Intermec Technologies Corporation

BTM4 module 10mW

February 19, 2008

Report No. ITRM0173 Rev. 2

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2008Northwest EMC, Inc

Certificate of Test Issue Date: February 19, 2008 Intermec Technologies Corporation Model: BTM4 module 10mW

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Spurious Radiated Emissions	FCC 15.247 (FHSS):2007	ANSI C63.4:2003 DA 00-705:2000	Pass		
Peak Output Power	FCC 15.247 (FHSS):2007	ANSI C63.4:2003 DA 00-705:2000	Pass		
Occupied Bandwidth	FCC 15.247 (FHSS):2007	ANSI C63.4:2003 DA 00-705:2000	Pass		
Band Edge Compliance	FCC 15.247 (FHSS):2007	ANSI C63.4:2003 DA 00-705:2000	Pass		
Power Spectral Density	FCC 15.247 (FHSS):2007	ANSI C63.4:2003 DA 00-705:2000	Pass		
Spurious Conducted Emissions	FCC 15.247 (FHSS):2007	ANSI C63.4:2003 DA 00-705:2000	Pass		
AC Power Line Conducted Emissions	FCC 15.207:2007	ANSI C63.4:2003	Pass		

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:	
The	
Ethan Schoonov	er, Sultan Lab Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

	Revision Number	Description	Date	Page Number
--	--------------------	-------------	------	-------------

01	Changed report number on cover page	2/27/08	Cover Page
01	Changed EUT name to BTM4 module 10mW.	2/27/08	Cover page, 2, 7, 8, 9, 12- 15, 20, 25, 30, 34, 43, 48-53
02	Changed the functional description of the EUT to state the following: "The BTM4 module is a new Bluetooth radio for use in Intermec products. Power reduction to 10 mW will allow use in portable applications without SAR RF Exposure testing."	3-3-08	7

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NVLAP LAB CODE 200761-0

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

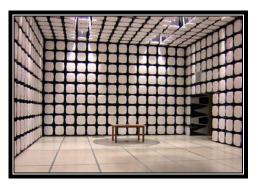
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294*).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

MIC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (*Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157*)

SCOPE For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp



California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Dave Fry
Model:	BTM4 module 10 mW
First Date of Test:	February 1, 2008
Last Date of Test:	February 7, 2008
Receipt Date of Samples:	February 1, 2008
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

The BTM4 module is a new Bluetooth radio for use in Intermec products. Power reduction to 10 mW will allow use in portable applications without SAR RF Exposure testing.

Testing Objective:

The Bluetooth radio (from Socket Communications) has testing under FCC ID: LUBBTM-4). Intermec will be testing the Bluetooth radio under their own FCC ID: EHA-BTM4 for full modular appproval with a lower output power than used in the Socket Communications grant (9mW vs. 28mW). The Bluetooth radio operates in the 2400-2483.5MHz band; Intermec will only be utilizing GFSK modulation.

CONFIGURATION 1 ITRM0173

Software/Firmware Running during test				
Description	Version			
CSR BlueTest3				
BC4 firmware	4279			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth module	Socket Communications	BTM4	Unknown

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Test Fixture	Socket	BC02/BC04	Unknown		
Test Fixture	Communicatinos	Development Board	UTKHOWH		
Laptop	IBM	Type 2647-4EU	78-P7DA9		
Laptop Power Supply	IBM	AA21131	11S002K6756Z1Z2UF3385GN		
Test Fixture Power Supply	Phihong	PSC05R-050	Unknown		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Parallel	Yes	1.3m	No	Laptop	Test Fixture
Control	No	0.1m	No	Test Fixture	Bluetooth module
DC	No	1.3m	No	Test Fixture	Test Fixture Power Supply
DC	No	1.3m	No	Laptop	Laptop Power Supply
AC	No	1.0m	No	Laptop Power Supply	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 ITRM0173

Software/Firmware Running during test			
Description	Version		
CSR BlueTest3			
BC4 firmware	4279		

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Bluetooth module	Socket Communications	BTM4	0744000329	

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Test Fixture	Socket Communicatinos	BC02/BC04 Development Board	Unknown		
Test Fixture Power Supply	Phihong	PSC05R-050	Unknown		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC	No	1.3m	No	Test Fixture	Test Fixture Power Supply
PA = Cab	ole is perman	ently attached to th	ne device. Sh	nielding and/or presend	e of ferrite may be unknown.

CONFIGURATION 3 ITRM0173

Software/Firmware Running during test	
Description	Version
CSR BlueTest3	
BC4 firmware	4279

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth module	Socket Communications	BTM4	0744000329

Peripherals in test setup boundary												
Description	Manufacturer	Model/Part Number	Serial Number									
Test Fixture	Socket Communicatinos	BC02/BC04 Development Board	Unknown									
Linear Power Supply	CUI Stack	DV-51AAT	None									

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC	No	1.3m	No	Test Fixture	Test Fixture Power Supply
AC	No	1.0m	No	Linear Power Supply	AC Mains
DC	No	0.4m	No	Test Fixture	Linear Power Supply
PA = Ca	ble is perm	anently attached t	o the device	. Shielding and/or presence of	of ferrite may be unknown.

Modifications

	Equipment modifications													
Item	Date	Test	Modification	Note	Disposition of EUT									
1	2/1/2008	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.									
2	2/1/2008	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.									
3	2/1/2008	Peak Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.									
4	2/1/2008	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.									
5	2/1/2008	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.									
6	2/4/2008	Radiated Spurious Emissions - Bluetooth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.									
7	2/7/2008	AC Power Line Conducted Emissions - Bluetooth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing completed.									

RADIATED SPURIOUS EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION			
Transmitting Bluetooth, Sc	oftware power level = 255/34,	GFSK, DH5, low channel	
Transmitting Bluetooth, So	oftware power level = 255/34,	GFSK, DH5, Mid channel	
Transmitting Bluetooth, So	oftware power level = 255/34,	GFSK, DH5, High channel	
POWER SETTINGS INVE	STIGATED		
120VAC/60Hz			
FREQUENCY RANGE IN	VESTIGATED		
Start Frequency	30 MHz	Stop Frequency	25 GHz

SAMPLE CALCULATIONS

EMC

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	12/29/2006	16
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24
EV01 Cables		Bilog Cables	EVA	10/23/2007	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	1/16/2008	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	1/3/2008	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	24
EV01 Cables		Double Ridge Horn Cables	EVB	1/3/2008	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	6/22/2007	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	6/22/2007	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	7/25/2007	13
Antenna, Horn	EMCO	3160-09	AHG	NCR	0
EV01 Cables		18-26GHz Standard Gain Horn Cable	EVD	7/25/2007	13

MEASUREMENT BANDWIDTHS

	Frequency Range	Peak Data	Quasi-Peak Data	Average Data								
	(MHz)	(kHz)	(kHz)	(kHz)								
	0.01 - 0.15	1.0	0.2	0.2								
	0.15 - 30.0	10.0	9.0	9.0								
	30.0 - 1000	100.0	120.0	120.0								
	Above 1000	1000.0	N/A	1000.0								
M	Measurements were made using the bandwidths and detectors specified. No video filter was used.											

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

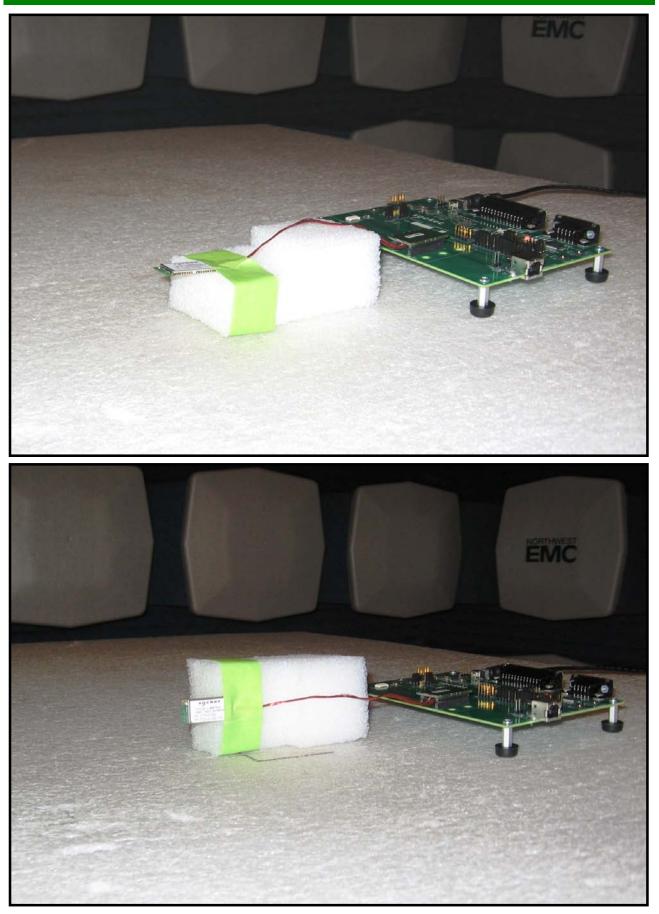
NORTHWEST		F	RADIA	TED	SPUR	IOUS	EMIS	SION	S		F	PSA 2007.05.07 EMI 2008.1.9
	: BTM4 modu	ule 10mW	1						W	ork Order:	ITRM017	3
Serial Number										Date:	02/04/08	
	r: Intermec Te	echnolog	ies Corpora	tion					Ter	nperature:		
Attendees	s: None t: None								Barome	Humidity: etric Pres.:		
	: Rod Peloqu	Jin				Power:	120VAC/60	Hz	Baronie	Job Site:		
TEST SPECIFICA							Test Metho					
FCC 15.247 (FHS	S):2006						ANSI C63.4	1:2003 DA 0	0-705:2000)		
TEST PARAMETE Antenna Height(s		1 - 4				Test Dista	nce (m)	3				
COMMENTS Bluetooth module	e powered thr	ough test	fixture									
EUT OPERATING												
Transmitting Blue DEVIATIONS FRC			' level = 255	/34, GFSK	, DH5, High	n channel						
No deviations.		NDAND										
Run #	1								10	1 D	0	
Configuration #	2								Colly	he Re	leng	
Results	Pas	s						Signature	V		\mathcal{O}	
80.0												
												++
70.0												
00.0												
60.0										•		
												<u> </u>
50.0												
<u>سا</u>												
40.0												
<u>a</u>												
_												
30.0												
20.0												
20.0												
10.0												
0.0												
0.0 +												
2400.00	0 2410.00	0 2420	.000 243	0.000 22	40.000	2450.000	2460.000	2470.00	0 2480.0	JUU 249	0.000 2	500.000
						MHz						
					Duty Cycle	External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Correction	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	Factor	(dB)		DI/	(dB)	dBuV/m	dBuV/m	(dB)
2483.922 2484.410	38.0 37.8	2.2 2.2	8.0 246.0	1.0 1.0	0.0 0.0	20.0 20.0	H-Horn H-Horn	PK PK	0.0 0.0	60.2 60.0	74.0 74.0	-13.8 -14.0
2484.468	37.8	2.2	59.0	1.6	0.0	20.0	V-Horn	PK	0.0	60.0	74.0	-14.0
2483.797	37.6	2.2	13.0	1.0	0.0	20.0	H-Horn	PK	0.0	59.8	74.0	-14.2
2484.175	37.6	2.2	329.0	1.7	0.0	20.0	V-Horn	PK	0.0	59.8	74.0	-14.2
2484.487	37.5	2.2	69.0	1.0	0.0	20.0	V-Horn	PK	0.0	59.7	74.0	-14.3
2483.407	24.0 24.0	2.2	246.0	1.0 1.0	24.0	20.0 20.0	H-Horn H-Horn	AV AV	0.0	22.2	54.0	-31.8 -31.8
2483.852 2483.942	24.0 24.0	2.2 2.2	8.0 59.0	1.0	24.0 24.0	20.0	H-Horn V-Horn	AV AV	0.0 0.0	22.2 22.2	54.0 54.0	-31.8 -31.8
2484.397	24.0	2.2	329.0	1.7	24.0	20.0	V-Horn	AV	0.0	22.2	54.0	-31.8
2484.798	24.0	2.2	69.0	1.0	24.0	20.0	V-Horn	AV	0.0	22.2	54.0	-31.8
2484.002	23.9	2.2	13.0	1.0	24.0	20.0	H-Horn	AV	0.0	22.1	54.0	-31.9

