

FCC OET BULLETIN 65 SUPPLEMENT C IC RSS-102 ISSUE 2

SAR EVALUATION REPORT

FOR

HANDHELD TERMINAL

MODEL NUMBER: CK3

FCC ID: EHA-CK3DDIB IC: 1223A-CK3DDIB

REPORT NUMBER: 08U12283-1 REV A

ISSUE DATE: JANUARY 6, 2009

Prepared for

INTERMEC TECHNOLOGIES CORPORATION 6001 – 36TH AVENUE WEST EVERETT, WA 98203, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA

NVLAP LAB CODE 200065-0

REPORT	NO: 08U12283-1A	DATE: January 6, 2009	FCC ID: EHA-CK3DDIB
Revision	History		
Rev.	Issue Date	Revisions	Revised By
	December 23 , 2008	Initial Issue	
А	January 6 , 2009	Additional Testing for PTT	Sunny Shih

TABLE OF CONTENTS

1	ATTESTATION OF TEST RESULTS	4
2	TEST METHODOLOGY	5
3	FACILITIES AND ACCREDITATION	5
4	CALIBRATION AND UNCERTAINTY	5
	4.1 MEASURING INSTRUMENT CALIBRATION	5
5	MEASUREMENT UNCERTAINTY	5
6	DEVICE UNDER TEST (DUT) DESCRIPTION	7
7	SYSTEM DESCRIPTION	8
	7.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	9
8	SIMULATING LIQUID CHECK	10
	8.1 SIMULATING LIQUID PARAMETER CHECK RESULT	
9	SYSTEM PERFORMANCE CHECK	17
	9.1 SYSTEM PERFORMANCE CHECK RESULTS	
10	DASY4 SAR MEASURMENT PROCEDURE	21
11	OUTPUT POWER VERIFICATION	22
	11.1 DUTY CYCLE	22
12	SAR MEASURMENT RESULTS	23
	12.1 2.4 GHZ BAND	
	12.1.1 BODY WORN – LEFT HAND SIDE	23
	12.1.2 BODY WORN – RIGHT HAND SIDE	24
	12.1.3 PUSH TO TALK	25
	12.2 5 GHZ BAND	27
	12.2.1 BODY WORN – LEFT HAND SIDE	27
	12.2.2 BODY WORN – RIGHT HAND SIDE	28
	12.2.3 PUSH TO TALK	
13	ATTACHMENTS	
14	PHOTOS	

1 ATTESTATION OF TEST RESULTS

COMPANY NAME:	INTERMEC TEC	RMEC TECHNOLOGIES CORPORATION					
	EVERETT, WA	98203, US	SA				
EUT DESCRIPTION:	Handheld Termi radio.	nal CK3 w	ith EHA-CK3DDIB dual 802.11ab	g and BT			
MODEL:	CK3						
FCC ID:	EHA-CK3DDIB						
IC:	1223A-CK3DDI	3					
DEVICE CATEGORY:	Portable						
EXPOSURE CATEGOR	Y: General Populat	ion/Uncor	ntrolled Exposure				
DATE TESTED: December 18, 19, and 22, 2008, January 5 and 6 2009							
THE HIGHEST SAR			· · · · ·				
VALUES:	See Table below	e below					
FCC / IC Rule Parts	Frequency Rang [MHz]	e	The Highest SAR Values (1g_mW/g)	Limit (mW/a)			
	2400 - 2483.5		Body: 0.223 mW				
15.247 / RSS-102			Head (PTT): 0.054 mW	16			
	5725 - 5850		Body: 0.286 mW Head (PTT): 0.139 mW	1.0			
	5150 - 5250		Body: 0.116 mW				
			Head (PTT): 0.075 mW				
15.407 / RSS-102	5250 - 5350		Body: 0.141 mW	1.6			
	5470 - 5725		Body: 0 298 mW				
	0410 0120		Head (PTT): 0.168 mW				
	APPLICABL	E STAND	DARDS				
STANI	DARD	TEST RESULTS					
FCC OET BULLETIN	65 SUPPLEMENT C	Pass					
RSS-102	ISSUE 2	Pass					

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency. Approved & Released For CCS By: Tested By:

Seenay Shih

SUNNY SHIH EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Carol Baumann

CAROL BAUMANN **EMC ENGINEER** COMPLIANCE CERTIFICATION SERVICES

2 TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedures KDB 447498_RF Exposure Requirements and Procedures for mobile and portable devices, KDB 248227 SAR Measurement Procedure for 820.11abg Transmitters, KDB 648474 SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas and IC RSS 102 Issue 2: NOVEMBER 2005.

