Celltech	<u>Date(s) of Evaluation</u> Nov. 25-30, Dec. 2-7, 2010	<u>Test Report Serial No.</u> 112410EHA-T1062a-S15W	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat	<u>Test Report Issue Date</u>	<u>Description of Test(s)</u>	RF Exposure Category	ACCREDITED
	December 21, 2010	Specific Absorption Rate	General Pop. / Uncontrolled	Test Lab Certificate No. 2470.01

APPENDIX G - DIPOLE CALIBRATION

Applicant:	Inter	mec Technologies Corporation	FCC ID: EHA-1000CP01X2	IC: 1223A-10	00CP01X2	
DUT Type:	CN70	Rugged Portable PC/Handset w/ 8	02.11abgn WLAN & Bluetooth	Model No.:	1000CP01	Intermec
2010 Celltech La	h Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.			Page 134 of 137		

Calibration Laboratory of Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С Engineering AG Servizio svizzero di taratura S Zeughausstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D2450V2-825 Apr09 Ceiltech Client CALIBRATION CERTIFICAT D2450V2 - SN: 825 Object QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits April 17, 2009 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID # Cal Date (Calibrated by, Certificate No.) **Primary Standards** GB37480704 Oct-09 Power meter EPM-442A 08-Oct-08 (No. 217-00898) Power sensor HP 8481A US37292783 08-Oct-08 (No. 217-00898) Oct-09 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Apr-09 Reference Probe ES3DV2 SN: 3025 28-Apr-08 (No. ES3-3025_Apr08) DAE4 SN: 601 07-Mar-09 (No. DAE4-601 Mar09) Mar-10 Scheduled Check ID# Secondary Standards Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-07) In house check: Oct-09 100005 4-Aug-99 (in house check Oct-07) In house check: Oct-09 RF generator R&S SMT-06 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Name Function Signature **Claudio Leubler** Laboratory Technician Calibrated by: Approved by: Katja Pokovic **Technical Manager** Issued: April 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 mW / g
SAR normalized	normalized to 1W	54.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	53.7 mW /g ± 17.0 % (k=2)

SAR measured	250 mW input power	6.29 mW / g
SAR normalized	normalized to 1W	25.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	25.0 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	1.98 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 mW / g
SAR normalized	normalized to 1W	51.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	51.6 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.05 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	24.2 mW /g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5 Ω + 4.7 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω + 5.6 jΩ
Return Loss	- 24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

feedpoint may be damaged.

Additional EUT Data

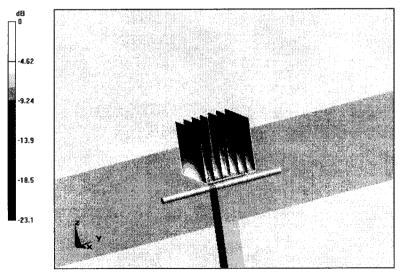
Manufactured by	SPEAG
Manufactured on	December 11, 2008

DASY5 Validation Report for Head TSL

Date/Time: 17.04.2009 12:17:23

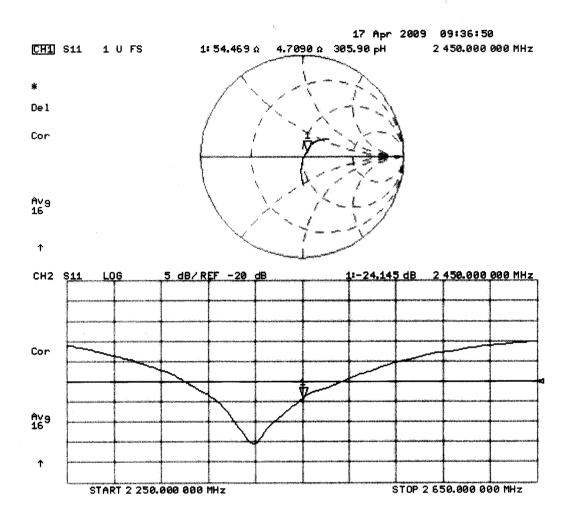
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN825


