

Intermec Technologies Corporation 1000CP03S

Report #: INMC0747

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC - (888) 364-2378 - www.nwemc.com

California – Minnesota – Oregon – New York – Washington

Certificate of Test Last Date of Test: January 11, 2012 Intermec Technologies Corporation Model: 1000CP03S

Emissions			
Test Description	Specification	Test Method	Pass/Fail
Out of Band Emissions	FCC 22H:2012	ANSI/TIA/EIA-603-C-2004	Pass
Out of Band Emissions	FCC 24E:2012	ANSI/TIA/EIA-603-C-2004	Pass
Out of Band Emissions	FCC 27:2012	ANSI/TIA/EIA-603-C-2004	Pass
Effective Radiated Power (ERP)	FCC 22H:2012	ANSI/TIA/EIA-603-C-2004	Pass
Effective Radiated Power (EIRP)	FCC 24E:2012	ANSI/TIA/EIA-603-C-2004	Pass
Effective Radiated Power (EIRP)	FCC 27:2012	ANSI/TIA/EIA-603-C-2004	Pass

Deviations From Test Standards

None

Approved By:

Tim O'Shea, Operations Manager

NVLAP Lab Code: 200630-0

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. NVLAP is administered by the National Institute of Standards and Technology (NIST), an agency of the U.S. Commerce Department. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1*)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

Accreditations and Authorizations

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-3265, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).*

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017).

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157, Brooklyn Park: US0175)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066

California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675

New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Product Description

Client and Equipment Under Test (EUT) Information

Company Name:	Intermec Technologies Corporation
Address:	6001 36th Avenue West
City, State, Zip:	Everett, WA 98203-1264
Test Requested By:	Pat Helton
Model:	1000CP03S
First Date of Test:	January 3, 2012
Last Date of Test:	January 11, 2012
Receipt Date of Samples:	January 3, 2012
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Handheld Computer

Testing Objective:

To demonstrate compliance to FCC Part 22H, 24E, and 27C for ERP, EIRP and Out of Band requirements

Configurations

Configuration 1 INMC0747

Software/Firmware Running during test	
Description	Version
Windows Mobile	6.5

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
A1 Hand Held Computer	Intermec Technologies Corp	1000CP03S	187U1191609

Peripherals in test set	up boundary		
Description	Manufacturer	Model/Part Number	Serial Number
Ethernet SNAPON	Intermec Technologies Corp	225-769-001	None
Power Supply	Intermec Technologies Corp	A3	269

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Cable	No	1.8 m	No	Power Supply	AC Mains
DC Leads	PA	1.0m	PA	SNAPON	Power Supply
Ethernet cable	Yes	1.0m	No	SNAPON	Unterminated
PA = Cable	is permanent	ly attached to the de	vice. Shieldin	g and/or presence of ferrite may	y be unknown.

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	1/3/2012	Effective Radiated Power (ERP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	1/6/2012	Effective Radiated Power (EIRP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	1/11/2012	Out of Band Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

OUT OF BAND EMISSIONS -Part 22

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting UMTS W-CDMA Rel 99 Cell band.			
CHANNELS TESTED			
Low Channel, 4132, 826.4 MHz			
Mid Channel, 4183, 836.6 MHz			
High Channel, 4233, 846.6 MHz			
POWER SETTINGS INVESTIGATED			
120VAC/60Hz			
CONFIGURATIONS INVESTIGATED			
INMC0747-1			
FREQUENCY RANGE INVESTIGATED			
Start Frequency 30 MHz	Stop Frequency	10 GHz	

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
Wireless Communication Test Set	Agilent	E5515C	BSV	NCR	0
High Pass Filter	Micro-Tronics	50108	HGF	1/9/2012	24
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	1/11/2011	24
Low Pass Filter 0-425 MHz	Micro-Tronics	LPM50003	HGL	7/14/2010	24
Antenna, Horn	EMCO	3115	AHE	NCR	0
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	36
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Signal Generator	Agilent	E8257D	TGX	3/22/2011	12
Antenna, Biconilog	EMCO	3141	AXG	3/15/2010	24
EV12 Cables	N/A	Bilog Cables	EVS	6/1/5403	12
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/20/2011	12
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	10/6/2011	12
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/20/2011	12
Antenna, Horn	ETS	3160.07	AHZ	9/8/2010	24
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/20/2011	12
Antenna, Horn	ETS	3160-08	AIA	NCR	0
EV12 Cables	N/A	Standard Gain Horn Cables	EVU	6/20/2011	12
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVI	7/5/2011	12
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Cable	ESM Cable Corp.	KMKM-72	EVY	9/12/2011	12
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	9/12/2011	12

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty available upon request.

TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above

OUT OF BAND EMISSIONS -

10000

EUT: 10	INCPOSS		-							Work Order		747
Serial Number: 18											: 01/06/1	
Customer: Int	ermec Technolo	ogies Corpo	oration	1						Temperature		
Attendees: no	ne									Humidity	: 32%	
Project: No	ne					400.1			Bar	ometric Pres.	: 30.33	
Tested by: Da	n Haas		_		Powe	120V	AC/60	Hz		Job Site	: EV12	_
22H:2012	IONS						Meth)3-C-2004			
2211.2012						71101		IA-00	5-0-2004			
ST PARAMETEF enna Height(s) (m)					Test Dist	ance (n	n)		3			
MMENTS												
VIATIONS FROM deviations.	I TEST STAN	IDARD										
#	6										0 /	2
	1									A	1 gelan	
n # nfiguration # sults								Sign	ature	Chi	l geles	2
figuration #	1							Sign	ature	Chi	l geles	-
nfiguration #	1							Sign	ature	Chi	l de la	
figuration # ults	1							Sign	ature	Chi	l gebe	
figuration # ults	1							Sign	ature	Ch	196	
figuration # ults 0.0	1							Sign	ature	<u></u>	196	
o.0 -10.0	1							Sign	ature	0-		
figuration # ults	1							Sign	ature			
o.0 -10.0	1							Sign	ature			
1figuration # uits 0.0 -10.0 -20.0	1							Sign	ature			
0.0 -10.0	1							Sign	ature			
11 Sults 0.0 -10.0 -20.0 -30.0	1							Sign	ature			
offiguration # ults 0.0 -10.0 -20.0 -30.0	1							Sign	ature			
figuration # ults 0.0 -10.0 -20.0 -30.0	1							Sign	ature			
figuration # ults 0.0 -10.0 -20.0 -30.0 -30.0 -40.0	1							Sign	ature			
figuration # ults 0.0 -10.0 -20.0 -30.0	1							Sign	ature			
figuration # ults 0.0 -10.0 -20.0 -30.0 -30.0 -40.0	1							Sign	ature			
figuration # ults 0.0 -10.0 -20.0 -30.0 -30.0 -30.0 -50.0	1							Sign	ature			
figuration # ults 0.0 -10.0 -20.0 -30.0 -30.0 -40.0	1							Sign	ature			
figuration # ults 0.0 -10.0 -20.0 -30.0 -30.0 -50.0	1							Sign	ature			
figuration # ults 0.0 -10.0 -20.0 -30.0 -30.0 -30.0 -50.0	1							Sign	ature			
figuration # ults 0.0 -10.0 -20.0 -30.0 -30.0 -30.0 -50.0 -60.0	1							Sign	ature			
o.0 -10.0 -20.0 -20.0 -30.0 -30.0 -50.0 -60.0	1							Sign	ature			

MHz

100

-80.0 _____ 10

Freq		Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Compared to Spec.	
(MHz)		(degrees)	(meters)		rolanty	Detector	(Watts)	(dBm)	(dBm)	(dB)	Comments
1654.820		88.0	1.1		H-Horn	PK	1.50E-07	-38.2	-13.0	-25.2	Low channel, EUT vertical.
1675.070		76.0	1.7		V-Horn	PK	1.22E-07	-39.1	-13.0	-26.1	Mid channel, EUT horizontal
1654.850		280.0	1.2		V-Horn	PK	1.14E-07	-39.4	-13.0	-26.4	Low channel, EUT horizontal
1675.120		271.0	1.1		H-Horn	PK	7.71E-08	-41.1	-13.0	-28.1	Mid channel, EUT vertical.
1675.020		271.0	1.1		V-Horn	PK	7.20E-08	-41.4	-13.0	-28.4	Mid channel, EUT vertical.
1690.850		177.0	1.1		V-Horn	PK	6.87E-08	-41.6	-13.0	-28.6	High channel, EUT horizontal
1675.330		296.0	1.0		H-Horn	PK	5.59E-08	-42.5	-13.0	-29.5	Mid channel, EUT on side.
1675.230		177.0	1.0		H-Horn	PK	5.21E-08	-42.8	-13.0	-29.8	Mid channel, EUT horizontal
3309.580		225.0	1.1		H-Horn	PK	4.44E-08	-43.5	-13.0	-30.5	Low channel, EUT vertical.
1675.130		172.0	1.0		V-Horn	PK	4.05E-08	-43.9	-13.0	-30.9	Mid channel, EUT on side.
2537.050		124.0	1.6		H-Horn	PK	3.61E-08	-44.4	-13.0	-31.4	High channel, EUT vertical.
1695.200		53.0	1.9		H-Horn	PK	3.52E-08	-44.5	-13.0	-31.5	High channel, EUT vertical.
3382.170		92.0	1.3		H-Horn	PK	3.29E-08	-44.8	-13.0	-31.8	High channel, EUT vertical.
3309.450		229.0	1.2		V-Horn	PK	2.93E-08	-45.3	-13.0	-32.3	Low channel, EUT horizontal
3350.500		131.0	1.1		H-Horn	PK	2.80E-08	-45.5	-13.0	-32.5	Mid channel, EUT vertical.
3382.680		248.0	1.2		V-Horn	PK	2.33E-08	-46.3	-13.0	-33.3	High channel, EUT horizontal
2482.220		113.0	1.1		H-Horn	PK	2.28E-08	-46.4	-13.0	-33.4	Low channel, EUT vertical.
2506.550		229.0	1.1		H-Horn	PK	2.22E-08	-46.5	-13.0	-33.5	Mid channel, EUT vertical.
2476.180		186.0	1.0		V-Horn	PK	1.54E-08	-48.1	-13.0	-35.1	Low channel, EUT horizontal
2536.780		187.0	1.2		V-Horn	PK	1.25E-08	-49.0	-13.0	-36.0	High channel, EUT horizontal

