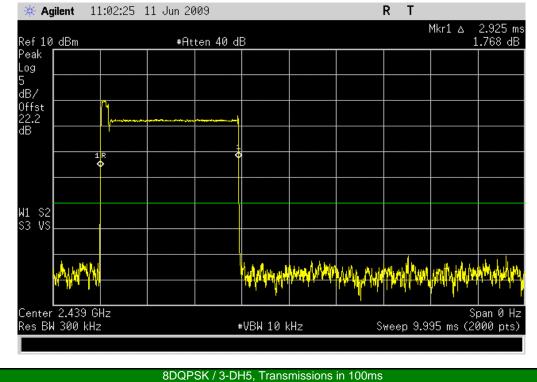

GFSK/DH5, Transmissions in 100ms							
Result:	Value:	2	Limit:	N/A			

🔆 Agi	lent 1	1:00:28	11 Jun 20	009					R	Т		
Ref 10_	dBm		#At	ten 40 d	зB							
Peak 🛛												
5 1B/					╎							
Offst 22.2					Ï							
dB												
√1 S2 33 VS												
	a de de de de		e i veneri de la come	, y / data history				u de la companya	ц,		a filipping a filippi	a dett da dett popula
	2.439 (300 kH				 #\	/BW 10 k	:Hz		Swe	ep 1	S 00 ms (2	pan 0 H: 000 pts)

EMC

DUTY CYCLE CORRECTION

		pi/4-QPSK /	2-DH5, Pulse V	Vidth		
Result:	-24.7 dB	Value:	2.925 ms	Limit:	N/A	



	pi/4-QPSK / 2-DH5,	I ransmissions	in 100ms		
Result:	Value:	2	Limit:	N/A	

🔆 Ag	ilent	t 1	0:56:03	l1 Jun 20	109					R	Т		
Ref 10	dB	m		#At	ten 40 df	3							
Peak Log													
5 dB/													
Offst 22.2													
dB	Ι,												
W1 S2													
S3 VS													
			ball of the second second	d . 14	a duata						J		
									d an				
Center Res BW					#	VBW 10 k	Hz			Swe	en 1	Sp 00 ms (20	oan 0 Hz)00 pts)
													ptoy

DUTY CYCLE CORRECTION

		8DQPSK / 3	3-DH5, Pulse Wie	dth		
Result:	-24.7 dB	Value:	2.925 ms	Limit:	N/A	

Desult: Velue: 2 Limit: N/A		8DQPSK / 3-DH5, T	ransmissio	ns in 100ms		
Result: Value: 2 Limit: N/A	Result:	Value:	2	Limit:	N/A	

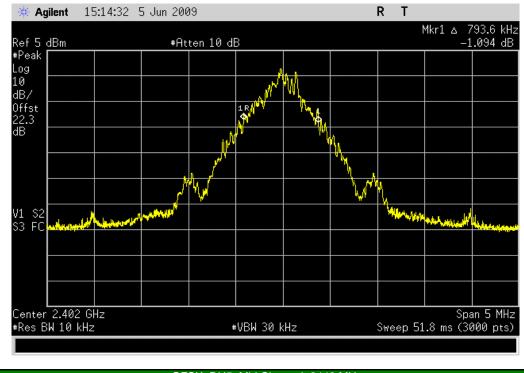
🔆 Ag	ilent	10):52:31 1	l1 Jun 20	109					R	Т		
Ref 10	dBi	m		#At	ten 40 d	ЯB							
Peak Log													
5 dB/													
Offst							_						
22.2 dB						╎							
						╎							
						\dagger							
W1 S2													
S3 VS						+							
			ale Parlo de Cal	AWANA W		+		MANINA W		lette (
									و بالاندان				
Center Res BW						#1	VBW 10 k	:Hz		Swe	ep 1	Sp 00 ms (20	oan 0 Hz)00 pts)

DUTY CYCLE CORRECTION

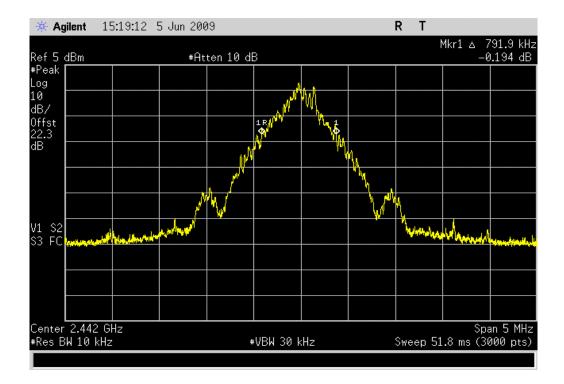
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13

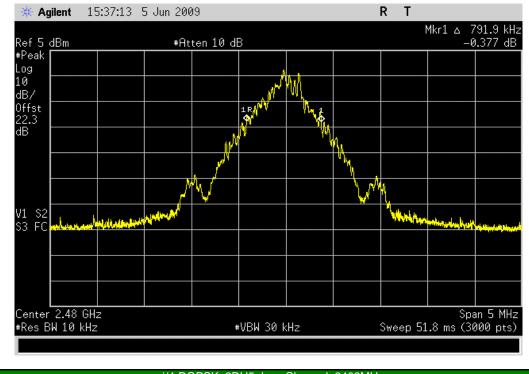
MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

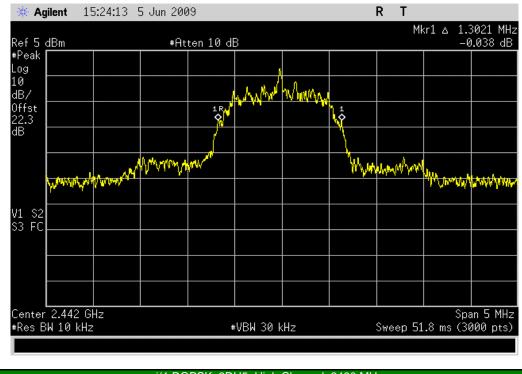
TEST DESCRIPTION

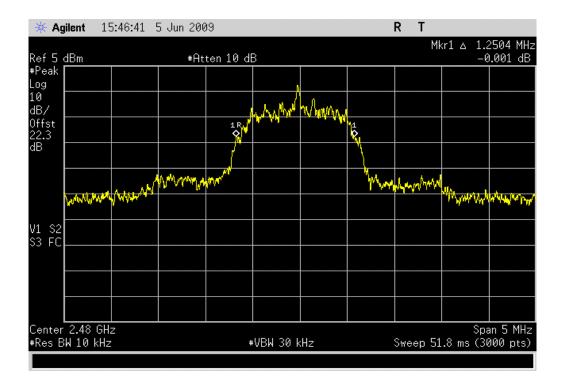

The 20 dB occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting in a no hop mode at its maximum data rate for each of the three different modulations available.

NORTHWEST								XMit 2008.12.29
		OCCU	PIED	BAND\	NIDTH			
EMC								
	Galileo modular radio (TI)					Work Order:		
Serial Number:							06/04/09	
	Intermec Technologies Corporat	ion				Temperature:		
Attendees:						Humidity		
Project:						Barometric Pres.:		
	Rod Peloquin			Power:	120VAC/60Hz	Job Site:	EV06	
TEST SPECIFICAT	IONS				Test Method			
FCC 15.247 (FHSS)	:2009				ANSI C63.4:2003 DA 00-	705:2000		
COMMENTS								
None								
DEVIATIONS FROM	I TEST STANDARD							
No Deviations								
			101	\mathcal{D}				
Configuration #	1		Rockyle	Keling				
		Signature	U	\mathcal{O}				
		<u> </u>						
					V	alue Li	mit	Results
GFSK, DH5								
	Low Channel, 2402MHz				79	4 kHz 1.5	MHz	Pass
	Mid Channel, 2442 MHz				79	2 kHz 1.5	MHz	Pass
	High Channel, 2480 MHz						MHz	Pass
pi/4-DQPSK, 2DH5								
p# 1 D Q1 OIQ 20110	Low Channel, 2402MHz				1.23	5 MHz 1.5	MHz	Pass
	Mid Channel. 2442 MHz						MHz	Pass
	High Channel, 2480 MHz						MHz	Pass
8-DPSK, 3DH5								
0 21 01., 02110	Low Channel, 2402MHz				1.26	0 MHz 1.5	MHz	Pass
	Mid Channel, 2442 MHz					• · · · · •	MHz	Pass
					1.20	1.0		Pass

