# Intermec Technologies Corporation

# Model: 1000CP01UO

Tested to the following Specifications:

FCC 22H:2010 FCC 24E:2010

Report No. INMC0651

**Report Prepared By** 



www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc



## Certificate of Test Last Date of Test: December 8, 2010 Intermec Technologies Corporation Model: 1000CP01UO

| Emissions                       |               |                         |           |  |  |  |  |  |
|---------------------------------|---------------|-------------------------|-----------|--|--|--|--|--|
| Test Description                | Specification | Test Method             | Pass/Fail |  |  |  |  |  |
| Out of Band Emissions           | FCC 22H:2010  | ANSI/TIA/EIA-603-C-2004 | Pass      |  |  |  |  |  |
| Out of Band Emissions           | FCC 24E:2010  | ANSI/TIA/EIA-603-C-2004 | Pass      |  |  |  |  |  |
| Effective Radiated Power (ERP)  | FCC 22H:2010  | ANSI/TIA/EIA-603-C-2004 | Pass      |  |  |  |  |  |
| Effective Radiated Power (EIRP) | FCC 24E:2010  | ANSI/TIA/EIA-603-C-2004 | Pass      |  |  |  |  |  |

Modifications made to the product See the Modifications section of this report

## **Test Facility**

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

| Approved By:            |  |
|-------------------------|--|
| Double mantan           |  |
| Don Facteau, IS Manager |  |

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.



| Revision<br>Number | Description | Date | Page Number |
|--------------------|-------------|------|-------------|
|                    |             |      |             |
| 00                 | None        |      |             |

**Barometric Pressure** 

The recorded barometric pressure has been normalized to sea level.



# Accreditations and Authorizations

# FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

# NVLAP

Northwest EMC, Inc. is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. NVLAP is administered by the National Institute of Standards and Technology (NIST), an agency of the U.S. Commerce Department. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

# **Industry Canada**

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1*)

# CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

# Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).



# Accreditations and Authorizations

# VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).* 

# BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017).

# GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

# KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157, Brooklyn Park: US0175)

# VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

# SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/



# **Northwest EMC Locations**





Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339<sup>th</sup> Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796









Rev 11/17/06

## Party Requesting the Test

| Company Name:            | Intermec Technologies Corporation |
|--------------------------|-----------------------------------|
| Address:                 | 6001 36th Avenue West             |
| City, State, Zip:        | Everett, WA 98203-1264            |
| Test Requested By:       | Wayne Rieger                      |
| Model:                   | 1000CP01UO                        |
| First Date of Test:      | December 3, 2010                  |
| Last Date of Test:       | December 8, 2010                  |
| Receipt Date of Samples: | December 2, 2010                  |
| Equipment Design Stage:  | Production                        |
| Equipment Condition:     | No Damage                         |

## Information Provided by the Party Requesting the Test

## Functional Description of the EUT (Equipment Under Test): Handheld computer with UMTS radio

## **Testing Objective:**

To demonstrate compliance with the radiated power and spurious radiated emissions requirements of FCC 22H and 24E. The antenna port conducted measurements are documented in a separate report.

## CONFIGURATION 1 INMC0651

| EUT                               |              |                   |               |
|-----------------------------------|--------------|-------------------|---------------|
| Description                       | Manufacturer | Model/Part Number | Serial Number |
| Handheld computer with UMTS radio | Intermec     | 1000CP01UO        | 24411047006   |

| Peripherals in test setup boundary |              |                   |               |  |  |  |  |
|------------------------------------|--------------|-------------------|---------------|--|--|--|--|
| Description                        | Manufacturer | Model/Part Number | Serial Number |  |  |  |  |
| AC Adapter                         | Intermec     | AE39              | 14861000109   |  |  |  |  |
| DEX Snap-on Adapter                | Intermec     | 255-770-001       | July 2010     |  |  |  |  |



# Modifications

| Equipment modifications |           |                                                                                        |                                            |                                                                           |                                                         |  |  |  |
|-------------------------|-----------|----------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Item                    | Date      | Test                                                                                   | Modification                               | Note                                                                      | Disposition of EUT                                      |  |  |  |
| 1                       | 12/3/2010 | Out of Band<br>Emissions                                                               | Tested as<br>delivered to<br>Test Station. | No EMI suppression devices were added or modified during this test.       | EUT remained at<br>Northwest EMC<br>following the test. |  |  |  |
| 2                       | 12/6/2010 | Effective<br>Radiated<br>Power<br>(EIRP)<br>Tested as<br>delivered to<br>Test Station. |                                            | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |  |  |  |
| 3                       | 12/8/2010 | Effective<br>Radiated<br>Power<br>(ERP)                                                | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | Scheduled testing<br>was completed.                     |  |  |  |

## EMC Out of Band Emissions - Part 22H

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| MODES OF OPERATION            |  |
|-------------------------------|--|
| Transmitting E-GPRS (Edge)    |  |
| Transmitting GPRS (GMSK)      |  |
| Transmitting UMTS HSPA        |  |
| Transmitting WCDMA Rel99      |  |
|                               |  |
| CHANNELS TESTED               |  |
| GSM Low = Ch. 128, 824.2 MHz  |  |
| GSM Mid = Ch.190, 836.6 MHz   |  |
| GSM High = Ch. 251, 848.8 MHz |  |
| UMTS Low = Ch.4132, 826.5 MHz |  |

UMTS Mid = Ch. 4182, 837 MHz UMTS High = Ch. 4233, 846.6 MHz

Stop Frequency

#### POWER SETTINGS INVESTIGATED 120VAC/60Hz

## FREQUENCY RANGE INVESTIGATED Start Frequency 30MHz

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

| TEST EQUIPMENT                      |                 |                           |        |            |          |
|-------------------------------------|-----------------|---------------------------|--------|------------|----------|
| Description                         | Manufacturer    | Model                     | ID     | Last Cal.  | Interval |
| Iniversal Radio Communication Teste | Rhode & Schwarz | CMU200.2                  | 121466 | NCR        | 0        |
| Iniversal Radio Communication Teste | Rhode & Schwarz | CMU200.10                 | BSU    | NCR        | 0        |
| Antenna, Horn                       | ETS Lindgren    | 3160-09                   | AIV    | NCR        | 0        |
| Cable                               | ESM Cable Corp. | KMKM-72                   | EVY    | 9/15/2010  | 13       |
| Spectrum Analyzer                   | Agilent         | E4440A                    | AAX    | 5/14/2010  | 12       |
| Antenna, Horn                       | ETS             | 3160-08                   | AIA    | NCR        | 0        |
| EV12 Cables                         | N/A             | Standard Gain Horn Cables | EVU    | 7/14/2010  | 13       |
| Pre-Amplifier                       | Miteq           | AMF-6F-08001200-30-10P    | AVH    | 7/14/2010  | 13       |
| Antenna, Horn                       | ETS             | 3115                      | AIB    | 9/8/2010   | 24       |
| EV12 Cables                         | N/A             | Double Ridge Horn Cables  | EVT    | 10/23/2009 | 13       |
| Attenuator, 6 dB, 'SMA'             | N/A             | 93459 3330A-6             | AUF    | 4/1/2010   | 13       |
| Antenna, Biconilog                  | EMCO            | 3141                      | AXG    | 2/15/2010  | 13       |
| EV12 Cables                         | N/A             | Bilog Cables              | EVS    | 7/14/2010  | 13       |
| Pre-Amplifier                       | Miteq           | AM-1616-1000              | AVM    | 7/14/2010  | 13       |
| Antenna, Dipole                     | ETS             | 3121C-DB4                 | ADH    | 3/6/2009   | 24       |
| Antenna, Horn                       | EMCO            | 3115                      | AHE    | 10/22/2009 | 24       |
| Power Meter                         | Gigatronics     | 8651A                     | SPM    | 1/7/2010   | 13       |
| Power Sensor                        | Gigatronics     | 80701A                    | SPL    | 1/7/2010   | 13       |
| Signal Generator                    | Agilent         | E8257D                    | TGX    | 12/10/2008 | 24       |