1000

OUT OF BAND EMISSIONS -Part 24

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting UMTS W-CDMA Rel 99 PCS band.
CHANNELS TESTED
Low Channel, 9262, 1852.4 MHz
Mid Channel, 9400, 1880 MHz
High Channel, 9538, 1907.6 MHz
POWER SETTINGS INVESTIGATED
120VAC/60Hz
CONFIGURATIONS INVESTIGATED
INMC0747-1
FREQUENCY RANGE INVESTIGATED

20 GHz

Start Frequency 30 MHz Stop Frequency

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
Wireless Communication Test Set	Agilent	E5515C	BSV	NCR	0
High Pass Filter	Micro-Tronics	50111	HGE	7/14/2010	24
High Pass Filter	Micro-Tronics	50108	HGF	1/9/2012	24
1-2 GHz Notch Filter	K&L Microwave	3TNF-1000/2000-N/N	HFU	1/11/2011	24
Low Pass Filter	Micro-Tronics	LPM50004	HGG	7/22/2010	24
Antenna, Horn	EMCO	3115	AHE	NCR	0
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	36
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Signal Generator	Agilent	E8257D	TGX	3/22/2011	12
Antenna, Biconilog	EMCO	3141	AXG	3/15/2010	24
EV12 Cables	N/A	Bilog Cables	EVS	6/1/5403	12
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/20/2011	12
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	10/6/2011	12
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/20/2011	12
Antenna, Horn	ETS	3160.07	AHZ	9/8/2010	24
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/20/2011	12
Antenna, Horn	ETS	3160-08	AIA	NCR	0
EV12 Cables	N/A	Standard Gain Horn Cables	EVU	6/20/2011	12
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVI	7/5/2011	12
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Cable	ESM Cable Corp.	KMKM-72	EVY	9/12/2011	12
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	9/12/2011	12

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is corded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above

