Intermec Technologies Corporation

1000CP01S 1000CP02S 1001CP01S

Report No. ITRM0249

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2011 Northwest EMC, Inc

Certificate of Test Last Date of Test: August 24, 2011 Intermec Technologies Corporation Model: 1000CP01S, 1000CP02S, 1001CP01S

Emissions			
Test Description	Specification	Test Method	Pass/Fail
Effective Radiated Power (ERP)	FCC 22H:2011	ANSI/TIA/EIA-603-C-2004	Pass
Effective Radiated Power (EIRP)	FCC 24E:2011	ANSI/TIA/EIA-603-C-2004	Pass
Effective Radiated Power (EIRP)	FCC 27:2011	ANSI/TIA/EIA-603-C-2004	Pass
Out of Band Emissions	FCC 22H:2011	ANSI/TIA/EIA-603-C-2004	Pass
Out of Band Emissions	FCC 24E:2011	ANSI/TIA/EIA-603-C-2004	Pass
Out of Band Emissions	FCC 27:2011	ANSI/TIA/EIA-603-C-2004	Pass

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at: Northwest EMC, Inc. 41 Tesla Ave., Irvine, CA 92618

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834B-1).

Approved By:	
Dould martin	
Donald Facteau, IS Manager	

QAIVN

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. NVLAP is administered by the National Institute of Standards and Technology (NIST), an agency of the U.S. Commerce Department. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1*)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

Accreditations and Authorizations

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-3265, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).*

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017).

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157, Brooklyn Park: US0175)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Party Requesting the Test

Company Name:	Intermec Technologies Corporation
Address:	6001 36 th Avenue West
City, State, Zip:	Everett, WA 98203-1264
Test Requested By:	Wayne Rieger
Model:	1000CP01S, 1000CP02S, 1001CP01S
First Date of Test:	8/1/2011
Last Date of Test:	8/24/2011
Receipt Date of Samples:	8/1/2011
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Handheld computers containing the two radio modules, the Intermec Model RC12 and the Sierra Wireless MC8355, each with their own integral antenna.

The Sierra Wireless MC8355 is a UMTS radio operating in the Cellular, PCS, and AWS bands.

The Intermec Model RC12 radio module is an 802.11a/b/g/n – Bluetooth radio.

Testing Objective:

To demonstrate compliance of the UMTS radio with the radiated power and radiated out of band emissions requirements of FCC 22H, FCC 24E, and FCC 27. The antenna port direct-connect measurements are documented in a separate report.

FCC compliance of the RC12 radio module is documented in separate reports.

CONFIGURATION 1 ITRM0249

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Handheld Computer, CN70	Intermec Technologies Corp	1000CP01S	178U1191029	

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
Power Supply	Intermec Technologies Corp	AE39	02061000875	
RS232 SNAP-ON	Intermec Technologies Corp	225-768-001	HDIP D-SUB, A3	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.8m	No	Power Supply	AC Mains
DC Leads	No	1.8m	Yes	SNAPON	Power Supply
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 ITRM0249

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Handheld Computer, CN70e	Intermec Technologies Corp	1000CP02S	178U1191038	

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Power Supply	Intermec Technologies Corp	AE39	02061000875		
RS232 SNAP-ON	Intermec Technologies Corp	225-768-001	HDIP D-SUB, A3		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.8m	No	Power Supply	AC Mains
DC Leads	No	1.8m	Yes	SNAPON	Power Supply
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 3 ITRM0249

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Handheld Computer, CK70	Intermec Technologies Corp	1001CP01S	178U1191003	

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
Power Supply	Intermec Technologies Corp	AE39	02061000875	
RS232 SNAP-ON	Intermec Technologies Corp	225-768-001	HDIP D-SUB, A3	

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Power	No	1.8m	No	Power Supply	AC Mains	
DC Leads	No	1.8m	Yes	SNAPON	Power Supply	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

CONFIGURATION 4 ITRM0249

Software/Firmware Running during test				
Description	Version			
Windows Mobile	6.5			

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Handheld Computer, CN70	Intermec Technologies Corp	1000CP01S	28311047060		

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
RS232 SNAP-ON	Intermec Technologies Corp	225-768-001	HDIP D-SUB, A3	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.8m	No	Power Supply	AC Mains
DC Leads	No	1.8m	Yes	SNAPON	Power Supply
RS-232 - USB	No	0.45m	Yes	SNAPON	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 5 ITRM0249

Software/Firmware Running during test				
Description Version				
Windows Mobile	6.5			

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Handheld Computer, CN70e	Intermec Technologies Corp	1000CP02S	178U1191040		

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
RS232 SNAP-ON	Intermec Technologies Corp	225-768-001	HDIP D-SUB, A3	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.8m	No	Power Supply	AC Mains
DC Leads	No	1.8m	Yes	SNAPON	Power Supply
RS-232 - USB	No	0.45m	Yes	SNAPON	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 6 ITRM0249

Software/Firmware Running during test				
Description Version				
Windows Mobile	6.5			

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Handheld Computer, CK70	Intermec Technologies Corp	1001CP01S	28311047275	

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
RS232 SNAP-ON	Intermec Technologies Corp	225-768-001	HDIP D-SUB, A3	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.8m	No	Power Supply	AC Mains
DC Leads	No	1.8m	Yes	SNAPON	Power Supply
RS-232 - USB	No	0.45m	Yes	SNAPON	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Modifications

			Equipment modi	fications	
Item	Date	Test	Modification	Note	Disposition of EUT
1	8/1/2011	Effective Radiated Power (ERP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	8/3/2011	Out of Band Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	8/12/2011	Effective Radiated Power (EIRP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	8/12/2011	Out of Band Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	8/23/2011	Effective Radiated Power (EIRP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	8/24/2011	Out of Band Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Effective Radiated Power (ERP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION
Transmitting Cell Band, WCDMA
Transmitting Cell Band, E-GPRS (EDGE)
Transmitting Cell Band, GPRS
CHANNELS TESTED
GSM Low = Ch. 128, 824.2 MHz
GSM Mid = Ch. 190, 836.6 MHz
GSM High = Ch. 251, 848.8 MHz
UMTS Low = Ch. 4132, 826.4 MHz
UMTS Mid = Ch. 4183, 836.6 MHz
UMTS High = Ch. 4233, 846.6 MHz

POWER SETTINGS INVESTIGATED

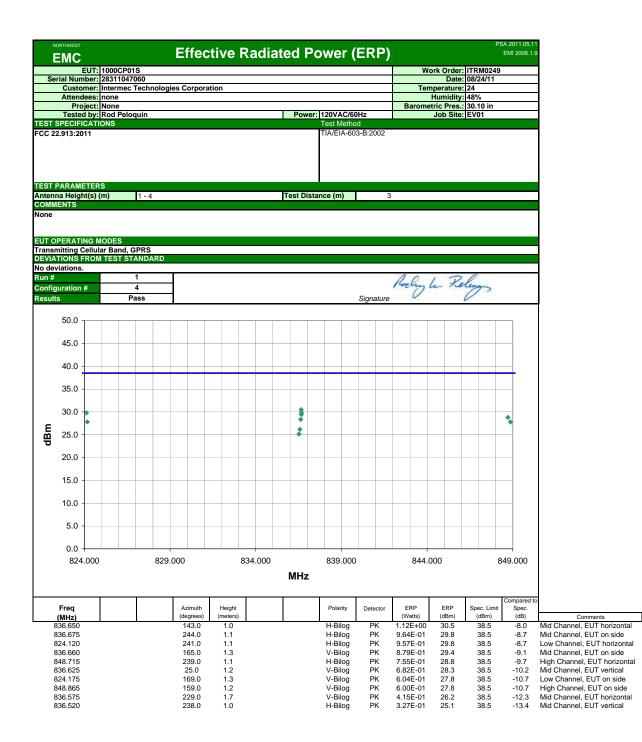
120VAC/60Hz

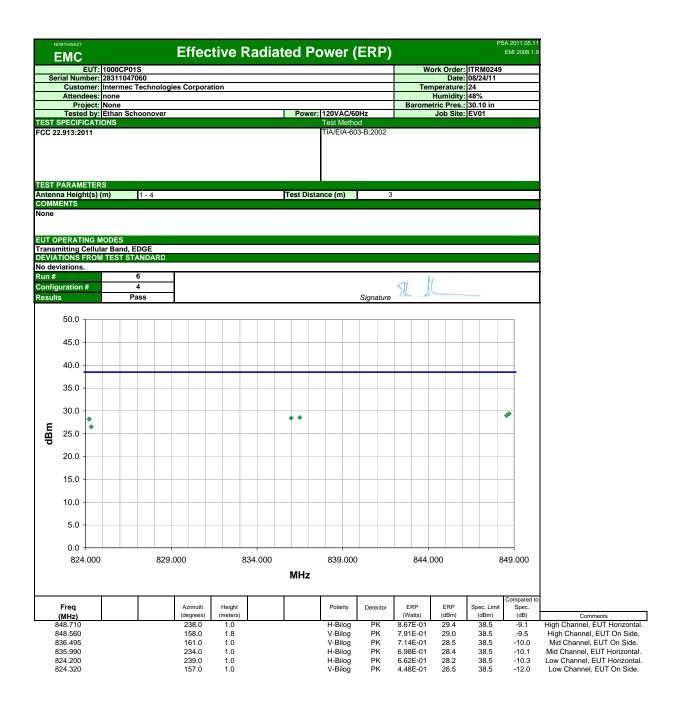
REQUENCY RANGE INVESTIGATED 849 MHz 824 MHz Start Frequency Stop Frequency