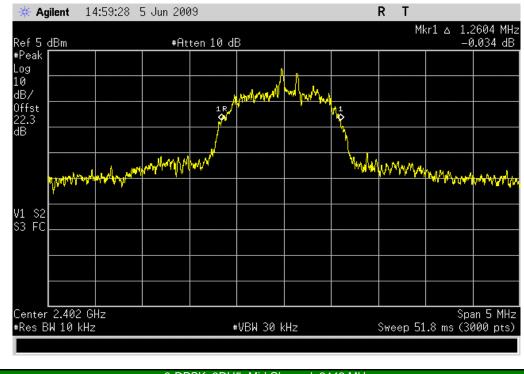

		GFSK, DH5,	Low Channel, 2	2402MHz		
Result:	Pass	Value:	794 kHz	Limit:	1.5 MHz	

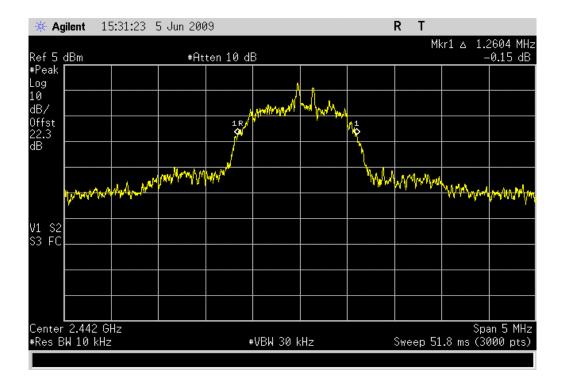
	GFSK, DH5, Mid Channel, 2442 MF	Ηz	
Result: Pass	Value: 792 kHz	Limit:	1.5 MHz

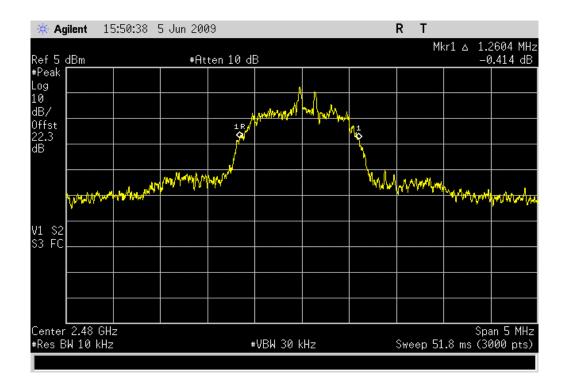

		GFSK, DH5,	High Channel, 2480 MHz		
Result:	Pass	Value:	792 kHz	Limit:	1.5 MHz

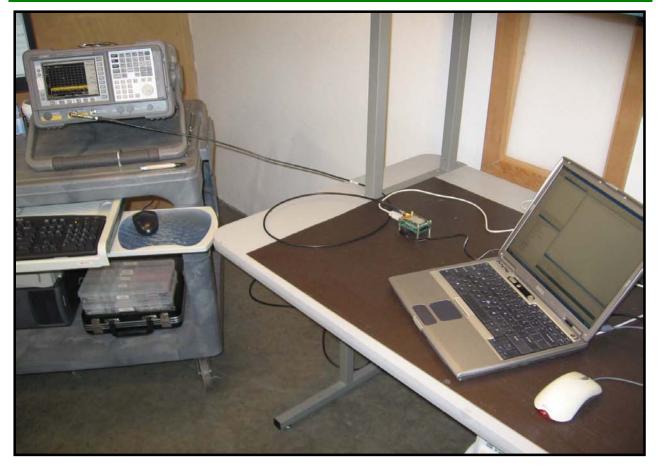

	pi/4-DQPSK, 2DH5, Low Channel, 2	2402MHz	
Result: Pass	Value: 1.235 MHz	Limit:	1.5 MHz

🔆 Agi	ient 15	5:06:11 5	5 Jun 200	9				RТ		
Ref 5 d	lBm		#At	ten 10 di	3			MI		2354 MHz).218 dB
#Peak 🛛					1					
10 dB/					ahally	Martin				
Offst 22.3				1 R 🗸						
dB							1			
		www	Nurshawa	(mwann			Www	Ny www.	MALLER L	
ľ	www.www.wh	LAN MAN							1. Ма. АМ.	M. A. M.
V1 S2 S3 FC										
	2.402 Gł √ 10 kHz			#	VBW 30 k	Hz.		Sweep <u>51</u>	Spa 8 ms (30.	an 5 MHz 000 pts)


pi/4-DQPSK, 2DH5, Mid Channel, 2442 MHz							
Result: Pass	Value: 1.302 MHz	Limit:	1.5 MHz				


	pi/4-DQPSK, 2DH5, High Channel, 248	0 MHz	
Result: Pass	Value: 1.250 MHz	Limit:	1.5 MHz


	8-DPSK, 3DH5, Low Channel, 2402MH	lz		
Result: Pass	Value: 1.260 MHz	Limit:	1.5 MHz	


	8-DPSK, 3DH5, Mid Channel, 2442 MHz		
Result: Pass	Value: 1.260 MHz	Limit:	1.5 MHz

	8-DPSK, 3DH5, High Channel, 2480 MHz		
Result: Pass	Value: 1.260 MHz	Limit:	1.5 MHz

NORTHWEST

OUTPUT POWER

XMit 2008.12.29

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Signal Generator	Hewlett-Packard	8648D	TGC	12/9/2008	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting in a no hop mode at its maximum data rate for each of the three different modulations available.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

NORTHWEST						XMit 2008.12.2
EMC		0		ER		
	Oslilas madulan milia (TI)	<u>, </u>		1	Work Order:	101000540
Serial Number:	Galileo modular radio (TI)					06/04/09
	/ Intermec Technologies C	ornoration			Temperature:	
Attendees:		orporation			Humidity:	
Project:					Barometric Pres.:	
	Rod Peloguin		Bower	120VAC/60Hz	Job Site:	
TEST SPECIFICATI				Test Method	300 Site.	
FCC 15.247 (DTS):2				ANSI C63.4:2003 KDB No.	558074	
FGC 15.247 (D15).2	009			ANSI C03.4.2003 RDB NO.	550074	
COMMENTS						
None						
None						
DEVIATIONS FROM	TEST STANDARD					
No Deviations						
			10, Pl			
Configuration #	1		Rocky Le Relings			
		Signature				
				Val	ue Li	mit Results
DH5, GFSK						
	Low Channel			1.35		W Pass
	Mid Channel			1.33		W Pass
	High Channel			1.15	mW 1	W Pass
2DH5, 4-DQPSK						
	Low Channel			2.00		W Pass
	Mid Channel			1.86		W Pass
	High Channel			1.66	mW 1	W Pass
3DH5, 8-DPSK						
	Low Channel			2.17		W Pass
	Mid Channel			2.01		W Pass
	High Channel			1.81	mW 1	W Pass

NOR		1231
Ε	Μ	C

DH5, GFSK, Low Channel						
Result: Pass	Value: 1.35 mW	Limit: 1 W				

ef 3 mW		#At	ten 10 d	В			r1 2.40	1.354 ml
Peak 🗾								
ffot								ļ
ffst 2.3					1			
B					\$	 		
1 \$2								
3 FC								
enter 2.402							Sp	an 3 MH
Res BW 3 M	Hz			₩VBW 3 M	IHz	Sweep 9.	99 ms (1	000 pts

DH5, GFSK, Mid Channel						
Result:	Pass	Value:	1.33 mW	Limit:	1 W	

🔆 Ag	ilent 1	4:28:02 5	5 Jun 200	9				RΤ		
Ref 5 n	nЫ		#At	ten 10 di	В			٢	lkr1 2.44	1902 GHz 1.33 mW
#Peak Lin										
Offst										
22.3 dB										
					×		<u></u>			
V1 S2 S3 FC										
Center	2.442 G	Hz							Sp	an 3 MHz
#Res Bl	W 3 MHz				₩VBW 3 M	Hz		Sweep 9	.99 ms (1	000 pts)

