

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: Bluetooth Barcode Reader, SF51

To: OET Bulletin 65 Supplement C: (2001-01)

Test Report Serial No: RFI-SAR-RP85074JD08A V1.0

This Test Report Is Issued Under The Authority Of Chris Guy, Head of Global Approvals:	C.Cy
	(APPROVED SIGNATORY)
Checked By: Richelieu Quoi	(APPROVED SIGNATORY)
Issue Date:	30 March 2012
Test Dates:	27 January 2012

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

The Bluetooth® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by RFI Global Services Ltd. is under license. Other trademarks and trade names are those of their respective owners.

RFI Global Services Ltd.

Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG, UK
Tel. +44 (0) 1256 312000 Fax +44 (0) 1256 312001
web: www.rfi-global.com email: contactus@rfi-global.com

Test Report Serial No: RFI-SAR-RP85074JD08A V1.0
Version 1.0 Issue Date: 30 March 2012

This page has been left intentionally blank.

Page: 2 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

TABLE OF CONTENTS

1. Customer Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods and Procedures	6
4. Deviations from the Test Specification	7
5. Operation and Configuration of the EUT during Testing	8
6. Summary of Test Results	9
7. Measurements, Examinations and Derived Results	10
8. Measurement Uncertainty	13
Appendix 1. Test Equipment Used	15
Appendix 2. Measurement Methods	
Appendix 3. SAR Distribution Scans	20
Appendix 4. Photographs	28
Appendix 5. Validation of System	39
Appendix 6. Simulated Tissues	40
Appendix 7. DASY4 System Details	41

Issue Date: 30 March 2012

Test Report Version 1.0

1. Customer Information				
Company Name:	Intermec Scanner Technology Center			
Address:	Address: Immeuble "Les Allées du Lac"			
	Rue du Lac			
	Boite Postale 38147			
	31681 Labège Cedex			
	France			

Page: 4 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

2. Equipment Under Test (EUT)

• • • • • • • • • • • • • • • • • • • •	
2.1. Identification of Equipment Under	er Test (EUT)
Description:	Bluetooth Bar Code Scanner
Brand Name:	Intermec Technologies Corp.
Model Name or Number:	SF51
Serial Number:	2921114461
IMEI Number:	Not Applicable
Hardware Version Number:	None Stated
Software Version Number:	None Stated
Hardware Revision of GSM Module:	Not Applicable
Software Revision of GSM Module:	Not Applicable
FCC ID Number:	EHA-BTM312
IC ID Number:	1223A-BTM312
Country of Manufacture:	Singapore
Date of Receipt:	24 January 2012

2.2. Description of EUT

The equipment under test was a *Bluetooth* Bar code reader operating in the *Bluetooth* 2450 MHz band. The EUT is *Bluetooth* Class 1 device.

2.3. Modifications Incorporated in the EUT

No modifications were incorporated in to the EUT during the course of testing.

2.4. Additional Information Related		burse of testing.					
Equipment Category	Bluetooth	Bluetooth					
Type of Unit	Portable Transceiver						
Intended Operating Environment:	Within Bluetooth co	verage					
Transmitter Maximum Output Power Characteristics:	Bluetooth EUT is setup in test mode to allow the EUT to transmit at a maximum power of up to 17.75mW.						
Transmitter Frequency Range:	Bluetooth (2402 to 2480) MHz						
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)				
	0	Low	2402				
	39	Middle	2441				
	78	High	2480				
Modulation(s):	GFSK (Bluetooth):	0 Hz					
Modulation Scheme (Crest Factor):	GFSK (Bluetooth):	1					
Antenna Type:	Internal						
Antenna Length:	Unknown						
Number of Antenna Positions:	1						
Power Supply Requirement:	3.3 V						

Page: 5 of 43 RFI Global Services Ltd.

3. Test Specificat	3. Test Specification, Methods and Procedures				
3.1. Test Specific	ation				
Reference:	OET Bulletin 65 Supplement C: (2001-01)				
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.				
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.				

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

KDB 447498 D01 "Mobile Portable RF Exposure v04"

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

Page: 6 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

4. Deviations from the Test Specification

Test was performed as per "KDB 447498 D01 Mobile Portable RF Exposure v04 and according to the body-worn procedures in IEEE Std 1528-2003 and OET Bulletin 65 Supplement C 01-01.

The sample used for SAR assessment was as per section 2 of this report.

All data rate mode's and power settings were evaluated to find the highest power reference measurement. DH5 with power setting 44 was found to give the highest power reference on the DASY4 system.

All settings were performed in a fixed position to ensure there were no positioning errors. The following values were measured relative to the mode and power setting:

Data Rate	Power setting	Power (v/m)
	39	2.706
DH5	40	2.903
	41	3.066
	42	3.410
	43	3.556
	44	4.063
2-DH5	90	2.787
3-DH5	90	2.645

Page: 7 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

 Bluetooth Data allocated test mode using manufacturer customised software. The EUT was setup in test mode to allow its transmission to be at a maximum power of up to 17.75mW.

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

EUT was tested in Body configuration with 0mm separation distance to flat section of the
phantom. The Front, Rear, Left hand side and Right hand side of EUT configurations for
body-worn orientations where the corresponding edge(s) is closest to the user with the most
conservative exposure condition.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the handset was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater then 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery

Page: 8 of 43 RFI Global Services Ltd.