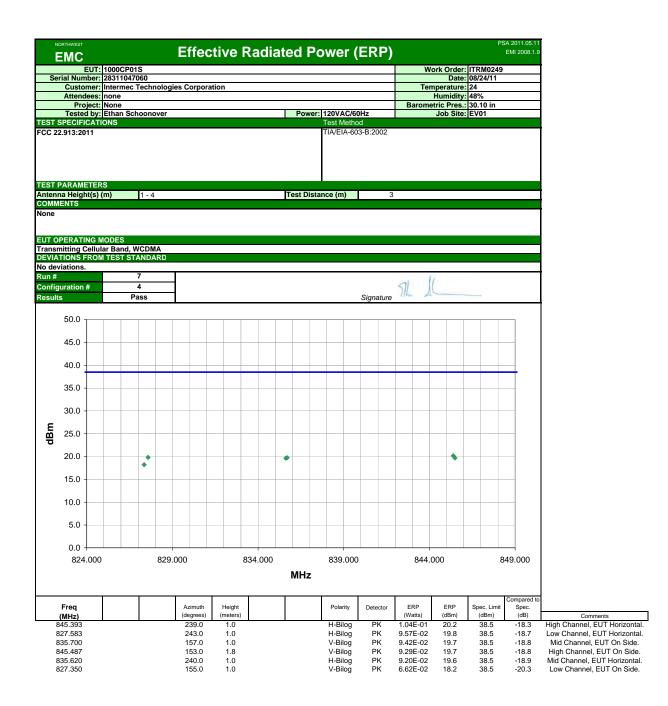
SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	5/5/2011	12
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	36
EV01 Cables	N/A	Bilog Cables	EVA	6/28/2011	12
Spectrum Analyzer	Agilent	E4446A	AAQ	6/24/2011	12
Antenna, Bilog	Teseq	CBL 6141B	AXR	11/29/2010	12
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	1/10/2011	12
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0


Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a dipole antenna. A signal generator was connected to the dipole antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the dipole antenna the effective radiated power for each emission was determined.

Effective Radiated Power (ERP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION
Transmitting Cell Band, WCDMA
Transmitting Cell Band, E-GPRS (EDGE)
Transmitting Cell Band, GPRS
CHANNELS TESTED
GSM Low = Ch. 128, 824.2 MHz
GSM Mid = Ch. 190, 836.6 MHz
GSM High = Ch. 251, 848.8 MHz
UMTS Low = Ch. 4132, 826.4 MHz
UMTS Mid = Ch. 4183, 836.6 MHz
UMTS High = Ch. 4233, 846.6 MHz

POWER SETTINGS INVESTIGATED

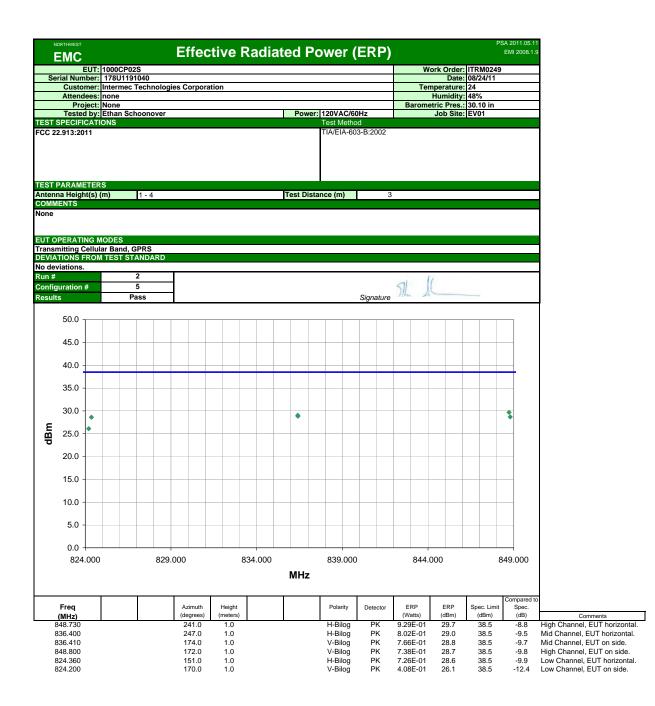
120VAC/60Hz

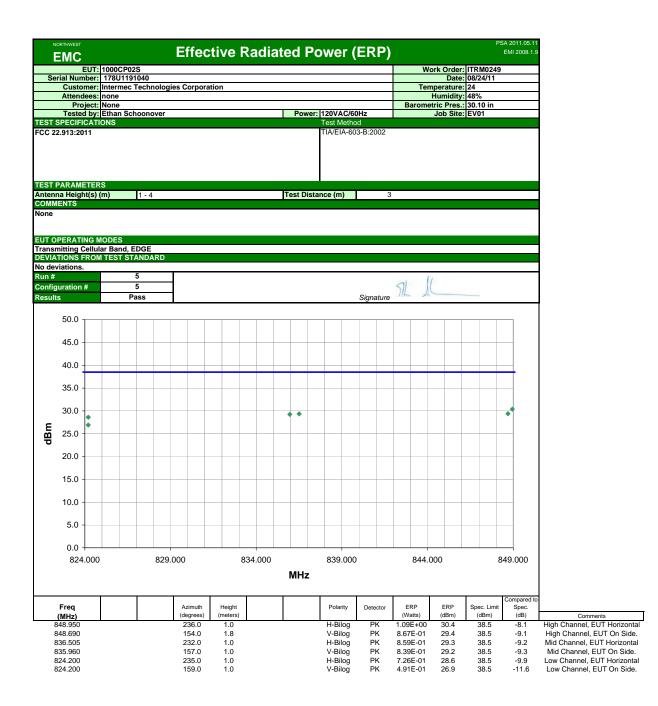
REQUENCY RANGE INVESTIGATED 849 MHz 824 MHz Start Frequency Stop Frequency

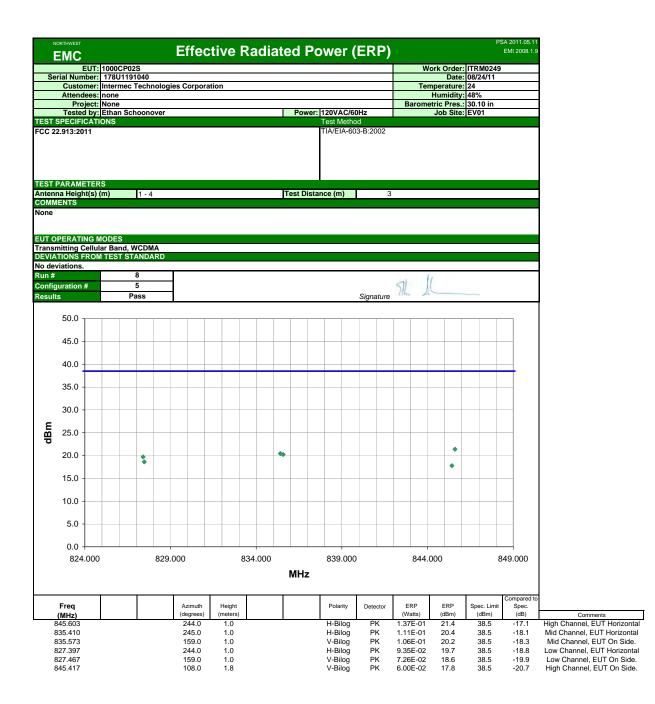
SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	5/5/2011	12
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	36
EV01 Cables	N/A	Bilog Cables	EVA	6/28/2011	12
Spectrum Analyzer	Agilent	E4446A	AAQ	6/24/2011	12
Antenna, Bilog	Teseq	CBL 6141B	AXR	11/29/2010	12
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	1/10/2011	12
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0


Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a dipole antenna. A signal generator was connected to the dipole antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the dipole antenna the effective radiated power for each emission was determined.