3 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4 CALIBRATION AND UNCERTAINTY

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5 MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz – 3000 MHz

Uncortainty component	Tol (+%) Probe	Div	Ci(1a)	Ci (10g)	Std. Unc.(±%)		
Oncertainty component	101. (± /₀)	Dist.	Div.	Ci (ig)	CI (TUG)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table							
1. Tol tolerance in influence quaitity							

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

Measurement uncertainty for 3 GHz - 6 GHz

Linearteint / component	Tel (+9/)	Probe	Div	$C:(4\pi)$	C: (10m)	Std. Un	IC.(±%)
Uncertainty component	TOI. (±%)	Dist.	DIV.	Ci (ig)	CI (TUG)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.66	10.73
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46
Notesfor table							
1. Tol tolerance in influence quaitity							
2. N - Nomal							

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

·

6 DEVICE UNDER TEST (DUT) DESCRIPTION

Handheld Terminal CK3 with EH	Handheld Terminal CK3 with EHA-CK3DDIB dual 802.11abg and BT radio						
Normal Operation:	Worn on body and hand-held						
Body Worn Accessories:	 Scan Handle (P/N 714-698-001) Holster (P/N 825-198-001) 						
Duty Cycle:	802.11b mode: 97% (crest factor = 1.03) 802.11a mode: 85% (crest factor = 1.15)						
Host Device:	Handheld Terminal CK3						
Battery:	Li-Ion Rechargeable Battery with the following alternate types: 1) +3.7 Li-Ion – AB17 (318-033-001) – 2000 mAh 2) +3.7 Li-Ion – AB18 (318-034-001) – 5100 mAh 3) +3.7 Li-Ion – AB26 (318-034-002) – 4800 mAh Notes: Battery capacity does not affect SAR values in the configurations tested. +3.7 Li-Ion – AB18 (318-034-001) – 5100 mAh was used for testing.						
Simultaneously Transmission:	802.11abg and Bluetooth can not transmit simultaneously Bluetooth conducted average power is below Pref/12mW, stand alone SAR evaluation is not required						

7 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

7.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)											
(% by weight)	450		83	835		915		1900		2450			
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body			
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2			
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04			
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0			
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0			
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0			
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0			
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7			
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5			
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78			

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

8 SIMULATING LIQUID CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Bo	dy
raiget i requeitcy (miliz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 25°C; Relative Humidity = 29%

Simulating Liquid					Parameters	Measured	Target	Deviation (%)	Limit (%)			
	f (MHz)	Depth (cm)			Farameters	Weasureu	Taiget	Deviation (78)	Linin (70)			
	2450	15	e'	51.3940	Relative Permittivity (ε_r):	51.3940	52.7	-2.48	± 5			
	2450	15	e"	14.1996	Conductivity (o):	1.93536	1.95	-0.75	± 5			
Lio	uid Check											
An	, hbient tempe	erature: 25 d	leg.	C; Liquio	l temperature: 24 deg	q. C						
De	December 18, 2008 09:23 AM											
Fre	equency	e'			e"							
24	00000000.	Ę	51.6	211	14.3386							
24	05000000.	E	51.6	711	14.3187							
24	10000000.	5	51.5	447	14.0898							
24	15000000.	5	51.5	624	13.9987							
24	20000000.	5	51.5	279	14.0242							
24	25000000.	5	51.4	019	14.0116							
24	30000000.	5	51.3	548	13.9789							
24	35000000.	Ę	51.4	124	14.0269							
24	40000000.	E	51.3	123	14.0317							
24	45000000.	Ę	51.2	977	14.0923							
24	50000000.	Ę	51.3	940	14.1996							
24	55000000.	Ę	51.3	042	14.2886							
24	60000000.	5	51.4	641	14.5100							
24	65000000.	5	51.4	381	14.5190							
24	70000000.	Ę	51.5	003	14.6822							
24	75000000.	Ę	51.4	180	14.7966							
24	80000000.	Ę	51.4	539	14.8022							
24	85000000.	Ę	51.3	983	14.9777							
24	90000000.	5	51.4	565	14.8909							
24	95000000.	5	51.3	823	14.8800							
25	00000000.	5	51.4	483	14.8927							
Th	e conductivi	ty (σ) can be	e giv	en as:								
σ=	$\sigma = \omega \varepsilon_0 \mathbf{e}'' = 2 \pi f \varepsilon_0 \mathbf{e}''$											
wh	$ere f = tar_{s}$	get $f * 10^{6}$										
	E _0 = 8.8.	$54 * 10^{-12}$										

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 25°C; Relative humidity = 33%