Test Report S
Version 1.0

Serial No: RFI-SAR-RP85074JD08A V1.0 Issue Date: 30 March 2012

6. Summary of Test Results		
Test Name	Specification Reference	Result
Specific Absorption Rate- <i>Bluetooth</i> 2450 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied

Note: EUT does not support any other band except *Bluetooth*; hence simultaneous transmission is not applicable.

Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

Page: 9 of 43 RFI Global Services Ltd.

Test Report
Version 1.0

Serial No: RFI-SAR-RP85074JD08A V1.0

Issue Date: 30 March 2012

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Page: 10 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

7.2. Test Results

7.2.1. Specific Absorption Rate - *Bluetooth* 2450 Body Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.130

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

Results.							
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	39	0.130	1.600	1.470	1, 2	Complied
Rear of EUT Facing Phantom	Flat (SAM)	39	0.051	1.600	1.549	1, 2	Complied
Left Hand Side of EUT Facing Phantom	Flat (SAM)	39	0.036	1.600	1.564	1, 2	Complied
Right Hand Side of EUT Facing Phantom	Flat (SAM)	39	0.043	1.600	1.557	1, 2	Complied
Front of EUT Facing Phantom	Flat (SAM)	0	0.029	1.600	1.571	1, 2	Complied
Front of EUT Facing Phantom	Flat (SAM)	78	0.039	1.600	1.562	1, 2	Complied
Noto(s):							

Note(s):

- 1. SAR measurements were performed with the EUT in direct (0 mm separation for device-to-user) contact with the 'SAM' phantom flat section.
- 2. Basic data rate for DH5 is at power rating 44

Page: 11 of 43 RFI Global Services Ltd.

7.2.2. ERP/EIRP and Conducted Power Measurement						
Channel Number	Frequency (MHZ)	EIRP Power Measurement (dBm)	Antenna Gain (dBd)	Calculated Conducted Power (dBm)	Note	
		Basic Data	Rate DH5			
0	2402.0	8.50	-0.15	8.35	Average	
39	2441.0	11.90	-0.15	11.75	Average	
78	2480.0	10.10	-0.15	9.95	Average	
		EDR Data	Rate 2DH5			
0	2402.0	8.10	-0.15	7.95	Average	
39	2441.0	10.80	-0.15	10.65	Average	
78	2480.0	9.10	-0.15	8.95	Average	
		EDR Data	Rate 3DH5			
0	2402.0	8.70	-0.15	8.55	Average	
39	2441.0	11.40	-0.15	11.25	Average	
78	2480.0	9.90	-0.15	9.75	Average	

Page: 12 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate-Bluetooth 2450 Body Configuration 1g	95%	±19.90%

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Page: 13 of 43 RFI Global Services Ltd.

8.1. 8	Specific Absorption Rate	e-Blueto	oth 245	0 Body Confi	guration	1g			
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (10g)}	Stan Uncer	tainty	υ _i or
В	Probe calibration	6.000	6.000	n a man al (le=1)	1.0000	1.0000	+ u (%)	- u (%)	Veff
		6.000	6.000	normal (k=1)	1.0000		6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	× ×
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	× ×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.570	2.570	normal (k=1)	1.0000	1.0000	2.570	2.570	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	×
Α	Liquid Permittivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6000	2.952	2.952	5
	Combined standard uncertainty			t-distribution			10.15	10.15	>25
	Expanded uncertainty			k = 1.96			19.90	19.90	>25

Page: 14 of 43 RFI Global Services Ltd.

Serial No: RFI-SAR-RP85074JD08A V1.0 Issue Date: 30 March 2012

	dix 1. Test Equip					
RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223- 30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-
A1234	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	450	09 Feb 2011*	12
A1238	SAM Phantom	Schmid & Partner Engineering AG	SAM b	001	Calibrated before use	-
A1322	2450 MHz Dipole Kit	Schmid & Partner Engineering AG	D2450V2	725	08 Feb 2011	24
A2077	Probe	Schmid & Partner Engineering AG	EX3 DV4	3814	22 Sep 2011	12
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A1566	SAM Phantom	Schmid & Partner Engineering AG	SAM a	002	Calibrated before use	-
A1990	Digital Camera	Samsung	E515	A23WC90 8A05431K	-	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
A1531	Antenna	AARONIA AG	7025	02458	-	-
C1042	Network Analyzer Cable	Agilent	8120-4779	349	-	-
C1145	Cable	Rosenberger MICRO- COAX	FA147A F003003030	41843-1	Calibrated as part of system	-
C1146	Cable	Rosenberger MICRO-COAX	FA147A F030003030	41752-1	Calibrated as part of system	-
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	27 Sept 2011	12

Page: 15 of 43 RFI Global Services Ltd.

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
M1047	Robot Arm	Staubli	RX908 L	F00/SD8 9A1/A/01	Calibrated before use	-
M1159	Signal Generator	Agilent Technologies	E8241A	US42110332	Internal Checked 15 Dec 2011	4
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1044	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/019	25 May 2011	12
M265	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/017	25 May 2011	12
M263	Dual Channel Power Meter	Rohde & Schwarz	NRVD	826558/004	26 May 2011	12
M509	Thermometer	Testo 110 Immersion Probe & Thermometer	Testo 110	03100047	25 May 2011	12
S256	SAR Lab	RFI	Site 56	N/A	Calibrated before use	-

Note: All the assets were in calibration during the course of testing.

Page: 16 of 43 RFI Global Services Ltd.

Test Report Serial No: RFI-SAR-RP85074JD08A V1.0
Version 1.0 Issue Date: 30 March 2012

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

Page: 17 of 43 RFI Global Services Ltd.