| Frequency Range           | Peak Data                    | Quasi-Peak Data                 | Average Data |
|---------------------------|------------------------------|---------------------------------|--------------|
| (MHz)                     | (kHz)                        | (kHz)                           | (kHz)        |
| 0.01 - 0.15               | 1.0                          | 0.2                             | 0.2          |
| 0.15 - 30.0               | 10.0                         | 9.0                             | 9.0          |
| 30.0 - 1000               | 100.0                        | 120.0                           | 120.0        |
| Above 1000                | 1000.0                       | N/A                             | 1000.0       |
| Measurements were made us | sing the bandwidths and dete | ctors specified. No video filte | er was used. |

#### MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

#### TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is placed on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above

26GHz



| NORTHWEST                                                                                                         | 0                                                                 | ut of                         | Band                     | d Emis | ssion      | s - P                                | art 22               | Н                                |                                  | PS                               | A 2008.07.21<br>EMI 2008.1.9     |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------|--------------------------|--------|------------|--------------------------------------|----------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| EUT: 1                                                                                                            | 1000CP01UO                                                        |                               |                          |        |            |                                      |                      | W                                | ork Order:                       | INMC0651                         |                                  |
| Serial Number: 2                                                                                                  | 24411047006                                                       |                               |                          |        |            |                                      |                      |                                  | Date:                            | 12/03/10                         |                                  |
| Customer: I                                                                                                       | ntermec Technologies                                              | Corporat                      | tion                     |        |            |                                      |                      | Tei                              | mperature:                       | 22                               |                                  |
| Attendees: r                                                                                                      | none                                                              |                               |                          |        |            |                                      |                      |                                  | Humidity:                        | 38%                              |                                  |
| Project:                                                                                                          | None                                                              |                               |                          |        |            |                                      |                      | Barom                            | etric Pres.:                     | 30.09                            |                                  |
| Tested by:                                                                                                        | Travis Rychener                                                   |                               |                          |        | Power:     | 120VAC/                              | 60Hz                 |                                  | Job Site:                        | EV12                             |                                  |
| TEST SPECIFICATIO                                                                                                 | DNS                                                               |                               |                          |        |            | lest Meth                            |                      | 0001                             |                                  |                                  |                                  |
| TEST DADAMETEDS                                                                                                   | 2                                                                 |                               |                          |        |            | ANOI/ HA                             | /EIA-003-C           | 2004                             |                                  |                                  |                                  |
| Antenna Height(s) (n                                                                                              | <b>n</b> ) 1.4                                                    |                               |                          | -      | Test Dista | nce (m)                              |                      | 3                                |                                  |                                  |                                  |
| COMMENTS                                                                                                          | ii)   4                                                           |                               |                          |        | rest Dista |                                      |                      | 0                                |                                  |                                  |                                  |
| EUT OPERATING M<br>Transmitting E-GPR<br>DEVIATIONS FROM<br>No deviations.<br>Run #<br>Configuration #<br>Results | ODES<br>S(EDGE) 4 Slot up, Cel<br>TEST STANDARD<br>2<br>1<br>Pass | Band                          |                          |        |            |                                      | Signature            |                                  | Rat                              |                                  |                                  |
|                                                                                                                   |                                                                   |                               |                          |        |            |                                      | 0.9.1.1.1            | -                                |                                  |                                  |                                  |
| 0.0                                                                                                               |                                                                   |                               |                          |        |            |                                      |                      |                                  |                                  |                                  | ]                                |
| -10.0                                                                                                             |                                                                   |                               |                          |        |            |                                      |                      |                                  |                                  |                                  | _                                |
| -20.0                                                                                                             |                                                                   |                               |                          |        |            |                                      |                      |                                  |                                  |                                  | _                                |
| -30.0                                                                                                             |                                                                   | •                             |                          | •      |            |                                      |                      |                                  |                                  |                                  |                                  |
| -40.0<br>-40.0                                                                                                    |                                                                   |                               |                          | •      |            |                                      |                      |                                  |                                  |                                  |                                  |
| -50.0                                                                                                             |                                                                   |                               |                          |        |            |                                      |                      |                                  |                                  |                                  |                                  |
| -60.0                                                                                                             |                                                                   |                               |                          |        |            |                                      |                      |                                  |                                  |                                  |                                  |
| -70.0                                                                                                             |                                                                   |                               |                          |        |            |                                      |                      |                                  |                                  |                                  |                                  |
| -80.0                                                                                                             |                                                                   |                               |                          |        | MHz        | I                                    | I                    |                                  | I                                | 100                              | 00.000                           |
| Freq<br>(MHz)                                                                                                     | (                                                                 | Azimuth<br>degrees)           | Height<br>(meters)       |        |            | Polarity                             | Detector             | EIRP<br>(Watts)                  | EIRP<br>(dBm)                    | Spec. Limit<br>(dBm)             | Compared to<br>Spec.<br>(dB)     |
| 1697.500<br>1696.790<br>2546.407<br>2546.510                                                                      |                                                                   | 90.0<br>27.0<br>47.0<br>111.0 | 1.1<br>1.1<br>1.2<br>1.2 |        |            | V-Horn<br>H-Horn<br>H-Horn<br>V-Horn | PK<br>PK<br>PK<br>PK | 3.86E-07<br>1.85E-07<br>1.73E-07 | -31.7<br>-34.1<br>-37.3<br>-37.6 | -13.0<br>-13.0<br>-13.0<br>-13.0 | -16.7<br>-21.1<br>-24.3<br>-24.6 |