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ mho/m; $\epsilon_r = 38$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 28.04.2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 97.1 V/m; Power Drift = 0.026 dB Peak SAR (extrapolated) = 28.4 W/kg SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.29 mW/g Maximum value of SAR (measured) = 17.7 mW/g

 $0 \, dB = 17.7 \, mW/g$

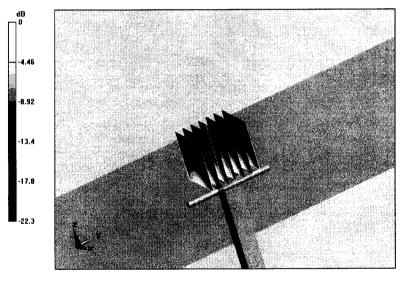
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 17.04.2009 14:54:34

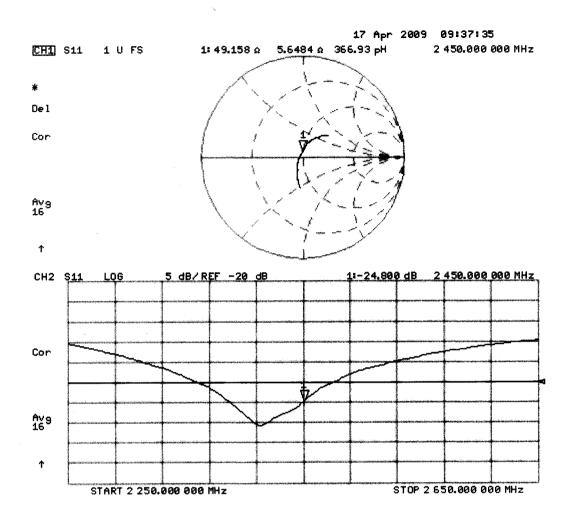
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:825


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 54.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.07, 4.07, 4.07); Calibrated: 28.04.2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 91.6 V/m; Power Drift = 0.046 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 12.9 mW/g; SAR(10 g) = 6.05 mW/g Maximum value of SAR (measured) = 16.6 mW/g

 $0 \, dB = 16.6 \, mW/g$

Impedance Measurement Plot for Body TSL

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

2011年1月1日日本市家市

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

S

Client			C	Certificate No: D5GHzV2-1031_Apr09):
CAL	BRATION	ETTRECATE			
Object		D5GHzV2-SN: 1031	- 4 555.		
Calibrat	ion procedure(s)	QA CAL-22.v1			

Calibration procedure for dipole validation kits between 3-6 GHz

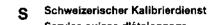
Calibration date:	April 29, 2009	
Condition of the calibrated item	In Tolerance	

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe EX3DV4	SN: 3503	11-Mar-09 (No. EX3-3503_Mar09)	Mar-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	. Ush
Approved by:	Katja Pokovic	Technical Manager	112 110


This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: April 29, 2009

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Fiat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 2.5 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5±6%	5.37 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.63 mW / g
SAR normalized	normalized to 1W	76.3 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	75.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 mW / g
SAR normalized	normalized to 1W	21.3 mW / g
SAR for nominal Body TSL parameters 1	normalized to 1W	21.2 mW / g ± 19.5 % (k=2)

¹ Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8±6%	5.74 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	8.01 mW / g
SAR normalized	normalized to 1W	80.1 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	79.5 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 mW / g
SAR normalized	normalized to 1W	22.2 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	22.0 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.1 ± 6 %	6.13 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	6.82 mW / g
SAR normalized	normalized to 1W	68.2 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	67.7 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	1.89 mW / g
SAR normalized	normalized to 1W	18.9 mW / g
SAR for nominal Body TSL parameters '	normalized to 1W	18.7 mW / g ± 19.5 % (k=2)

¹ Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities

Appendix

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.1 Ω - 6.7 jΩ
Return Loss	-23.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.6 Ω - 3.3 jΩ
Return Loss	-29.0 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	59.4 Ω - 3.5 jΩ
Return Loss	-20.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second and of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 09, 2004