Effective Radiated Power (ERP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION
Fransmitting Cell Band, WCDMA
Fransmitting Cell Band, E-GPRS (EDGE)
Fransmitting Cell Band, GPRS
CHANNELS TESTED
GSM Low = Ch. 128, 824.2 MHz
GSM Mid = Ch. 190, 836.6 MHz
GSM High = Ch. 251, 848.8 MHz
JMTS Low = Ch. 4132, 826.4 MHz
JMTS Mid = Ch. 4183, 836.6 MHz
JMTS High = Ch. 4233, 846.6 MHz

POWER SETTINGS INVESTIGATED

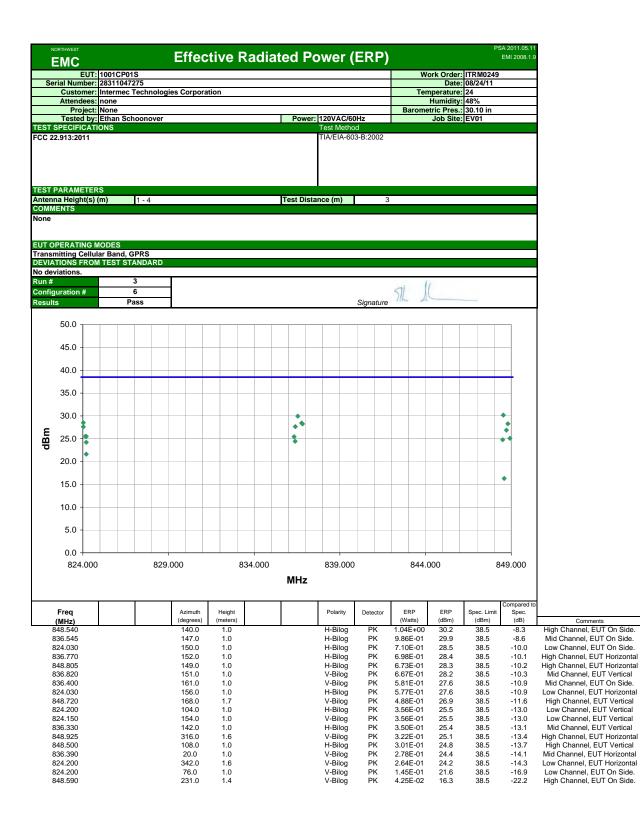
120VAC/60Hz

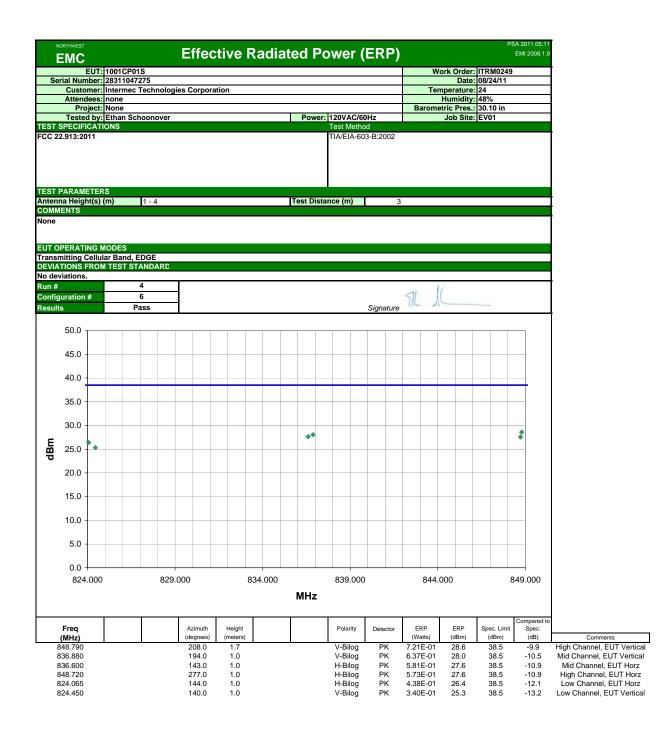
REQUENCY RANGE INVESTIGATED 849 MHz 824 MHz Start Frequency Stop Frequency

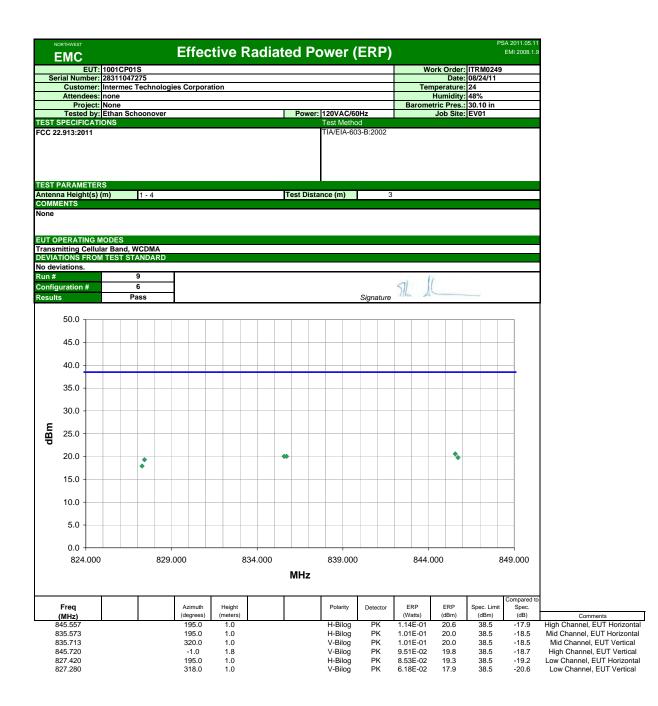
SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	5/5/2011	12
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	36
EV01 Cables	N/A	Bilog Cables	EVA	6/28/2011	12
Spectrum Analyzer	Agilent	E4446A	AAQ	6/24/2011	12
Antenna, Bilog	Teseq	CBL 6141B	AXR	11/29/2010	12
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	1/10/2011	12
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0


UREMENT BANDWIDTHS			
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made us	sing the bandwidths and dete	ctors specified. No video filt	er was used.


MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a dipole antenna. A signal generator was connected to the dipole antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the dipole antenna the effective radiated power for each emission was determined.

Effective Radiated Power (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION
Transmitting PCS Band, WCDMA
Transmitting PCS Band, E-GPRS (EDGE)
Transmitting PCS Band, GPRS
CHANNELS TESTED
GSM Low = Ch. 512, 1850.2 MHz
GSM Mid = Ch. 661, 1880 MHz
GSM High = Ch. 810, 1909.8 MHz
UMTS Low = Ch. 9262, 1852.4 MHz
UMTS Mid = Ch. 9400, 1880 MHz
UMTS High = Ch. 9538, 1907.6 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