|                                                                                                                 | 0                                               | Out of                        | Band                     | d Emi | ssion      | s - P                                | art 22               | н                                            |                                  | PS                               | A 2008.07.21<br>EMI 2008.1.9     |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------|--------------------------|-------|------------|--------------------------------------|----------------------|----------------------------------------------|----------------------------------|----------------------------------|----------------------------------|
| FUT                                                                                                             | 1000CP01UO                                      |                               |                          |       |            |                                      |                      | W                                            | ork Order                        | INMC0651                         |                                  |
| Serial Number:                                                                                                  | 24411047006                                     |                               |                          |       |            |                                      |                      |                                              | Date:                            | 12/03/10                         |                                  |
| Customer:                                                                                                       | Intermec Technologie                            | s Corpora                     | tion                     |       |            |                                      |                      | Tei                                          | nperature:                       | 22                               |                                  |
| Attendees:                                                                                                      | none                                            |                               |                          |       |            |                                      |                      |                                              | Humidity:                        | 38%                              |                                  |
| Project:                                                                                                        | None                                            |                               |                          |       |            |                                      |                      | Barom                                        | etric Pres.:                     | 30.09                            |                                  |
| Tested by:                                                                                                      | Travis Rychener                                 |                               |                          |       | Power:     | 120VAC/                              | 60Hz                 |                                              | Job Site:                        | EV12                             |                                  |
| TEST SPECIFICAT                                                                                                 | IONS                                            |                               |                          |       |            | Test Meth                            | nod                  |                                              |                                  |                                  |                                  |
| FGC 22n.2010                                                                                                    |                                                 |                               |                          |       |            | ANGI/ HA                             | /EIA-603-C-          | 2004                                         |                                  |                                  |                                  |
| Antonna Hoight(c)                                                                                               | (5)<br>(m) 1 4                                  |                               |                          |       | Tost Dista | nco (m)                              |                      | 2                                            |                                  |                                  |                                  |
| COMMENTS                                                                                                        | (11) 1 - 4                                      |                               |                          |       | Test Dista | nce (m)                              |                      | 5                                            |                                  |                                  |                                  |
| EUT OPERATING I<br>Transmitting WCD<br>DEVIATIONS FROM<br>No deviations.<br>Run #<br>Configuration #<br>Posults | MODES<br>MA Rel99, Cell Band<br>M TEST STANDARD |                               | tion                     |       |            |                                      | Signature            | 4                                            | Ref.                             |                                  |                                  |
| Results                                                                                                         | 1 835                                           |                               |                          |       |            |                                      | Signature            | ;                                            | l                                |                                  |                                  |
| -10.0                                                                                                           |                                                 |                               |                          |       |            |                                      |                      |                                              |                                  |                                  |                                  |
| +                                                                                                               |                                                 |                               |                          |       |            |                                      |                      |                                              |                                  |                                  | -                                |
| -20.0                                                                                                           |                                                 |                               |                          |       |            |                                      |                      |                                              |                                  |                                  | _                                |
| -30.0                                                                                                           |                                                 |                               |                          |       |            |                                      |                      |                                              |                                  |                                  |                                  |
| <b>E</b> -40.0                                                                                                  |                                                 | •                             |                          | \$    |            |                                      |                      |                                              |                                  |                                  | _                                |
| -50.0                                                                                                           |                                                 |                               |                          |       |            |                                      |                      |                                              |                                  |                                  |                                  |
| -60.0                                                                                                           |                                                 |                               |                          |       |            |                                      |                      |                                              |                                  |                                  |                                  |
| -70.0                                                                                                           |                                                 |                               |                          |       |            |                                      |                      |                                              |                                  |                                  | _                                |
| -80.0                                                                                                           | 00                                              |                               |                          |       |            |                                      |                      |                                              |                                  | 100                              |                                  |
|                                                                                                                 |                                                 |                               |                          |       | MHz        |                                      |                      |                                              |                                  |                                  |                                  |
| Freq<br>(MHz)                                                                                                   |                                                 | Azimuth<br>(degrees)          | Height<br>(meters)       |       |            | Polarity                             | Detector             | EIRP<br>(Watts)                              | EIRP<br>(dBm)                    | Spec. Limit<br>(dBm)             | Compared to<br>Spec.<br>(dB)     |
| 2536.759<br>2543.212<br>1694.732<br>1691.305                                                                    |                                                 | 90.0<br>209.0<br>92.0<br>24.0 | 1.2<br>1.2<br>1.0<br>1.0 |       |            | v-Horn<br>V-Horn<br>V-Horn<br>H-Horn | PK<br>PK<br>PK<br>PK | 1.94E-07<br>1.31E-07<br>4.98E-08<br>2.67E-08 | -37.1<br>-38.8<br>-43.0<br>-45.7 | -13.0<br>-13.0<br>-13.0<br>-13.0 | -24.1<br>-25.8<br>-30.0<br>-32.7 |

| NORTHWEST             |                        |             |          |       |            |                |            |         |                      | PS           | A 2008.07.21   |
|-----------------------|------------------------|-------------|----------|-------|------------|----------------|------------|---------|----------------------|--------------|----------------|
| EMC                   |                        | Out of      | Ban      | d Emi | ssion      | s - F          | Part 2     | 2H      |                      |              | EMI 2008.1.9   |
|                       | 40000004110            |             |          |       |            |                |            |         | Mark Ord             | INIM COOPE 1 |                |
| EUT:<br>Sorial Number | 24411047006            |             |          |       |            |                |            |         | Work Order:          | INMC0651     |                |
| Customer              | Intermec Technologi    | es Corpora  | tion     |       |            |                |            | 1       | Cemperature:         | 22           |                |
| Attendees             | none                   |             | -        |       |            |                |            |         | Humidity:            | 38%          |                |
| Project:              | None                   |             |          |       |            |                |            | Baro    | metric Pres.:        | 30.09        |                |
| Tested by:            | Travis Rychener        |             |          |       | Power:     | 120VAC         | C/60Hz     |         | Job Site:            | EV12         |                |
| TEST SPECIFICAT       | IONS                   |             |          |       |            | lest Me        | thod       | 0.0004  |                      |              |                |
| FCC 22H:2010          |                        |             |          |       |            | ANSI/11        | A/EIA-603- | C-2004  |                      |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
| TEST PARAMETER        | RS                     |             |          |       |            |                |            |         |                      |              |                |
| Antenna Height(s)     | (m) 1 - 4              |             |          |       | Test Dista | nce (m)        |            | 3       |                      |              |                |
| COMMENTS              |                        |             |          |       |            |                |            |         |                      |              |                |
| See comments on       | data sheet for additio | nal informa | tion     |       |            |                |            |         |                      |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
| EUT OPERATING         | MODES                  |             |          |       |            |                |            |         |                      |              |                |
| Transmitting UMTS     | S HSPA, Cell Band      |             |          |       |            |                |            |         |                      |              |                |
| DEVIATIONS FROM       | M TEST STANDARD        |             |          |       |            |                |            |         |                      |              |                |
| No deviations.        | -                      |             |          |       |            |                |            |         |                      |              |                |
| Run #                 | 4                      |             |          |       |            |                |            |         |                      |              |                |
| Configuration #       | 1                      |             |          |       |            |                |            | -7      | -Cit                 |              |                |
| Results               | Pass                   |             |          |       |            |                | Signati    | ure     | -9                   |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
| 0.0                   |                        |             |          |       |            |                |            |         |                      |              | 7              |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
| -10.0                 |                        |             |          |       |            |                |            |         |                      |              | -              |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
| 00.0                  |                        |             |          |       |            |                |            |         |                      |              |                |
| -20.0                 |                        |             |          |       |            |                |            |         |                      |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
| -30.0                 |                        |             |          |       |            |                |            |         |                      |              |                |
| 0010                  |                        |             |          |       |            |                |            |         |                      |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
| <b>6</b> -40.0        |                        |             |          | *     |            |                |            |         |                      |              | -              |
| σ                     |                        | •           |          | •     |            |                |            |         |                      |              |                |
|                       |                        | •           |          |       |            |                |            |         |                      |              |                |
| -50.0                 |                        |             |          |       |            |                |            |         |                      |              | -              |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
| -60.0                 |                        |             |          |       |            |                |            |         |                      |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
| -70.0                 |                        |             |          |       |            |                |            |         |                      |              |                |
| -70.0                 |                        |             |          |       |            |                |            |         |                      |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
| -80.0                 |                        |             |          |       |            |                |            |         |                      |              |                |
| 1000.00               | 0                      |             |          |       |            |                |            |         |                      | 100          | 00.000         |
| 1000.00               |                        |             |          |       |            |                |            |         |                      | 100          | 00.000         |
|                       |                        |             |          |       | MHz        |                |            |         |                      |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              |                |
|                       |                        |             |          |       |            |                |            |         |                      |              | Compared to    |
| Freq                  |                        | Azimuth     | Height   |       |            | Polarity       | / Detect   | or EIRP | EIRP                 | Spec. Limit  | Spec.          |
| (MHz)                 |                        | (degrees)   | (meters) |       |            |                | n D//      | (Watts) | (dBm)                | (dBm)        | (dB)           |
| 2040.240              |                        | 212 0       | 1.2      |       |            | V-HON<br>H-Hon | n PK       | 1.20E-U | 07 -39.0<br>)8 -41.0 | -13.0        | -20.0<br>-28 0 |
| 1693 379              |                        | 85.0        | 1.0      |       |            | H-Hor          | n PK       | 4 05F-0 | )8 -43.9             | -13.0        | -20.0          |
| 1693.212              |                        | 227.0       | 1.0      |       |            | V-Hori         | n PK       | 3.61E-0 | 08 -44.4             | -13.0        | -31.4          |