	IORTHWEST					R	AD	IA	TED	S	SPI	UF	RIC	οι	JS	E	EM	IIS	S	0	NS	5								A 2007.05.07 EMI 2008.1.9
		EUT:	BTM4 m	nodu	le 10n	۱W																	V	Vor	< Or	der	ITR	RMO	173	
Se	erial Num															_	-								D)ate:	: 02/	04/		
			Interme	c Te	chnolo	gie	s Corp	pora	tion														Те				: 22°			
-	Attend		None None																			Pa					24%			
-			Rod Pe	loqui	in									Po	wer	12	20VA	C/6	0H7			ва	rom				: 50. : EV			
TEST	SPECIFI			loqu										10	wer		est M							0		one				
FCC 1	5.247 (FI	HSS)	2006													AI	NSI (C63.	4:20	03 D.	A 00	-705	:200	00						
TEST	PARAME		S																											
Anten	na Heigh	nt(s) (m)	1	- 4								Te	est [Dista	anc	e (m)			3									
COMN	MENTS																													
	ooth mod			thro	ough te	est fi	ixture																							
Trans DEVIA	mitting E TIONS F viations.	RON	ooth, So				evel =	255	/34, GFS	iΚ,	DH5,	Mid	ch	anne	əl															
Run #				3		Ι																1	0	1		-		2		
	guration	#		2																	1	160	hy	, L	-	Y.	elu	y-	5	
Result				Pas	s														Sia	natur	re		\mathcal{O}				V		-	
																			5.3		-						-			
	80.0 -																													_
	00.0																													
												-							-			-		-				+		+
	70.0 -																		-			-								-
	60.0 -					*													-											-
												٠																		
	50.0 -					LT				_T			LT			_1							LT							
dBuV/m																														
2	40.0 -																													
<u>Б</u>																														
σ																														
	30.0 -										_								_											-
						*																								
	20.0 -											-					_		+			-		-				-		-
	40.0																													
	10.0 -																											1		1
	0.0 -																													
			1000	 הסס ר	0 50		000	60		-	, 2000.	000	, -	800	0 00	<u></u>	00	- ۱۹۹۷	000	10			- - 1	100	, 0 0	00	100	_י ∩∩ר	000	
	3000	.000	4000	.000	0 50	00.	000	000	00.000		000.	000		800		00	90	00.	000	10	000	.000	JI	100	0.0	00	120	000	.000	
													Ν	ИHz	z															
1																														
<u> </u>				-		-				1	Durt	0!		Exter	nal				1		-1	Dista	nce	1			1			Compared to
	Freq		Amplituc		Factor		Azimu		Height		Duty Corre			Attenu	ation		Polar	ity	D	etector	· .	Adjust	ment		Adjus			ec. L	.imit	Spec.
	(MHz)		(dBuV))	(dB)		(degre		(meters))	Fac	ctor		(dE								(dE		(dBu∖			BuV		(dB)
	882.314		49.0		10.5		94.0		1.0		0			0.0			V-Ho			PK		0.			59.			74.0		-14.5
	882.120		48.1		10.5		101.		1.3		0			0.0			H-Ho			PK		0.			58.			74.(74.(-15.4
	'322.596 '323.329		40.5 40.0		17.1 17.1		198. 253.		1.1 1.2		0.			0.0 0.0			H-Ho V-Ho			PK PK		0. 0.			57. 57.			74.(74.(-16.4 -16.9
	882.056		40.0		10.5		255. 94.(1.2		24			0.0			V-Ho			AV		0.			28.			74.(54.(-25.9
	882.024		38.5		10.5		101.		1.3		24			0.0			H-Hc				0.0				25.			54.0		-29.0
	323.013		29.6		17.1		198.		1.1		24			0.0			H-Hc			AV		0.			22.			54.0		-31.3
7	323.004		28.9		17.1		253.	.0	1.2		24	.0		0.0	C		V-Ho	n		AV		0.			22.	0		54.0	C	-32.0

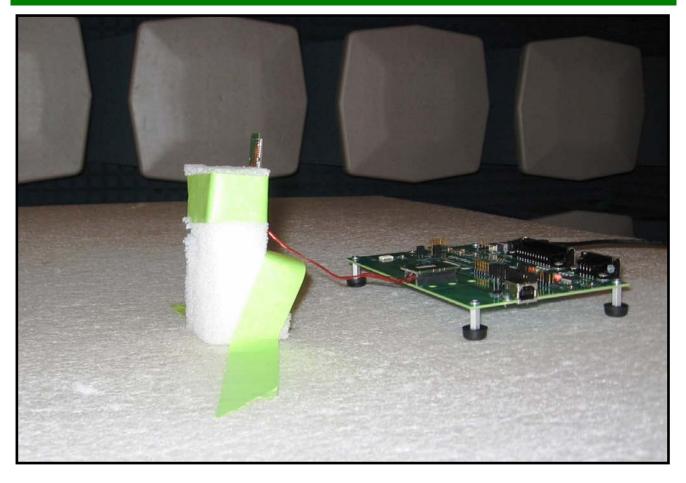
	IORTHWEST		F	RADIA	TED	SPUR	IOUS	EMIS	SION	S		PS	GA 2007.05.07 EMI 2008.1.9
		T: BTM4 mo	odule 10mW	1						W	ork Order:	ITRM0173	
Se		r: 07440003			-							02/04/08	
	Custome Attendee		Technolog	ies Corpora	tion					Ter	mperature: Humidity:		
		t: None								Barome	etric Pres.:		
	Tested b	y: Rod Pelo	quin				Power:	120VAC/6	0Hz		Job Site:		
	SPECIFICA							Test Metho					
	5.247 (FHS							ANSI C63.	4:2003 DA	00-705:2000	0		
	PARAMETI na Height(s		1 - 4				Test Dista	nce (m)	3				
		e powered t	hrough test	fixture									
	PERATING												
DEVIA		etooth, Soft		level = 255	/34, GFSK	, DH5, High	channel						
Run #			4	1						10		0	
	juration #		2	1						Rochy	he he	leng	
Result		F	ass	1					Signature	0		V	
									e.g. a.a. e				
	80.0												
	70.0												
	60.0						•						
	50.0												
dBuV/m	40.0												
	30.0												
	20.0												
	10.0												
	0.0												
	3000.0	00 4000.	000 500	0.000 60	00.000	7000.000	8000.00 MHz	0 9000.	000 100	00.000 11	1000.000	12000.000	0
	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Duty Cycle Correction Factor	External Attenuation (dB)	Polarity	Detector	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Compared to Spec. (dB)
	960.343	53.4	11.0	97.0	1.0	0.0	0.0	V-Horn	PK	0.0	64.4	74.0	-9.6
	959.745	49.0	11.0	97.0	1.4	0.0	0.0	H-Horn	PK	0.0	60.0	74.0	-14.0
	440.242 440.067	39.3 38.9	17.7 17.7	195.0 255.0	1.1 1.2	0.0 0.0	0.0 0.0	H-Horn V-Horn	PK PK	0.0 0.0	57.0 56.6	74.0 74.0	-17.0 -17.4
	960.010	44.6	11.0	97.0	1.0	24.0	0.0	V-Horn	AV	0.0	31.6	54.0	-22.4
4	960.020	42.1	11.0	97.0	1.4	24.0	0.0	H-Horn	AV	0.0	29.1	54.0	-24.9
7440.021 28.0 17.7 195.0 1 7439.971 26.8 17.7 255.0 1						24.0 24.0	0.0 0.0	H-Horn	AV AV	0.0 0.0	21.7	54.0	-32.3 -33.5
(439.9/1	20.8	17.7	∠05.0	1.2	24.0	0.0	V-Horn	AV	0.0	20.5	54.0	-33.5