	Simulating Liquid				Parameters	Measured	Tarnet	Deviation (%)	Limit (%)	1
	f (MHz)	Depth (cm)			rarameters	Medoured	raiget	Deviation (70)	Emme (70)	
	2450	15	e'	51.7719	Relative Permittivity (ε_r):	51.7719	52.7	-1.76	± 5	
	2400	15	e"	14.3576	Conductivity (σ):	1.95689	1.95	0.35	± 5	
Lic	uid Check									•
An	, hbient tempe	erature: 25 d	leg.	C; Liquid	temperature: 24 deg	g. C				
Ja	nuary 06, 20	09 12:33 PI	М	· •						
Fre	equency	e'			e"					
24	00000000.	5	51.8	963	14.5815					
24	05000000.	Ę	52.0	865	14.5372					
24	10000000.	5	51.9	728	14.4089					
24	15000000.	Ę	51.8	693	14.3694					
24	20000000.	5	51.9	034	14.3382					
24	25000000.	Ę	51.8	327	14.2476					
24	30000000.	5	51.8	220	14.3177					
24	35000000.	5	51.7	818	14.3464					
24	40000000.	5	51.6	941	14.3490					
24	45000000.	5	51.6	903	14.3286					
24	50000000.	ŧ	51.7	719	14.3576					
24	55000000.	5	51.7	034	14.5701					
24	60000000.	5	51.7	302	14.6915					
24	65000000.	5	51.6	825	14.7123					
24	70000000.	5	51.7	593	14.7708					
24	75000000.	5	51.7	934	14.9110					
24	80000000.	5	51.7	857	14.9796					
24	85000000.	5	51.7	572	15.0374					
24	90000000.	Ę	51.8	190	15.0702					
24	95000000.	5	51.7	073	15.0305					
25	00000000.	Ę	51.8	623	15.0988					
Th	The conductivity (σ) can be given as:									
σ	= ωε _θ e''= 2	$\pi f arepsilon_{ heta}$ e"								
wh	ere $f = targ$	get $f * 10^{6}$								
	E _0 = 8.8.	$54 * 10^{-12}$								

Simulating Liquid Dielectric Parameter Check Result @ Head 2450 MHz

Room Ambient Temperature = 25°C; Relative humidity = 33%

	Simulating Liquid		Parameters		Measured	Target	Deviation (%)	Limit (%)		
	f (MHz)	Depth (cm)				modourou	raiger	Downation (70)	2	
	2450	15	e'	38.3128	Relative Permittivity (ε_r):	38.3128	39.2	-2.26	± 5	
	2430	15	e"	13.0566	Conductivity (σ):	1.77957	1.80	-1.13	± 5	
Liq	uid Check									
An	bient tempe	erature: 25 d	leg.	C; Liquic	temperature: 24 deg	g. C				
Jai	1uary 06, 20	09 02:03 PI	М	•						
Fre	equency	e'			e"					
24	0000000.	3	38.5	372	13.3787					
24	05000000.	3	38.6	071	13.2508					
24	10000000.	3	38.5	817	13.2896					
24	15000000.	3	38.5	158	13.2457					
24	20000000.	3	38.4	225	13.1780					
24	25000000.	3	38.3	895	13.0502					
24	30000000.	3	38.3	229	13.1178					
24	35000000.	3	38.2	639	13.0451					
24	40000000.	3	38.3	294	13.0666					
24	45000000.	3	38.2	553	13.0780					
24	50000000.	3	38.3	128	13.0566					
24	55000000.	3	38.1	412	13.1603					
24	6000000.	3	38.2	731	13.2738					
24	65000000.	3	38.2	337	13.2403					
24	70000000.	3	38.2	475	13.3813					
24	75000000.	3	38.2	254	13.4400					
24	80000000.	3	38.1	979	13.4622					
24	85000000.	3	38.3	287	13.4994					
24	90000000.	3	38.2	930	13.5700					
24	95000000.	3	38.2	392	13.5568					
25	0000000.	3	38.3	194	13.6335					
Th	e conductivi	ty (σ) can be	e giv	en as:						
σ=	$\sigma = \omega \varepsilon_{\theta} \mathbf{e}' = 2 \pi f \varepsilon_{\theta} \mathbf{e}''$									
wh	ere $f = targ$	get $f * 10^{6}$								
	E ₀ = 8.8.	54 * 10 ⁻¹²								