OUT OF BAND EMISSIONS -

EUT.1000CP03S Work Order[] Scral Number: 15V1191609 Temperature: [0.4.6] Attendees: Interme: Technologies Corporation Humidity: [34% Attendees: Ione Humidity: [34% Project: None Barometric Press: 30.3.4 Project: None Barometric Press: 30.3.4 Project: None Barometric Press: 30.3.4 EST SPECIFICATIONS Test Method C: 24E: 2012 ANS/TURE in-803-C-2004	EN		Part 24				
Custome: Tested by: State Addes <							
Attendees: Image: Control of the second							
Project: None Baronetic Press: 90.34 EST SPECIFICATIONS Test Method Job Site: EVI2 EST SPECIFICATIONS Test Method Institution of the second of the se			es Corporation				
Teside by://Dan Haas Power: [120XAC60Hz] Job Site: [EV12 EST SPECIFICATIONS Test Method C2 4E:2012 ANSI/TIA/EIA-603-C-2004					Bar	Humidity:	34%
EST SPECIFICATIONS Test Method NS:724E:2012 ANSI/TIA/EIA-603-C-2004 EST PARAMETERS Image: Contract of the second se				Power: 120V	AC/60Hz		
C 24E 2012 ANSI/TIA/EIA-603-C-2004 EST PARAMETERS Itema Bisight(s) (m) 1 - 4 Test Distance (m) 3 OMMENTS OMMENTS 3 0 3 0 UT OPERATING MODES ansmitting UMTS W-CDMA Rel 99 PCS band. 3 0							
EST PARAMETERS Itema Height(s) (m) 1 - 4 Test Distance (m) 3 OMMENTS		ATIONS					
Itenna Height(s) (m) 1 - 4 Test Distance (m) 3 OMMENTS 3 3 3 3 OMMENTS 3 3 3 3 3 OMMENTS 3							
OMMENTS One UT OPERATING MODES ansmitting UMTS W-CDMA Rel 99 PCS band. EVIATIONS FROM TEST STANDARD o deviations. an # 7 /							
UT OPERATING MODES ansmitting UMTS W-CDMA Rel 99 PCS band. EVIATIONS FROM TEST STANDARD to deviations.	itenna Height(s)	(m) 1 - 4		Test Distance (m) 3		
UT OPERATING MODES ansmitting UMTS W-CDMA Rel 99 PCS band. EVIATIONS FROM TEST STANDARD o deviations.							
EVIATIONS FROM TEST STANDARD odeviations. m # 7			S band.				
Infiguration # 1 suits Pass 0.0		ROM TEST STAND	ARD				
0.0 -10.0 -20.0 -30.0 -30.0 -50.0 -60.0 -70.0 -80.0						2	Oul
0.0 -10.0 -20.0 -30.0 -30.0 -50.0 -60.0 -70.0 -80.0					0: /	1 soil.	Mar -
-10.0 -20.0 -30.0 -50.0 -60.0 -70.0 -8	sults	Pass			Signature	2	
-10.0 -20.0 -30.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0	0.0						
-20.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -50.0 -50.0 -60.0 -70.0 -80.0	0.0						
-20.0 -30.0 -30.0 -30.0 -30.0 -50.0 -50.0 -60.0 -70.0 -80.0							
-20.0 -30.0 -30.0 -30.0 -30.0 -50.0 -50.0 -60.0 -70.0 -80.0	-10.0						
-30.0 -30.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0							
-30.0 -30.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0							
 ₩ ₩	-20.0						
 ₩ ₩							
E -40.0 -50.0 -60.0 -70.0 -80.0	00.0						
-50.0 -60.0 -70.0 -80.0	-30.0				• • • • • • • • • • • • • • • • • • • •		
-50.0 -60.0 -70.0 -80.0	_						
-50.0 -60.0 -70.0 -80.0	E -40.0						
-50.0 -60.0 -70.0 -80.0	8 -40.0						
-60.0 -70.0 -80.0	-						
-60.070.080.0	-50.0						
-70.0							
-70.0							
-70.0	-60.0						
-80.0							
-80.0							
-80.0	-70.0						
10.000 100.000 1000.000 1000.000 10000	-80.0						

MHz

Freq	Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Compared to Spec.	
(MHz)	(degrees)	(meters)				(Watts)	(dBm)	(dBm)	(dB)	Comments
3813.750	341.0	1.0		V-Horn	PK	1.31E-06	-28.8	-13.0	-15.8	High channel, EUT horizontal
3813.980	347.0	1.0		H-Horn	PK	9.71E-07	-30.1	-13.0	-17.1	High channel, EUT horizontal
3761.850	351.0	1.2		H-Horn	PK	1.98E-07	-37.0	-13.0	-24.0	Mid channel, EUT horizontal
3701.980	332.0	1.0		H-Horn	PK	1.50E-07	-38.2	-13.0	-25.2	Low channel, EUT horizontal
3761.550	8.0	1.2		V-Horn	PK	1.47E-07	-38.3	-13.0	-25.3	Mid channel, EUT horizontal
3701.850	356.0	1.0		V-Horn	PK	1.44E-07	-38.4	-13.0	-25.4	Low channel, EUT horizontal
5642.680	340.0	1.0		H-Horn	PK	1.40E-07	-38.5	-13.0	-25.5	Mid channel, EUT horizontal
3762.100	158.0	1.0		H-Horn	PK	1.25E-07	-39.0	-13.0	-26.0	Mid channel, EUT vertical.
3759.200	359.0	1.1		H-Horn	PK	1.19E-07	-39.2	-13.0	-26.2	Mid channel, EUT on side.
3761.750	145.0	2.0		V-Horn	PK	9.71E-08	-40.1	-13.0	-27.1	Mid channel, EUT vertical.
3761.950	150.0	1.2		V-Horn	PK	9.71E-08	-40.1	-13.0	-27.1	Mid channel, EUT on side.
5725.450	0.0	1.2		H-Horn	PK	6.27E-08	-42.0	-13.0	-29.0	High channel, EUT horizontal
5637.080	20.0	1.8		V-Horn	PK	6.13E-08	-42.1	-13.0	-29.1	Mid channel, EUT horizontal
5559.750	340.0	1.0		H-Horn	PK	5.72E-08	-42.4	-13.0	-29.4	Low channel, EUT horizontal
5720.400	58.0	1.2		V-Horn	PK	5.72E-08	-42.4	-13.0	-29.4	High channel, EUT horizontal
5560.020	63.0	1.6		V-Horn	PK	5.59E-08	-42.5	-13.0	-29.5	Low channel, EUT horizontal