		F		TED	SPUR	IOUS	EMIS	SION	S			A 2007.05.07 EMI 2008.1.9
EMC												
		dule 10mW							W		ITRM0173	
Serial Number: Customer:			ies Cornora	ation					Ter	Date: mperature:	02/04/08 22°C	
Attendees:		. serificity							101	Humidity:		
Project:	None								Barom	etric Pres.:	30.26	
Tested by:		quin					120VAC/6			Job Site:	EV01	
TEST SPECIFICATI							Test Metho		00 705 005	<u>^</u>		
FCC 15.247 (FHSS) TEST PARAMETER							ANSI C63.	4:2003 DA	00-705:200	0		
Antenna Height(s)		1 - 4				Test Distar	nce (m)	3				
COMMENTS		<u></u>					,					
Bluetooth module EUT OPERATING N Transmitting Bluet DEVIATIONS FROM No deviations. Run # Configuration #	NODES ooth, Softv N TEST ST/	vare power ANDARD 5 2		5/34, GFSK	c, DH5			0	Rochy	he Pre	leng	
Results	Pa	ass						Signature			V	
80.0												
70.0												
60.0		*										
50.0 E												
40.0 40.0												
30.0		*										
20.0												
10.0												
0.0) 4000.0	000 5000	0.000 60	000.000	7000.000	8000.000	0 9000.	000 100	00.000 11	1000.000	12000.000	∐)
						MHz						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Duty Cycle Correction Factor	External Attenuation (dB)	Polarity	Detector	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Compared to Spec. (dB)
4803.732	48.9	10.1	93.0	1.2	0.0	0.0	V-Horn	PK	0.0	59.0	74.0	-15.0
4804.428	48.1	10.1	36.0	1.3	0.0	0.0	H-Horn	PK	0.0	58.2	74.0	-15.8
4804.044 4804.045	41.4 39.0	10.1 10.1	93.0 36.0	1.2 1.3	24.0 24.0	0.0 0.0	V-Horn H-Horn	AV AV	0.0 0.0	27.5 25.1	54.0 54.0	-26.5 -28.9

NORTHWEST


RADIATED SPURIOUS EMISSIONS

PSA 2007.05.07


RADIATED SPURIOUS EMISSIONS

NORTHWEST

RADIATED SPURIOUS EMISSIONS

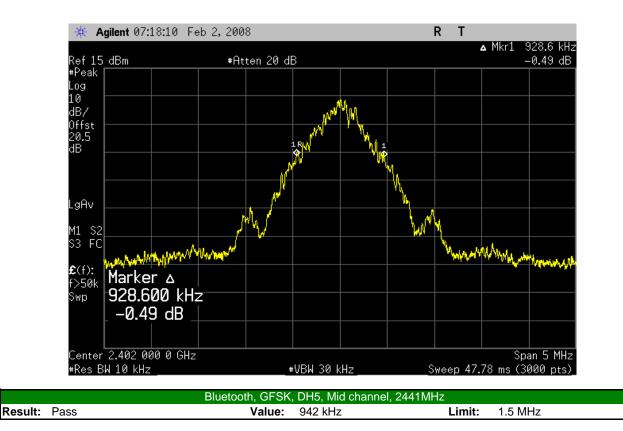
PSA 2007.05.07

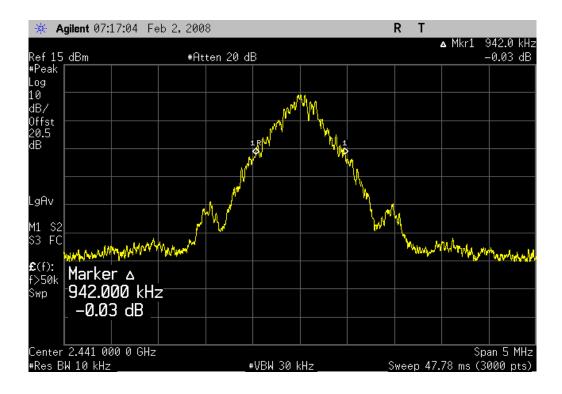
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12

MEASUREMENT UNCERTAINTY

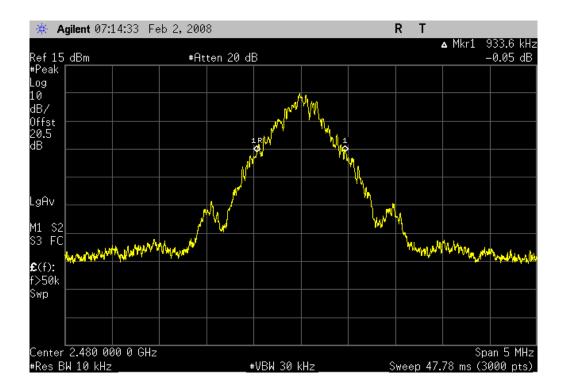
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

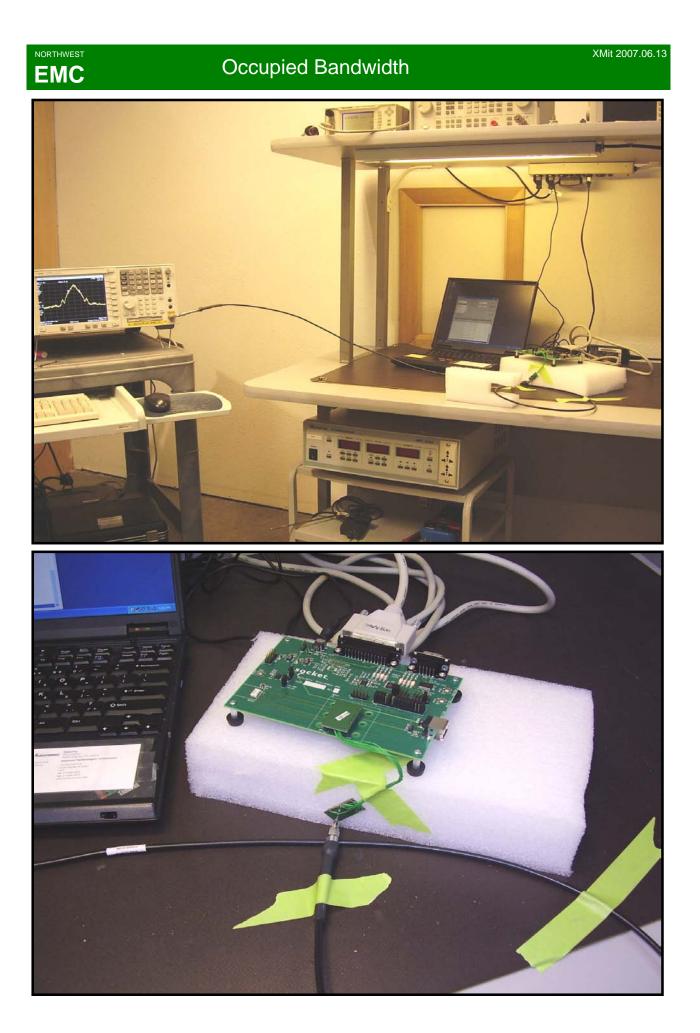

TEST DESCRIPTION


The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

		Occupied Band	lwidth		XMit 2007.06.13
EMC		occupica Baile			
EUT:	BTM4 module 10mW			Work Order:	ITRM0173
Serial Number:	0744000329			Date:	02/01/08
Customer:	Intermec Technologies Corpo	oration		Temperature:	22C°C
Attendees:	None			Humidity:	26%
Project:	None			Barometric Pres.:	1017.6mb
Tested by:	Holly Ashkannejhad	Pow	er: 120VAC/60Hz	Job Site:	EV06
TEST SPECIFICAT	IONS		Test Method		
FCC 15.247 (FHSS):2006		ANSI C63.4:2003 DA 00-705	:2000	
COMMENTS					
Bluetooth module	powered through test fixture.	Software power level = 255, 34.			
		•			
DEVIATIONS FROM	M TEST STANDARD				
			10		
Configuration #	1	11 le Artin	N		
		Signature Holy Arling			
			Value	e Li	mit Results
Bluetooth, GFSK, D	H5				
	Low channel, 2402MHz		928.6 kHz	1.5 MHz	Pass
	Mid channel, 2441MHz		942 kHz	1.5 MHz	Pass
	High channel, 2480MHz		933.6 kHz	1.5 MHz	Pass

Occupied Bandwidth


		Bluetooth, GFSK,	DH5, Low channel, 2402MF	lz	
Result:	Pass	Value:	928.6 kHz	Limit:	1.5 MHz



Occupied Bandwidth

Bluetooth, GFSK, DH5, High channel, 2480MHz						
Result:	Pass	Value:	933.6 kHz	Limit:	1.5 MHz	

Output Power

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

NORTHWEST EMC		Output	Power			XMit 2007.06.13
EUT:	BTM4 module 10mW				Work Order:	ITRM0173
Serial Number:						02/01/08
Customer:	Intermec Technologies Co	orporation			Temperature:	22C°C
Attendees:	None				Humidity:	26%
Project:	None				Barometric Pres.:	1017.6mb
Tested by:	Holly Ashkannejhad		Power: 120VAC/	50Hz	Job Site:	EV06
TEST SPECIFICATI	IONS		Test Meth	od		
FCC 15.247 (FHSS)	:2006		ANSI C63	3.4:2003 DA 00-705:2	000	
COMMENTS						
Bluetooth module	_	re. Software power level = 255, 34.				
DEVIATIONOTINO	TEOTOTANDAND					
Configuration #	1	Signature Holy)	stight			
				Value	Lir	nit Results
Bluetooth, GFSK, DI	H5					
	Low channel, 2402MHz			7.57 mW	1 Watt	Pass
	Mid channel, 2441MHz			8.92 mW	1 Watt	Pass
	High channel, 2480MHz			9.64 mW	1 Watt	Pass

Output Power

Bluetooth, GFSK, DH5, Low channel, 2402MHz					
Result: Pass	Value:	7.57 mW	Limit:	1 Watt	