Simulating Liquid Parameter Check Result @ Muscle 5GHz

Room Ambient Temperature = 25°C; Relative Humidity = 38%

Simulating Liquid f (MHz)		Pa	rameters	Measured	Target	Deviation (%)	Limit (%)					
5000	e'	45.0832	Relative Permittivity (c _r):	45.0832	49.0	-7.99	± 10					
5200	e"	18.7940	Conductivity (o):	5.43678	5.30	2.58	± 5					
EE00	e'	44.7098	Relative Permittivity (ε_r):	44.7098	48.6	-8.00	± 10					
5500	e"	18.5377	Conductivity (σ):	5.67202	5.65	0.39	± 5					
5800	e'	44.1506	Relative Permittivity (ε_r):	44.1506	48.2	-8.40	± 10					
3000	e"	19.3589	Conductivity (o):	6.24637	6.00	4.11	± 5					
Liquid Check	Liquid Check											
Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C												
December 19, 20	08 0	8:41 AM										
Frequency		e'	e"									
4600000000.		46.1429	17.89	935								
4650000000.		46.4114	17.74	470								
4700000000.		45.8363	17.68	381								
4750000000.		46.2491	18.29	906								
4800000000.		45.8617	17.64	173								
4850000000.		45.9059	18.43	341								
4900000000.		45.8377	17.92	213								
4950000000.		45.4081	18.32	288								
5000000000.		45.6217	18.34	461								
5050000000.		45.0749	18.16	583								
5100000000		45 3008	18.7	162								
5150000000		45 0069	17.93	349								
5200000000		45 0832	18 79	940								
5250000000		45 1880	18.18	386								
5300000000		40.1000	18.78	320								
53500000000		45 1730	18.8	180								
5400000000		40.1700	18.5	S60								
5450000000		44 0030	10.00	340								
5450000000		44.9030 11 7009	19.20	277								
5550000000		44.7090	10.00	252								
5550000000.		44.0904	19.40	500								
5650000000		44.0007	10.00									
5050000000		44.2002	19.10	757								
5700000000.		44.7003	19.10	047 045								
5750000000.		44.0729	10.70	540								
5800000000.		44.1506	19.3	089								
5850000000.		43.6785	18.70	076								
5900000000.		43.6394	19.3	909								
5950000000.		43.3137	18.70	195								
6000000000.	600000000. 42.9866 19.4442											
The conductivity	(σ) c	an be given	as:									
$\sigma = \omega \varepsilon_0 \mathbf{e}'' = 2 \pi$	$f \varepsilon_{\theta}$	e"										
where $f = target$	where $\mathbf{f} = target f * 10^6$											
E Ø = 8.854	* 10											

Simulating Liquid Parameter Check Result @ Muscle 5GHz

Room Ambient Temperature = 25°C; Relative Humidity = 40%

Simulating Liquid f (MHz)		Pa	rameters	Measured	Target	Deviation (%)	Limit (%)
5000	e'	44.824	Relative Permittivity (c _r):	44.8240	49.0	-8.52	± 10
5200	e"	18.2497	Conductivity (o):	5.27932	5.30	-0.39	± 5
EE00	e'	44.5378	Relative Permittivity (ε_r):	44.5378	48.6	-8.36	± 10
5500	e"	17.8568	Conductivity (o):	5.46368	5.65	-3.30	± 5
5800	e'	44.0601	Relative Permittivity (ε_r):	44.0601	48.2	-8.59	± 10
5600	e"	18.8607	Conductivity (o):	6.08562	6.00	1.43	± 5
Liquid Check							
Ambient tempera	ture:	25 deg. C; l	iquid temperature: 24	deg. C			
December 22, 20	08 0	8:43 AM		-			
Frequency		e'	e"				
460000000.		45.9771	17.38	380			
4650000000.		46.2529	17.24	464			
4700000000.		45.6670	17.12	232			
4750000000.		46.0921	17.8 ⁻	171			
4800000000.		45.6987	17.07	753			
4850000000.		45.7323	17.94	479			
4900000000.		45.6518	17.32	228			
4950000000.		45.2527	17.78	361			
5000000000.		45.4140	17.7	794			
5050000000		44,8538	17.54	496			
5100000000		45 0837	18 19	999			
5150000000		44 7949	17.29	903			
5200000000		44 8240	18.24	197			
5250000000		45 0110	17.5	17 5501			
5300000000		44 3642	18.20	18 2002			
53500000000		45 0689	18.20	189			
5400000000		40.0000	17.20	222			
5450000000		44.2020	18.6	167			
5500000000.		44.5378	17.8	568			
5550000000		44.5370	10.00				
5550000000.		44.5595	10.03	540			
5650000000		44.0179	10.23	040			
5050000000.		44.0104	10.50	101			
5700000000		44.7112	10.04	191			
5750000000.		43.0713	10.10	207			
		44.0001	18.8	טע עדע			
50500000000		43.5281	18.02	2/4			
5900000000	43.4262 18.8		200				
59500000000.		43.2067	18.0	0∠0			
000000000000000000000000000000000000000		42.7759	18.90)4/			
The conductivity	(σ) c	an be given	as:				
$\sigma = \omega \varepsilon_0 \mathbf{e}'' = 2 \pi$	$f \varepsilon_{\theta}$	e"					
where $f = target$	f*1	0^{6}					
E ₀ = 8.854	* 10	12					