# Effective Radiated Power (ERP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| MODES OF OPERATION         |  |
|----------------------------|--|
| Transmitting E-GPRS (Edge) |  |
| Transmitting GPRS (GMSK)   |  |
| Transmitting UMTS HSPA     |  |
| Transmitting WCDMA Rel99   |  |

### POWER SETTINGS INVESTIGATED 120VAC/60Hz

| FREQUENCY RANGE IN | VESTIGATED |                |         |
|--------------------|------------|----------------|---------|
| Start Frequency    | 824 MHz    | Stop Frequency | 849 MHz |

## SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

| TEST EQUIPMENT                    |                 |              |        |            |          |
|-----------------------------------|-----------------|--------------|--------|------------|----------|
| Description                       | Manufacturer    | Model        | ID     | Last Cal.  | Interval |
| niversal Radio Communication Test | Rhode & Schwarz | CMU200.2     | 121466 | NCR        | 0        |
| hiversal Radio Communication Test | Rhode & Schwarz | CMU200.10    | BSU    | NCR        | 0        |
| Spectrum Analyzer                 | Agilent         | E4446A       | AAQ    | 1/6/2010   | 12       |
| Antenna, Biconilog                | EMCO            | 3141         | AXE    | 1/14/2010  | 13       |
| EV01 Cables                       | N/A             | Bilog Cables | EVA    | 7/9/2010   | 13       |
| Antenna, Dipole                   | ETS             | 3121C-DB4    | ADH    | 3/6/2009   | 24       |
| Power Meter                       | Gigatronics     | 8651A        | SPM    | 1/7/2010   | 13       |
| Power Sensor                      | Gigatronics     | 80701A       | SPL    | 1/7/2010   | 13       |
| -Amplifier (FOR REFERENCE ONI     | Hewlett-Packard | 83017A       | APL    | NCR        | 0        |
| Signal Generator                  | Agilent         | E8257D       | TGX    | 12/10/2008 | 24       |

#### MEASUREMENT BANDWIDTHS

|   | Frequency Range           | Peak Data                   | Quasi-Peak Data                | Average Data |  |  |  |  |  |  |
|---|---------------------------|-----------------------------|--------------------------------|--------------|--|--|--|--|--|--|
|   | (MHz)                     | (kHz)                       | (kHz)                          | (kHz)        |  |  |  |  |  |  |
|   | 0.01 - 0.15               | 1.0                         | 0.2                            | 0.2          |  |  |  |  |  |  |
|   | 0.15 - 30.0               | 10.0                        | 9.0                            | 9.0          |  |  |  |  |  |  |
|   | 30.0 - 1000               | 100.0                       | 120.0                          | 120.0        |  |  |  |  |  |  |
|   | Above 1000                | 1000.0                      | N/A                            | 1000.0       |  |  |  |  |  |  |
| М | easurements were made usi | ng the bandwidths and deteo | ctors specified. No video filt | er was used. |  |  |  |  |  |  |

#### MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

#### TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarizationThe amplitude and frequency of the highest emission were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to the highest emission. A signal generator was connected to the dipole, and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded. The signal generator, amplifier, and cable were then connected to an analyzer and the power output was recorded. By factoring in the dipole antenna gain (dBi), the effective radiated power for the maximum fundamental emission was determined.

## EMC









## EMC Out of Band Emissions - Part 24E

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| MODES OF OPERATION                   |  |
|--------------------------------------|--|
| Transmitting E-GPRS (Edge), PCS Band |  |
| Transmitting GPRS (GMSK), PCS Band   |  |
| Transmitting UMTS HSPA PCS Band      |  |
| Transmitting WCDMA Rel99, PCS Band   |  |
|                                      |  |
| CHANNELS TESTED                      |  |
| GSM Low = Ch. 512, 1850.2 MHz        |  |
| GSM Mid = Ch. 661, 1880 MHz          |  |
| GSM High = Ch. 810, 1909.8 MHz       |  |
| UMTS Low = Ch. 9262, 1852.4 MHz      |  |
| UMTS Mid = Ch. 9400, 1880 MHz        |  |
| UMTS High = Ch. 9538, 1907.6 MHz     |  |
|                                      |  |
| POWER SETTINGS INVESTIGATED          |  |