OUT OF BAND EMISSIONS -PART 27

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES	~ ~		ATION
NUDES	Ur.	UPER	ATION

Transmitting UMTS W-CDMA Rel 99, AWS Band
CHANNELS TESTED
Low = Ch. 1312, 1712.4 MHz
Mid = Ch. 1427, 1735.4 MHz
High = Ch. 1513, 1752.6 MHz
POWER SETTINGS INVESTIGATED
120VAC/60Hz
CONFIGURATIONS INVESTIGATED
INMC0747-1
FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 18 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
Wireless Communication Test Set	Agilent	E5515C	BSV	NCR	0
High Pass Filter	Micro-Tronics	50108	HGF	1/9/2012	24
Low Pass Filter	Micro-Tronics	LPM50004	HGG	7/22/2010	24
1-2 GHz Notch Filter	K&L Microwave	3TNF-1000/2000-N/N	HFU	1/11/2011	24
Antenna, Biconilog	EMCO	3141	AXG	3/15/2010	24
EV12 Cables	N/A	Bilog Cables	EVS	6/1/5403	12
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/20/2011	12
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	10/6/2011	12
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/20/2011	12
Antenna, Horn	ETS	3160.07	AHZ	9/8/2010	24
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/20/2011	12
Antenna, Horn	ETS	3160-08	AIA	NCR	0
EV12 Cables	N/A	Standard Gain Horn Cables	EVU	6/20/2011	12
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVI	7/5/2011	12
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	36
Antenna, Horn	EMCO	3115	AHE	NCR	0
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Signal Generator	Agilent	E8257D	TGX	3/22/2011	12

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

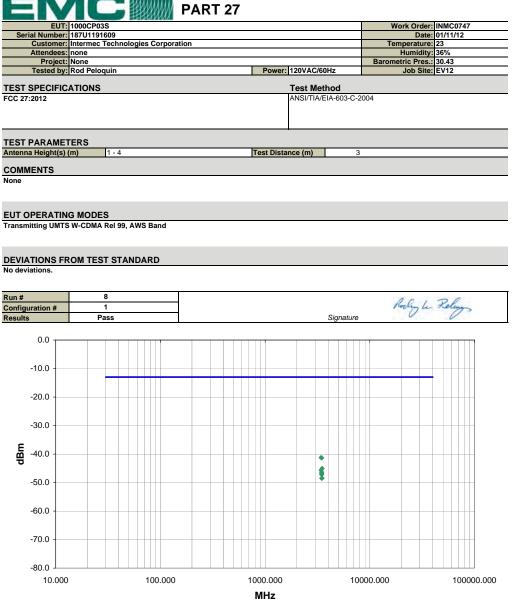
Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.


For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above

OUT OF BAND EMISSIONS -

NORTHWEST

_								Compared to	
Freq	Azimuth	Height	Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.	
(MHz)	(degrees)	(meters)			(Watts)	(dBm)	(dBm)	(dB)	Comments
3426.570	335.0	1.1	H-Horn	PK	7.54E-08	-41.2	-13.0	-28.2	Low Channel, EUT horizontal
3472.660	167.0	1.1	H-Horn	PK	7.36E-08	-41.3	-13.0	-28.3	Mid Channel, EUT horizontal
3503.010	161.0	1.1	H-Horn	PK	3.14E-08	-45.0	-13.0	-32.0	High Channel, EUT horizontal
3426.450	186.0	1.2	V-Horn	PK	2.74E-08	-45.6	-13.0	-32.6	Low Channel, EUT horizontal
3468.300	341.0	1.0	H-Horn	PK	2.33E-08	-46.3	-13.0	-33.3	Mid Channel, EUT vertical
3472.320	237.0	1.1	H-Horn	PK	2.17E-08	-46.6	-13.0	-33.6	Mid Channel, EUT on side
3469.180	198.0	1.2	V-Horn	PK	2.03E-08	-46.9	-13.0	-33.9	Mid Channel, EUT horizontal
3468.710	241.0	1.2	V-Horn	PK	1.89E-08	-47.2	-13.0	-34.2	Mid Channel, EUT on side
3503.350	195.0	1.2	V-Horn	PK	1.44E-08	-48.4	-13.0	-35.4	High Channel, EUT horizontal
3473.020	213.0	1.2	V-Horn	PK	1.40E-08	-48.5	-13.0	-35.5	Mid Channel, EUT vertical