ASSET! A1322 - Checked by A

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

C

Certificate No: D2450V2-725 Feb11

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 725

Calibration procedure(s)

QA CAL-05.v8
Calibration procedure for dipole validation kits

Calibration date:

February 08, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

i			
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D. Kiev
Approved by:	Katja Pokovic	Technical Manager	

Issued: February 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-725_Feb11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-725 Feb11

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

<u> </u>	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.73 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.13 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.1 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-725_Feb11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.6 Ω + 7.9 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.5 Ω + 9.7 jΩ
Return Loss	- 20.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 16, 2002

Certificate No: D2450V2-725_Feb11

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 14:34:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.74 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

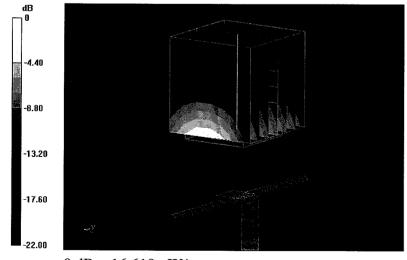
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• Measurement SW: DASY52, V52.6.1 Build (408)

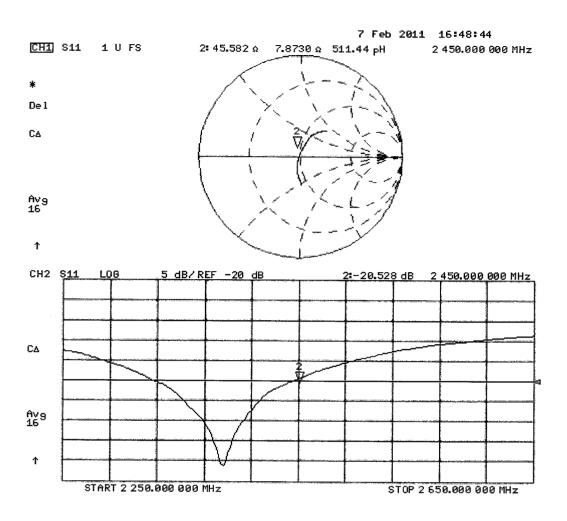
• Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.3 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 26.701 W/kg


SAR(1 g) = 13 mW/g; SAR(10 g) = 6.13 mW/g

Maximum value of SAR (measured) = 16.608 mW/g

0 dB = 16.610 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 12:48:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{ mho/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

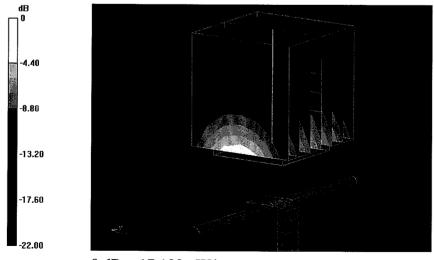
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.1 Build (408)

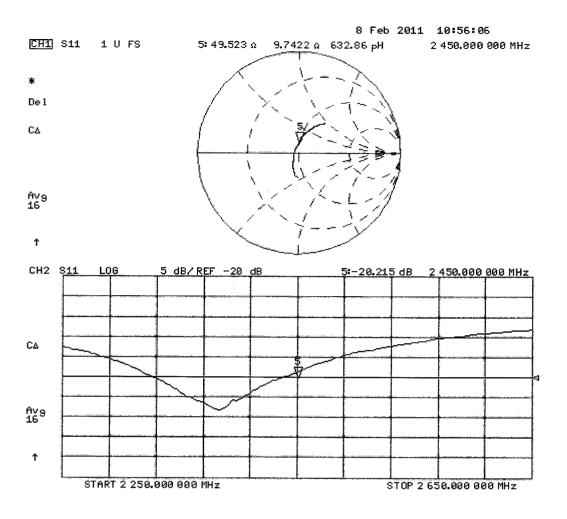
• Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.406 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 27.401 W/kg


SAR(1 g) = 13 mW/g; SAR(10 g) = 6.04 mW/g

Maximum value of SAR (measured) = 17.121 mW/g

0 dB = 17.120 mW/g

Impedance Measurement Plot for Body TSL

Checked by A. Tub

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Certificate No: EX3-3814 Sep11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3814

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4,

QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

September 22, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	28ll
Approved by:	Fin Bomholt	R&D Director	F. Smball

Issued: September 22, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3814_Sep11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP CF sensitivity in TSL / NORMx,y,z diode compression point

A, B, C

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3814_Sep11 Page 2 of 11

Probe EX3DV4

SN:3814

Manufactured:

September 2, 2011

Calibrated:

September 22, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm $(\mu V/(V/m)^2)^A$	0.52	0.51	0.44	± 10.1 %	
DCP (mV) ^B	100.8	96.5	101.1		

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	121.7	±2.7 %
			Υ	0.00	0.00	1.00	115.0	
			Z	0.00	0.00	1.00	105.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Calibration Parameter Determined in Head Tissue Simulating Media