DASY5 Validation Report for Body TSL

29.04.2009 13:52:12

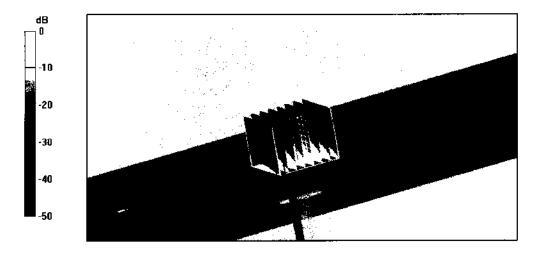
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1031

Communication System: CW-5GHz; Frequency: 5200 MHzFrequency: 5500 MHzFrequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.37$ mho/m; $\varepsilon_r = 47.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 5.74$ mho/m; $\varepsilon_r = 46.8$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.13$ mho/m; $\varepsilon_r = 46.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

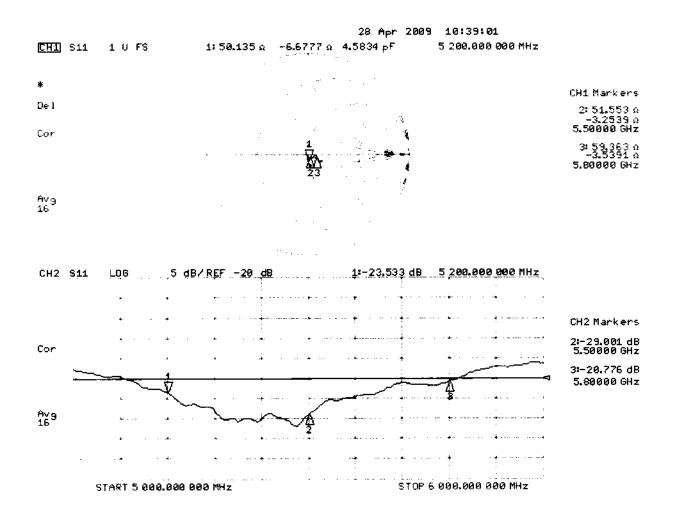
- Probe: EX3DV4 SN3503; ConvF(4.88, 4.88, 4.88)ConvF(4.37, 4.37, 4.37)ConvF(4.57, 4.57, 4.57); Calibrated: 11.03.2009
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mmReference Value = 49.6 V/m; Power Drift = 0.00494 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.63 mW/g; SAR(10 g) = 2.13 mW/g Maximum value of SAR (measured) = 15.7 mW/g

d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mmReference Value = 49 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 32 W/kg SAR(1 g) = 8.01 mW/g; SAR(10 g) = 2.22 mW/g Maximum value of SAR (measured) = 16.8 mW/g


d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 43.7 V/m; Power Drift = -0.029 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 6.82 mW/g; SAR(10 g) = 1.89 mW/gMaximum value of SAR (measured) = 14.4 mW/g

0 dB = 14.4 mW/g

.

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SPEAC BEDINGTON

Certificate No: D5GHzV2-1062_May10

CALIBRATION O	ERTIFICATE		
Object	D5GHzV2 - SN: 1	1062	
Calibration procedure(s)		dure for dipole validation kits b	
Calibration date:	May 12, 2010		
The measurements and the unce All calibrations have been conduc	rtainties with confidence p cted in the closed laborator	onal standards, which realize the physical robability are given on the following pages y facility: environment temperature (22 \pm 3	and are part of the certificate.
Calibration Equipment used (M&1	i E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	U\$37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
ype-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe EX3DV4	SN: 3503	05-Mar-10 (No. EX3-3503_Mar10)	Mar-11
DAE4	SN: 601	02-Mar-10 (No. DAE4-601_Mar10)	Mar-11
Secondary Standards	[ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
Calibrated by:	Name Dimce fliev	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	0.10
			Issued: May 12, 2010
This calibration certificate shall no	ot be reproduced except in	full without written approval of the laborate	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Accreditation No.: SCS 108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	• • ••••••••••••••••••••••••••••••••••
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 2.5 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.5 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.20 mW / g
SAR normalized	normalized to 1W	82.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.2 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 mW / g
SAR normalized	normalized to 1W	23.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.3 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.82 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.67 mW / g
SAR normalized	normalized to 1W	86.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	86.9 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.45 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	7.90 mW / g
SAR normalized	normalized to 1W	79.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.9 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.24 mW / g
SAR normalized	normalized to 1W	22.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.4 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %	5.39 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	••	