NORTHWEST

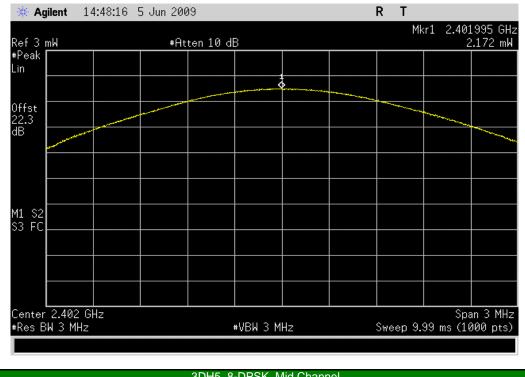
	DH5, GFSK, High Channel	
Result: Pass	Value: 1.15 mW	Limit: 1 W

f 3 mW	#At	tten 10 dl	В			[9]	kr1 2.47	9944 e 1.152 r
eak 🛛 👘								
۱								
fst 3								
			¥	······································	<u> </u>	+		
. \$2								
FC								
							<u> </u>	
enter 2.48 GHz es BW 3 MHz			#VBW 3 MI	Hz		Sween 9	Sр .99 ms (1	an 3 M 000 nt
						oncep o	.00 113 (1	000 pt

	2DH5, 4-DQPSK, Low Channel		
Result: Pass	Value: 2.00 mW	Limit: 1 W	

🔆 Agilent	14:37:52	5 Jun 200	19				RT		
Ref 3 <u>m</u> W		#At	ten 10 di	В			Mk		2101 GHz 2.002 mW
#Peak									
						where the state of			
0ffst 22.3 dB									
dB									
V1 S2 S3 FC									
Center 2.40 #Res BW 3	02 GHz MHz			#VBW 3 M	Hz		Sweep 9.	Spa 99 ms (10	an 3 MHz 000 pts)

NORTHWEST


	2DH5, 4-DQPSK, Mid Channel									
Result: F	Pass Value:	1.86 mW	Limit:	1 W						

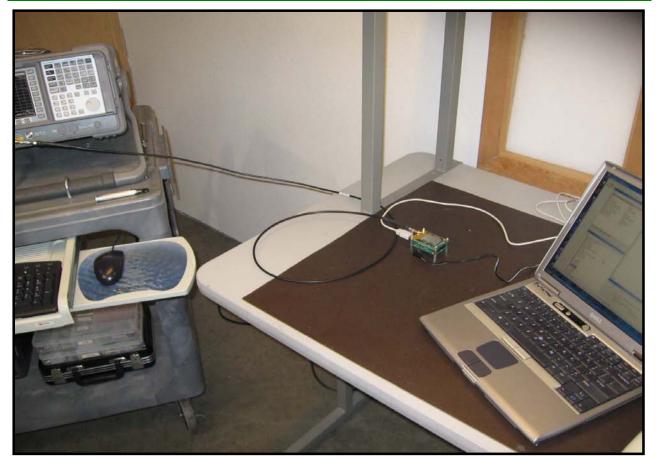
Ref 3 mW		#At	ten 10 dl	В		1.11	r1 2.44	2011 Or 1.858 ml
Peak								
.in								ļ
					1			Í
)ffst 22.3					¢	 		
22.3 IB		- ware and the						
ID								the second second
								ļ
11 \$2								
3 FC								
Center <mark>2.44</mark> 2 Res BW 3 MH				₩VBW 3 M	Hz	Sween 9	סס 1) 99 ms	an 3 MH 000 nts
NOS DA S PIL	14				112	 oncep J.	00 113 (1	ooo pts

	2DH5, 4-DQPSK, High Channel		
Result: Pass	Value: 1.66 mW	Limit:	1 W

🔆 Agilen	t 14:33:47	5 Jun 200	19			RT	•		
Ref 3 <u>m</u> W		#Ati	ten 10 di	3			Mkr1	2.480 1	035 GHz .663 mW
#Peak									
0ffst 22.3 dB					\$ \$	 			
dR									
V1 S2 S3 FC									
Ĺ									<u> </u>
Center 2.4 #Res BW 3	18 GHz MHz		:	₩VBW 3 M	Hz	Sweep	9.99	Spa ms (10	n 3 MHz 00 pts)

	3DH5, 8-DPSK, Low Channel	
Result: Pass	Value: 2.17 mW	Limit: 1 W

Result: Pass Value: 2.01 mW Limit: 1 W		3DH5, 8-D	PSK, Mid Channel	
	Result: Pass	Value: 2	2.01 mW Limit:	1 W


🔆 🔆 Ag	ilent 14	4:46:23	5 Jun 200	9			RТ			
Ref 3 r	nЫ		#At	ten 10 di	3			Mkr1		.983 GHz .007 mW
#Peak Lin										
Offst 22.3 dB							 *****			
dB	-									
M1 S2 S3 FC										
Center #Res B	2.442 GI W 3 MHz	Hz			₩VBW 3 M	Hz	Sweep	9.99	Spa ms (10	an 3 MHz)00 pts)

NORTHWEST

	3DH5, 8-DPSK, High Channel	
Result: Pass	Value: 1.81 mW	Limit: 1 W

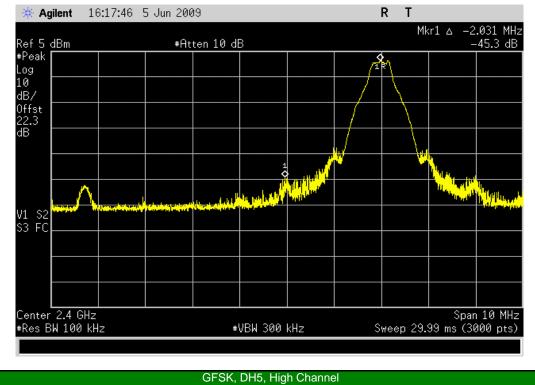
🔆 Agilent	14:31:25	5 Jun 200	9			RТ		
Ref 3 mW		#Att	ten 10 di	В		٢		9962 GHz 807 mW
#Peak Lin								
0ffst 22.3						 		
dB								
V1 S2 S3 FC						 		
Center 2.48								an 3 MHz
tenter 2.40 #Res BW 3 M	Hz		:	₩VBW 3 M	Hz	Sweep 9	op: 11. 99 ms. 11.	an <u>s MHZ</u> 000 pts)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

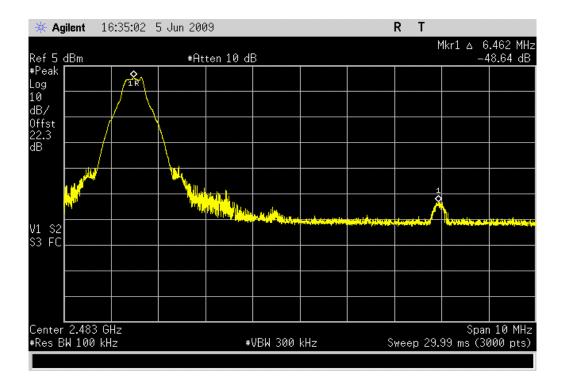
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

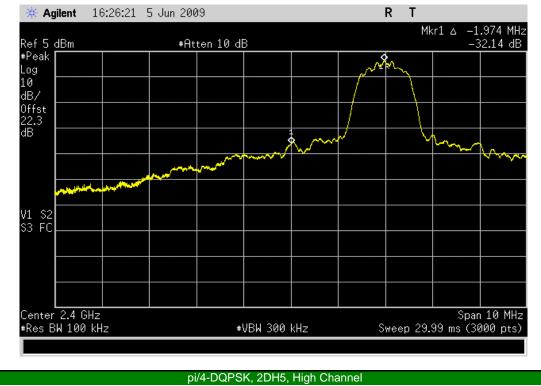

TEST DESCRIPTION

The requirements of FCC 15.247(d) for emissions at least 20dB below the carrier in any 100kHz bandwidth outside the allowable band was measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 10 MHz below the band edge to 10 MHz above the band edge.