EMC

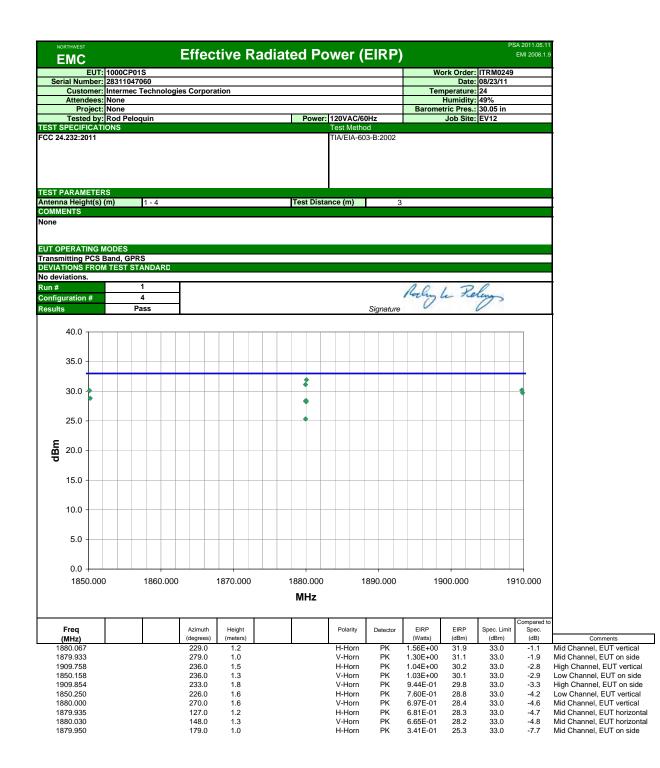
 FREQUENCY RANGE INVESTIGATED

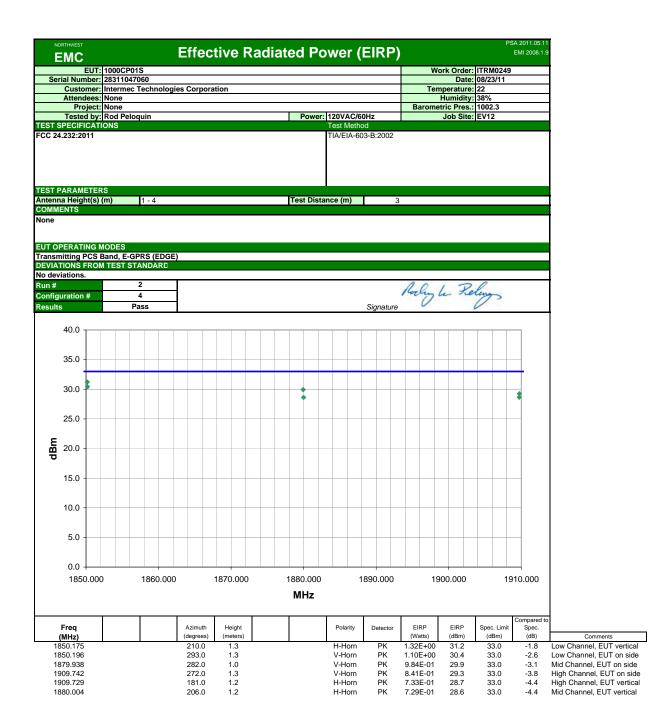
 Start Frequency
 1850 MHz
 Stop Frequency
 1910 MHz

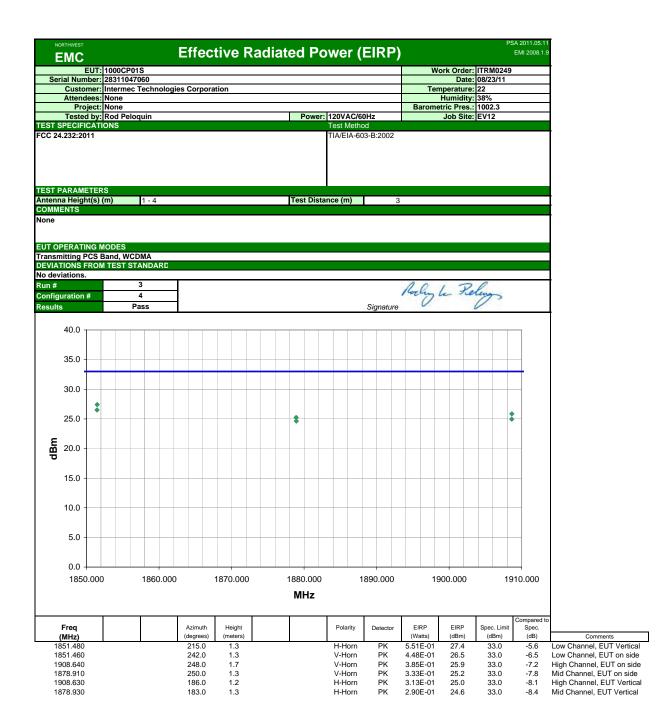
SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AAW	4/19/2011	12
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	11/22/2010	12
Antenna, Horn	EMCO	3115	AHE	10/22/2009	24
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	1/10/2011	12
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0


MEASUREMENT BANDWID	THS			
Freque	ncy Range	Peak Data	Quasi-Peak Data	Average Data
()	/IHz)	(kHz)	(kHz)	(kHz)
0.01	- 0.15	1.0	0.2	0.2
0.15	- 30.0	10.0	9.0	9.0
30.0	- 1000	100.0	120.0	120.0
Abov	re 1000	1000.0	N/A	1000.0
Measurements	were made using th	e bandwidths and deteo	ctors specified. No video filte	er was used.


MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes. The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Effective Radiated Power (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

NODES OF OPERATION	
ransmitting PCS Band, E-GPRS (EDGE)	
ransmitting PCS Band, GPRS	
ransmitting PCS Band, WCDMA	
CHANNELS TESTED	
GSM Low = Ch. 512, 1850.2 MHz	
SSM Mid = Ch. 661, 1880 MHz	
SSM High = Ch. 810, 1909.8 MHz	
JMTS Low = Ch. 9262, 1852.4 MHz	
JMTS Mid = Ch. 9400, 1880 MHz	
JMTS High = Ch. 9538, 1907.6 MHz	

POWER SETTINGS INVESTIGATED

120VAC/60Hz

 FREQUENCY RANGE INVESTIGATED

 Start Frequency
 1850 MHz
 Stop Frequency
 1910 MHz

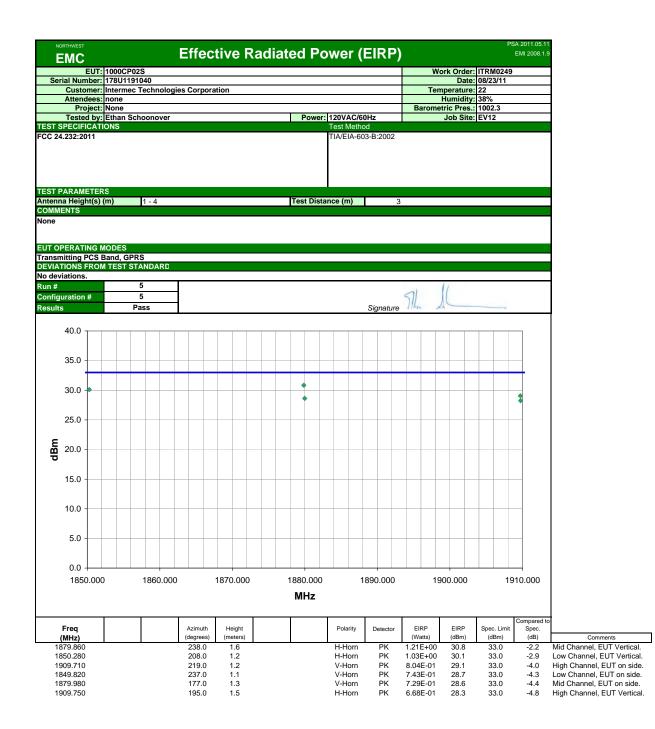
SAMPLE CALCULATIONS

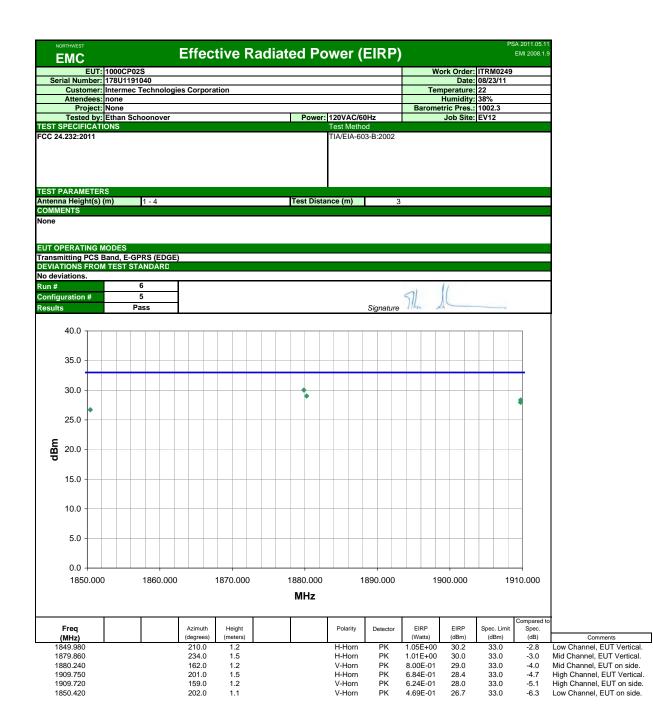
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AAW	4/19/2011	12
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	11/22/2010	12
Antenna, Horn	EMCO	3115	AHE	10/22/2009	24
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	1/10/2011	12
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Measurements were made using the bandwidths and detectors specified. No video filter was used.


MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes. The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Effective Radiated Power (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

POWER SETTINGS INVESTIGATED

120VAC/60Hz

 FREQUENCY RANGE INVESTIGATED

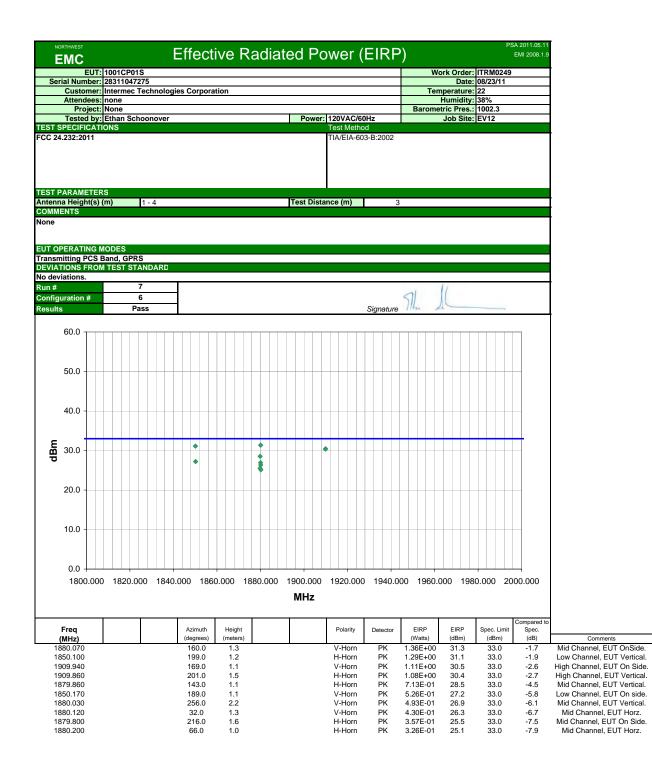
 Start Frequency
 1850 MHz
 Stop Frequency
 1910 MHz

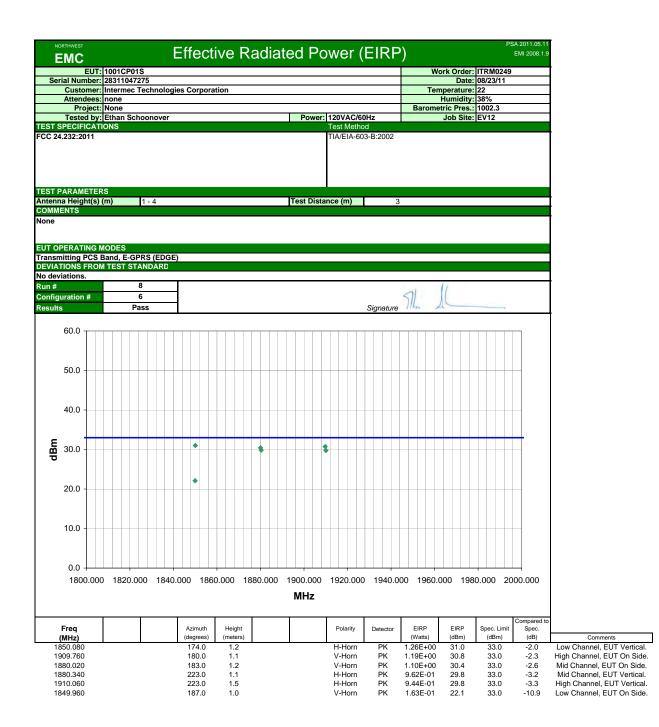
SAMPLE CALCULATIONS

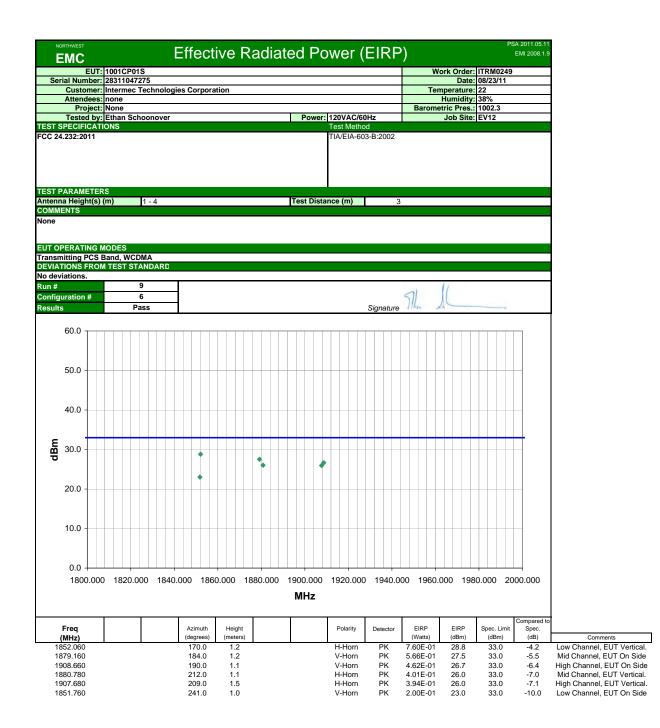
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AAW	4/19/2011	12
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	11/22/2010	12
Antenna, Horn	EMCO	3115	AHE	10/22/2009	24
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	1/10/2011	12
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMEN	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
M	easurements were made usi	ng the bandwidths and deteo	ctors specified. No video filto	er was used.


<u>v</u> 1


MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION Transmitting AWS 1700 Band, WCDMA

CHANNELS TESTED

AWS Low = Ch. 1312, 1712.4 MHz AWS Mid = Ch.1427, 1735.4 MHz AWS High = Ch. 1513, 1752.6 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

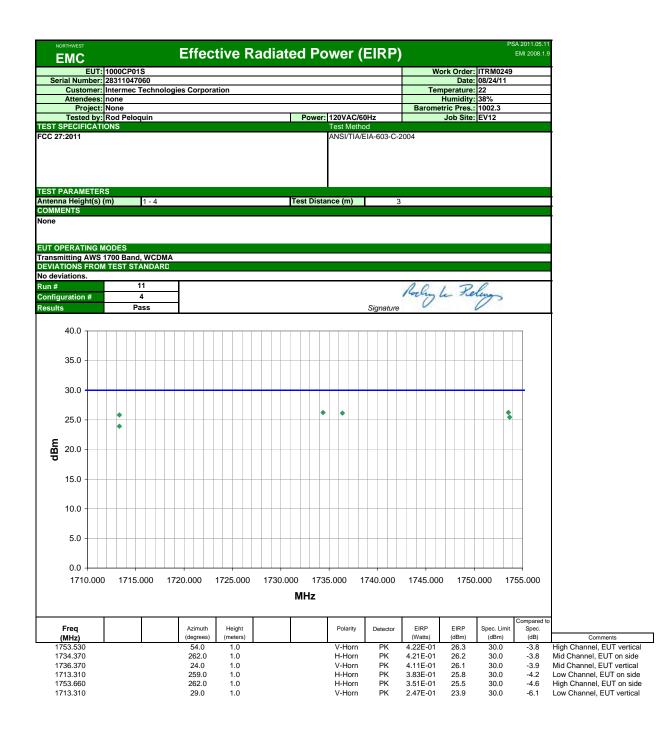
FREQUENCY RANGE INV	ESTIGATED		
Start Frequency	1710 MHz	Stop Frequency	1755 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AAW	4/19/2011	12
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
Antenna, Horn	EMCO	3115	AHE	10/22/2009	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	11/22/2010	12
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	1/10/2011	12
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT BANDWIDTHS


BANDWIDTHS			
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made us	sing the handwidths and deter	ctors specified No video filte	r was used

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION Transmitting AWS 1700 Band, WCDMA CHANNELS TESTED

AWS Low = Ch. 1312, 1712.4 MHz AWS Mid = Ch.1427, 1735.4 MHz AWS High = Ch. 1513, 1752.6 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