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.45 mW / g
SAR normalized	normalized to 1W	74.5 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	74.4 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 mW / g
SAR normalized	normalized to 1W	20.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.9 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.75 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	·····
SAR measured	100 mW input power	7.86 mW / g
SAR normalized	normalized to 1W	78.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	78.4 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 mW / g
SAR normalized	normalized to 1W	21.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.8 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.75 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5800 MHz

SAR for nominal Body TSL parameters

SAR normalized

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	6.89 mW / g
SAR normalized	normalized to 1W	68.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	68.7 mW / g ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	1.91 mW / g

normalized to 1W

normalized to 1W

19.1 mW / g 19.0 mW / g ± 19.5 % (k=2)

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	47.4 Ω - 3.2 jΩ
Return Loss	-27.4 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	56.2 Ω - 1.6 jΩ
Return Loss	-24.4 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.6 Ω - 8.6 jΩ
Return Loss	-20.3 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	47.3 Ω - 1.7 jΩ
Return Loss	-29.6 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	56.3 Ω - 0.5 jΩ
Return Loss	-24.5 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.0 Ω - 8.3 jΩ
Return Loss	-20.3 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.202 ns
--	----------------------------------	----------

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

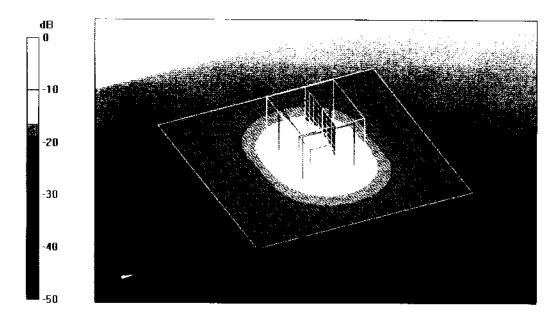
DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

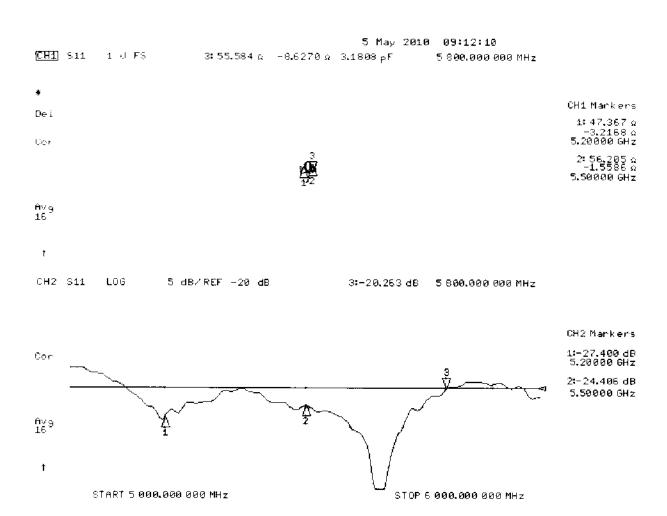
DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1062

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: HSL 5000 Medium parameters used: f = 5200 MHz; $\sigma = 4.54$ mho/m; $\varepsilon_r = 36.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.84$ mho/m; $\varepsilon_r = 36.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.08$ mho/m; $\varepsilon_r = 35.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.36, 5.36, 5.36), ConvF(4.85, 4.85, 4.85), ConvF(4.74, 4.74, 4.74); Calibrated: 05.03.2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57

Configuration D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5200 MHz /Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.1 mW/g