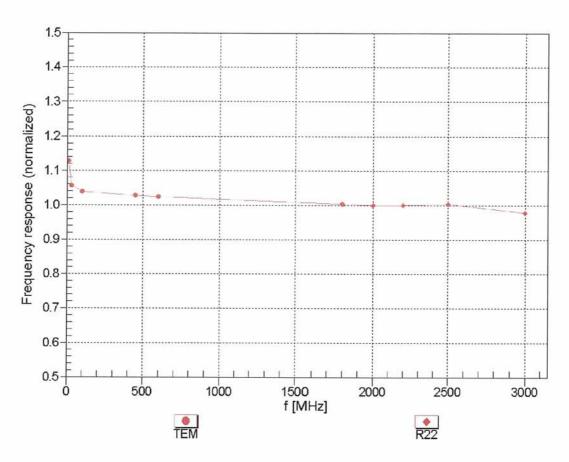
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	9.55	9.55	9.55	0.12	1.00	± 13.4 %
750	41.9	0.89	9.26	9.26	9.26	0.80	0.67	± 12.0 %
900	41.5	0.97	8.75	8.75	8.75	0.71	0.73	± 12.0 %
1750	40.1	1.37	8.13	8.13	8.13	0.80	0.62	± 12.0 %
1900	40.0	1.40	7.78	7.78	7.78	0.80	0.61	± 12.0 %
2450	39.2	1.80	7.02	7.02	7.02	0.80	0.60	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

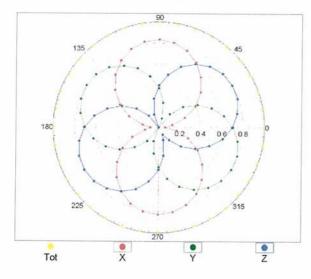

Calibration Parameter Determined in Body Tissue Simulating Media

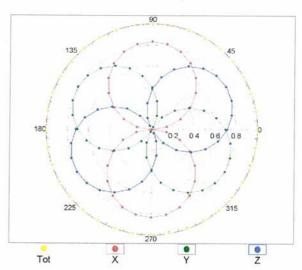
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	10.39	10.39	10.39	0.04	1.00	± 13.4 %
750	55.5	0.96	9.28	9.28	9.28	0.80	0.65	± 12.0 %
900	55.0	1.05	8.92	8.92	8.92	0.80	0.65	± 12.0 %
1750	53.4	1.49	7.58	7.58	7.58	0.80	0.67	± 12.0 %
1900	53.3	1.52	7.31	7.31	7.31	0.80	0.68	± 12.0 %
2150	53.1	1.66	7.38	7.38	7.38	0.80	0.65	± 12.0 %
2450	52.7	1.95	7.15	7.15	7.15	0.80	0.50	± 12.0 %
2600	52.5	2.16	7.02	7.02	7.02	0.80	0.50	± 12.0 %
3700	51.0	3.55	6.35	6.35	6.35	0.26	1.68	± 13.1 %
5200	49.0	5.30	4.19	4.19	4.19	0.60	1.95	± 13.1 %
5500	48.6	5.65	3.86	3.86	3.86	0.60	1.95	± 13.1 %
5800	48.2	6.00	3.94	3.94	3.94	0.60	1.95	± 13.1 %

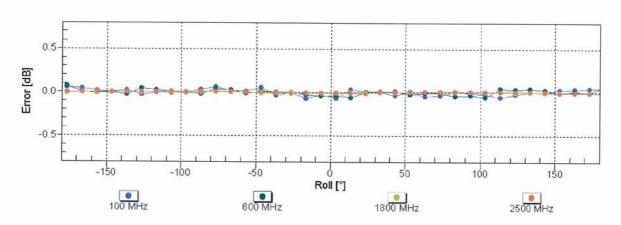
^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

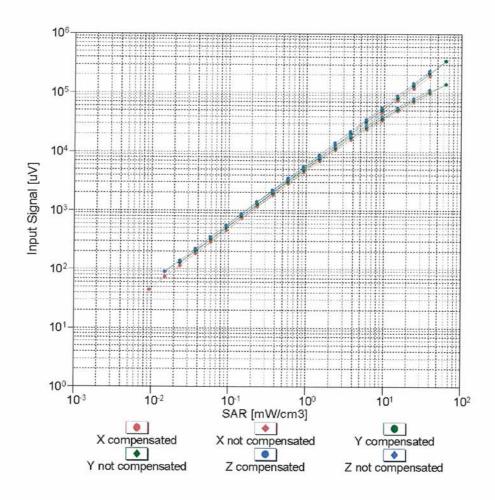

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

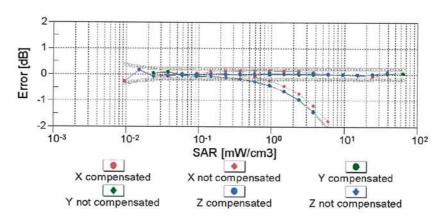

EX3DV4-SN:3814


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

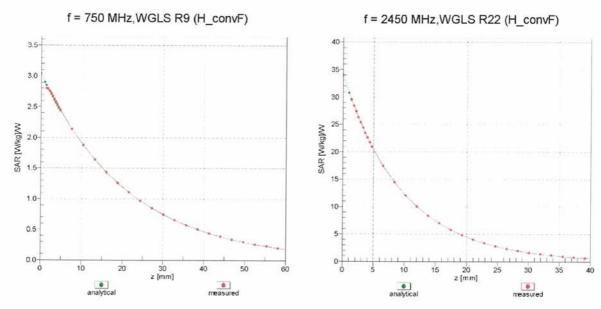
f=600 MHz,TEM

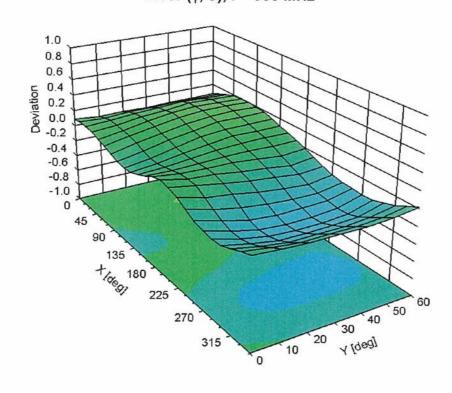
f=1800 MHz,R22

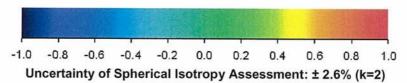




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4- SN:3814 September 22, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Other Probe Parameters