120VAC/60Hz

 FREQUENCY RANGE INVESTIGATED

 Start Frequency
 30MHz

Stop Frequency

26GHz

## SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

| TEST EQUIPMENT                    |                 |                           |        |            |          |
|-----------------------------------|-----------------|---------------------------|--------|------------|----------|
| Description                       | Manufacturer    | Model                     | ID     | Last Cal.  | Interval |
| niversal Radio Communication Test | Rhode & Schwarz | CMU200.2                  | 121466 | NCR        | 0        |
| niversal Radio Communication Test | Rhode & Schwarz | CMU200.10                 | BSU    | NCR        | 0        |
| Antenna, Horn                     | ETS Lindgren    | 3160-09                   | AIV    | NCR        | 0        |
| Cable                             | ESM Cable Corp. | KMKM-72                   | EVY    | 9/15/2010  | 13       |
| Spectrum Analyzer                 | Agilent         | E4440A                    | AAX    | 5/14/2010  | 12       |
| Antenna, Horn                     | ETS             | 3160-08                   | AIA    | NCR        | 0        |
| EV12 Cables                       | N/A             | Standard Gain Horn Cables | EVU    | 7/14/2010  | 13       |
| Pre-Amplifier                     | Miteq           | AMF-6F-08001200-30-10P    | AVH    | 7/14/2010  | 13       |
| Antenna, Horn                     | ETS             | 3115                      | AIB    | 9/8/2010   | 24       |
| EV12 Cables                       | N/A             | Double Ridge Horn Cables  | EVT    | 11/22/2010 | 13       |
| Attenuator, 6 dB, 'SMA'           | N/A             | 93459 3330A-6             | AUF    | 4/1/2010   | 13       |
| Antenna, Biconilog                | EMCO            | 3141                      | AXG    | 2/15/2010  | 13       |
| EV12 Cables                       | N/A             | Bilog Cables              | EVS    | 7/14/2010  | 13       |
| Pre-Amplifier                     | Miteq           | AM-1616-1000              | AVM    | 7/14/2010  | 13       |
| Antenna, Dipole                   | ETS             | 3121C-DB4                 | ADH    | 3/6/2009   | 24       |
| Antenna, Horn                     | EMCO            | 3115                      | AHE    | 10/22/2009 | 24       |
| Power Meter                       | Gigatronics     | 8651A                     | SPM    | 1/7/2010   | 13       |
| Power Sensor                      | Gigatronics     | 80701A                    | SPL    | 1/7/2010   | 13       |
| Signal Generator                  | Agilent         | E8257D                    | TGX    | 12/10/2008 | 24       |

#### MEASUREMENT BANDWIDTHS

| MEASUREMEN | I BANDWIDTHS              |                              |                                |              |
|------------|---------------------------|------------------------------|--------------------------------|--------------|
|            | Frequency Range           | Peak Data                    | Quasi-Peak Data                | Average Data |
|            | (MHz)                     | (kHz)                        | (kHz)                          | (kHz)        |
|            | 0.01 - 0.15               | 1.0                          | 0.2                            | 0.2          |
|            | 0.15 - 30.0               | 10.0                         | 9.0                            | 9.0          |
|            | 30.0 - 1000               | 100.0                        | 120.0                          | 120.0        |
|            | Above 1000                | 1000.0                       | N/A                            | 1000.0       |
| Ν          | Aeasurements were made us | sing the bandwidths and dete | ctors specified No video filte | er was used  |

#### MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

#### TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest purious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above



| NORTHWEST                                               |                                         | Out                        | of Ban           | d Emissio | ns - Pa          | art 24     | E                    |                | PS             | SA 2008.07.21<br>EMI 2008.1.9 |                                                                             |
|---------------------------------------------------------|-----------------------------------------|----------------------------|------------------|-----------|------------------|------------|----------------------|----------------|----------------|-------------------------------|-----------------------------------------------------------------------------|
| E                                                       | EUT: 1000CP0                            | 100                        |                  |           |                  |            | W                    | ork Order      | INMC0651       |                               |                                                                             |
| Serial Num                                              | ber: 24411047                           | 006                        | -                |           |                  |            |                      | Date           | : 12/03/10     |                               |                                                                             |
| Custo                                                   | mer: Intermec                           | Technologies Cor           | poration         |           |                  |            | Ter                  | nperature      | : 22           |                               |                                                                             |
| Attend                                                  | iect: None                              |                            |                  |           |                  |            | Barome               | Humidity       | . 30 09        |                               |                                                                             |
| Tested                                                  | by: Travis Ry                           | chener                     |                  | Powe      | er: 120VAC/6     | 0Hz        | Baronik              | Job Site       | : EV12         |                               |                                                                             |
| ST SPECIFI                                              | CATIONS                                 |                            |                  |           | Test Metho       | od         |                      |                |                |                               |                                                                             |
| C 24E:2010                                              |                                         |                            |                  |           | ANSI/TIA/I       | EIA-603-C- | 2004                 |                |                |                               |                                                                             |
| ST PARAME                                               | ETERS                                   | 1                          |                  | Test Die  | (                |            | ,<br>,               |                |                |                               |                                                                             |
| enna Heign                                              | nt(s) (m)                               | 1 - 4                      |                  | Test Dis  | tance (m)        | 3          | 3                    |                |                |                               |                                                                             |
| T OPERATII<br>Insmitting G<br>VIATIONS F<br>deviations. | NG MODES<br>SPRS(GMSK) 4<br>ROM TEST ST | Slot up, PCS Ban<br>ANDARD | ld               |           |                  |            |                      |                |                |                               |                                                                             |
| n #<br>                                                 |                                         | 6                          |                  |           |                  |            |                      | $\rightarrow$  |                |                               |                                                                             |
| nfiguration                                             | #                                       | 1                          |                  |           |                  | Cimentum   | -7                   | 10             |                |                               |                                                                             |
| suits                                                   | P                                       | ass                        |                  |           |                  | Signature  |                      | 1              |                |                               |                                                                             |
| 0.0                                                     |                                         |                            |                  |           |                  |            |                      |                |                |                               |                                                                             |
| -10.0 -                                                 |                                         |                            |                  |           |                  |            |                      |                |                |                               |                                                                             |
| 20.0                                                    |                                         |                            |                  |           |                  |            |                      |                |                |                               |                                                                             |
| -20.0                                                   |                                         |                            |                  |           |                  |            |                      |                |                |                               |                                                                             |
| -30.0 -                                                 |                                         |                            |                  |           |                  |            |                      | _              |                |                               |                                                                             |
| <b>Бар</b> -40.0 -                                      |                                         |                            |                  |           | •                |            | *                    |                |                | -                             |                                                                             |
| -50.0 -                                                 |                                         |                            |                  |           |                  |            | •                    |                |                | _                             |                                                                             |
| -60.0 -                                                 |                                         |                            |                  |           |                  |            |                      |                |                |                               |                                                                             |
| 50.0                                                    |                                         |                            |                  |           |                  |            |                      |                |                |                               |                                                                             |
| -70.0 -                                                 |                                         |                            |                  |           |                  |            |                      |                |                | -                             |                                                                             |
| -80.0                                                   |                                         |                            |                  |           |                  |            |                      |                |                |                               |                                                                             |
| 1000                                                    | 0.000                                   |                            |                  | MHz       |                  |            |                      |                | 1000           | 0.000                         |                                                                             |
| Freq                                                    |                                         | Azim                       | uth Height       |           | Polarity         | Detector   | EIRP                 | EIRP           | Spec. Limit    | Compared to<br>Spec.          |                                                                             |
| (MHz)<br>5729.547                                       |                                         | (degr<br>177               | r.0 1.3          | <u> </u>  | V-Horn           | PK         | (vvatts)<br>8.26E-08 | (aBm)<br>-40.8 | (dBm)<br>-13.0 | (dB)<br>-27.8                 | Comments<br>E-GPRS(EDGE)High Channel, EUT On Si                             |
| 5729.590<br>3759.970                                    |                                         | 134<br>7.                  | 4.0 1.2<br>0 1.3 |           | H-Horn<br>H-Horn | PK<br>PK   | 6.27E-08<br>4.05E-08 | -42.0<br>-43.9 | -13.0<br>-13.0 | -29.0<br>-30.9                | E-GPRS(EDGE)High Channel, EUT Horizo<br>E-GPRS(EDGE)Mid Channel, EUT Horizo |