Effective Radiated Power (ERP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting, GPRS, Cell band

CHANNELS TESTED

Low = Ch.128, 824.2 MHz Mid = Ch. 190, 836.6 MHz High = Ch. 251, 848.8 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

INMC0747 - 1

FREQUENCY RANGE INVESTIGATED

	Start Frequency	824 MHz	Stop Frequency	849 MHz
--	-----------------	---------	----------------	---------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

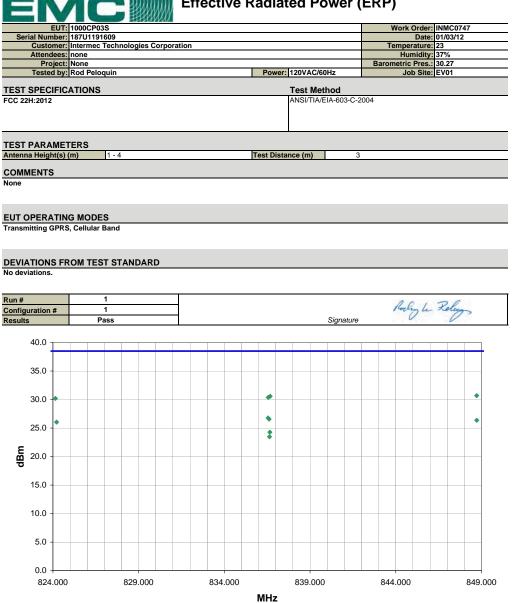
Description	Manufacturer	Model	ID	Last Cal.	Interval
Universal Radio Communication					
Tester	Rhode & Schwarz	CMU200	BSU	NCR	0
Spectrum Analyzer	Agilent	E4446A	AAQ	6/24/2011	12
Antenna, Biconilog	EMCO	3142	AXJ	5/17/2011	12
EV01 Cables	N/A	Bilog Cables	EVA	6/28/2011	12
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	36
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	5/5/2011	12
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarizationThe amplitude and frequency of the highest emission were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to the highest emission. A signal generator was connected to the dipole, and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded. The signal generator, amplifier, and cable were then connected to an analyzer and the power output was recorded. By factoring in the dipole antenna gain (dBi), the effective radiated power for the maximum fundamental emission was determined. The ERP value was obtained from taking the value in EIRP - 2.15.

Effective Radiated Power (ERP)

									Compared to	
Freq	Azimuth	Height		Polarity	Detector	ERP	ERP	Spec. Limit	Spec.	
(MHz)	(degrees	(meters)				(Watts)	(dBm)	(dBm)	(dB)	Comments
848.720	253.0	1.0		H-Bilog	PK	1.17E+00	30.7	38.5	-7.8	High Channel, EUT horizontal
836.673	268.0	1.0		H-Bilog	PK	1.14E+00	30.6	38.5	-7.9	Mid Channel, EUT horizontal
836.563	255.0	1.1		H-Bilog	PK	1.09E+00	30.4	38.5	-8.1	Mid Channel, EUT on side
824.143	255.0	1.1		H-Bilog	PK	1.04E+00	30.2	38.5	-8.3	Low Channel, EUT horizontal
836.553	171.0	1.3		V-Bilog	PK	4.75E-01	26.8	38.5	-11.7	Mid Channel, EUT on side
836.610	326.0	1.9		V-Bilog	PK	4.54E-01	26.6	38.5	-11.9	Mid Channel, EUT vertical
848.723	170.0	1.1		V-Bilog	PK	4.33E-01	26.4	38.5	-12.1	High Channel, EUT on side
824.217	165.0	2.1		V-Bilog	PK	4.02E-01	26.0	38.5	-12.5	Low Channel, EUT on side
836.657	284.0	1.6		V-Bilog	PK	2.67E-01	24.3	38.5	-14.2	Mid Channel, EUT horizontal
836.633	240.0	1.0		H-Bilog	PK	2.22E-01	23.5	38.5	-15.0	Mid Channel, EUT vertical