Triangular
Not applicable
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
2 mm

Certificate No: EX3-3814_Sep11 Page 11 of 11

Test Report Version 1.0 Serial No: RFI-SAR-RP85074JD08A V1.0

Version 1.0 Issue Date: 30 March 2012

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.
 - (ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. for bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was reevaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Page: 18 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, IEEE 1528 and FCC KDB procedures, against appropriate limits for each measurement position in accordance with the standard. In some cases the FCC was contacted using a PBA or KDB process to ensure test is performed correctly.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of ± 2.0°C

Prior to any SAR measurements on the EUT, system validation and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system validation and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001 and FCC KDB publication 450824.

Following the successful system validation and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 175 points (5 mm spacing in each axis $\approx 27g$) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 10g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.

Page: 19 of 43 RFI Global Services Ltd.

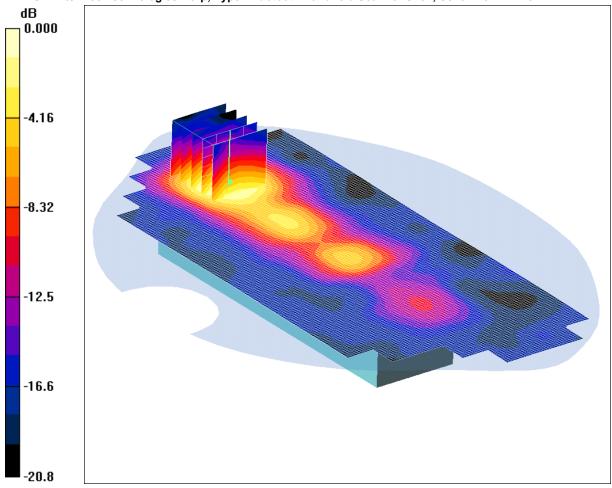
Test Report Version 1.0 Serial No: RFI-SAR-RP85074JD08A V1.0

Issue Date: 30 March 2012

Appendix 3. SAR Distribution Scans

This appendix contains SAR distribution scans which are not included in the total number of pages for this report.

Scan Reference Number	Title
SCN/85074JD08/001	Front of EUT Facing Phantom Bluetooth CH39
SCN/85074JD08/002	Rear of EUT Facing Phantom Bluetooth CH39
SCN/85074JD08/003	Left Hand Side of EUT Facing Phantom Bluetooth CH39
SCN/85074JD08/004	Right Hand Side of EUT Facing Phantom Bluetooth CH39
SCN/85074JD08/005	Front of EUT Facing Phantom Bluetooth CH0
SCN/85074JD08/006	Front of EUT Facing Phantom Bluetooth CH78
SCN/85074JD08/007	System Performance Check 2450MHz Body 27 01 12


Page: 20 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

SCN/85074JD08/001: Front of EUT Facing Phantom Bluetooth CH39

Date: 27/01/2012

DUT: Intermec Technologies Corp; Type: Bluetooth Handheld Scanner SF51; Serial: 29211144611

0 dB = 0.139 mW/g

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 2$ mho/m; $\epsilon_r = 51.1$; $\rho = 4000$ km/s⁻³

1000 kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(7.15, 7.15, 7.15); Calibrated: 22/09/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

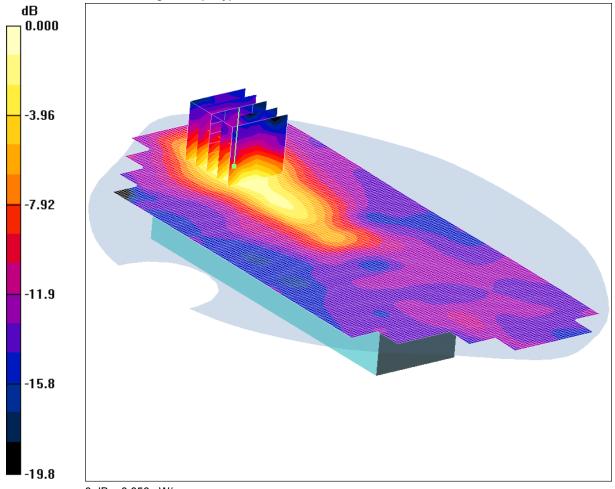
Front of EUT Facing Phantom - Middle/Area Scan (81x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.158 mW/g

Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.88 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 0.243 W/kg

SAR(1 g) = 0.130 mW/g; SAR(10 g) = 0.068 mW/g Maximum value of SAR (measured) = 0.139 mW/g


Page: 21 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

SCN/85074JD08/002: Rear of EUT Facing Phantom Bluetooth CH39

Date: 27/01/2012

DUT: Intermec Technologies Corp; Type: Bluetooth Handheld Scanner SF51; Serial: 29211144611

0 dB = 0.056 mW/q

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used (interpolated): f = 2441 MHz; σ = 2 mho/m; ϵ_r = 51.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(7.15, 7.15, 7.15); Calibrated: 22/09/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