Simulating Liquid Parameter Check Result Head @ 5GHz

Room Ambient Temperature = 25°C; Relative humidity = 33%

Simulating Liquid	1 institute (0())
f (MHz) Parameters Measured Larget Deviation (%)	Limit (%)
e' 37.1905 Relative Permittivity (c _r): 37.1905 36.0 3.31	± 10
e" 16.5404 Conductivity (σ): 4.78485 4.66 2.68	± 5
e' 36.7218 Relative Permittivity (ε _r): 36.7218 35.6 3.15	± 10
e" 16.6909 Conductivity (σ): 5.10695 4.96 2.96	± 5
e' 36.2717 Relative Permittivity (ϵ_r): 36.2717 35.3 2.75	± 10
e" 16.8280 Conductivity (σ): 5.42975 5.27 3.03	± 5
Liquid Check	
Ambient temperature: 25 deg. C; Liguid temperature: 24 deg. C	
January 05, 2009 04:46 PM	
Frequency e' e"	
460000000. 38.0836 16.2235	
465000000. 37.9874 16.2602	
470000000. 37.9512 16.2904	
4750000000 37 8573 16 3143	
480000000 37 7972 16 3444	
4850000000 37 7255 16 3653	
490000000 37 6751 16 3980	
4950000000 37 5772 16 4462	
500000000 37.4870 16.4505	
5050000000 37.4259 16.4835	
510000000 37 3351 16 5045	
5150000000 37.2720 16.5390	
510000000. 57.2720 10.5599	
5250000000 57.1905 16.5404	
5250000000. 57.0092 10.5000 520000000 27.0207 16.5087	
5300000000. 57.0307 10.3987	
5350000000. 50.9457 10.0510	
5400000000. 50.0745 10.0415 5450000000 26 7041 16 6721	
5500000000 36.7210 16.5909	
55500000000. 50.0554 10.7144	
5050000000. 50.5054 10.7050	
5700000000. 30.4289 10.7005	
5750000000. 50.3240 10.7675	
5800000000 36.2717 16.8280	
50500000000. 50.2115 10.0515	
5900000000. 30.1239 10.8044	
5950000000. 36.0404 16.8753	
600000000. 35.9486 16.9077	
The conductivity (σ) can be given as:	
$\sigma = \omega \varepsilon_{\theta} \mathbf{e}'' = 2 \pi f \varepsilon_{\theta} \mathbf{e}''$	
where $f = target f * 10^6$	
$\epsilon_0 = 8.854 * 10^{-12}$	

9 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

450 to 2450 MHz Reference SAR Values for Body-Tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g)	SAR (10g)	SAR (peak)
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D_{2000V2}	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

5 GHz Reference SAR Values for Body-Tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using finite-difference time-domain FDTD method (feed point-impedance set to 50 ohms) and the mechanical dimensions of the D5GHzV2 dipole (manufactured by SPEAG).

f (MH7)	Head	Tissue	Body Tissue				
1 (IVI112)	SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	SAR _{Peak}		
5000	72.9	20.7	68.1	19.2	260.3		
5100	74.6	21.1	78.8	19.6	272.3		
5200	76.5	21.6	71.8	20.1	284.7		
5500	83.3	23.4	79.1	22.0	326.3		
5800	78.0	21.9	74.1	20.5	324.7		

Note: All SAR values normalized to 1 W forward power.

9.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 748

The dipole input power (forward power): 250 mW

<u>Results</u>

Date: December 18, 2008

Ambient Temperature = 25°C; Relative humidity = 29%

Body Simulating Liquid		Normalized		Target	Deviation	Lim it	
f(MHz)	Temp.(°C)	Depth (cm)	to 1 W		Taryet	(%)	(%)
2450	24	15	1 g	51.7	51.2	0.98	± 10
2430	24	15	10g	23.4	23.7	-1.27	± 10

Date: January 6, 2008

Ambient Temperature = 25°C; Relative humidity = 33%

Measured by: Carol Baumann

Body Simulating Liquid		Normalized		Target	Deviation	Lim it	
f(MHz)	Temp.(°C)	Depth (cm)	to	5 1 W	Target	(%)	(%)
2450 24	24	15	1 g	48.1	51.2	-6.05	± 10
	24	15	10g	21.7	23.7	-8.44	± 10