Effective Radiated Power (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting, GPRS, PCS band

CHANNELS TESTED

GSM Low = Ch. 512, 1850.2 MHz GSM Mid = Ch. 661, 1880 MHz GSM High = Ch. 810, 1909.8 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

INMC0747-1

FREQUENCY RANGE INVESTIGATED

Start Frequency 1850 MHz

Stop Frequency 1910 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Universal Radio Communication					
Tester	Rhode & Schwarz	CMU200	BSU	NCR	0
Spectrum Analyzer	Agilent	E4446A	AAQ	6/24/2011	12
Antenna, Horn	EMCO	3115	AHJ	NCR	0
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	6/28/2011	12
Antenna, Horn	EMCO	3115	AHE	NCR	0
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes. The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Effective Radiated Power (EIRP)

ΞN		Effective	e Radiated	Power (Ell	KP)	
EUT:	1000CP03S				Work Order:	
Serial Number:						01/04/12
	Intermec Technologies Cor	poration			Temperature:	
Attendees:					Humidity:	
Project:					arometric Pres.:	
Tested by:	Dan Haas		Power: 120	VAC/60Hz	Job Site:	EV01
EST SPECIFIC C 24E:2012	ATIONS			st Method SI/TIA/EIA-603-C-2004		
	TERS					
tenna Height(s)	(m) 1 - 4		Test Distance ((m) 3		
OMMENTS						
JT OPERATIN ansmitting, GPR EVIATIONS FR deviations.						
in #	3				Pail	allan
onfiguration #	1				1 danta	nes .
sults	Pass			Signature	5	
40.0						
35.0						
30.0 -						
25.0						
E 20.0						
15.0 -						
10.0						
5.0						
0.0) 1860.000	1870.000	1880.000	1890.000	1900.000	1910.00
1050.000	, 1000.000	1070.000	MHz	1050.000	1300.000	1910.0

Freq	Azimuth	Height	Polarity	Detector	EIRP	EIRP	Spec. Limit	Compared to Spec.	
(MHz)	(degrees)	(meters)			(Watts)	(dBm)	(dBm)	(dB)	Comments
1909.795	266.0	1.4	H-Horn	PK	1.91E+00	32.8	33.0	-0.2	High channel, EUT vertical.
1879.720	241.0	1.2	H-Horn	PK	1.37E+00	31.4	33.0	-1.6	Mid channel, EUT vertical.
1909.765	259.0	1.1	V-Horn	PK	1.33E+00	31.2	33.0	-1.8	High channel, EUT vertical.
1879.725	256.0	1.2	V-Horn	PK	1.27E+00	31.0	33.0	-2.0	Mid channel, EUT vertical.
1850.230	249.0	1.2	H-Horn	PK	1.21E+00	30.8	33.0	-2.2	Low channel, EUT vertical.
1879.755	68.0	1.0	V-Horn	PK	1.16E+00	30.6	33.0	-2.4	Mid channel, EUT horizontal.
1850.250	311.0	1.2	V-Horn	PK	1.11E+00	30.5	33.0	-2.5	Low channel, EUT vertical.
1850.245	144.0	1.1	H-Horn	PK	1.01E+00	30.0	33.0	-3.0	Low channel, EUT horizontal.
1879.735	210.0	1.3	H-Horn	PK	8.67E-01	29.4	33.0	-3.6	Mid channel, EUT on side.
1850.240	81.0	1.2	V-Horn	PK	8.63E-01	29.4	33.0	-3.6	Low channel, EUT horizontal.
1879.735	99.0	1.3	H-Horn	PK	7.91E-01	29.0	33.0	-4.0	Mid channel, EUT horizontal.
1879.760	305.0	1.0	V-Horn	PK	7.29E-01	28.6	33.0	-4.4	Mid channel, EUT on side.

Effective Radiated Power (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting UMTS W-CDMA Rel 99 AWS band

CHANNELS TESTED

AWS Low = Ch. 1312, 1712.4 MHz AWS Mid = Ch.1427, 1735.4 MHz AWS High = Ch. 1513, 1752.6 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED INMC0747-1

FREQUENCY RANGE INVESTIGATED

Start Frequency SAMPLE CALCULATIONS

1710 MHz

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Wireless Communication Test Set	Agilent	E5515C	BSV	NCR	0
Spectrum Analyzer	Agilent	E4440A	AAW	4/19/2011	12
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	10/6/2011	12
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	5/5/2011	12
Antenna, Horn	EMCO	3115	AHE	NCR	0
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

Stop Frequency

1755 MHz

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

----Dedict . .