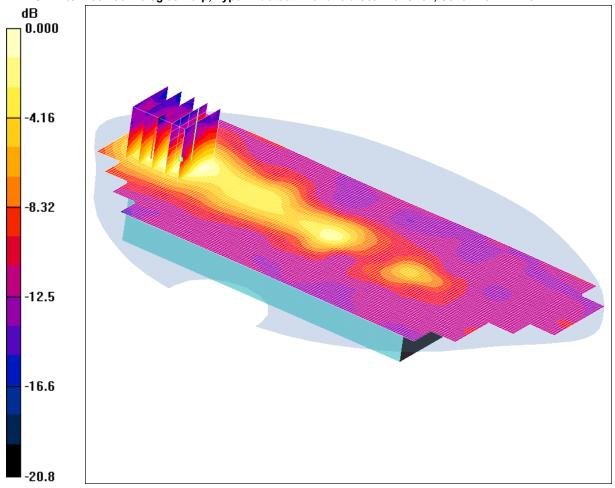
Rear of EUT Facing Phantom - Middle/Area Scan (81x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.054 mW/g

Rear of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) 2 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.38 V/m; Power Drift = 0.006 dB

Peak SAR (extrapolated) = 0.089 W/kg

SAR(1 g) = 0.051 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.056 mW/g


Page: 22 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

SCN/85074JD08/003: Left Hand Side of EUT Facing Phantom Bluetooth CH39

Date: 27/01/2012

DUT: Intermec Technologies Corp; Type: Bluetooth Handheld Scanner SF51; Serial: 29211144611

0 dB = 0.038 mW/g

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used (interpolated): f = 2441 MHz; σ = 2 mho/m; ϵ_r = 51.1; ρ =

1000 kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(7.15, 7.15, 7.15); Calibrated: 22/09/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Left Hand Side of EUT Facing Phantom - Middle/Area Scan (81x181x1): Measurement grid: dx=15mm, dy=15mm

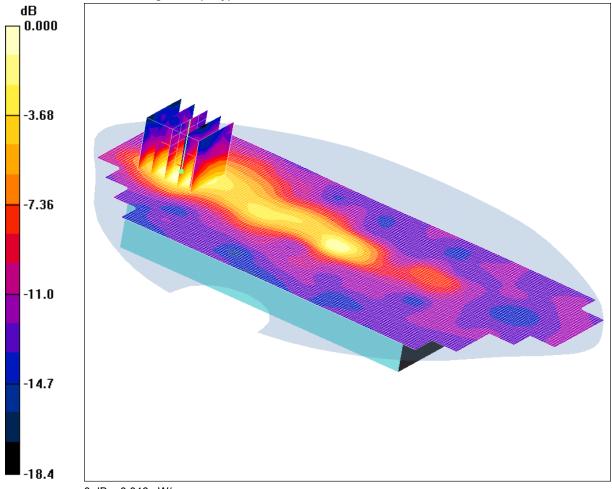
Maximum value of SAR (interpolated) = 0.041 mW/g

Left Hand Side of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.15 V/m; Power Drift = 0.170 dB

Peak SAR (extrapolated) = 0.066 W/kg


SAR(1 g) = 0.036 mW/g; SAR(10 g) = 0.020 mW/g Maximum value of SAR (measured) = 0.038 mW/g

Page: 23 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

SCN/85074JD08/004: Right Hand Side of EUT Facing Phantom *Bluetooth* CH39 Date: 27/01/2012

DUT: Intermec Technologies Corp; Type: Bluetooth Handheld Scanner SF51; Serial: 29211144611

0 dB = 0.046 mW/g

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used (interpolated): f = 2441 MHz; σ = 2 mho/m; ϵ_r = 51.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(7.15, 7.15, 7.15); Calibrated: 22/09/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Right Hand Side of EUT Facing Phantom - Middle/Area Scan (81x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.056 mW/g

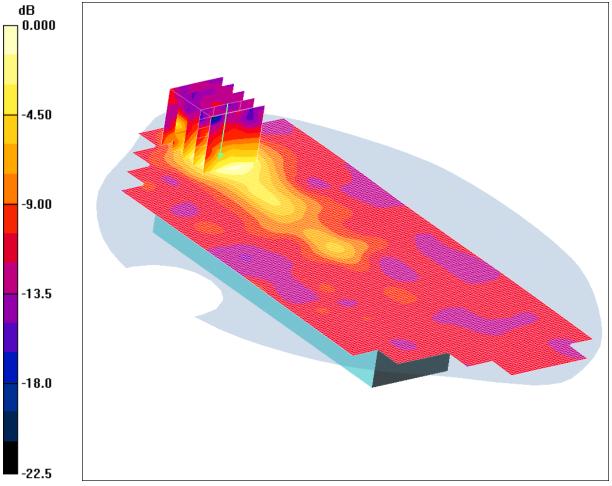
Right Hand Side of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.77 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 0.083 W/kg

SAR(1 g) = 0.043 mW/g; SAR(10 g) = 0.022 mW/g Maximum value of SAR (measured) = 0.046 mW/g

Page: 24 of 43 RFI Global Services Ltd.