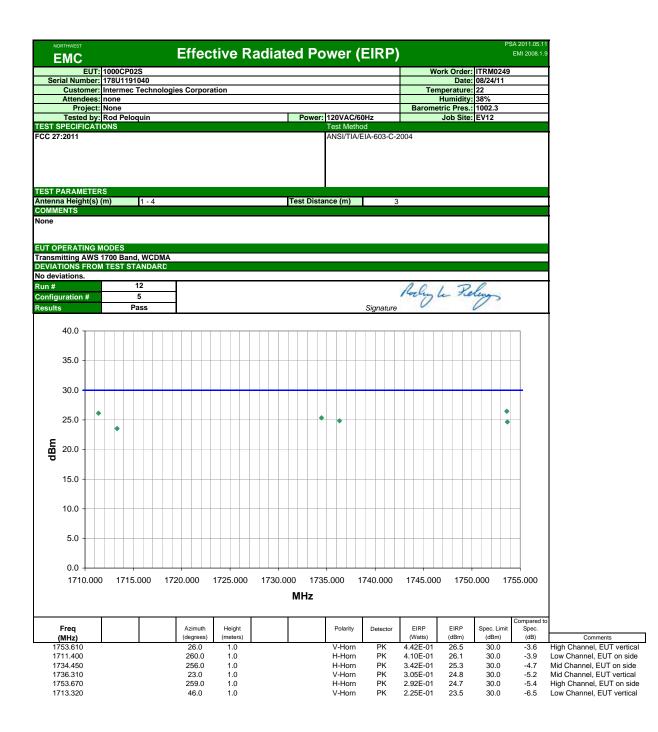
FREQUENCY RANGE INVESTIGATED					
Start Frequency	1710 MHz	Stop Frequency	1755 MHz		

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

EST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AAW	4/19/2011	12
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
Antenna, Horn	EMCO	3115	AHE	10/22/2009	24
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	11/22/2010	12
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	1/10/2011	12
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT BANDWIDTHS


MEAGOREMEN	BANDWIDTHS					
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
	(MHz)	(kHz)	(kHz)	(kHz)		
	0.01 - 0.15	1.0	0.2	0.2		
	0.15 - 30.0	10.0	9.0	9.0		
	30.0 - 1000	100.0	120.0	120.0		
	Above 1000	1000.0	N/A	1000.0		
	Measurements were made using the handwidths and detectors specified. No video filter was used					

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION Transmitting AWS 1700 Band, WCDMA

CHANNELS TESTED

AWS Low = Ch. 1312, 1712.4 MHz AWS Mid = Ch.1427, 1735.4 MHz AWS High = Ch. 1513, 1752.6 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

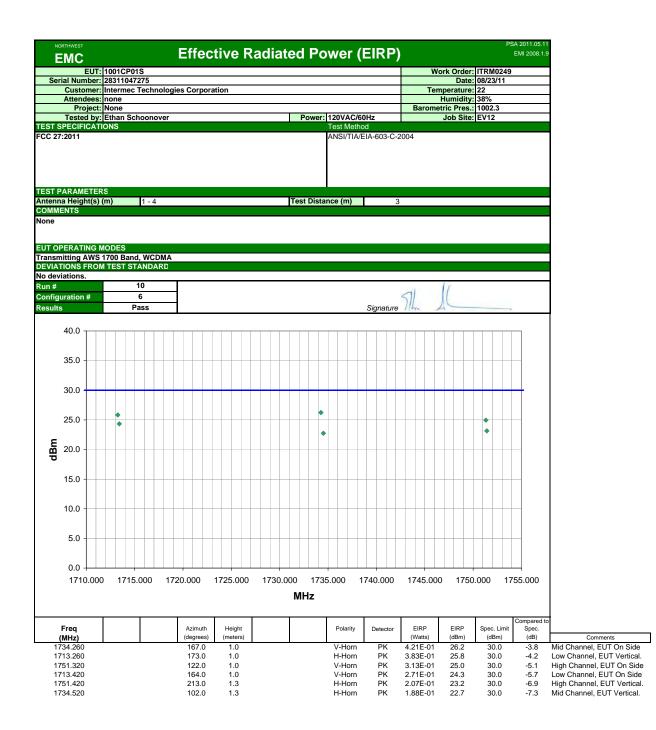
FREQUENCY RANGE INVESTIGATED					
Start Frequency	1710 MHz	Stop Frequency	1755 MHz		

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AAW	4/19/2011	12
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	11/22/2010	12
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
Antenna, Horn	EMCO	3115	AHE	10/22/2009	24
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	1/10/2011	12
Power Meter	Gigatronics	8651A	SPM	1/7/2010	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT BANDWIDTHS


Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made us			

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The amplitude and frequency were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

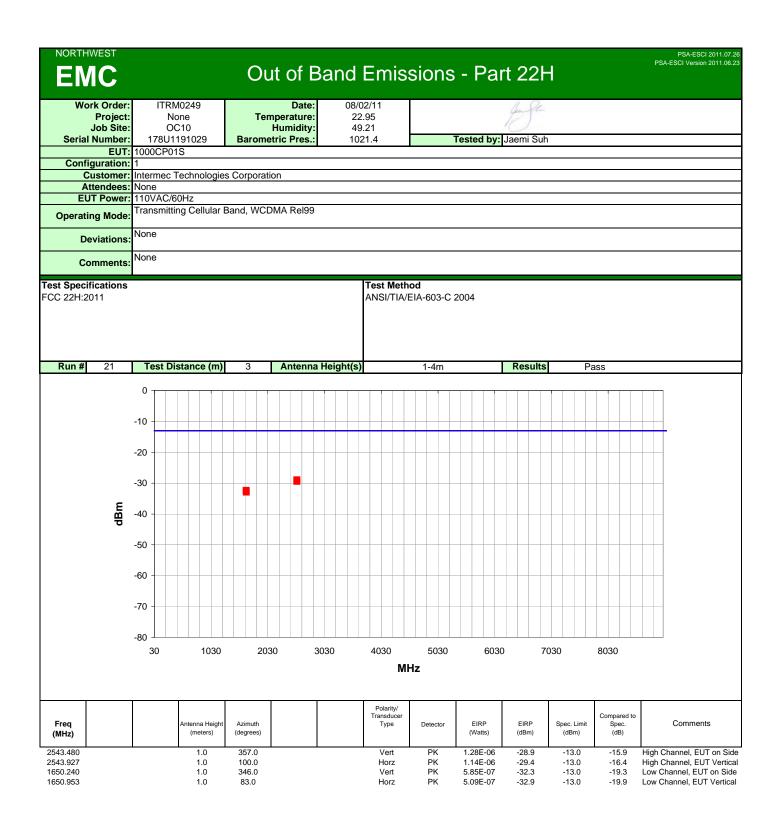
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

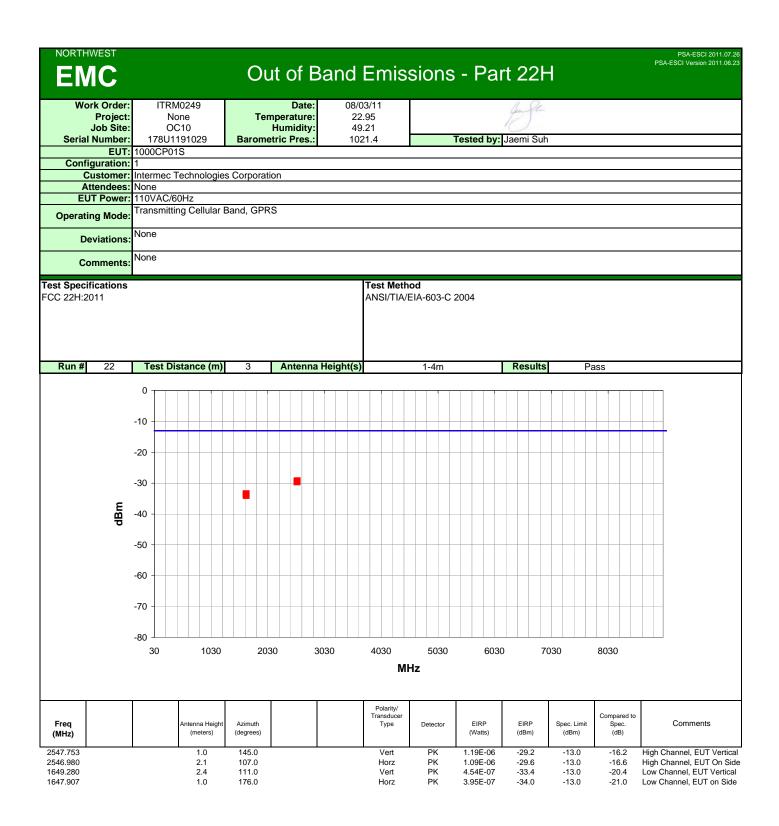
MODES OF OPERATION								
Transmitting Cellular Band, WCDMA Rel	Transmitting Cellular Band, WCDMA Rel99							
Transmitting Cellular Band, GPRS	Transmitting Cellular Band, GPRS							
Transmitting Cellular Band, E-GPRS	Transmitting Cellular Band, E-GPRS							
,,								
POWER SETTINGS INVESTIGATED								
110VAC/60Hz								
CONFIGURATIONS INVESTIGATED								
ITRM0249 - 1								
FREQUENCY RANGE INVESTIGATED								
Start Frequency	30 MHz	Stop Frequency		9 GHz				
SAMPLE CALCULATIONS								
Radiated Emissions: Field Strength = Measured Level +	Antenna Eactor + Cable Eactor - Amo	lifier Gain + Distance Adjustment Eactor + I	External Atten	uation				
Radiated Emissions. Heid Ottengin = Measured Eever+	Antenna i actor + Cable i actor - Amp	inter Gain + Distance Aujustment ractor +		dadon				
TEST EQUIPMENT								
		M 1 1						
Description	Manufacturer	Model	ID	Last Cal.	Interval			
Antenna, Horn	EMCO	3115	AHA	10/22/2009	24 mo			
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	BSW	NCR	0 mo			
High Pass Filter 1.2-18 GHz	Micro-Tronics	HPM50108	HFW	3/17/2010	24 mo			
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo			