Coriol Manual	1000CP03S						Work Order:	
	187U1191609							01/06/12
Customer: Attendees:	Intermec Technol	logies Corpora	tion				Temperature: Humidity:	
Project:							Barometric Pres.:	
	Rod Peloquin			Powe	r: 120VAC/60	Hz	Job Site:	
EST SPECIFIC	ATIONS				ANSI/TIA/E	hod IA-603-C-2004		
EST PARAMET								
ntenna Height(s) ((m) 1 - 4			Test Dis	ance (m)	3		
OMMENTS								
one								
	G MODES							
ransmitting UMTS		AWS band						
EVIATIONS FR	OM TEST STA	NDARD						
o deviations.	OW TEST STA	NDARD						
o deviations.								
un #	5						10	20
							11 6 1	
	1					e : .	Rocky le	Keling
						Signature	Rocky le	Feling
esults	1					Signature	Rocky le	Keling
	1					Signature	Rocky le	Ketug
esults	1					Signature	Rody le	Kelug
40.0	1					Signature	Pooling le	Kelun
esults	1 Pass					Signature	Pooling la	Keluy
40.0 30.0	1			•		Signature	Poeling le	Keluy
40.0	1 Pass		£.	•		Signature	Rocky le	Selwy
40.0 30.0	1 Pass		£.	•		Signature	Rocky le	Setur
40.0 30.0 20.0	1 Pass		\$.	•		Signature	Kelig le	
40.0 30.0	1 Pass		\$.	•		Signature	Kolig le	
40.0 30.0 20.0 10.0	1 Pass		\$.	•		Signature	Koliy le	
40.0 30.0 20.0 10.0	1 Pass		**	•		Signature	Noting le	
40.0 30.0 20.0 10.0	1 Pass		\$.	•		Signature		
30.0 20.0 10.0	1 Pass		\$.	*		Signature	Koliy le	
40.0 30.0 20.0 10.0 Eg 0.0	1 Pass		\$	•		Signature		
40.0 30.0 20.0 10.0	1 Pass			•		Signature		
40.0 30.0 20.0 10.0 Eg 0.0	1 Pass		\$.			Signature		
40.0 30.0 20.0 10.0 Eg 0.0	1 Pass					Signature		
40.0 30.0 20.0 10.0 -10.0	1 Pass					Signature		
40.0 30.0 20.0 10.0 -10.0	1 Pass					Signature		
40.0 30.0 20.0 10.0 -10.0	1 Pass					Signature		
40.0 30.0 20.0 10.0 -10.0 -20.0	1 Pass							
40.0 30.0 20.0 10.0 -10.0 -20.0 -30.0	1 Pass					Signature		
40.0 30.0 20.0 10.0 -10.0 -20.0	1 Pass					Signature		
40.0 30.0 20.0 10.0 -10.0 -20.0 -30.0 -40.0	1 Pass	720.000 173					1780.000 179	

Freq		Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Compared to Spec.	
(MHz)		(degrees)	(meters)				(Watts)	(dBm)	(dBm)	(dB)	Comments
1736.217		105.0	1.0		H-Horn	PK	5.28E-01	27.2	30.0	-2.8	Mid Channel, EUT horizontal
1751.542		78.0	1.0		H-Horn	PK	4.61E-01	26.6	30.0	-3.4	High Channel, EUT horizontal
1734.567		45.0	1.2		V-Horn	PK	4.08E-01	26.1	30.0	-3.9	Mid Channel, EUT vertical
1734.408		234.0	1.0		H-Horn	PK	3.74E-01	25.7	30.0	-4.3	Mid Channel, EUT on side
1713.325		78.0	1.0		H-Horn	PK	3.33E-01	25.2	30.0	-4.8	Low Channel, EUT horizontal
1753.550		46.0	1.1		V-Horn	PK	3.12E-01	24.9	30.0	-5.1	High Channel, EUT vertical
1711.442		33.0	1.2		V-Horn	PK	2.80E-01	24.5	30.0	-5.5	Low Channel, EUT vertical
1734.567		145.0	1.5		V-Horn	PK	2.76E-01	24.4	30.0	-5.6	Mid Channel, EUT horizontal
1736.300		38.0	1.1		H-Horn	PK	2.25E-01	23.5	30.0	-6.5	Mid Channel, EUT vertical
1734.450		298.0	1.6		V-Horn	PK	2.00E-01	23.0	30.0	-7.0	Mid Channel, EUT on side