Measured by: Carol Baumann

System Validation Dipole: D5GHzV2 SN 1003

The dipole input power (forward power): 250 mW

<u>Results</u>

Date: December 19, 2008

Ambient Temperature = 25 °C; Relative humidity = 38%

Body Simulating Liquid		Normalized		Target	Deviation	Limit	
f(MHz)	Temp.(°C)	Depth (cm)	to 1 W		Target	(%)	(%)
5200	24	24 15	1 g	74.5	71.8	3.76	± 10
5200	24	15	10g	20.9	20.1	3.98	± 10

Body Simulating Liquid		Normalized		Taraat	Deviation	Lim it	
f(MHz)	Temp.(°C)	Depth (cm)	to 1 W		Taryet	(%)	(%)
5500	24	15	1 g	78.3	79.1	-1.01	± 10
5500	24	15	10g	21.7	22.0	-1.36	± 10

Body Simulating Liquid		Normalized		Target	Deviation	Lim it	
f(MHz)	Temp.(°C)	Depth (cm)	to 1 W		Taryet	(%)	(%)
5900	24	15	1 g	74.7	74.1	0.81	± 10
3800	24	15	10g	20.8	20.5	1.46	± 10

Date: December 22, 2008

Ambient Temperature = 25 °C; Relative humidity = 40%

Body Simulating Liquid		Normalized		Target	Deviation	Lim it	
f(MHz)	Temp.(°C)	Depth (cm)	to 1 W		Taryet	(%)	(%)
5200	24	15	1 g	70.6	71.8	-1.67	± 10
5200	24	15	10g	19.9	20.1	-1.00	± 10

Body Simulating Liquid		Normalized		Target	Deviation	Lim it	
f(MHz)	Temp.(°C)	Depth (cm)	to 1 W		Target	(%)	(%)
5500	24	15	1 g	77.6	79.1	-1.90	± 10
5500	24	15	10g	21.6	22.0	-1.82	± 10

Body Simulating Liquid		Normalized		Target	Deviation	Lim it	
f(MHz)	Temp.(°C)	Depth (cm)	to 1 W		Target	(%)	(%)
5800	24	15	1 g	70.9	74.1	-4.32	± 10
5000	24	15	10g	19.8	20.5	-3.41	± 10

System Validation Dipole: D5GHzV2 SN 1003

Date: January 5, 2008

Ambient Temperature = 25 °C; Relative humidity = 33%

Head	Simulating	Liquid	Nori	malized	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	to	5 1 W	Target	(%)	(%)
5200	24	15	1 g	69.2	76.5	-9.54	± 10
5200	24	15	10g	19.6	21.6	-9.26	± 10

Head	Simulating	Liquid	Nori	malized	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	to	5 1 W	Taryet	(%)	(%)
5500	24	15	1 g	82.7	83.3	-0.72	± 10
5500	24	15	10g	23.4	23.4	0.00	± 10

Head	Simulating	Liquid	Nori	malized	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	to	5 1 W	Taryet	(%)	(%)
5800	24	15	1 g	71.8	78.0	-7.95	± 10
5600	24	15	10g	20.4	21.9	-6.85	± 10

10 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

For 5 GHz band – Same as above except the Zoom Scan measures 7 x 7 x 9 points.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

11 OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, FCC Test Utility (version 1.01) which enables a user to control the frequency and output power of the module.

The cable assembly insertion loss of 20.73 dB (including cable loss including 19.83 dB attenuator and 0.9 dB cable and connectors) was entered as an offset in the power meter to allow for direct reading of power.

Modo	Channel		Average Outpu	ut Power (dBm)
Widde	Channel	Frequency (IMLIZ)	Main	Aux
802.11b	1	2412	19.3	18.6
	6	2437	19.4	18.5
	11	2462	19.6	18.4
802.11g	1	2412	13.6	12.9
	6	2437	13.9	12.7
	11	2462	14.0	12.6

The cable assembly insertion loss of 20.80 dB (including cable loss including 19.90 dB attenuator and 0.9 dB cable and connectors) was entered as an offset in the power meter to allow for direct reading of power.

902 11e Bond	Channel		Average Outpu	it Power (dBm)
002.11a Ballu	Channel	Frequency (IVII IZ)	Main	Aux
	36	5180	12.5	9.3
5.2 GHz	40	5200	12.5	8.9
	48	5240	12.9	10.3
	52	5260	13.1	10.7
5.3 GHz	60	5300	13.1	10.2
	64	5320	13.2	11.0
	100	5500	13.6	10.5
5.5 GHz	120	5600	13.4	11.2
	140	5700	15.5	13.9
	149	5745	14.9	13.7
5.8 GHz	157	5785	14.6	13.8
	165	5825	14.5	13.9

11.1 DUTY CYCLE

Mode	Tx on	Tx on + Tx off	Duty Cycle
	(msec)	(msec)	(%)
802.11bg	8.7	9	96.67
802.11a	1.433	1.683	85.15

12 SAR MEASURMENT RESULTS

12.1 2.4 GHZ BAND

12.1.1 BODY WORN - LEFT HAND SIDE

Mode	Antenna	Channel	Frequency (MHz)	1g SAR (mW/g)	Limit (mW/g)
802.11b	Aux	1	2412	0.175	1.6
	Aux	6	2437	0.178	1.6
	Main	6	2437	0.124	1.6
	Main	11	2462	0.140	1.6

Notes:

1) 802.11g mode was skipped due to output power $\leq \frac{1}{4}$ dB than 802.11b mode.