Test Report Serial No: RFI-SAR-RP85074JD08A V1.0

Issue Date: 30 March 2012

SCN/85074JD08/005: Front of EUT Facing Phantom Bluetooth CH0

Date: 27/01/2012

DUT: Intermec Technologies Corp; Type: Bluetooth Handheld Scanner SF51; Serial: 29211144611

0 dB = 0.033 mW/g

Communication System: Bluetooth; Frequency: 2402 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used (interpolated): f = 2402 MHz; σ = 1.95 mho/m; ϵ_r = 51.2; ρ =

1000 kg/m³

Phantom section: Flat Section DASY4 Configuration:

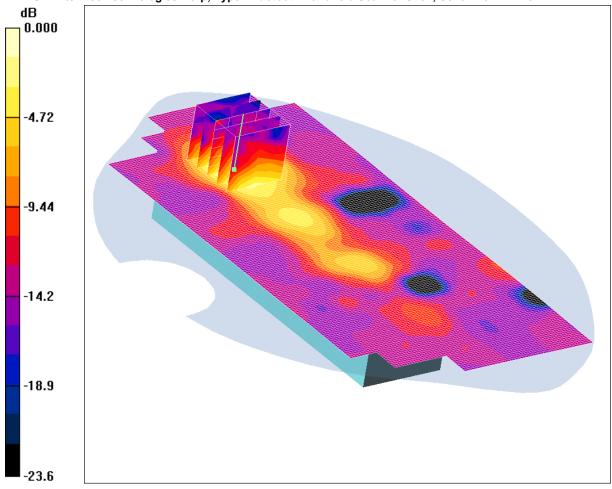
- Probe: EX3DV4 SN3814; ConvF(7.15, 7.15, 7.15); Calibrated: 22/09/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Front of EUT Facing Phantom - Low/Area Scan (81x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.044 mW/g

Front of EUT Facing Phantom - Low/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.10 V/m; Power Drift = -0.130 dB

Peak SAR (extrapolated) = 0.065 W/kg


SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.013 mW/gMaximum value of SAR (measured) = 0.033 mW/g

RFI Global Services Ltd. Page: 25 of 43

Issue Date: 30 March 2012

SCN/85074JD08/006: Front of EUT Facing Phantom *Bluetooth* CH78 Date 27/01/2012

DUT: Intermec Technologies Corp; Type: Bluetooth Handheld Scanner SF51; Serial: 29211144611

0 dB = 0.044 mW/g

Communication System: Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used (interpolated): f = 2480 MHz; σ = 2.05 mho/m; ϵ_r = 51.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(7.15, 7.15, 7.15); Calibrated: 22/09/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

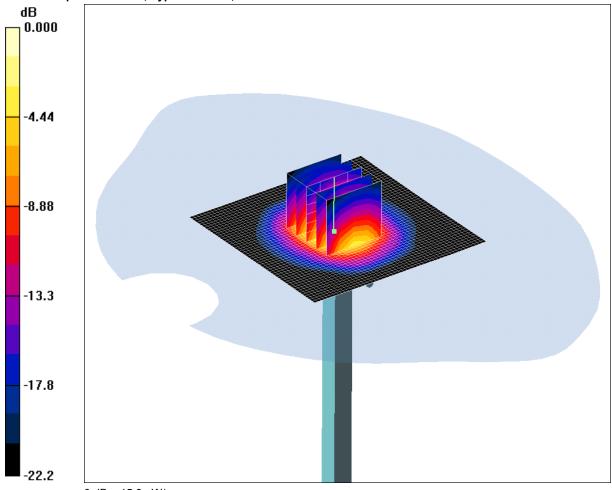
Front of EUT Facing Phantom - High /Area Scan (81x171x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.042 mW/g

Front of EUT Facing Phantom - High /Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.33 V/m; Power Drift = 0.171 dB

Peak SAR (extrapolated) = 0.075 W/kg

SAR(1 g) = 0.039 mW/g; SAR(10 g) = 0.020 mW/g Maximum value of SAR (measured) = 0.044 mW/g


Page: 26 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

SCN/85074JD08/007: System Performance Check 2450MHz Body 27 01 12

Date 27/01/2012

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725

0 dB = 15.3 mW/g

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used: f = 2450 MHz; σ = 2.01 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(7.15, 7.15, 7.15); Calibrated: 22/09/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

d=10mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 19.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7) 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 85.9 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.17 mW/g

Maximum value of SAR (measured) = 15.3 mW/g

Page: 27 of 43 RFI Global Services Ltd.

Test Report Version 1.0

Serial No: RFI-SAR-RP85074JD08A V1.0

Issue Date: 30 March 2012

Appendix 4. Photographs

This appendix contains the following photographs:

Photo Reference Number	Title
PHT/85074JD08/001	Test configuration for the measurement of Specific Absorption Rate (SAR)
PHT/85074JD08/002	Front of EUT Facing Phantom
PHT/85074JD08/003	Rear of EUT Facing Phantom
PHT/85074JD08/004	Left Hand Side of EUT Facing Phantom
PHT/85074JD08/005	Right Hand Side of EUT Facing Phantom
PHT/85074JD08/006	Front View of EUT
PHT/85074JD08/007	Rear View of EUT
PHT/85074JD08/008	Left Hand Side of EUT
PHT/85074JD08/009	Right Hand Side of EUT
PHT/85074JD08/010	2450 MHz Body Fluid Level

Page: 28 of 43 RFI Global Services Ltd.

PHT/85074JD08/001: Test configuration for the measurement of Specific Absorption Rate (SAR)

Page: 29 of 43 RFI Global Services Ltd. **Test Report**

Version 1.0 Issue Date: 30 March 2012

Page: 30 of 43 RFI Global Services Ltd.

Page: 31 of 43 RFI Global Services Ltd.

Test Report Version 1.0 Issue Date: 30 March 2012

Page: 32 of 43 RFI Global Services Ltd.