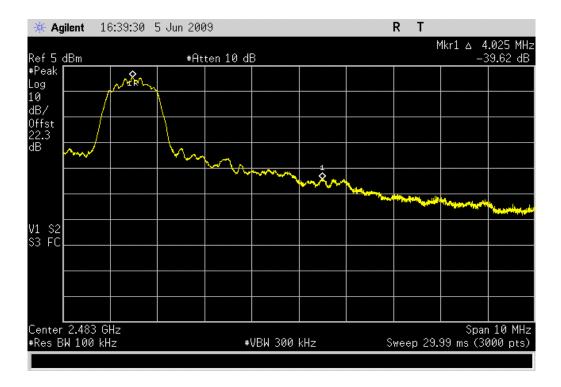

The EUT was transmitting at its maximum data rate using all three types of modulations available in Bluetooth EDR.

NORTHWEST							XMit 2008.12.29
EMC		BAND EDGE	COMPLIANCE				
EUT:	Galileo modular radio (Tl)			Work Order:	INMC0519	
Serial Number:	7				Date:	06/04/09	
Customer:	Intermec Technologies C	Corporation		-	Temperature:	23.00°C	
Attendees:	None				Humidity:	45%	
Project:	None			Baro	metric Pres.:	29.76 in	
Tested by:	Rod Peloquin		Power: 120VAC/60Hz		Job Site:	EV06	
TEST SPECIFICATI	ONS		Test Method				
FCC 15.247 (DTS):2	2009		ANSI C63.4:2003 K	DB No. 558074			
COMMENTS							
None							
DEVIATIONS FROM	I TEST STANDARD						
No Deviations							
		ΛΟΙ	Pl				
Configuration #	1	horking he	Reling				
		Signature	U				
				Value	Lin	nit	Results
GFSK, DH5							
	Low Channel			-45.3 dBc	≤ -20	dBc	Pass
	High Channel			-48.6 dBc	≤ -20	dBc	Pass
pi/4-DQPSK, 2DH5							
	Low Channel			-32.1 dBc	≤ -20	dBc	Pass
	High Channel			-39.6 dBc	≤ -20	dBc	Pass
8-DPSK, 3DH5							
	Low Channel			-33.1 dBc	≤ -20	dBc	Pass
	High Channel			-38.0 dBc	≤ -20	dBc	Pass

	GFSK,	DH5, Low Channel		
Result: Pa	ass Value:	-45.3 dBc	Limit:	≤ -20 dBc



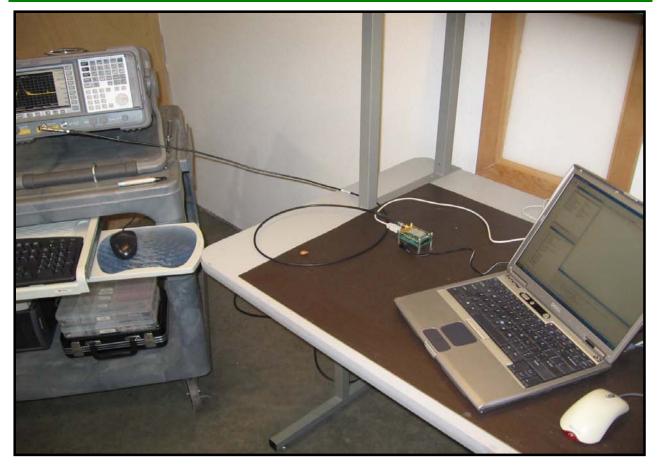
	GFSK, DHS, High Channel		
Result: Pass	Value: -48.6 dBc	Limit:	≤ -20 dBc



Result:

		pi/4-DQPSK, 2DH5, Low Channel			
Result:	Pass	Value: -32.1 dBc	Limit:	≤ -20 dBc	

	p# i B di ert, 2B i ie, i ign ename			
: Pass	Value: -39.6 dBc	Limit:	≤ -20 dBc	


		8-DPSK, 3DH5, Low Cha	annel	
Result:	Pass	Value: -33.1 dBc	Limit:	≤ -20 dBc

	o-bi orc, obrio, riigh chainei		
Result: Pass	Value: -38.0 dBc	Limit:	≤ -20 dBc

🔆 🔆 Ag	jilent 16	6:42:47 5	5 Jun 200	99				RT		
Ref 5	dBm		#At	ten 10 di	3			1		.768 MHz 38.04 dB
#Peak Log		making								
10 dB/										
Offst 22.3 dB										
dB	كمحمد		ha			1				
					Same and a start of the	- Autor	And the owner water			
								all and plan,		and a day of the
V1 S2 S3 FC										
00 1 0										
	2.483 GI W 100 kH			#	VBW 300	kHz	S	weep 29.	Spar 99 ms (30	n 10 MHz 000 pts)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

NORTHWEST

EMC

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

NORTHWEST EMC	SPURIOU	S CONDUCTED EM	ISSIONS		XMit 2008.12
	T: Galileo modular radio (TI)			Work Order: INMC051)
Serial Numbe				Date: 06/09/09	
	r: Intermec Technologies Corporation		Т	emperature: 23.00°C	
Attendees	t: None		Baro	Humidity: 45% netric Pres.: 29.76 in	
	y: Rod Peloquin	Power: 120VAC		Job Site: EV06	
EST SPECIFICA		Test Me		000 010. 2000	
CC 15.247 (DTS)):2009	ANSI C	63.4:2003 KDB No. 558074		
OMMENTS					
one					
	DM TEST STANDARD				
o deviations		10120			
Configuration #	1 Simo	Rocky le Releng			
	Signat	uic -			
FSK, DH5			Value	Limit	Result
01, 0110	Low Channel				
	0 - 3 GHz		< -40 dBc	≤ -20 dBc	Pass
	3 - 6.5 GHz 6.5 - 12.8 GHz		< -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
	12.8 - 25 GHz		< -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass
	Mid Channel			- 20 000	1 400
	0 - 3 GHz		< -40 dBc	≤ -20 dBc	Pass
	3 - 6.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	6.5 - 12.8 GHz		< -40 dBc	≤ -20 dBc	Pass
	12.8 - 25 GHz High Channel		< -40 dBc	≤ -20 dBc	Pass
	0 - 3 GHz		< -40 dBc	≤ -20 dBc	Pass
	3 - 6.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	6.5 - 12.8 GHz		< -40 dBc	≤ -20 dBc	Pass
/4-DQPSK, 2DH	12.8 - 25 GHz		< -40 dBc	≤ -20 dBc	Pass
14-DQF3N, 2DN	Low Channel				
	0 - 3 GHz		< -40 dBc	≤ -20 dBc	Pass
	3 - 6.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	6.5 - 12.8 GHz		< -40 dBc	≤ -20 dBc	Pass
	12.8 - 25 GHz Mid Channel		< -40 dBc	≤ -20 dBc	Pass
	0 - 3 GHz		< -40 dBc	≤ -20 dBc	Pass
	3 - 6.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	6.5 - 12.8 GHz		< -40 dBc	≤ -20 dBc	Pass
	12.8 - 25 GHz		< -40 dBc	≤ -20 dBc	Pass
	High Channel		14 IB		_
	0 - 3 GHz		< -40 dBc	≤ -20 dBc	Pass
	3 - 6.5 GHz 6.5 - 12.8 GHz		< -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
	6.5 - 12.8 GHz 12.8 - 25 GHz		< -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
OPSK, 3DH5				- 20 000	1 433
	Low Channel		40 JD-	< 00 JD.	D
	0 - 3 GHz		< -40 dBc	≤ -20 dBc	Pass
	3 - 6.5 GHz 6.5 - 12.8 GHz		< -40 dBc < -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
	12.8 - 25 GHz		< -40 dBc	≤ -20 dBc ≤ -20 dBc	Pass
	Mid Channel				
	0 - 3 GHz		< -40 dBc	≤ -20 dBc	Pass
	3 - 6.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	6.5 - 12.8 GHz		< -40 dBc	≤ -20 dBc	Pass
	12.8 - 25 GHz High Channel		< -40 dBc	≤ -20 dBc	Pass
	0 - 3 GHz		< -40 dBc	≤ -20 dBc	Pass
	3 - 6.5 GHz		< -40 dBc	≤ -20 dBc	Pass
	6.5 - 12.8 GHz		< -40 dBc	≤ -20 dBc	Pass
	12.8 - 25 GHz		< -40 dBc	≤ -20 dBc	Pass