2) The modes with highest output power channel were chosen for the testing.

3) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

4) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

12.1.2 BODY WORN - RIGHT HAND SIDE

Mode	Antenna	Channel	Frequency (MHz)	1g SAR (mW/g)	Limit (mW/g)
802.11b	Aux	6	2437	0.102	1.6
	Main	6	2437	0.223	1.6
	Main	11	2462	0.219	1.6

Notes:

802.11g mode was skipped due to output power $\leq \frac{1}{4}$ dB than 802.11b mode. 1)

2) The modes with highest output power channel were chosen for the testing.

The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 3) mW/g), thus testing at low & high channel is optional. Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

4)

12.1.3 PUSH TO TALK

(
Mode
Mode 802.11b

R measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 4)

SAR testing was skipped after pre-scan showed no hot spots. 5)

Worst Case SAR Test Plot for Right Hand Side Configuration

12.2 5 GHZ BAND

12.2.1 BODY WORN – LEFT HAND SIDE

Band (GHz)	Antenna	Channel	Frequency (MHz)	1g SAR (mW/g)	Limit (mW/g)
	Aux	40	5200	0.115	1.6
5.2	Aux	48	5240	0.116	1.6
	Main	40	5200	noise only ⁴⁾	1.6
5.3	Aux	60	5300	0.134	1.6
5.5	Aux	64	5320	0.141	1.6
5 5	Aux	120	5600	0.229	1.6
5.5	Aux	140	5700	0.298	1.6
5.9	Aux	149	5745	0.286	1.6
5.0	Aux	157	5785	0.268	1.6

Notes:

1) The modes with highest output power channel were chosen for the testing.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.
 SAR testing was skipped after pre-scan showed no hot spots.

12.2.2 BODY WORN - RIGHT HAND SIDE

Band (GHz)	Antenna	Channel	Frequency (MHz)	1g SAR (mW/g)	Limit (mW/g)
5.2	Main	40	5200	0.037	1.6
5.2	Main	48	5240	0.043	1.6
5.2	Main	60	5300	0.055	1.6
5.5	Main	64	5320	0.061	1.6
5 5	Main	120	5600	0.098	1.6
5.5	Main	140	5700	0.162	1.6
5.9	Main	149	5745	0.143	1.6
5.0	Main	157	5785	0.133	1.6

Notes:

1) The modes with highest output power channel were chosen for the testing.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

4) SAR testing was skipped after pre-scan showed no hot spots.

12.2.3 PUSH TO TALK

	2					
(C					
Band (GHz)	Separation Distance (mm)	Antenna	Channel	Frequency (MHz)	1g SAR (mW/g)	Limit (mW/g)
Band (GHz)	Separation Distance (mm)	Antenna Aux	Channel 40	Frequency (MHz) 5200	1g SAR (mW/g) Noise only ⁴⁾	Limit (mW/g) 1.6
Band (GHz) 5.2	Separation Distance (mm) 25	Antenna Aux Main	Channel 40 40	Frequency (MHz) 5200 5200	1g SAR (mW/g) Noise only ⁴⁾ 0.075	Limit (mW/g) 1.6 1.6
Band (GHz) 5.2 5.3	Separation Distance (mm) 25 25	Antenna Aux Main Main	Channel 40 40 60	Frequency (MHz) 5200 5200 5300	1g SAR (mW/g)Noise only4)0.0750.115	Limit (mW/g) 1.6 1.6 1.6
Band (GHz) 5.2 5.3 5.5	Separation Distance (mm) 25 25 25 25	Antenna Aux Main Main Main	Channel 40 40 60 140	Frequency (MHz) 5200 5200 5300 5700	1g SAR (mW/g) Noise only ⁴) 0.075 0.115 0.168	Limit (mW/g) 1.6 1.6 1.6 1.6 1.6

1) The modes with highest output power channel were chosen for the testing.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

4) SAR testing was skipped after pre-scan showed no hot spots.