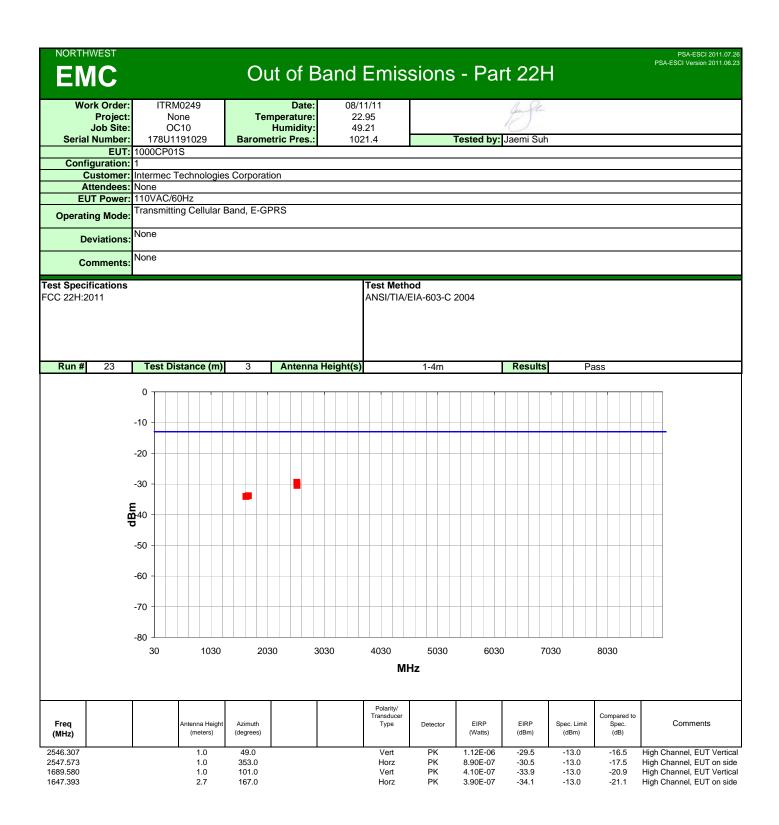
oniversal reade communication rester	Ronde & Ochwarz	01010200	DOW	NON	01110
High Pass Filter 1.2-18 GHz	Micro-Tronics	HPM50108	HFW	3/17/2010	24 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12 mo
Antenna, Horn	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Antenna, Dipole	EMCO	3121C	ADF	NCR	0 mo

	Frequency Range	Peak Data	Quasi-Peak Data	Average Data	
	(MHz)	(kHz)	(kHz)	(kHz)	
	0.01 - 0.15	1.0	0.2	0.2	
	0.15 - 30.0	10.0	9.0	9.0	
	30.0 - 1000	100.0	120.0	120.0	
	Above 1000	1000.0	N/A	1000.0	
Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FC					

MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION


The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION	
Transmitting Cellular Band, WCDMA Rel99	
Transmitting Cellular Band, GPRS	
Transmitting Cellular Band, E-GPRS	
POWER SETTINGS INVESTIGATED	
110VAC/60Hz	

CONFIGURATIONS INVESTIGATED ITRM0249 - 2

FREQUENCY RANGE INVESTIGATED Start Frequency

Stop Frequency

9 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

30 MHz

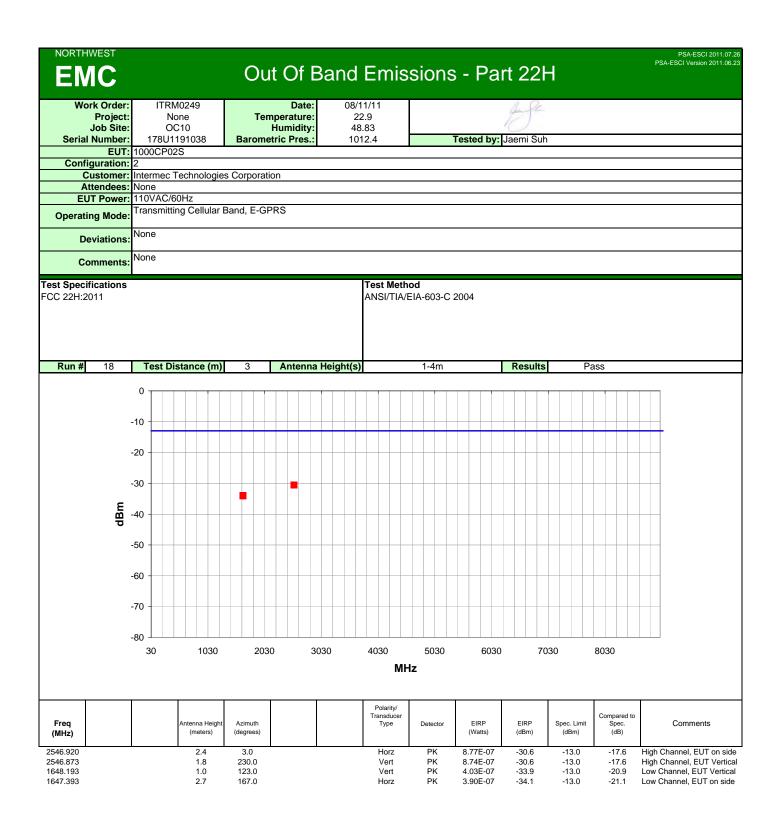
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	EMCO	3115	AHA	10/22/2009	24 mo
Universal Radio Communication	Rohde & Schwarz	CMU200	BSW	NCR	0 mo
High Pass Filter 1.2-18 GHz	Micro-Tronics	HPM50108	HFW	3/17/2010	24 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12 mo
Antenna, Horn	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Antenna, Dipole	EMCO	3121C	ADF	NCR	0 mo