Result: Pass

SPURIOUS CONDUCTED EMISSIONS

	GFSK, DH5, Low Channel, 0 - 3 GH	lz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

ef 15 dBm 'eak		ten 10 dl					
og Ø							
B/							
ffst 2.2							
В							
1 \$2	 a diala ana dia katala	a talka ta a	and a state of all s	un la satis tabli	an a		
3 FC							
tart 9 kHz						\$+7	p 3 Gł

GFSK, DH5, Low Channel, 3 - 6.5 GHz Value: < -40 dBc

Limit:	≤ -20 dBc	

🔆 Ag	j ilent 1	5:22:14	9 Jun 200	19				RT		
Ref 15	dBm		#At	ten 10 di	3					
Peak Log										
10 dB/										
Offst 22.2 dB										
dB										
M1 S2		and a field to be the second second	و بر بر بر بر بر بر بر الم		Manufactory a	1		a de contractor de contractor de		in the fifth of the
S3 FC			Mine and a second	<u> </u>	and the second second second					and the second secon
Start 3	GHz								Stop	6.5 GHz
#Res B	W 100 k	łz		#	VBW 300	kHz	S	weep 362	.6 ms (81	.92 pts)

Result: Pass

SPURIOUS CONDUCTED EMISSIONS

	GFSK, DH5, Low Channel, 6.5 - 1	2.8 GHz
Result: Pass	Value: < -40 dBc	Limit: ≤ -20 dBc

Ref 15_dB	m		#Ĥt	ten 10 d	В					
Peak .og										
0 -										
IB/										
)ffst 22.2										
iB –										
11 S2	Lusin		and the second	tali she ni		Mali ya Malaka		a the dame die		, Nederland
53 FC										
	<u></u>									
tart 6.5 (Res BW 1		-		#	VBW 300	↓Ц ₇	0	waan 651	.5top 1.7 ms (81	12.8 G

GFSK, DH5, Low Channel, 12.8 - 25 GHz Value: < -40 dBc Limit: ≤ -20 dBc

🔆 Ag	j ilent 1	5:25:30	9 Jun 200)9			 RT		
Ref 15	dBm		#At	ten 10 di	В				
Peak Log									
10 dB/									
Offst									
22.2 dB									
M1 S2			ter terrelayette	alita a filiada a	dara and the	ante la contra titan	and a state of a loc		
\$3 FC					فتكالأخر ومنوافظ	ishailala, e.i			
Start 1	L2.8 GHz							Stop) 25 GHz
#Res B	W 100 kl	lz		#	VBW 300	kHz	Sweep 1.	264 s (81	.92 pts)

	GFSK, DH5, Mid Channel, 0 - 3 G	Hz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

ef 15 dBr eak	n		#At	ten 10 di	B	1				
eak Og										
0										
B/ ffst										
ffst 2.2										
в ——										
1 \$2	والمرادرية	والأعبر باخذ وال		a sets of the ball balls by	hu dan sa biati	- I estimate a constitu	n de all de de Date	الإرجاعية والحطورة	a da la traba	
3 FC	a sina di si									
Ļ										
tart 9 kH: Res BW 10	Z NG LU⊸				VBW 300	LU⇒	~	uaan 210	Sto 1.8 ms (81	p 3 G

 GFSK, DH5, Mid Channel, 3 - 6.5 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

🔆 Agilent	15:30:13	9 Jun 200	19				RT		
Ref 15 dBm	ı	#At	ten 10 di	В					
Peak Log									
10 dB/									
Offst 22.2 dB									
aв									
M1 S2	and the state	dia kakata kara kara k				hilan an taith	u ada bila bila anta busi	adaa ay ahada	u de la contra de la
Start 3 GH: #Res BW 10	z 10 kHz		#	VBW 300	kHz	s	weep 362	Stop 6 ms (81.	6.5 GHz .92 pts)

Result: Pass

SPURIOUS CONDUCTED EMISSIONS

	GFSK, DH5, Mid Channel, 6.5 - 12.8 (GHz		
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc	

Ref 15 Yeak	dBm		#Ht	ten 10 di	8					
og										
0,										
B/ ffst										
ffst 2.2										
B										
11 S2		t and the all the s	litter fillen an them	وروار والمحمد والمحمد	ويحربه ومقاتله وأحياتهم	والماريد ويريساني	de stadiotes de sta	and a laterativ	had the second states	Iteration
3 FC					and the second s	and the second state				
Doo P	6.5 GHz ₩ 100 kH	-			VBW 300	L □ →	0	WAAR GEO	Stop : 1.7 ms (81.	12.8 G

GFSK, DH5, Mid Channel, 12.8 - 25 GHz Value: < -40 dBc Limit: ≤ -20 dBc

i∰ Ag	jilent 1	5:34:52	9 Jun 200)9			RT		
Ref 15	dBm		#At	ten 10 di	В				
Peak Log									
10 dB/									
Offst 22.2 dB									
dB									
M1 S2	u de la companya de la	Viteus akk	in delle delle				llah anahisi sala	del a del la militaria de	
S3 FC									
Start 1	L2.8 GHz							Stop) 25 GHz
#Res B	3W 100 kl	lz		#	VBW 300	kHz	Sweep 1.	264 s (81	.92 pts)

	GFSK, DH5, High	Channel, 0 - 3 GHz	
Result: Pass	Value: < -4	D dBc Limit:	≤ -20 dBc

ef 15	dBm		#At	ten 10 d	В					
'eak .og										
0 IB7										
ffst 2.2										
IB T										
11 S2 3 FC	l of the second second	an de la companya de la	in the second second	an in the states	وبالبيابا ويعد	d and the state of the set		i landa ana	and his particular	ang belevities
J FU										
tart 9 Poc Bl	kHz √100 k⊦				VBW 300	└───	c	WAAR 210	Sto).8 ms (81	p 3 GH

	GFSK, DH5, High Channel, 3 - 6.5 GHz			
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc	

🔆 Ag	jilent 1	5:38:24 🖇	9 Jun 200	19				RT		
Ref 15	dBm		#At	ten 10 df	3					
Peak Log										
10 dB/										
0ffst 22.2										
dB										
M1 S2 S3 FC		in terilitette kate			ana ni Maraja	undul harden.	terebuk anakak atl	te let debe ve hu	and a large for the	
JJ 10										
Start 3 #Res B	3 GHz W 100 kH	 Iz		#	VBW 300 I	kHz	S	weep 362	Stop 2.6 ms (81	6.5 GHz .92 pts)

	GFSK, DH5, High Channel, 6.5 - 12	.8 GHz	
Result: Pass	Value: < -40 dBc	Limit: ≤ -20 dBc	

ef 15 dBm		#At	ten 10 d	В					
eak og									
0									
B/									
ffst 2.2									
в									l
1 \$2	والعاري وتراطنت وترور وال		والمعرب والطبير أحتاك	a de la la contra	والمتحديد والمعالي	ويتعاددون والمحاد	and a property later	المعامد المعاد	الماسية والعر
3 FC				and the second second			Inc. sur, day, the	AND INCOME.	
tart 6.5 Gł									
Res BW 10			#	VBW 300	kH→	\$	ween 652	. אטט א 1.7 ms (81	12.8 G 192 nt

 GFSK, DH5, High Channel, 12.8 - 25 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