Configuration D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5200 MHz /Zoom Scan (4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 65.2 V/m; Power Drift = 0.051 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1g) = 8.2 mW/g; SAR(10 g) = 2.33 mW/g Maximum value of SAR (measured) = 16.2 mW/g

Configuration D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 65.5 V/m; Power Drift = 0.063 dB Peak SAR (extrapolated) = 34.5 W/kg SAR(1 g) = 8.67 mW/g; SAR(10 g) = 2.45 mW/g Maximum value of SAR (measured) = 17.5 mW/g

Configuration D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: $dx \pm 4mm$, $dy \pm 4mm$, $dz \pm 2.5mm$ Reference Value = 62 V/m; Power Drift = 0.090 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.9 mW/g; SAR(10 g) = 2.24 mW/g Maximum value of SAR (measured) = 16 mW/g

 $0 \, \mathrm{dB} = 16 \mathrm{mW/g}$

Impedance Measurement Plot for Head TSL

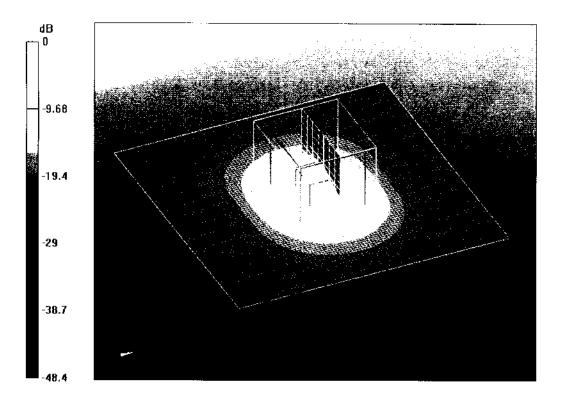
DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1062

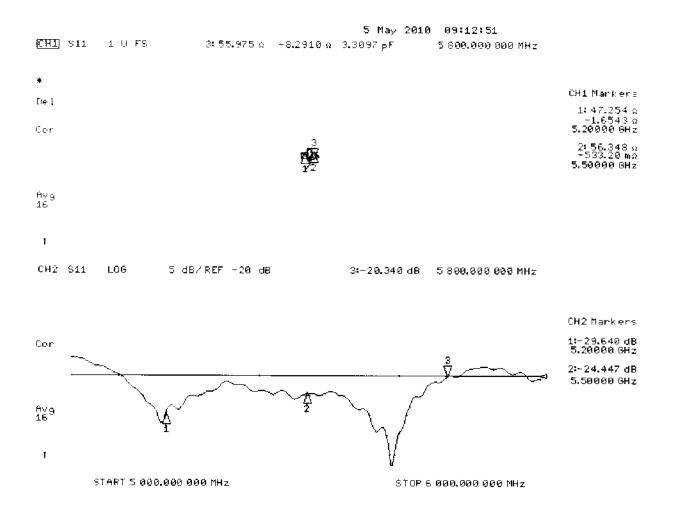
Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL 5000 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.39$ mho/m; $\varepsilon_r = 48.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.75$ mho/m; $\varepsilon_r = 48.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.12$ mho/m; $\varepsilon_r = 47.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV4 SN3503; ConvF(4.88, 4.88, 4.88), ConvF(4.37, 4.37, 4.37), ConvF(4.57, 4.57, 4.57); Calibrated: 05.03.2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (back): Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57

Configuration D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5200 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 14.4 mW/g

Configuration D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 58.2 V/m; Power Drift = -0.079 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 7.45 mW/g; SAR(10 g) = 2.09 mW/g Maximum value of SAR (measured) = 14.5 mW/g


Configuration D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 58.4 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 31.9 W/kgSAR(1 g) = 7.86 mW/g; SAR(10 g) = 2.18 mW/g Maximum value of SAR (measured) = 15.8 mW/g

Configuration D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 53.6 V/m; Power Drift = -0.046 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 6.89 mW/g; SAR(10 g) = 1.91 mW/g Maximum value of SAR (measured) = 13.9 mW/g

0 dB = 13.9 mW/g

Impedance Measurement Plot for Body TSL