| Line     Line     Numeric       101     101     10000000       001     10000000       001000000     10000000       001000000     10000000       001000000     10000000       001000000     10000000       001000000     10000000       001000000     10000000       001000000     10000000       001000000     10000000       001000000     10000000       001000000     10000000       001000000     10000000       001000000     10000000       001000000     10000000       0010000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                          | Out of         | Bane     | d Emissi | ons - F      | Part 24     | 4E     |              |            | PSA 2008.07.21<br>EMI 2008.1.9 |                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|----------|----------|--------------|-------------|--------|--------------|------------|--------------------------------|-------------------------------------|
| Visit Number         Visit Number<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FUT-1400                                                                                                | 0000100                                                  |                |          |          |              |             |        | Work Order   | INMCOS     | 4                              | 9                                   |
| Outcome         Temperature 12           Propositive         Barometric Pres. 30.09           Scheduler         Barometric Pres. 30.09           Scheduler         Jack Marcol           Scheduler         Jack Marcol           Attendes: [none         Power 129742001015           Scheduler         Scheduler           Attendes: [none         Scheduler           Attendes: [none         Scheduler           Scheduler         Scheduler           Attendes: [none         Scheduler           Scheduler         Scheduler      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Serial Number: 244                                                                                      | 11047006                                                 |                |          |          |              |             |        | Date         | : 12/03/10 |                                |                                     |
| Attendes:         December         Bancheit: Press:         Store           Press:         0.00         Instance         Instance         Instance           Attendes:         Instance         Instance         Instance         Instance           Attende:         Instance         Instance         Instance         Instance         Instance           Attende:         Instance         Instance         Instance         Instance         Instance         Instance           Attende:         Instance         Instance         Instance         Instance         Instance         Instance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Customer: Inte                                                                                          | rmec Technolo                                            | gies Corpora   | tion     |          |              |             |        | Temperature  | : 22       |                                |                                     |
| Project None     Barometric Pres. 30.09       Prised by Provide Systemet     Job Site EV12       Direct None Systemet     Job Site EV12       Job Site EV12     Job Site EV12       Direct None Systemet     Job Site EV12       Job Site EV12     Job Site EV12       Job Job Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Attendees: non                                                                                          | e                                                        |                |          |          |              |             |        | Humidity     | : 38%      |                                |                                     |
| 1 Pewer [2017AC004rz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project: Non                                                                                            | ie                                                       |                |          | _        |              |             | Bar    | ometric Pres | : 30.09    |                                | 4                                   |
| End Duration         Description           PARTICLE AGOS C 2004           PARTICL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tested by: Trav                                                                                         | vis Rychener                                             |                |          | Po       | wer: 120VAC  | /60Hz       |        | Job Site     | : EV12     |                                |                                     |
| PARAMETERS<br>PARAMETERS<br>The Higher for additional information<br>PERATING MODES<br>mining OPERGYNANK 4 Storup, PCS Band<br>TITONS FROM TEST STANDARD<br>Videos<br>TITONS FROM TEST STANDARD<br>VIDEOS<br>TITO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T SPECIFICATIONS                                                                                        | <b>)</b>                                                 |                |          |          | ANSI/TI      | 1/ELA_603_0 | -2004  |              |            |                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T DADAMETERS                                                                                            |                                                          |                |          |          | 1            | v2          | , 2001 |              |            |                                |                                     |
| VENTS     Common the information       DPERATING MODES     Infinition (PR) (Statistical information)       DPERATING MODES     Infinition (PR) (Statistical information)       DPERATING MODES     Infinition (PR) (Statistical information)       Infinition (PR) (Statistical information) <td>enna Height(s) (m)</td> <td>1 - 4</td> <td></td> <td></td> <td>Test</td> <td>Distance (m)</td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | enna Height(s) (m)                                                                                      | 1 - 4                                                    |                |          | Test     | Distance (m) |             | 3      |              |            |                                |                                     |
| ormments on data sheet for additional information       PPERATING MODES       mitting GPRS(GMSVA & Storup, PCS Band       Total Signature       Out       0.0     1       -10.0     -10.0       -20.0     -10.0       -30.0     -10.0       -40.0     +       -60.0     -       -70.0     -       -60.0     -       -70.0     -       -80.0     -       -1000,000     10000,000       MHz       Connecting GPR       -70.0     -       -80.0     -       -1000,000     -       MHz       Connecting GPR       GPR Bee Line Conspan="2">Connecting GPR       Connecting GPR       Connecting GPR       GPR Connecting GPR       Connecting GPR       Connecting GPR       Connecting GPR       Connecting GPR       Connecting GPR       Connect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MMENTS                                                                                                  | 1. 4                                                     |                |          | 10011    | biotanee (m) |             | 5      |              |            |                                |                                     |
| 0.0     0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0     0.0       0.0     0.0 <th>OPERATING MODE<br/>nsmitting GPRS(GM<br/>/IATIONS FROM TEs<br/>deviations.<br/>1 #<br/>figuration #<br/>sults</th> <th>ES<br/>ISK) 4 Slot up, F<br/>ST STANDARD<br/>7<br/>1<br/>Pass</th> <th>PCS Band</th> <th></th> <th></th> <th></th> <th>Signatu</th> <th>re</th> <th>Rit</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OPERATING MODE<br>nsmitting GPRS(GM<br>/IATIONS FROM TEs<br>deviations.<br>1 #<br>figuration #<br>sults | ES<br>ISK) 4 Slot up, F<br>ST STANDARD<br>7<br>1<br>Pass | PCS Band       |          |          |              | Signatu     | re     | Rit          |            |                                |                                     |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                     |                                                          |                |          |          |              |             |        |              |            | _                              |                                     |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -10.0<br>-20.0<br>-30.0<br>-30.0<br>-40.0<br>-50.0<br>-50.0<br>-50.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-7                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -20.0<br>-30.0<br>-40.0<br>-50.0<br>-50.0<br>-60.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-7                                                                                                                                                                                                                                                                                                                                                                                                            | -10.0                                                                                                   |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -20.0<br>-30.0<br>-40.0<br>-50.0<br>-60.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-7                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                          |                |          |          |              |             |        |              |            | -                              |                                     |
| -20.0     -30.0     -30.0     -30.0     -30.0     -30.0       -30.0     -40.0     -40.0     -40.0     -40.0       -50.0     -50.0     -50.0     -50.0       -60.0     -50.0     -50.0     -50.0       -70.0     -50.0     -50.0       -80.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0     -50.0       -70.0     -50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -30.0     -30.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0     -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -20.0                                                                                                   |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -30.0<br>-40.0<br>-50.0<br>-50.0<br>-50.0<br>-60.0<br>-70.0<br>-70.0<br>-80.0<br>1000.000<br>MHz<br>Freq Azimuth Height Height Detector EIRP (HR) Spec. Link Compared to Spec.<br>(HR) Compared to Spec. Link C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -30.0<br>-40.0<br>-50.0<br>-50.0<br>-60.0<br>-70.0<br>-70.0<br>-80.0<br>1000.000<br>MHz<br>Freq Azimuth (degrees) Height Metrix)<br>Freq Azimuth (degrees) Height Metrix)<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| 40.0       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -30.0                                                                                                   |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0       -40.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| 3     40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E too                                                                                                   |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -50.0<br>-60.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-7                                                                                                                                                                                                                                                                                                                                                                                                            | <b><u><u><u></u></u></u></b> -40.0 –                                                                    |                                                          |                |          |          | •            |             |        |              |            |                                |                                     |
| -50.0     -50.0     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                                                                                                       |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -60.0     -60.0     -60.0     -60.0       -70.0     -70.0     -70.0       -80.0     10000.000     10000.000       MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.0                                                                                                    |                                                          |                |          |          |              |             | •      |              |            |                                |                                     |
| -60.0<br>-70.0<br>-70.0<br>-70.0<br>-70.0<br>-80.0<br>1000.000<br>MHz<br>Freq Azimuth Height Height Polarity Detector EIRP (HBM) Spec. Limit Compared to Spec. (HBM) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -30.0                                                                                                   |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -60.0     -70.0     -70.0     -70.0     -70.0     -70.0       -80.0     10000.000     10000.000     10000.000       MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| Freq<br>(MHz)         Azimuth<br>(degrees)         Height<br>(meters)         Polarity<br>(MHz)         Detector         EIRP<br>(BHR)         EIRP<br>(BHR)         Compared to<br>Spec.<br>(dB)         Comments<br>(dB)         Comments<br>(dB)           756.683         332.0         1.3         H-Horn         PK         9.49E-(0.2-40.2-41.0-2.2)         Rel99 Mid Channel, FUT Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -60.0                                                                                                   |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -70.0<br>-80.0<br>1000.000<br>MHz<br>Freq Azimuth (degrees) Height Polarity Detector EIRP (HR) Spec. Limit (Compared to Spec. (HR) (HR) (HR) (HR) (HR) (HR) (HR) (HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -70.0<br>-80.0<br>1000.000<br>MHz<br>Freq Azimuth (degrees) Height (meters)<br>1000.000<br>MHz<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Comments<br>Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -80.0<br>1000.000<br><b>MHz</b><br><b>Freq</b><br>(MHz)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(degrees)<br><b>Azimuth</b><br>(de | -70.0                                                                                                   |                                                          |                |          |          |              |             |        |              |            | _                              |                                     |
| -80.0<br>1000.000<br><b>MHz</b><br>Freq Azimuth Height Height Polarity Detector EIRP (Iden) Spec. Limit Spec. (dB) Compared to Spec. (dB) Comments (dB) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| -80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| Index.ou0         Index.ou0 <t< td=""><td>-80.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -80.0                                                                                                   |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| Freq     Compared to<br>Spec.       KHz       Freq     Azimuth<br>(dogrees)     Height<br>(dogrees)     Polarity     Detector     EIRP<br>(Watts)     EIRP<br>(dBm)     Spec. Limit<br>(dBm)     Compared to<br>Spec.       X756.683     328.0     1.3     H-Horn     PK     9.49E-0.8     -40.2     -13.0     -27.2     Rel99 Mid Channel, FUT Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000.000                                                                                                |                                                          |                |          |          |              |             |        |              | 10         | 000.000                        |                                     |
| Freq<br>(MHz)     Azimuth<br>(degrees)     Height<br>(meters)     Polarity<br>Polarity     Detector<br>(WAts)     EIRP<br>(Wats)     EIRP<br>(dBW)     Compared to<br>Spec.       755.683     328.0     1.3     H-Horn     PK     9.49E-0.8     -40.2     -13.0     -27.2     Rel99 Mid Channel, FUT Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                                          |                |          |          | _            |             |        |              |            |                                |                                     |
| Freq         Azimuth         Height         Polarity         Detector         EIRP         EIRP         Compared to<br>Spec.           (MHz)         (degrees)         (meters)         Polarity         Detector         EIRP         (debm)         (debm)         Compared to<br>Spec.           (MHz)         (degrees)         (meters)         H-Horn         PK         9.49E-D8         -40.2         -13.0         -27.2         Rel99 Mid Channel, EUT Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |                                                          |                |          | MH       | Z            |             |        |              |            |                                |                                     |
| Freq<br>(MHz)         Azimuth<br>(degrees)         Height<br>(meters)         Polarity         Detector         EIRP<br>(Watts)         EIRP<br>(dBm)         Spec. Limit<br>(dBm)         Compared to<br>Spec.           756.683         328.0         1.3         H-Horn         PK         9.49E-0.88         -40.2         -13.0         -27.2         Rel99 Mid Channel, EUT Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                          |                |          |          |              |             |        |              |            |                                |                                     |
| Freq<br>(MHz)         Azimuth<br>(degrees)         Height<br>(meters)         Polarity<br>Polarity         Detector<br>(Watts)         EIRP<br>(Watts)         Spec.<br>(dBm)         Spec.<br>(dBm)         Comments           755.683         328.0         1.3         H-Horn         PK         9.49E-0.8         -40.2         -13.0         -27.2         Rel99 Mid Channel, EUT Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                       |                                                          |                |          |          |              |             |        |              |            | Compared to                    | 5                                   |
| (MHZ)     (vorgress) (meters)       (vorgress) (comm) (com)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Freq                                                                                                    |                                                          | Azimuth        | Height   |          | Polarity     | Detecto     | r EIRF | EIRP         | Spec. Lim  | t Spec.                        |                                     |
| 2730.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (MHz)                                                                                                   | I                                                        | (degrees)      | (meters) | I I      | L L          |             | (watts | op (dBm)     | (dBm)      | (dB)                           | Comments                            |
| 725 550 259.0 1.2 H-Horn PK 4.24E-08 -43.7 -13.0 -30.7 Pol.00 High Channel ELIT Horizonta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5725 550                                                                                                |                                                          | 328.U<br>259.0 | 1.3      |          |              | 1 PK        | 9.49E  | -00 -40.2    | -13.0      | -27.2                          | Rel 99 High Channel, EUT Horizontal |
| 722.000 337.0 1.3 V-Horn PK 3.77-08 45.1 -1.3 -3.0 Rel 99 might Oldalmei, EU FOID / OR Sida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5726.000                                                                                                |                                                          | 337.0          | 1.3      |          | V-Horr       | i PK        | 3.075  | -08 -45.1    | -13.0      | -30.7                          | Rel 99High Channel FLIT On Side     |
| 547.317 239.0 1.0 V-Hom PK 2.31F-08 -46.3 -13.0 -33.3 Rel 90 Hit Channel FLOT On Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20.000                                                                                                |                                                          | 007.0          | 1.0      |          | Viller       |             | 0.07   | 00 40.0      | 10.0       | 22.1                           | Rel 00Mid Channel, EUT On Side      |