🔆 Agilent 07:06:47	Feb 2,2008		RT	
Ref 31.62 mW	#Atten 20 dB		Mkr1	2.401 855 8 GHz 7.57 mW
#Peak				
Log 5				
dB/				
Offst				
20.5 dB				
LgAv				
м1 s2				
S3 FC				
£ (f):				
FTun				
Swp				
Center 2.402 000 0 G	Hz		· · · · · ·	Span 5 MHz
#Res BW 3 MHz	#V[3W 3 MHz	Sweep 999	9.7 µs (3000 pts)
SS	Bluetooth, GFSK, D Value: 8	H5, Mid channel, .92 mW	, 2441MHZ Limit:	1 Watt

D
Pass

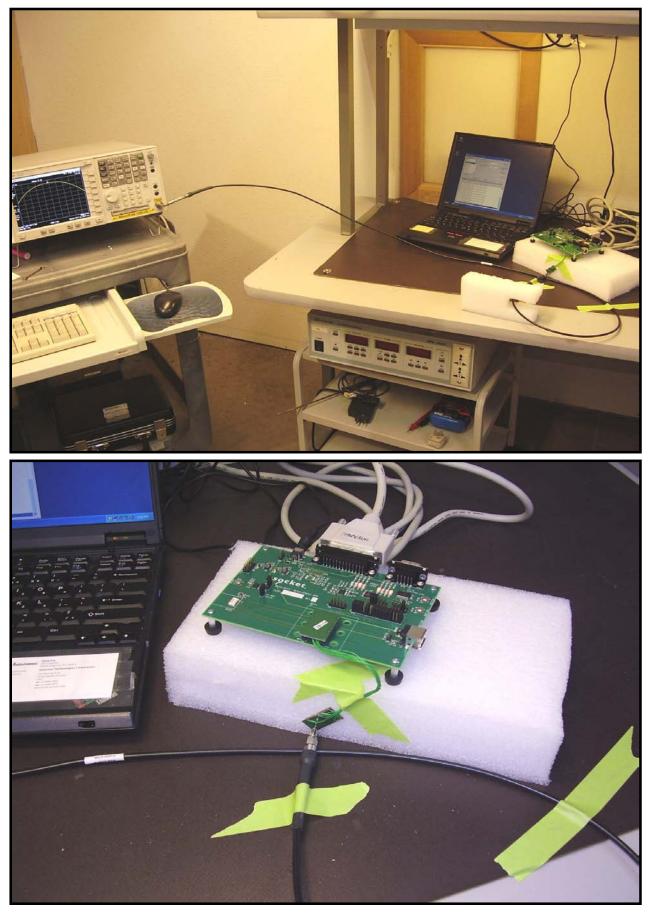
ie:	8.9	92 mW	

e:	8.92	mW	

e:	8.92 mW	

🔆 Agilent 07:06:16	Feb 2,2008		RT	
Ref 31.62 mW	#Atten 20	dB	Mkr1	2.441 034 2 GHz 8.92 mW
#Peak Log		1		
5 dB/		· · · · · · · · · · · · · · · · · · ·		
0ffst 20.5				
dB				
LgAv				
M1 S2				
£(f): FTun				
Swp				
Center 2.441 000 0 (#Res BW 3 MHz	GHz	 _ #VBW 3 MHz	Sween 990	Span 5 MHz 1.7 µs (3000 pts)

NORTHWEST


Output Power

	Bluetooth, GFSK, DH5, High channel,	2480MHz	
Result: Pass	Value: 9.64 mW	Limit:	1 Watt

🔆 Agilent 07:04:5	1 Feb 2,2008		RT	
Ref 31.62 mW	#Atten 20		Mkr1	2.479 892 5 GHz 9.64 mW
#Peak	#Htten Ze			3.04 MW
Log				
5 dB/				
Offst 20.5 dB				
LgAv				
M1 S2				
\$3 FC				
£(f): FTun				
Swp				
Center 2.480 000 0 #Res BW 3 MHz	GHz	#VBW 3 MHz	Sweep 999	Span 5 MHz 9.7 µs (3000 pts)_

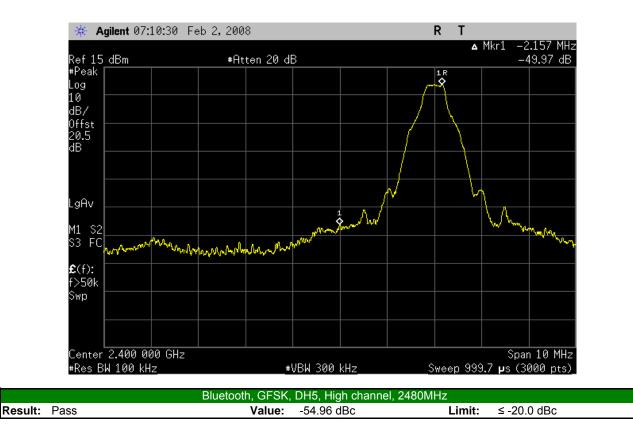
Output Power

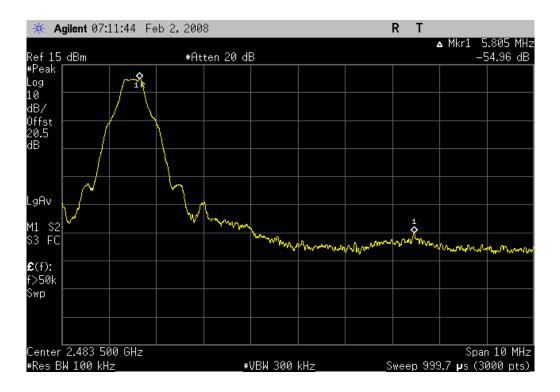
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13

MEASUREMENT UNCERTAINTY

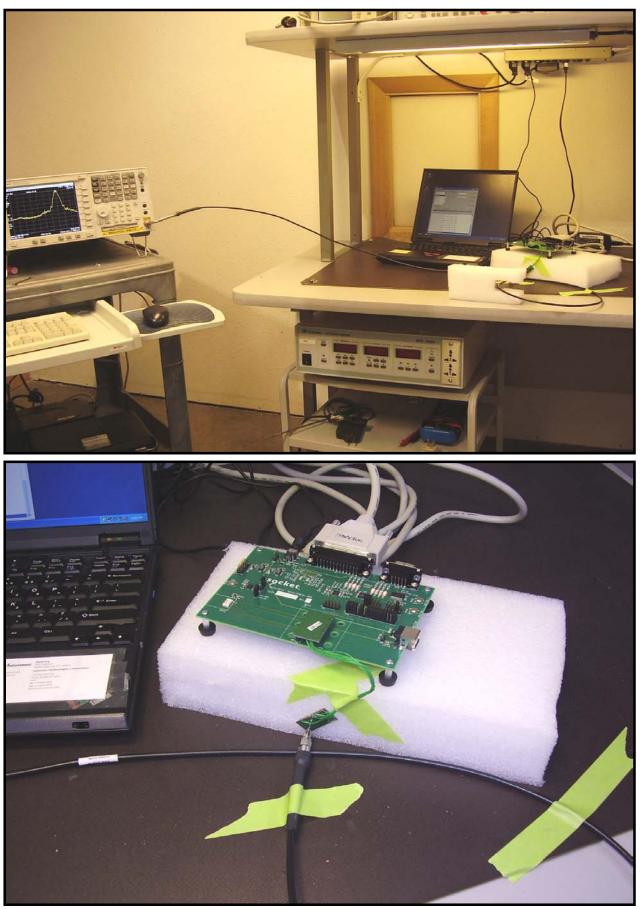
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 5 MHz below the band edge to 5 MHz above the band edge.

NORTHWEST EMC		Band Edge (Compl	iance				XMit 2007.06.13
EUT:	BTM4 module 10mW					Work Order:	ITRM0173	
Serial Number:	0744000329					Date:	02/01/08	
Customer:	Intermec Technologies Cor	poration				Temperature:	22C°C	
Attendees:	None					Humidity:	26%	
Project:	None				E	Barometric Pres.:	1017.6mb	
	Holly Ashkannejhad		Power:	120VAC/60Hz		Job Site:	EV06	
TEST SPECIFICAT	IONS			Test Method				
FCC 15.247 (FHSS):2006			ANSI C63.4:2003 DA 0	0-705:2000			
	powered through test fixture M TEST STANDARD	. Software power level = 255, 34.		0				
Configuration #	1	Signature Holy A	hligh	9	Value	Lir	nit	Results
Bluetooth, GFSK, D	H5							
, 01 010, 0	Low channel, 2402MHz			-49.97 dE	с	≤ -20.0 dBc		Pass
	High channel, 2480MHz			-54.96 dE	с	≤ -20.0 dBc		Pass

Band Edge Compliance


Bluetooth, GFSK, DH5, Low channel, 2402MHz				
Result:	Pass	Value: -49.97 dBc	Limit: ≤ -20.0 dBc	

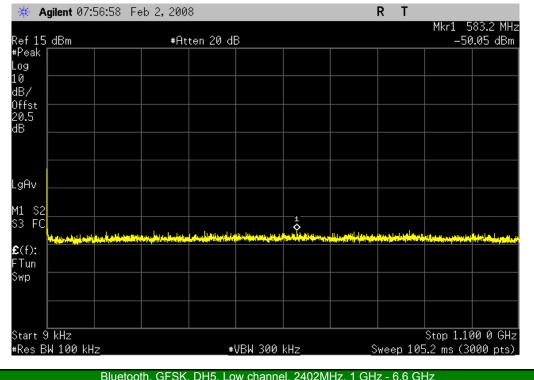
Band Edge Compliance

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT								
Description	Manufacturer	Model	ID	Last Cal.	Interval			
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13			
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12			

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

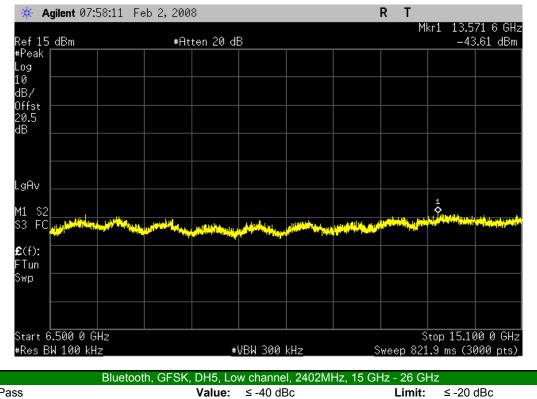

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.