Worst Case SAR Test Plot for 5.2 GHz Band (Left Hand Side Configuration)

Date/Time: 12/19/2008 12:55:27 PM

Test Laboratory: Compliance Certification Services

Body Worn - Left Hand Side

DUT: Intermec; Type: CK3; Serial: N/A

Communication System: 802.11abgn; Frequency: 5240 MHz; Duty Cycle: 1:1.15 Medium parameters used (interpolated): f = 5240 MHz; σ = 5.34 mho/m; ε_{c} = 45.2; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
 Probe: EX3DV3 - SN3531; ConvF(4.21, 4.21, 4.21); Calibrated: 4/23/2008

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

802.11a H-ch 5.2 GHz Aux Antenna/Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.183 mW/g

802.11a H-ch 5.2 GHz Aux Antenna/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 1.12 V/m; Power Drift = -1.03 dB Peak SAR (extrapolated) = 0.379 W/kg SAR(1 g) = 0.116 mW/g; SAR(10 g) = 0.045 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.196 mW/g

Worst Case SAR Test Plot for 5.3 GHz Band (Left Hand Side Configuration)

Date/Time: 12/19/2008 3:15:31 PM Test Laboratory: Compliance Certification Services **Body Worn - Left Hand Side** DUT: Intermec; Type: CK3; Serial: N/A Communication System: 802.11abgn; Frequency: 5320 MHz; Duty Cycle: 1:1.15 Medium parameters used (interpolated): f = 5320 MHz; σ = 5.56 mho/m; ε_{c} = 44.9; ρ = 1000 kg/m³ Phantom section: Flat Section Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C DASY4 Configuration: - Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg - Probe: EX3DV3 - SN3531; ConvF(3.92, 3.92, 3.92); Calibrated: 4/23/2008 - Sensor-Surface: 2.5mm (Mechanical Surface Detection) - Electronics: DAE3 Sn427; Calibrated: 10/20/2008 - Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050 - Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184 802.11a_H-ch 5.3 GHz Aux Antenna/Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.198 mW/g 802.11a H-ch 5.3 GHz Aux Antenna/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mmReference Value = 1.07 V/m: Power Drift = 0.760 dB Peak SAR (extrapolated) = 0.594 W/kg SAR(1 g) = 0.141 mW/g; SAR(10 g) = 0.052 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.220 mW/g m₩/g 0.198 0.158 0.119 0.079 0.040 0.000

Worst Case SAR Test Plot for 5.5 GHz Band (Left Hand Side Configuration)

Date/Time: 12/19/2008 4:32:37 PM

Test Laboratory: Compliance Certification Services

Body Worn - Left Hand Side

DUT: Intermec; Type: CK3; Serial: N/A

Communication System: 802.11abgn; Frequency: 5700 MHz; Duty Cycle: 1:1.15 Medium parameters used: f = 5700 MHz; σ = 6.07 mho/m; ε_r = 44.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
 Probe: EX3DV3 - SN3531; ConvF(3.5, 3.5, 3.5); Calibrated: 4/23/2008

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

802.11a H-ch 5.5 GHz Aux Antenna/Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.467 mW/g

802.11a_H-ch 5.5 GHz Aux Antenna/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 2.84 V/m; Power Drift = -1.82 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.298 mW/g; SAR(10 g) = 0.109 mW/g Maximum value of SAR (measured) = 0.498 mW/g

Worst Case SAR Test Plot for 5.8 GHz Band (Left Hand Side Configuration)

Date/Time: 12/19/2008 5:08:51 PM

Test Laboratory: Compliance Certification Services

Body Worn - Left Hand Side

DUT: Intermec; Type: CK3; Serial: N/A

Communication System: 802.11abgn; Frequency: 5745 MHz; Duty Cycle: 1:1.15 Medium parameters used (interpolated): f = 5745 MHz; σ = 6.01 mho/m; ε_{c} = 44.1; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
 Probe: EX3DV3 - SN3531; ConvF(3.7, 3.7, 3.7); Calibrated: 4/23/2008

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

802.11a L-ch 5.8 GHz Aux Antenna/Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.452 mW/g

802.11a L-ch 5.8 GHz Aux Antenna/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 2.83 V/m; Power Drift = -1.60 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.286 mW/g; SAR(10 g) = 0.114 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.466 mW/g

13 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	22
2-1	SAR Plots for 2.4 GHz Band	10
2-2	SAR Plots for 5 GHz Band	24
3	Certificate of E-Field Probe - EX3DV3SN3531	10
4	Certificate of System Validation Dipole - D2450V2 SN:748	6
5	Certificate of System Validation Dipole - D5GHzV2 SN:1003	15

14 PHOTOS

SCANNER WITH SCAN HANDLE (1)

BODY-WORN (HOSTER) – RIGHT HAND SIDE

END OF REPORT