Version 1.0 Issue Date: 30 March 2012

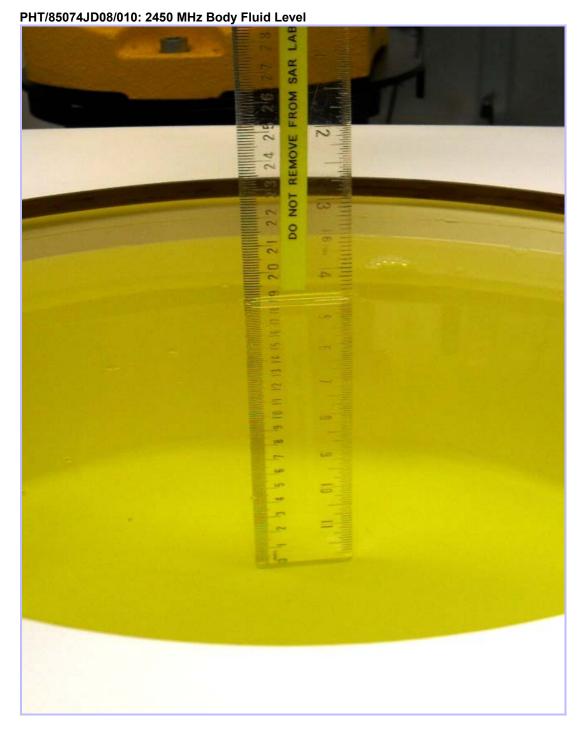
Page: 33 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

Page: 34 of 43 RFI Global Services Ltd.

Page: 35 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012


Page: 36 of 43 RFI Global Services Ltd.

Page: 37 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

Test Report Version 1.0

Page: 38 of 43 RFI Global Services Ltd.

Issue Date: 30 March 2012

Appendix 5. Validation of System

Prior to the assessment, the system was verified in the flat region of the phantom. A 2450 MHz dipole was used. A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 5\%$ for the 2450 MHz dipole.

The applicable verification normalised to 1 Watt.

Date:	27/01	1/201	12
-------	-------	-------	----

Validation Dipole and Serial Number: D2450V2; SN: 725

Simulant	Frequency (MHz)	Room Temp	Liquid Temp	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)			
	ε _r	24.0 °C 24.0 °C	24.0 °C	2450 24.0 °C 24.		52.70	51.61	-2.08	5.00		
Body	2450				2450 24.0 °C 24.0 °C	24 0 90	σ	1.95	2.01	3.07	5.00
Body	24.0 0 24				24.0 C	1g SAR	51.90	53.60	3.28	5.00	
					10g SAR	24.10	24.68	2.41	5.00		

Dielectrics for Frequencies Tested

Channel Number	Channel Description	Frequency (MHz)	Parameters	
0	Low	2402	ε _r	51.20
Ū	LOW	2402	σ	1.95
39	Middle	2441	ε _r	51.10
39			σ	2.00
78 High 24	High	2480	ε _r	51.10
	2700	σ	2.05	

Page: 39 of 43 RFI Global Services Ltd.

Test Report Serial No: RFI-SAR-RP85074JD08A V1.0
Version 1.0 Issue Date: 30 March 2012

Appendix 6. Simulated Tissues

The body mixture consists of water, Polysorbate 20 and salt. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

	Frequency
Ingredient	2450 MHz Body
De-Ionized Water	71.70
Polysorbate 20 (Tween 20)	28.00
Salt	0.30

Page: 40 of 43 RFI Global Services Ltd.

1.0 Issue Date: 30 March 2012

Appendix 7. DASY4 System Details

A.7.1. DASY4 SAR Measurement System

RFI Global Services Ltd, SAR measurement facility utilises the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller; teach pendant (Joystick), and remote control. This is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. The data acquisition electronics (DAE) performs signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection etc. The DAE is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching mulitplexer, a fast 16bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Page: 41 of 43 RFI Global Services Ltd.

Test Report Serial No: RFI-SAR-RP85074JD08A V1.0 Version 1.0

A.7.2. DASY4 SAR System Specification	ons			
Robot System				
Positioner:	Stäubli Unimation Corp. Robot Model: RX90L			
Repeatability:	0.025 mm			
No. of Axis:	6			
Serial Number:	F00/SD89A1/A/01			
Reach:	1185 mm			
Payload:	3.5 kg			
Control Unit:	CS7			
Programming Language:	V+			
Data Acquisition Electronic (DAE) System				
Serial Number:	DAE3 SN:450			
PC Controller				
PC:	Dell Precision 340			
Operating System:	Windows 2000			
Data Card:	DASY4 Measurement Server			
Serial Number:	1080			
Data Converter				
Features:	Signal Amplifier, multiplexer, A/D converted and control logic.			
Software:	DASY4 Software			
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock.			
PC Interface Card				
Function:	24 bit (64 MHz) DSP for real time processing Link to DAE3 16 nit A/D converter for surface detection system serial link to robot direct emergency stop output for robot.			

Issue Date: 30 March 2012

Page: 42 of 43 RFI Global Services Ltd.

DASY4 SAR System Specifications (Continued) E-Field Probe		
Model:	EX3DV4	
Serial No:	3814	
Construction:	Triangular core	
Frequency:	10 MHz to >6 GHz	
Linearity:	±0.2 dB (30 MHz to 6 GHz)	
Probe Length (mm):	330	
Probe Diameter (mm):	12	
Tip Length (mm):	20	
Tip Diameter (mm):	2.5	
Sensor X Offset (mm):	1	
Sensor Y Offset (mm):	1	
Sensor Z Offset (mm):	1	
Phantom		
Phantom:	SAM Phantom	
Shell Material:	Fibreglass	
Thickness:	2.0 ±0.1 mm	

Page: 43 of 43 RFI Global Services Ltd.