🔆 Agil	lent 15	5:41:56	9 Jun 200	19				RT		
Ref 15_	dBm		#Ât	ten 10 df	3					
Peak Log										
10 dB/										
Offst 22.2										
dB										
M1 S2						haddar en salada	diametri ante	ini, heifingsi	a des _{po} rsteres blev	
Start 12 #Res Bk	2.8 GHz 100 kH	z		#1	VBW 300	kHz		Sweep 1.	Stop 264 s (81	o 25 GHz 192 pts)

	pi/4-DQPSK, 2DH5, Low Channel, 0) - 3 GHz	
Result: Pass	Value: < -40 dBc	Limit: ≤ -20 dBc	

lef 15 dBm		#At	ten 10 di	В				
'eak og								
0								
B/ ffst								
2.2 B							 	
D								
1 S2 3 FC	ألفعي فاختلفا فلعا	a a state of the s	a di seta di s	na kinaamat	al an the state of the	date de stad divisi	had an air fin an a	
tart 9 kHz	↓ kHz						Sto .8 ms (81	p 3 GH

 pi/4-DQPSK, 2DH5, Low Channel, 3 - 6.5 GHz

 Result: Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

🔆 Agil	lent 15	5:50:32	9 Jun 200	19				RT		
Ref 15	dBm		#At	ten 10 df	3					
Peak Log										
10 dB/										
0ffst 22.2										
dB										
M1 S2 S3 FC	an a		dite and but th	ulului des discé	at an hugher as d	didition di subita d	en selle dis estadore de	ter tetti da <mark>l</mark> ute terte	des trainer begins to	
Start 3 #Res BW	GHz 100 kH	z		#	VBW 300	kHz	S	weep 362	Stop 2.6 ms (81	6.5 GHz .92 pts)

pi/4-DQPSK, 2DH5, Low Channel, 6.5 - 12.8 GHz								
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc					

lef 15 'eak 🛛	abm	1	#Ht	ten 10 dl	в Г				1
og 🛛									
0 B/									
ffst 2.2									
B									
1 52	ويتلقى بالترويات				a des bie data si a se	and an an and a few	a di kuma ta til ad	فينجور والمعالية عاد	a des filiados
3 FC									
tart <u>6</u> .	5 GHz 100 kH				VBW 300			Stop : 2.7 ms (81	12.8 GI

 pi/4-DQPSK, 2DH5, Low Channel, 12.8 - 25 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

🔆 Ag	jilent 1	5:46:48	9 Jun 200	19			RT		
Ref 15	dBm		#At	ten 10 di	3				
Peak Log									
10 dB/									
Offst									
22.2 dB									
M1 S2						u biologica a dista		in man de la diteta	والداول والعليان
S3 FC									
Start 1	[12.8 GHz							Stor) 25 GHz
#Res B	3W 100 kH	Iz		#	VBW 300	kHz	Sweep 1.	264 s (81	.92 pts)

	pi/4-DQPSK, 2DH5, Mid Channel, 0 -	· 3 GHz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

ef 15 dBn eak	1	#At	ten 10 di I	B					
og									
0 B/								1	
ffst 2.2									
2.2 B —									
D									
1 \$2	a shi shi ka sa sa	and the second burger		. House a location	a shhate shall	horadala, stationa	du dutta a la	- Witer, Surviv	
3 FC									
								<u> </u>	 op 3 Gł
tart 9 kHz									

 pi/4-DQPSK, 2DH5, Mid Channel, 3 - 6.5 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

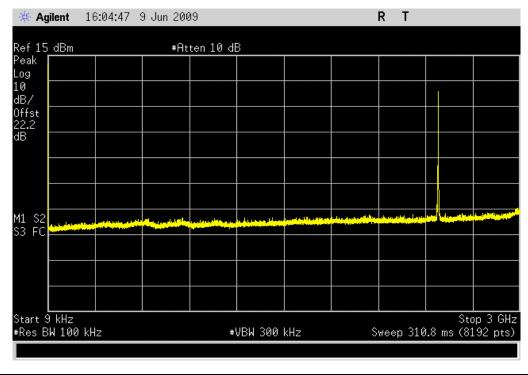
🔆 Agilent	15:58:13	9 Jun 200)9				RT		
Ref 15_dBm		#At	ten 10 di	В					
Peak Log									
10 dB/									
Offst									
dB									
M1 S2	tile state for all states as	a del state de la del de la de		and districtions	a la latita da la dise	alla de dese	ور الفراق فالعرب		a da but da a
Start 3 GHz #Res BW 10	z 0 kHz		#	VBW 300	kHz	s	weep 362	Stop 2.6 ms (81	6.5 GHz 192 pts)

	pi/4-DQPSK, 2DH5, Mid Channel, 6	.5 - 12.8 GHz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

lef 15 'eak 👖	dBm		#At	ten 10 di	B			
og								
0 B/								
ь/ ffst 2.2								
2.2 B							 	
1 52		, hild stars and with the	1			 bed ble new mobile		
				a filosik iga s	in a hai sa ili in a sa ili			
tart 6	5 GHz ∖100 k⊦	I_			VBW 300	 ~	Stop: 2.7 ms (81	12.8 GI

pi/4-DQPSK, 2DH5, Mid Channel, 12.8 - 25 GHz

Result:	Pass	
---------	------	--


Value: < -40 dBc

Limit: ≤ -20 dBc

∍f 15 ∍ak [ten 10 dl						
g J										
, 37										
fst 2.2										
3										
L S2 3 FC		ang ^{da} lata sa itu	ndent he jales	والمراجع والما	and a state where	والمرجية والإطراب	u ital let di selati	a linita pia	a dha an an tha da	a a la com
art 1	2.8 GHz √100 kH				└──── VBW 300				Stop 264 s (81	25 GI

SPURIOUS CONDUCTED EMISSIONS

	pi/4-DQPSK, 2DH5, High Channel, 0 -	3 GHz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

pi/4-DQPSK, 2DH5, High Channel, 3 - 6.5 GHz Value: < -40 dBc Limit: ≤ -20 dBc

🔆 Agiler	nt 16	6:06:41 S	9 Jun 200	19				RT		
Ref 15 dE	Bm		#Ĥt	ten 10 di	3					
Peak Log										
10 dB/										
Offst 22.2										
dB										
M1 S2 S3 FC	a dha la ba na la	ate dan sedan da			ia data kata bagi ba		dinging and the	terile level d	an aint cais	
Start 3 G #Res BW 1	Hz 100 kH	z		#	VBW 300	kHz	S	weep 362	Stop 6 ms (81.	6 . 5 GHz .92 pts)

	pi/4-DQPSK, 2DH5, High Channel, 6.5	- 12.8 GHz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

ef 15	dBm		#At	ten 10 di	3				
'eak og									
09									
В/ 丨									
ffst 2.2									
B									
1 S2	ola Instalas dill	وبالخبارة بطبي		and the second secon	a antisis in the state	بالخصيل والالا		distantion de la	
3 FC									
ĺ	E 011								
	.5 GHz W 100 kH	_			VBW 300	LU-	0	.7 ms (81	12.8 GH

 pi/4-DQPSK, 2DH5, High Channel, 12.8 - 25 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

🔆 Ag	j ilent 16	6:03:00	9 Jun 200	19			RT		
Ref 15	dBm		#At	ten 10 di	3				
Peak Log									
10 dB/									
0ffst 22.2									
dB									
M1 S2 S3 FC	us et salt av sta	. Meter a dest	a la babb jib	liste stantistication	tereka ta jilak kara	la na tatun	i		
33 FC									
Start 1 #Res B	12.8 GHz W 100 kH	z		#	VBW 300	kHz	Sweep 1.	Stop 264 s (81	o 25 GHz 192 pts)

	8DPSK, 3DH5, Low Channel, 0 - 3 GH	łz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

ef 15 dBm		#At	ten 10 d	В					
eak									
og Ø									
B/									
Iffst 2.2									
12.2 IB									
1 \$2		ويتلول الرورول والطوار	ا بر طالب براد امر	ما المربع المربع	ومعاولة والمعاد والمرود وال	and the subscription of the la	and a state of a link of the state of the	und last illiged	
3 FC									
tart 9 kHz								Sti	pp 3 Gl
Res BW 100) kHz		#	VBW 300	kHz	S	weep 310).8 ms (8)	192 pt:

 8DPSK, 3DH5, Low Channel, 3 - 6.5 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

🔆 Agilent	16:13:24	9 Jun 200	19				RT		
Ref 15_dBm		#At	ten 10 di	3					
Peak Log									
10 dB/									
Offst 22.2									
dB									
M1 S2 S3 FC	with the base base by		i de de sublitie de de	d		or Spanned all of	Headed Differentia	a sandaraki madar	da komiselona e k
33 FC					All Contenant and	andra a. ika diana m	<u></u>		
Start 3 GHz #Res BW 100	0 kHz		#	VBW 300 I	kHz	s	weep 362	Stop 2.6 ms (81	6.5 GHz 192 pts)

	8DPSK, 3DH5, Low Channel, 6.5 -	12.8 GHz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

ef 15 dBr eak		#Ht	ten 10 di					
og								
0 B/								
ffst 2.2								
B								
11 S2		a ka jitti nga juga ka	a bel at the state		i di katika di katika di			
tart 6.5 0 Res BW 10	θHz			VBW 300			Stop : 2.7 ms (81	12.8 GI