| NORTHWEST<br>EMC                                                                                           |                                                               | Out of              | Band     | Emission   | s - Pa    | art 24     | E       |             | F           | SA 2008.07.21<br>EMI 2008.1.9 |                                        |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------|----------|------------|-----------|------------|---------|-------------|-------------|-------------------------------|----------------------------------------|
| EU                                                                                                         | T: 1000CP01UO                                                 |                     |          |            |           |            |         | Work Order  | INMC065     | 1                             |                                        |
| Serial Number                                                                                              | er: 24411047006                                               |                     | -        |            |           |            |         | Date        | : 12/03/10  |                               |                                        |
| Custome                                                                                                    | er: Intermec Tecl                                             | nologies Corpora    | tion     |            |           |            | 1       | Femperature | 22          |                               |                                        |
| Project                                                                                                    | ct: None                                                      |                     |          |            |           |            | Baro    | metric Pres | . 38%       |                               |                                        |
| Tested b                                                                                                   | v: Travis Ryche                                               | ner                 |          | Power:     | 120VAC/6  | 50Hz       | Daio    | Job Site    | EV12        |                               |                                        |
| TEST SPECIFICA                                                                                             | ATIONS                                                        |                     |          |            | Test Meth | od         |         |             |             |                               |                                        |
| FCC 24E:2010                                                                                               |                                                               |                     |          |            | ANSI/TIA/ | /EIA-603-C | -2004   |             |             |                               |                                        |
| TEST PARAMET                                                                                               | ERS                                                           |                     |          |            |           |            |         |             |             |                               |                                        |
| Antenna Height(                                                                                            | <b>s) (m)</b> 1 -                                             | 4                   |          | Test Dista | nce (m)   |            | 3       |             |             |                               |                                        |
| COMMENTS                                                                                                   |                                                               |                     |          |            |           |            |         |             |             |                               |                                        |
| EUT OPERATING<br>Transmitting GP<br>DEVIATIONS FR<br>No deviations.<br>Run #<br>Configuration #<br>Results | G MODES<br>RS(GMSK) 4 Sloi<br>OM TEST STAND<br>8<br>1<br>Pass | up, PCS Band<br>ARD |          |            |           | Signature  |         | Ro          | -           |                               |                                        |
|                                                                                                            |                                                               |                     |          |            |           |            | -       |             |             |                               |                                        |
| 0.0                                                                                                        |                                                               |                     |          |            |           |            |         |             |             |                               |                                        |
| -10.0                                                                                                      |                                                               |                     |          |            |           |            |         |             |             | _                             |                                        |
| -20.0 -                                                                                                    |                                                               |                     |          |            |           |            |         |             |             | _                             |                                        |
| -30.0                                                                                                      |                                                               |                     |          |            |           |            |         |             |             | _                             |                                        |
| <b>Б</b> -40.0                                                                                             |                                                               |                     |          |            |           |            | •       |             |             | _                             |                                        |
| -50.0                                                                                                      |                                                               |                     |          |            | •         |            | •*      |             |             | _                             |                                        |
| -60.0 -                                                                                                    |                                                               |                     |          |            |           |            |         |             |             |                               |                                        |
| -70.0                                                                                                      |                                                               |                     |          |            |           |            |         |             |             |                               |                                        |
| -80.0                                                                                                      | 000                                                           |                     |          |            |           |            |         |             |             |                               |                                        |
| 1000.                                                                                                      | 000                                                           |                     |          | MHz        |           | 1          | -       |             | 10          | 000.000                       |                                        |
| Freq                                                                                                       |                                                               | Azimuth             | Height   |            | Polarity  | Detector   | EIRP    | EIRP        | Spec. Limit | Compared to<br>Spec.          |                                        |
| (MHz)                                                                                                      |                                                               | (degrees)           | (meters) |            |           | - DI       | (Watts) | (dBm)       | (dBm)       | (dB)                          | Comments                               |
| 5726.300                                                                                                   |                                                               | 4.0                 | 1.2      |            | V-Horn    | PK         | 3.37E-0 | 18 -44.7    | -13.0       | -31.7                         | UM IS HSPA High Channel, EUT On Side   |
| 3759.983                                                                                                   |                                                               | 339.0               | 1.3      |            | H-Horn    | PK         | 2.50F-0 | )8 -46.0    | -13.0       | -32.0                         | UMTS HSPA High Channel, EUT Horizontal |
| 5548.200                                                                                                   |                                                               | 333.0               | 1.0      |            | V-Horn    | PK         | 1.98E-0 | 08 -47.0    | -13.0       | -34.0                         | UMTS HSPA High Channel, EUT Horizontal |