NORTHWEST EMC		Spurious Condu	cted Emissions	5		XMit 2007.06.13
	BTM4 module 10mW				Work Order: ITRM017	
Serial Number:					Date: 02/01/08	
	Intermec Technologies Cor	poration			Temperature: 22C°C	
Attendees:					Humidity: 26%	
Project:			-	B	arometric Pres.: 1017.6m	b
Tested by: TEST SPECIFICAT	Holly Ashkannejhad		Power: 120VAC/60Hz		Job Site: EV06	
			Test Method			
FCC 15.247 (FHSS)):2006		ANSI C63.4:2003 E	DA 00-705:2000		
COMMENTS						
DEVIATIONS FROM	M TEST STANDARD					
Configuration #	1	Signature Holy S	lind			
g		Signature Hory /				
				Value	Limit	Results
Bluetooth, GFSK, D	H5					
	Low channel, 2402MHz					
	9 kHz - 1.1GHz		≤ -40		≤ -20 dBc	Pass
	1 GHz - 6.6 GHz		≤ -40		≤ -20 dBc	Pass
	6.5 GHz - 15.1 (≤ -40		≤ -20 dBc	Pass
	15 GHz - 26 GH	Z	≤ -40	dBc	≤ -20 dBc	Pass
	Mid channel, 2441MHz 9 kHz - 1.1GHz		< 10	-10 -		Deee
	9 KHZ - 1.1GHZ 1 GHz - 6.6 GHz	_	≤ -40 ≤ -40		≤ -20 dBc ≤ -20 dBc	Pass
	6.5 GHz - 15.1 (≤ -40 ≤ -40		≤ -20 dBc ≤ -20 dBc	Pass Pass
	15 GHz - 26 GH		≤ -40 ≤ -40		≤ -20 dBc ≤ -20 dBc	Pass
	High channel, 2480MHz	2	≤ -40	ubc	⊇ -20 UDC	rass
	9 kHz - 1.1GHz		≤ -40	dBc	≤ -20 dBc	Pass
	1 GHz - 6.6 GHz	7	≤ -40 ≤ -40		≤ -20 dBc ≤ -20 dBc	Pass
	6.5 GHz - 15.1 0		_ +0 ≤ -40		≤ -20 dBc	Pass
	15 GHz - 26 GH		≤ -40		≤ -20 dBc	Pass

Spurious Conducted Emissions

	Bluetooth, GFSK, DH5, Low chan	nel, 2402MHz, 9 kHz - 1.1GHz	
Result: Pass	Value: ≤ -40 c	IBc Limit:	≤ -20 dBc

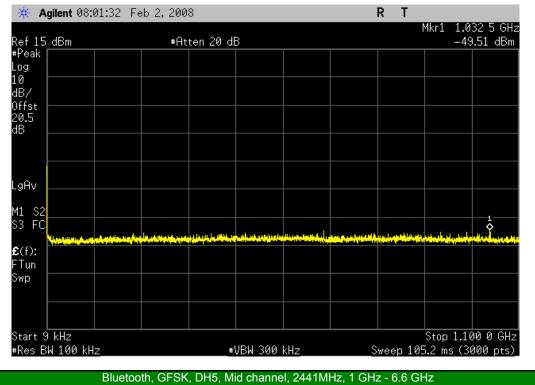


Didelootin, Of ON, D10, Low channel, $2+02$ while, T Of $2 = 0.0$ Of 2							
Result: Pass	Value: ≤ -40 dBc	Limit: ≤ -20 dBc					

* A	gilent 07:	57:40 Fe	∍b 2,200)8				R T			
Ref 15	dBm		#Q	tten 20 di	R			۵	. Mkr1	2.401 3 G -46.25 d	
#Peak				itten zo ui						-40.25 u	4
Log			1R 🔷								
10											
dB/											
Offst 20.5											
dB											
LgAv							<u>1</u> -				
							^				
M1 S2 S3 FC											
		, addaed diami	سائلها أبريا فريق	A A REAL PROPERTY AND	i de la complete					an a hard a start of the start	<u>e</u> k
£ (f):	فريتمر فرجعت الأربانة	and the second secon	Contraction of the later.	1.1.4.4.4	· · ·						
FTun											
Swp											
	.000 0 G									6.600 0 GH	
#Res B	W 100 kH	Z		#	VBW 300	kHz		Sweep 5	35.2 m	s (3000 pts	s)_

Spurious Conducted Emissions

	Bluetooth, GFSK, DH5, Low	channel, 2402MHz, 6.5 GHz	- 15.1 GH	łz
Result: Pass	Value:	≤ -40 dBc	Limit:	≤ -20 dBc


Result: Pass

Value: ≤ -40 dBc

Limit:

0.52 dB
We we we have
 5.000 GI
Ì.

	Bluetooth, GFSK, DH5, M	lid channel, 2441MHz, 9 kHz	- 1.1GHz	
Result: Pass	Value:	≤ -40 dBc	Limit:	≤ -20 dBc

Result:	Pass	

K, DH5, Mid channel, 244 TMF Value: ≤ -40 dBc

Limit:

≤ -20 dBc

🔆 Agilent 08:	02:09 Fe	əb 2,200	8				RT		
Ref 15_dBm		#At	ten 20 di	3			Δ		40 5 GHz 46.16 dB
#Peak Log		1R \$							
10 dB/									
0ffst 20.5 dB									
LgAv						1			
M1 S2						Ĺ			
S3 FC		, and the second second	abayalasa baana	dipensional de the	un hileste bereitet	ing and the second second	-	الالاه والمعادية	historia and the second
£(f): FTun									
Swp									
Start 1.000 0 G								Stop 6.60	
#Res BW 100 kH	Z		#	VBW 300	kHz	S	weep 53	5.2 ms (3)	000 pts)_

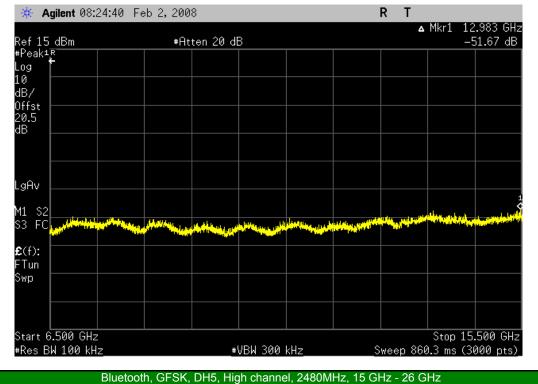
	Bluetooth, GFSK, DH5, Mid	channel, 2441MHz, 6.5 GHz	- 15.1 G⊦	lz
Result: Pass	Value:	≤ -40 dBc	Limit:	≤ -20 dBc

Result: Pass	Value: ≤ -40 dBc	Limit: ≤ -20 dBc						
			-					

🔆 Agilent 0	8:03:02 F	eb 2,200	8				RΤ		
Ref 15 dBm		#At	ten 20 di	В					.702 GHz).31 dBm
#Peak									
Log 10									
dB/									
0ffst 20.5 dB									
LgAv									
M1 00									
\$3 FC		in the state of the	ayyan Niyikaka ya	فيتبج والمرمان أحوار	and the second	ili i sinin ngalin	and the second		
£(f): FTun									
Swp									
Start 15.000^									.000 GHz
#Res BW 100	<hz< td=""><td></td><td>#</td><td>VBW 300</td><td>kHz</td><td></td><td>Sweep 1</td><td>.051 s (30</td><td>000 pts)_</td></hz<>		#	VBW 300	kHz		Sweep 1	.051 s (30	000 pts)_

	Bluetooth, GFSK, DH5, High channe	, 2480MHz, 9 kHz - 1.1GHz	
Result: Pass	Value: ≤ -40 dBc	: Limit:	≤ -20 dBc

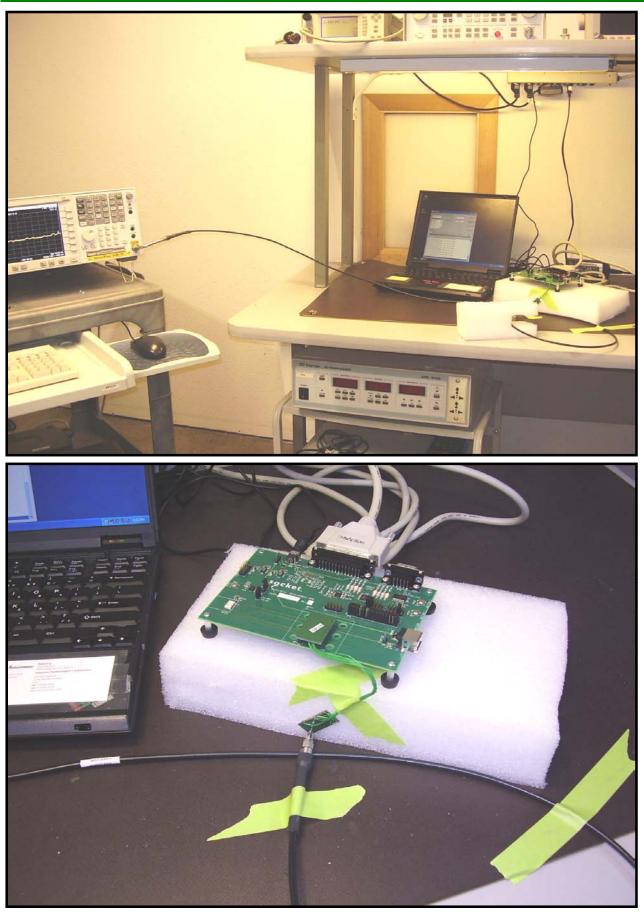
Result: Pass


Value: ≤ -40 dBc

Limit:

≤ -20 dBc

Agilent 08:24:03 Feb 2, 2008 R ** Т ▲ Mkr1 2.479 8 GHz Ref 15 dBm #Peak #Atten 20 dB -44.52 dB 1 R 🔷 Log 10 dB/ 0ffst 20.5 dB .gAv M1 S2 S3 FC a land 14 tel al dista ղվելու լ £(f): Tun Swp Start 1.000 0 GHz #Res BW 100 kHz_ Stop 6.600 0 GHz #VBW 300 kHz Sweep 535.2 ms (3000 pts)


	Bluetooth, GFSK, DH5, High channe	I, 2480MHz, 6.5 GHz - 15.1 G	Hz
Result: Pass	Value: ≤ -40 c	Bc Limit:	≤ -20 dBc

bidetootii, Grok, Dro, riigh chainei, 2400minz, To Griz - 20 Griz								
Result: Pass	Value: ≤ -40 dBc	Limit: ≤ -20 dBc						

🔆 Agilent 08:25:06	6 Feb 2,2008			RT	
Ref 15 dBm	#Atte	en 20 dB		۵	Mkr1 23.141 GHz -49.88 dB
#Peak1R Log					
10					
dB/ Offst					
20.5 dB					
LgAv					
M1 S2 S3 FC	. Landald de la contration de la contration	a dina ta ang ang ang ang ang ang ang ang ang an	and the state of t	and dependent of the second	in the second
£(f): FTun					
Swp					
Start 15.000 GHz				^	Stop 26.000 GHz
#Res BW 100 kHz		#VBW 300 I	kHz	Sweep 1.	051 s (3000 pts)_

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

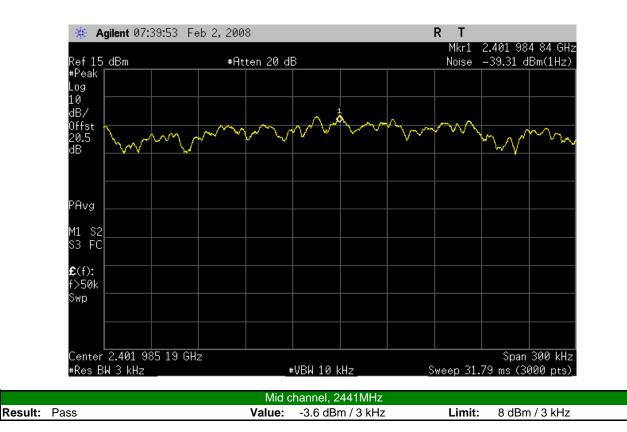
TEST EQUIPMENT									
Description	Manufacturer	Model	ID	Last Cal.	Interval				
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13				
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12				

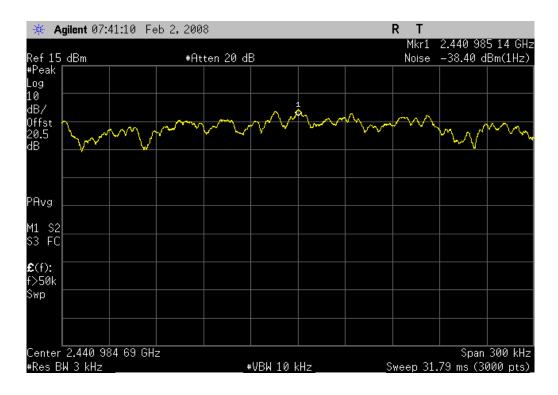
MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

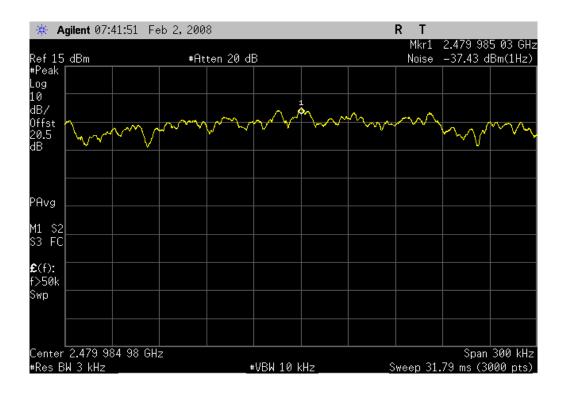
The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:

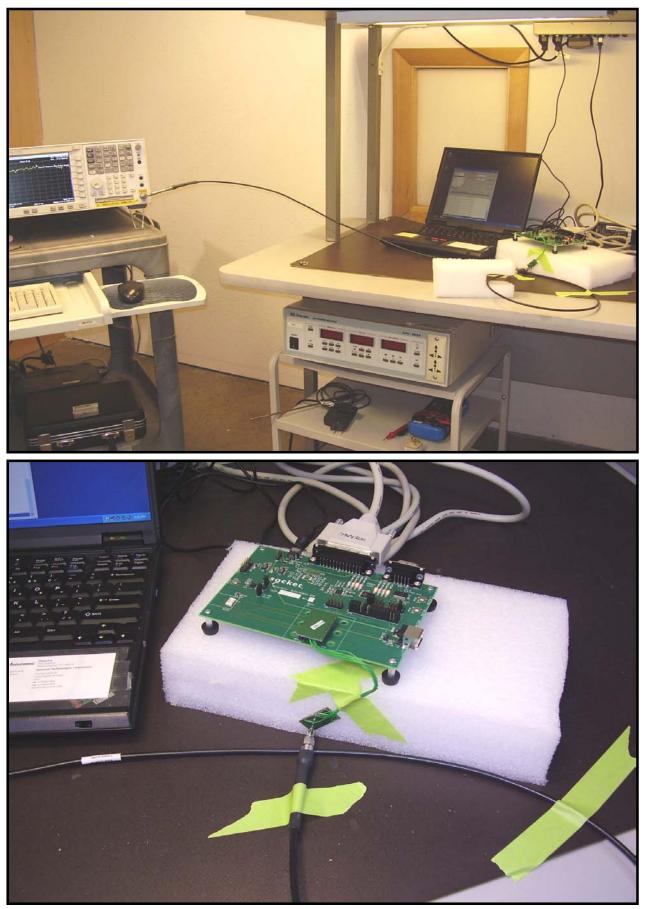

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 $\times 10^6 \div 3 \times 10^3 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:


"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."

NORTHWEST EMC		Power Spec	ctral Density	,		>	XMit 2007.06.13
EUT:	BTM4 module 10mW				Work Order:	ITRM0173	
Serial Number:						02/01/08	
Customer:	Intermec Technologies Cor	poration			Temperature:	22C°C	
Attendees:	None				Humidity:	26%	
Project:	None			B	arometric Pres.:	1017.6mb	
Tested by:	Holly Ashkannejhad		Power: 120VAC/6	OHz	Job Site:	EV06	
TEST SPECIFICATI	IONS		Test Metho	bd			
FCC 15.247 (FHSS)	:2006		ANSI C63.	4:2003 DA 00-705:2000			
COMMENTS							
Bluetooth module p		e. Software power level = 255, 34.					
DEVIATIONS FROM	TESTSTANDARD						
Configuration #	1	Signature Holy,	slight				
				Value	Lir	nit	Results
Low channel, 2402M	1Hz			-4.51 dBm / 3 kHz	8 dBm / 3 kH	Z	Pass
Mid channel, 2441M	Hz			-3.6 dBm / 3 kHz	8 dBm / 3 kH	z	Pass
High channel, 2480M	MHz			-2.63 dBm / 3 kHz	8 dBm / 3 kH	Z	Pass

Power Spectral Density


		Low ch	annel, 2402MHz			
Result:	Pass	Value:	-4.51 dBm / 3 kHz	Limit:	8 dBm / 3 kHz	


Power Spectral Density

	High channel, 2480MHz		
Result: Pass	Value: -2.63 dBm / 3 kHz	Limit: 8 dBm / 3 kHz	

Power Spectral Density

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmit Bluetooth GFSK, DH5, power settings in software 255, 34, high channel Transmit Bluetooth GFSK, DH5, power settings in software 255, 34, mid channel Transmit Bluetooth GFSK, DH5, power settings in software 255, 34, low channel