 8DPSK, 3DH5, Low Channel, 12.8 - 25 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

🔆 Ag	j ilent 1	6:23:37	9 Jun 200)9				RT		
Ref 15	dBm		#At	ten 10 di	В					
Peak Log										
10 dB/										
Offst 22.2										
dB										
M1 S2 S3 FC			nda ya Mila ya In		a i daga parta da di		and states the states	tela antibilita a		الارام المريد الرما
Start 1 #Res B	12.8 GHz W 100 k	Hz		#	VBW 300	kHz		Sweep 1.	Stop 264 s (81) 25 GHz .92 pts)

	8DPSK, 3DH5, Mid Channel, 0 - 3 Gł	Ηz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

}ef 15 ∘ Peak [dBm		#At	ten 10 di	B T					
og										
.0										
ID7										
Iffst 2.2 IB										
										ļ
11 S2 33 FC			distanting the other	ويرفأ أصبغهم	Alteration				alian antipi	a de la calería
S FU										
L Start 9	kHz								LSti	ı op 3 GH
Res BW	100 kH	z		#	VBW 300	kHz	S	weep 310).8 ms (8:	192 pts

 8DPSK, 3DH5, Mid Channel, 3 - 6.5 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

🔆 Agilen	t 16:27:40	9 Jun 200)9				RT		
Ref 15_dB	Gm	#At	ten 10 di	В					
Peak Log									
10 dB/									
Offst 22.2 dB									
dB									
M1 S2	والرواد أداده والمراجع والمتحاط					de har i hatiline	den Handillen de s	teres alues in literatio	. ii sehin aa
Start 3 GH #Res BW 1	Hz .00 kHz		#	VBW 300	kHz	S	weep 3 <u>6</u> 2	Stop 2.6 ms (81	6.5 GHz 192 pts)

	8DPSK, 3DH5, Mid Channel, 6.5 - 12	2.8 GHz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

ef 15 -	dBm	1	#At	ten 10 di	B					
eak 🛛										
0										
B/ ffst 2.2										
B										
1 52		a salatana a tila a	ades the second d				della in a literation	an de hande generalista		
3 FC	ALCOLUMN DE LE COLUMN					and a second				
tart 6. Poc RW	5 GHz 100 kł				VBW 300		<	Woop 652	Stop : 2.7 ms (8:	12.8 G

 8DPSK, 3DH5, Mid Channel, 12.8 - 25 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

🔆 Ag	j ilent 19	6:25:12	9 Jun 200	19				RT		
Ref 15	dBm		#At	ten 10 df	3					
Peak Log										
10 dB/										
Offst 22.2										
dB										
M1 S2 S3 FC		A statute à line	el manthany, de		de en la tra Merica d	l , self e se - se side e	and taking di XA			فاطفاها
00 10										
Start 1 #Res B	.2.8 GHz W 100 kH	Iz		#!	VBW 300	kHz		Sweep 1.	Stop 264 s (81) 25 GHz 192 pts)

SPURIOUS CONDUCTED EMISSIONS

	8DPSK, 3DH5, High Channel, 0 - 3 GH	Z	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

Ref 15 dBm	#At	ten 10 di	B					
'eak og								
.0								
B/	 							
ffst 2.2 B	 							
ID								
							<mark> </mark>	
11 S2 3 FC	de la setele				entri eta telete		had les station	a de la califi
tart 9 kHz				kHz		weep 310	Stu	p 3 Gl

8DPSK, 3DH5, High Channel, 3 - 6.5 GHz Value: < -40 dBc Limit: ≤ -20 dBc

🔆 Agi	lent 16	6:32:18	9 Jun 200	19				RT		
Ref 15	dBm		#At	ten 10 di	3					
Peak 🛛										
10 dB/										
Offst 🖡										
22.2 dB										
M1 S2	lieli i e stebil e de		the state of the s	مريد المعالم	lauth as well a start a		والمعرجة والمحرجة والمحرجة		المراجع والمراجع	
S3 FC	i dentre internet den der				inina, staatificae					
L Start 3	GHz								Stop	6.5 GHz
	√100 kH	z		#	VBW 300	kHz	S	weep 362	2.6 ms (81	192 pts)

	8DPSK, 3DH5, High Channel, 6.5 - 1	2.8 GHz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -20 dBc

ef 15 dBm		#Ât	ten 10 di	B					
'eak og									
0 IB/									
Iffst									
B									
11 S2	ha hi i sugar ka sug		lini. Ang ang	a ha li ka ku ka ya ya ya	والمراجع والمراجع	eeste kolden kaar	Hartterig stårsvill	i terinin da s ^a lar	
tart 6.5 GHz Res BW 100 kHz				VBW 300	L □→	~	waan 651	: Stop 2.7 ms (81	12.8 G

 8DPSK, 3DH5, High Channel, 12.8 - 25 GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

🔆 Agil	lent 16	6:35:01	9 Jun 200	19				RT		
Ref 15	dBm		#At	ten 10 df	3					
Peak Log										
10 dB/										
0ffst 22.2										
dB										
V1 S2 S3 FS_			dia dalah yang	thing of the bi			and the second	Magazina da	ikey ya Akera	الجالي المتحديد
Start 12 #Res Bk	2.8 GHz 100 kH	z		#!	VBW 300	kHz		Sweep 1.	Stop 264 s (81) 25 GHz .92 pts)

NORTHWEST

SPURIOUS CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

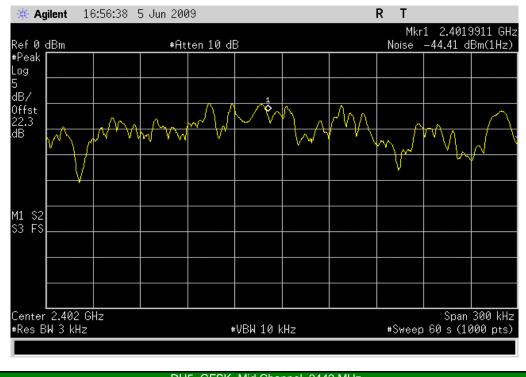
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Signal Generator	Hewlett-Packard	8648D	TGC	12/9/2008	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate for each modulation type available. Per the procedure outlined in FCC KDB 558074, March 23, 2005, the spectrum analyzer was used as follows:

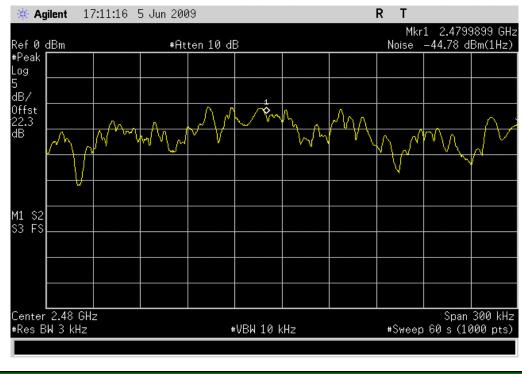

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $10^6 \div 3 \times 10^3 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 35 dB for correction to 3 kHz."