# Effective Radiated Power (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| MODES OF OPERATION                   |  |
|--------------------------------------|--|
| Transmitting E-GPRS (Edge), PCS Band |  |
| Transmitting GPRS (GMSK), PCS Band   |  |
| Transmitting UMTS HSPA PCS Band      |  |
| Transmitting WCDMA Rel99, PCS Band   |  |
|                                      |  |

| CHANNELS TESTED                  |
|----------------------------------|
| GSM Low = Ch. 512, 1850.2 MHz    |
| GSM Mid = Ch. 661, 1880 MHz      |
| GSM High = Ch. 810, 1909.8 MHz   |
| UMTS Low = Ch. 9262, 1852.4 MHz  |
| UMTS Mid = Ch. 9400, 1880 MHz    |
| UMTS High = Ch. 9538, 1907.6 MHz |

#### POWER SETTINGS INVESTIGATED 120VAC/60Hz

#### SAMPLE CALCULATIONS

EMC

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

| TEST EQUIPMENT                          |                  |                          |        |            |          |
|-----------------------------------------|------------------|--------------------------|--------|------------|----------|
| Description                             | Manufacturer     | Model                    | ID     | Last Cal.  | Interval |
| Universal Radio Communication<br>Tester | Rhode & Schwarz  | CMU200.2                 | 121466 | NCR        | 0        |
| Universal Radio Communication<br>Tester | Rhode & Schwarz  | CMU200.10                | BSU    | NCR        | 0        |
| Spectrum Analyzer                       | Agilent          | E4446A                   | AAQ    | 1/6/2010   | 12       |
| Attenuator                              | S.M. Electronics | SA18N5W-06               | AWP    | 2/15/2010  | 13       |
| Antenna, Horn                           | EMCO             | 3115                     | AHC    | 7/8/2010   | 24       |
| EV01 Cables                             | N/A              | Double Ridge Horn Cables | EVB    | 7/9/2010   | 13       |
| Antenna, Horn                           | EMCO             | 3115                     | AHE    | 10/22/2009 | 24       |
| Power Meter                             | Gigatronics      | 8651A                    | SPM    | 1/7/2010   | 13       |
| Power Sensor                            | Gigatronics      | 80701A                   | SPL    | 1/7/2010   | 13       |
| Signal Generator                        | Agilent          | E8257D                   | TGX    | 12/10/2008 | 24       |

### MEASUREMENT BANDWIDTHS

|                                                                                                | Frequency Range | Peak Data | Quasi-Peak Data | Average Data |  |  |  |  |
|------------------------------------------------------------------------------------------------|-----------------|-----------|-----------------|--------------|--|--|--|--|
|                                                                                                | (MHz)           | (kHz)     | (kHz)           | (kHz)        |  |  |  |  |
|                                                                                                | 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |  |  |  |  |
|                                                                                                | 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |  |  |  |  |
|                                                                                                | 30.0 - 1000     | 100.0     | 120.0           | 120.0        |  |  |  |  |
|                                                                                                | Above 1000      | 1000.0    | N/A             | 1000.0       |  |  |  |  |
| Measurements were made using the bandwidths and detectors specified. No video filter was used. |                 |           |                 |              |  |  |  |  |

## MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

#### TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009)

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.