POWER SETTINGS INVESTIGATED

120VAC/60Hz

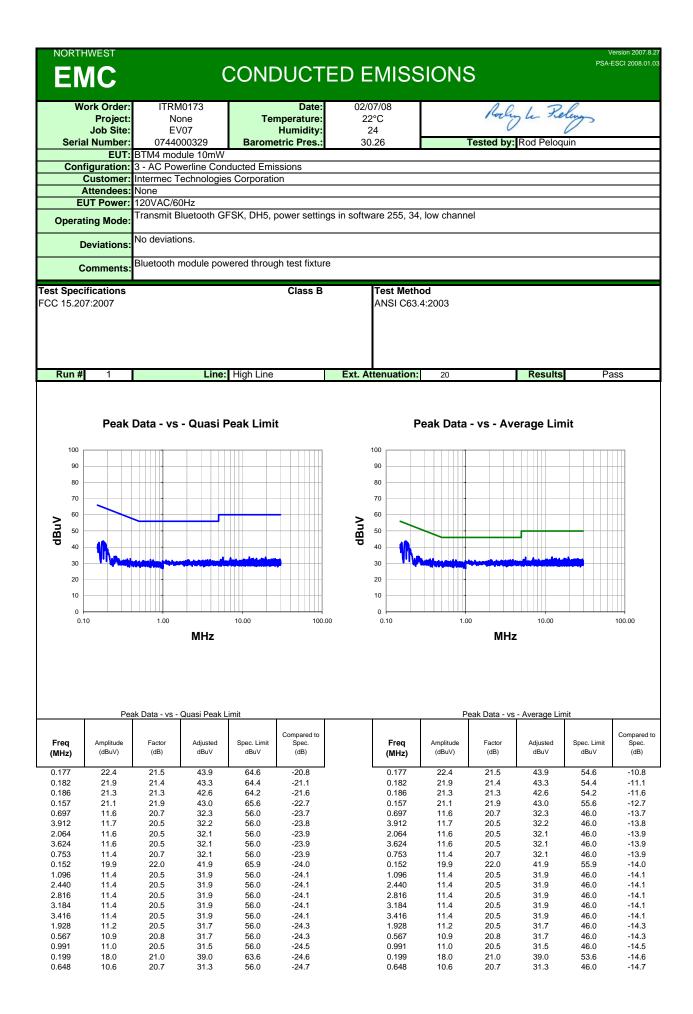
CONFIGURATIONS INVESTIGATED

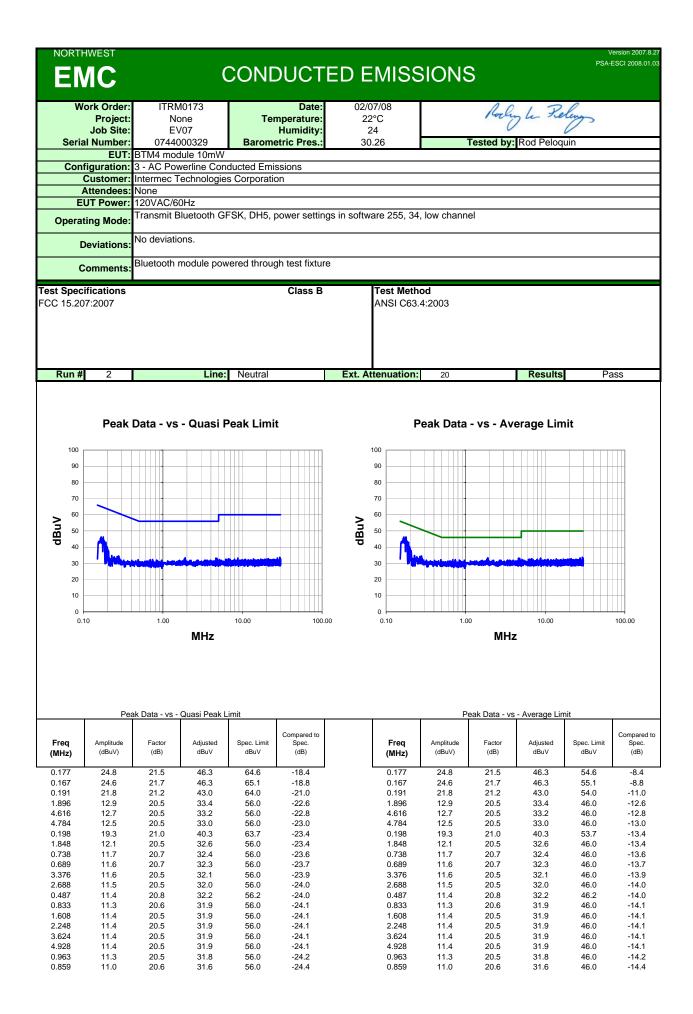
ITRM0173 - 3) AC Powerline Conducted Emissions

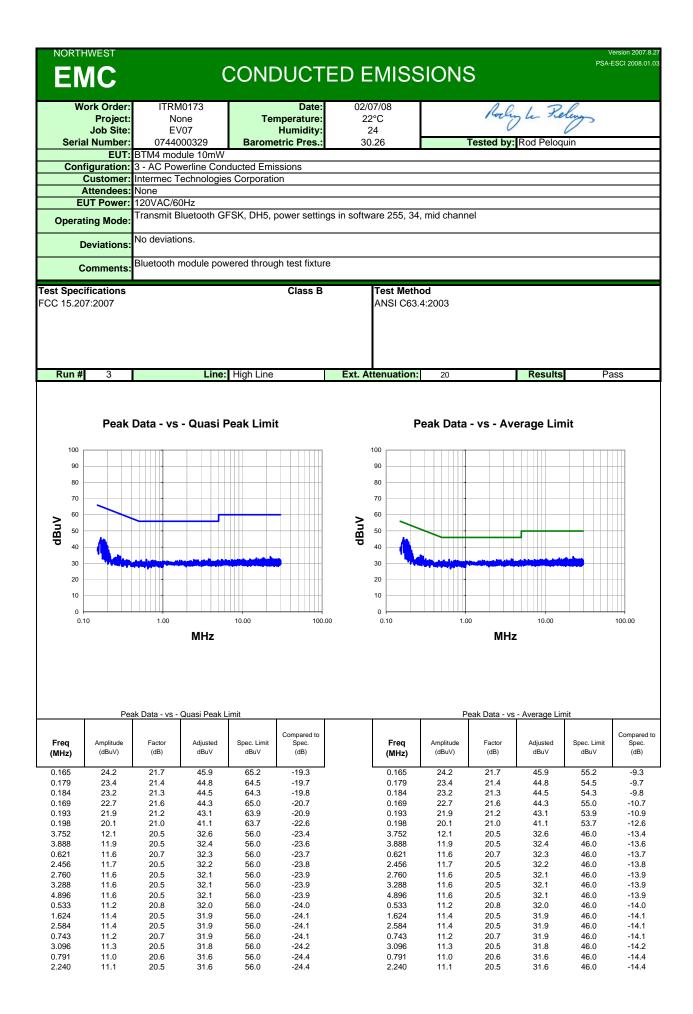
SAMPLE CALCULATIONS

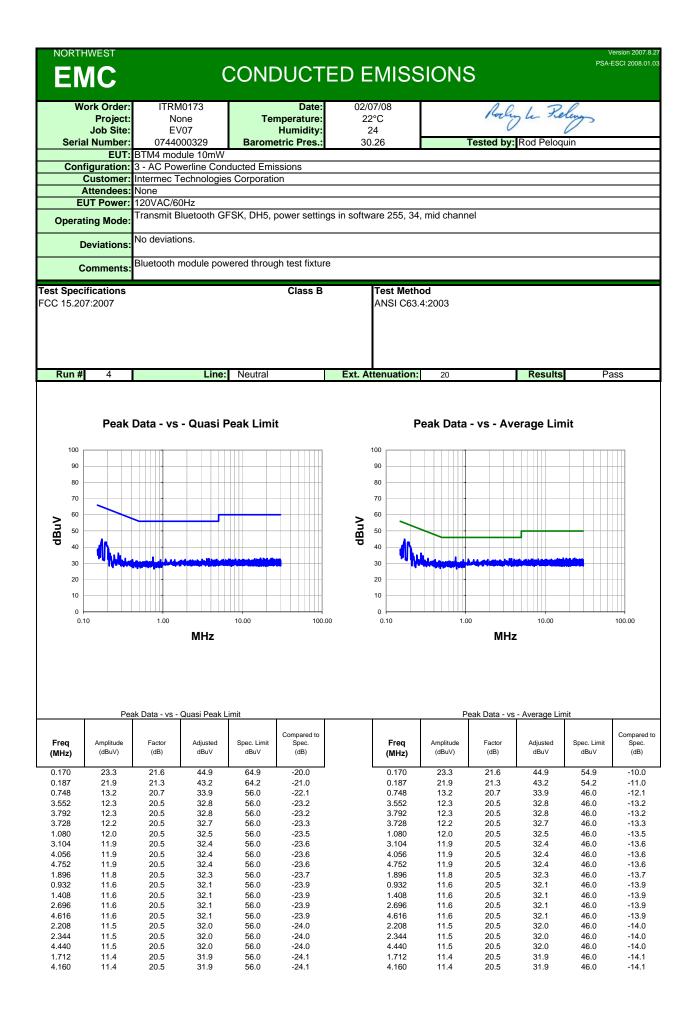
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

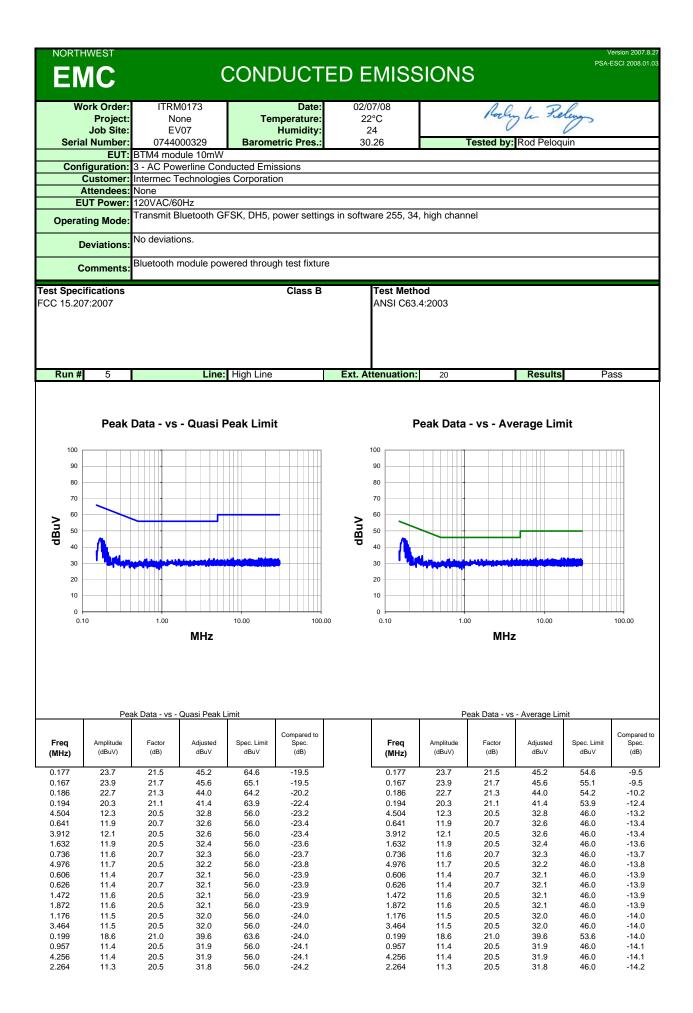
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwartz	ESCI	ARG	12/7/2007	13 mo
High Pass Filter	T.T.E.	7766	HFG	2/5/2008	13 mo
Attenuator - 20dB/30W	JFW	50FH-020	RBB	NCR	0 mo
LISN	Solar	9252-50-R-24-BNC	LIR	1/4/2008	13 mo
EV07 cable d			EVG	4/17/2007	13 mo