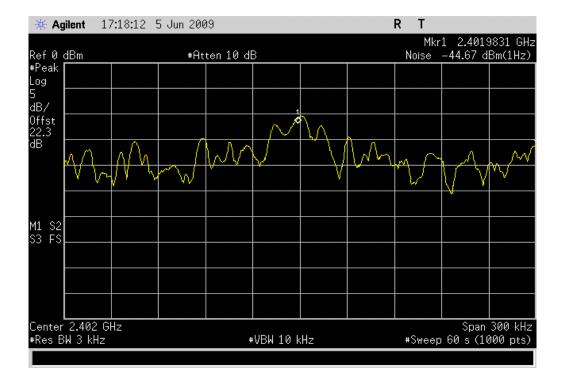
NORTHWEST							XMit 2008.12.29
		POWFR	SPECTRAL	DENSITY			
EMC							
EUT:	Galileo modular radio (TI)				V	Vork Order: INMC0519	
Serial Number:	7					Date: 06/04/09	
Customer:	Intermec Technologies Corp	poration			Te	emperature: 23.00°C	
Attendees:	None					Humidity: 45%	
Project:	None				Barom	netric Pres.: 29.76 in	
Tested by:	Rod Peloquin		Power	120VAC/60Hz		Job Site: EV06	
TEST SPECIFICAT	IONS			Test Method			
FCC 15.247 (DTS):	2009			ANSI C63.4:2003 KDB No	. 558074		
COMMENTS							
None							
DEVIATIONS FROM	I TEST STANDARD						
No Deviations							
			22:01				
Configuration #	1		Porting to Relings				
		Signature	0 0				
				Va	lue	Limit	Results
DH5, GFSK							
	Low Channel, 2402 MHz			-9.6 dBn	n / 3 kHz	8 dBm / 3 kHz	Pass
	Mid Channel, 2442 MHz			-9.8 dBn	n / 3 kHz	8 dBm / 3 kHz	Pass
	High Channel, 2480 MHz			-10.0 dBi	m / 3 kHz	8 dBm / 3 kHz	Pass
2-DH5, Pi/4-DQPSK							
,	Low Channel, 2402 MHz			-9.9 dBn	n / 3 kHz	8 dBm / 3 kHz	Pass
	Mid Channel, 2442 MHz			-10.0 dBi	m / 3 kHz	8 dBm / 3 kHz	Pass
	High Channel, 2480 MHz			-10.5 dBi	m / 3 kHz	8 dBm / 3 kHz	Pass
3-DH5, 8-DPSK							
	Low Channel, 2402 MHz			-9.8 dBn	n / 3 kHz	8 dBm / 3 kHz	Pass
	Mid Channel, 2442 MHz			-10.0 dBi	m / 3 kHz	8 dBm / 3 kHz	Pass
	High Channel, 2480 MHz			-10.6 dBi	m/3kHz	8 dBm / 3 kHz	Pass
	C C C C C C C C C C						

POWER SPECTRAL DENSITY

DH5, GFSK, Low Channel, 2402 MHz Result: Pass Value: -9.6 dBm / 3 kHz Limit: 8 dBm / 3 kHz

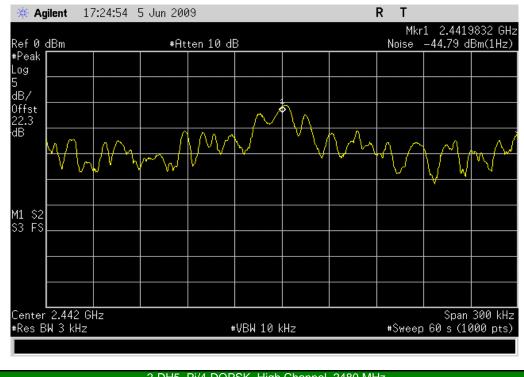


DH5, GFSK, Mid Channel, 2442 MHz Value: -9.8 dBm / 3 kHz Limit: 8 dBm / 3 kHz

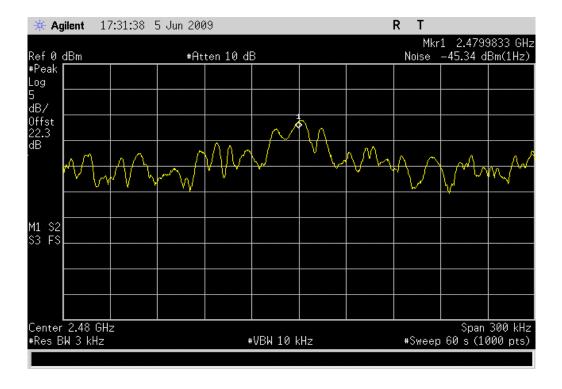

🔆 Agilent 17:01:50 5 Jun 2009 R Т Mkr1 2.4419896 GHz Noise -44.56 dBm(1Hz) Ref Ø dBm #Peak #Atten 10 dB Log 5 dB/ 0ffst 22.3 dB LAMA 1 AM VW M V V Ų M1 S2 S3 FS Center 2.442 GHz #Res BW 3 kHz Span 300 kHz #VBW 10 kHz #Sweep 60 s (1000 pts)

POWER SPECTRAL DENSITY

DH5, GFSK, High Channel, 2480 MHz							
Result: Pass	Value: -10.0 dBm / 3 kHz	Limit:	8 dBm / 3 kHz				

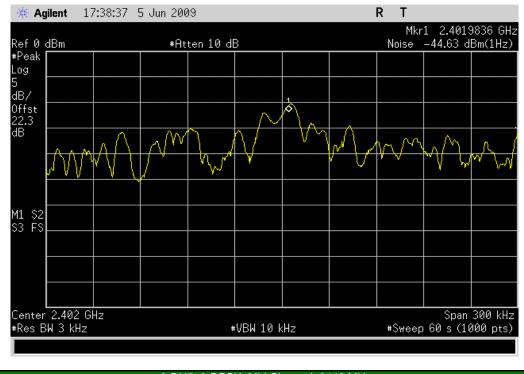


2-DH5, Pi/4-DQPSK, Low Channel, 2402 MHz Value: -9.9 dBm / 3 kHz

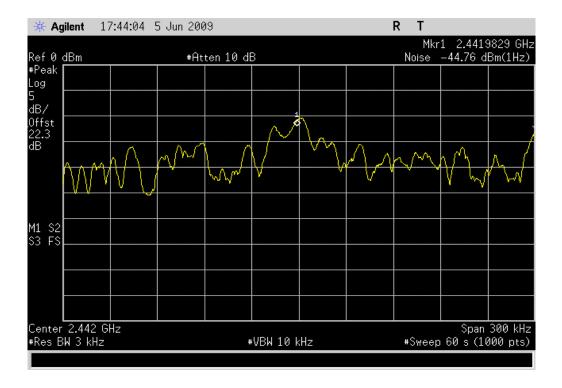


POWER SPECTRAL DENSITY

2-DH5, Pi/4-DQPSK, Mid Channel, 2442 MHz Result: Pass Value: -10.0 dBm / 3 kHz Limit: 8 dBm / 3 kHz



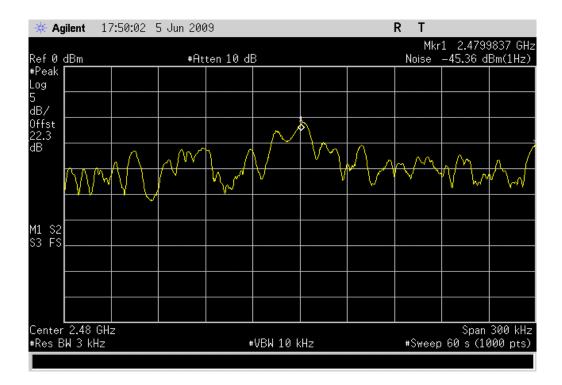
2-DH5, Pi/4-DQPSK, High Channel, 2480 MHz Value: -10.5 dBm / 3 kHz L



POWER SPECTRAL DENSITY

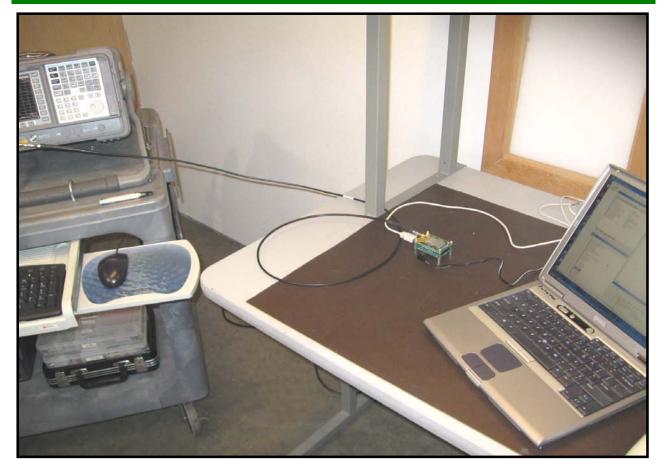
3-DH5, 8-DPSK, Low Channel, 2402 MHz Result: Pass Value: -9.8 dBm / 3 kHz Limit: 8 dBm / 3 kHz

3-DH5, 8-DPSK, Mid Channel, 2442 MHz Value: -10.0 dBm / 3 kHz


POWER SPECTRAL DENSITY

EMC

3-DH5, 8-DPSK, High Channel, 2480 MHz


Result: Pass

Value: -10.6 dBm / 3 kHz

NORTHWEST

POWER SPECTRAL DENSITY