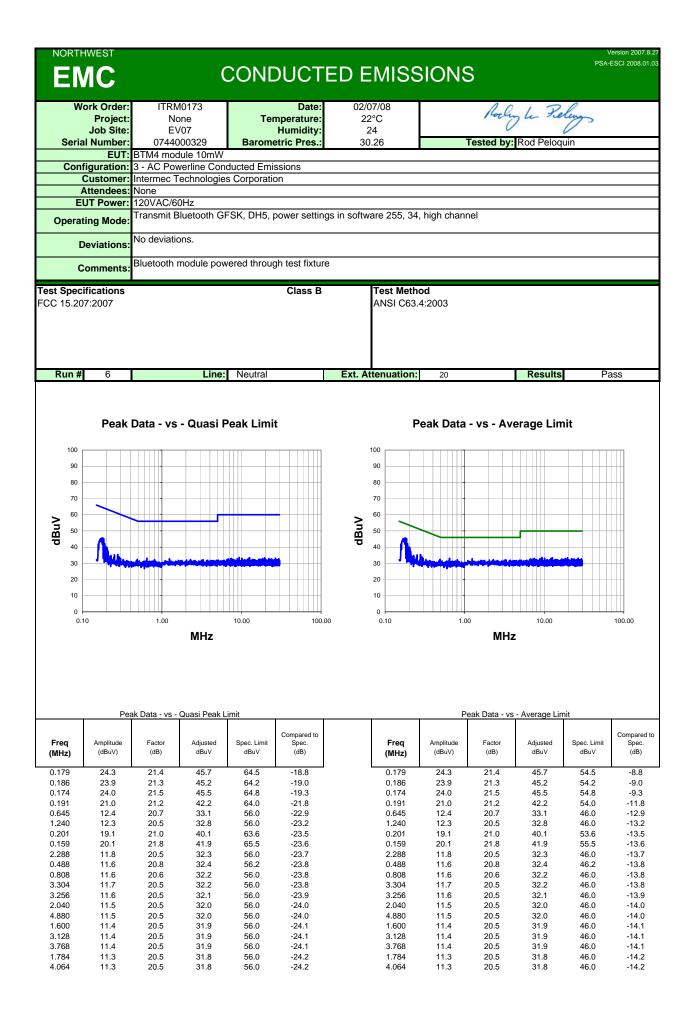

Frequency Range	Frequency Range Peak Data Quasi-Peak Data Average Da				
(MHz)	(kHz)	(kHz)	(kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		


MEASUREMENT UNCERTAINTY

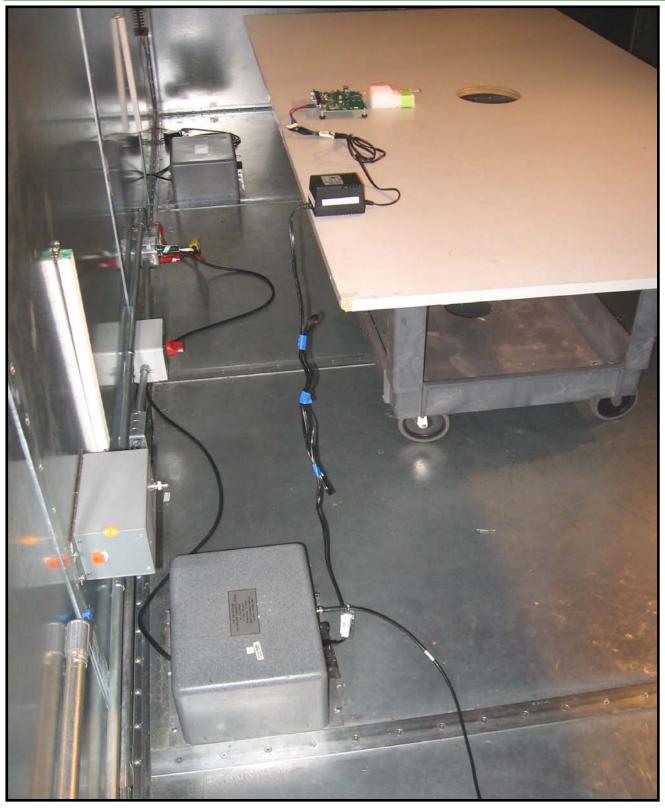

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm.






Conducted Emissions

Conducted Emissions

BLUETOOTH APPROVALS

FCC Procedure Received from Joe Dichoso on 2-15-02

The following exhibit indicates the FCC Spread Spectrum requirements in Section 15.247 for devices meeting the Bluetooth Specifications in the 2.4 GHz band as of February 2001 operating in the USA. The purpose of this exhibit is to help expedite the approval process for Bluetooth devices. This exhibit provides items that vary for each device and also provides a list of items that are common to Bluetooth devices that explains the remaining requirements. The list of common items can be submitted for each application for equipment authorization. This exhibit only specifies requirements in Section 15.247, requirements in other rule Sections for intentional radiators such as in Section 15.203 or 15.207 must be also be addressed. A Bluetooth device is a FHSS transmitter in the data mode and applies as a Hybrid spread spectrum device in the acquisition mode.

For each individual device, the following items, 1-7 will vary from one device to another and must be submitted.

- 1) The occupied bandwidth in Section 15.247(a)(1)(ii).
- 2) Conducted output power specified in Section 15.247(b)(1).
- 3) EIRP limit in Section 15.247(b)(3).
- 4) RF safety requirement in Section 15.247(b)(4)
- 5) Spurious emission limits in Section 15.247(c).
- 6) Processing gain and requirements for Hybrids in Section 15.247(f) in the acquisition mode.
- 7) Power spectral density requirement in Section 15.247(f) in the acquisition mode.

For all devices, the following items, 1-12, are common to all Bluetooth devices and will not vary from one device to another. This list can be copied into the filing.

1 Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device don't influence the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters.

Only a different hopping sequence will be used. For this reason, the RF parameters in one op-mode is sufficient.

2 Frequency range of a Bluetooth device:

The maximum frequency of the device is: 2402 - 2480 MHz.

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for devices which will be operated in the USA. Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification must **not be** supported by the device.

3 Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organized in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from it's BD address which is unique for every Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4 Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode:

40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67, 56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59, 72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75, 09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06, 01, 51, 03, 55, 05, 04

5 Equally average use of frequencies in data mode and short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection

2. Internal master clock

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS. The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronization with other units, only the offsets are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 µs. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions, the Bluetooth system has the following behavior: The first connection between the two devices is established, a hopping sequence is generated. For transmitting the wanted data, the complete hopping sequence is not used and the connection ends. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 μ s). The hopping sequence will always differ from the first one.

6 Receiver input bandwidth, synchronization and repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz.

In every connection, one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection (e.g. single or multi-slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing is according to the packet type of the connection. Also, the slave of the connection uses these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence

7 Dwell time in data mode

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is a follows: Dwell time = time slot length * hop rate / number of hopping channels *30s Example for a DH1 packet (with a maximum length of one time slot) Dwell time = 625 μ s * 1600 1/s / 79 * 30s = 0.3797s (in a 30s period) For multi-slot packet the hopping is reduced according to the length of the packet. Example for a DH5 packet (with a maximum length of five time slots)

Dwell time = $5 * 625 \ \mu s * 1600 * 1/5 *1/s / 79 * 30s = 0.3797s$ (in a 30s period) This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for all Bluetooth devices. Therefore, all Bluetooth devices **comply** with the FCC dwell time requirement in the data mode.

This was checked during the Bluetooth Qualification tests.

The Dwell time in hybrid mode is approximately 2.6 mS (in a 12.8s period)

8 Channel Separation in hybrid mode

The nominal channel spacing of the Bluetooth system is 1Mhz independent of the operating mode.

The maximum "initial carrier frequency tolerance" which is allowed for Bluetooth is fcenter = 75 kHz.

This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/07-E) for three frequencies (2402, 2441, 2480 MHz).

9 Derivation and examples for a hopping sequence in hybrid mode

For the generation of the inquiry and page hop sequences the same procedures as described for the data mode are used (see item 5), but this time with different input vectors:

**For the inquiry hop sequence, a predefined fixed address is always used. This results in the same 32 frequencies used by all devices doing an inquiry but every time with a different start frequency and phase in this sequence.

**For the page hop sequence, the device address of the paged unit is used as the input vector. This results in the use of a subset of 32 frequencies which is specific for that initial state of the connection establishment between the two units. A page to different devices would result in a different subset of 32 frequencies.

So it is ensured that also in hybrid mode, the frequency is used equally on average. Example of a hopping sequence in inquiry mode:

48, 50, 09, 13, 52, 54,41, 45, 56, 58, 11, 15, 60, 62, 43, 47, 00, 02, 64, 68, 04, 06, 17, 21, 08, 10, 66, 70, 12, 14, 19, 23

Example of a hopping sequence in paging mode:

08, 57, 68, 70, 51, 02, 42, 40, 04, 61, 44, 46, 63, 14, 50, 48, 16, 65, 52, 54, 67, 18, 58, 56, 20, 53, 60, 62, 55, 06, 66, 64

10 Receiver input bandwidth and synchronization in hybrid mode:

The receiver input bandwidth is the same as in the data mode (1 MHz). When two Bluetooth devices establish contact for the first time, one device sends an inquiry access code and the other device is scanning for this inquiry access code. If two devices have been connected previously and want to start a new transmission, a similar procedure takes place. The only difference is, instead of the inquiry access code, a special access code, derived from the BD_ADDRESS of the paged device will be, will be sent by the master of this connection. Due to the fact that both units have been connected before (in the inquiry procedure) the paging unit has timing and frequency information about the page scan of the paged unit. For this reason the time to establish the connection is reduced.

11 Spread rate / data rate of the direct sequence signal

The Spread rate / Data rate in inquiry and paging mode can be defined via the access code. The access code is the only criterion for the system to check if there is a valid transmission or not. If you regard the presence of a valid access code as one bit of information, and compare it with the length of the access code of 68 bits, the Spread rate / Data rate will be 68/1.

12 Spurious emission in hybrid mode

The Dwell in hybrid mode is shorter than in data mode. For this reason the spurious emissions average level in data mode is worst case. The spurious emissions peak level is the same for both modes.