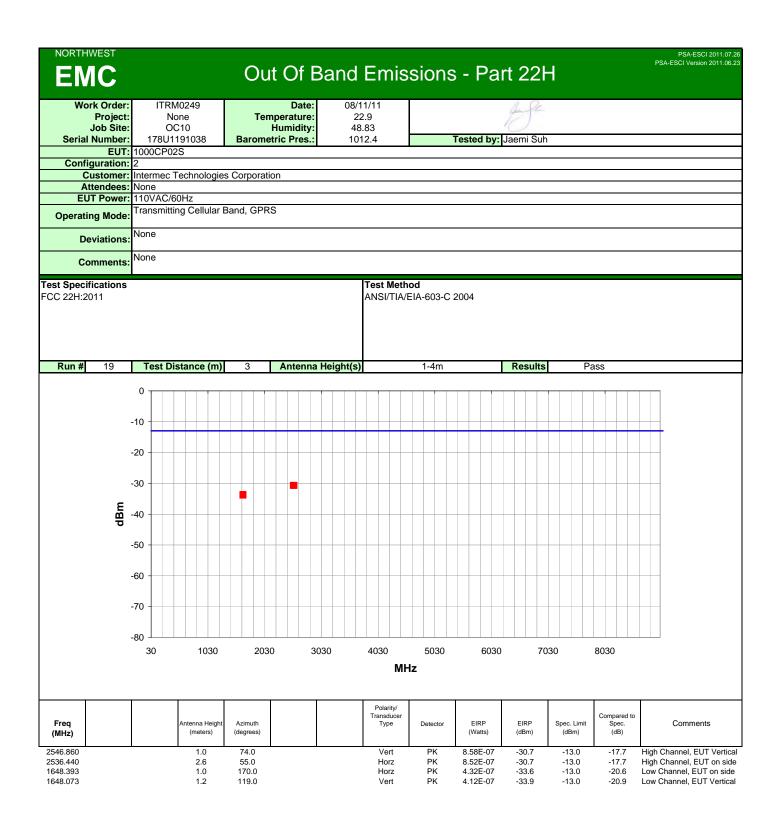
MEASUREMENT BANDWIDTHS

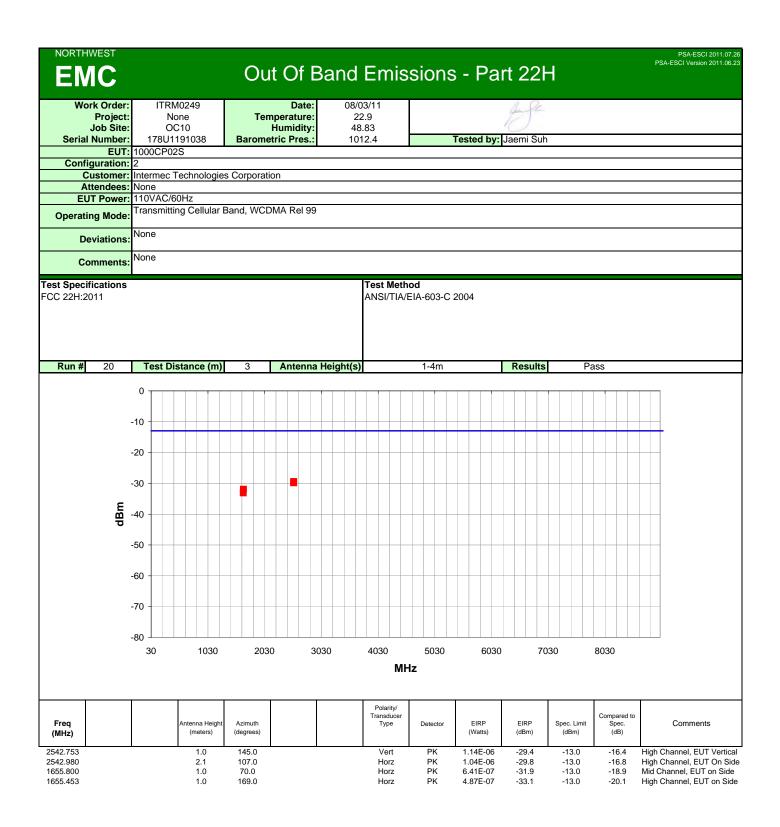
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data			
	(MHz)	(kHz)	(kHz)	(kHz)			
	0.01 - 0.15	1.0	0.2	0.2			
	0.15 - 30.0	10.0	9.0	9.0			
	30.0 - 1000	100.0	120.0	120.0			
	Above 1000	1000.0	N/A	1000.0			

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION


The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION			
Transmitting Cellular Band,W	CMDA Rel 99		
Transmitting Cellular Band, E	GPRS		
Transmitting Cellular Band, G	PRS (GMSK)		
POWER SETTINGS INVEST	GATED		
110VAC/60Hz			
CONFIGURATIONS INVEST	GATED		
ITRM0249 - 3			
FREQUENCY RANGE INVES	TIGATED		
Start Frequency	30 MHz	Stop Frequency	9 GHz

SAMPLE CALCULATIONS

EMC

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

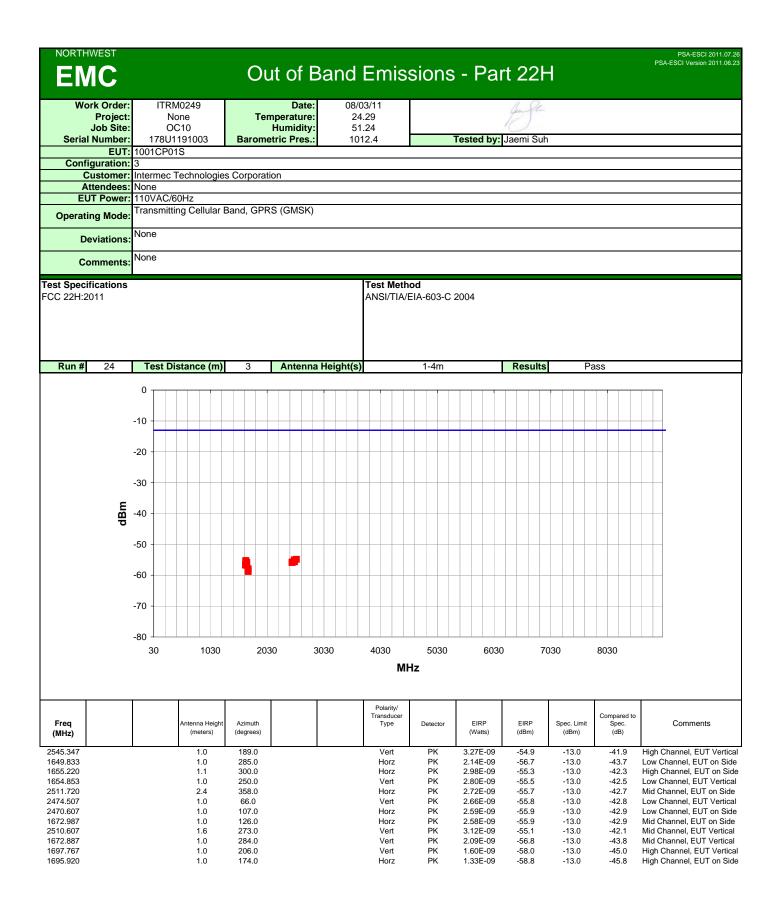
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	EMCO	3115	AHA	10/22/2009	24 mo
Universal Radio Communication	Rohde & Schwarz	CMU200	BSW	NCR	0 mo
High Pass Filter 1.2-18 GHz	Micro-Tronics	HPM50108	HFW	3/17/2010	24 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12 mo
Antenna, Horn	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Antenna, Dipole	EMCO	3121C	ADF	NCR	0 mo

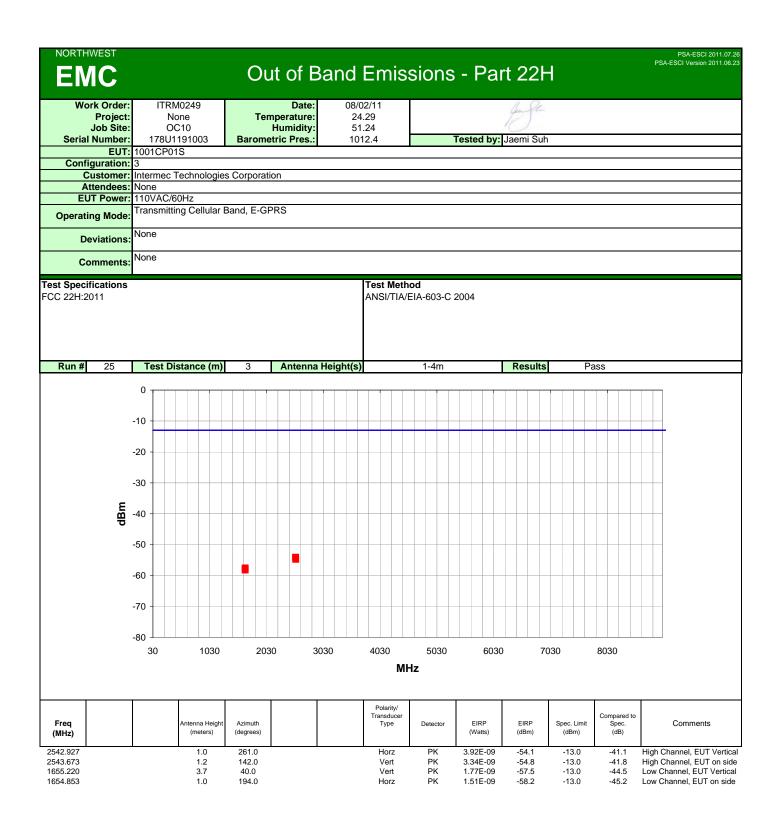
MEASUREMENT BANDWIDTHS

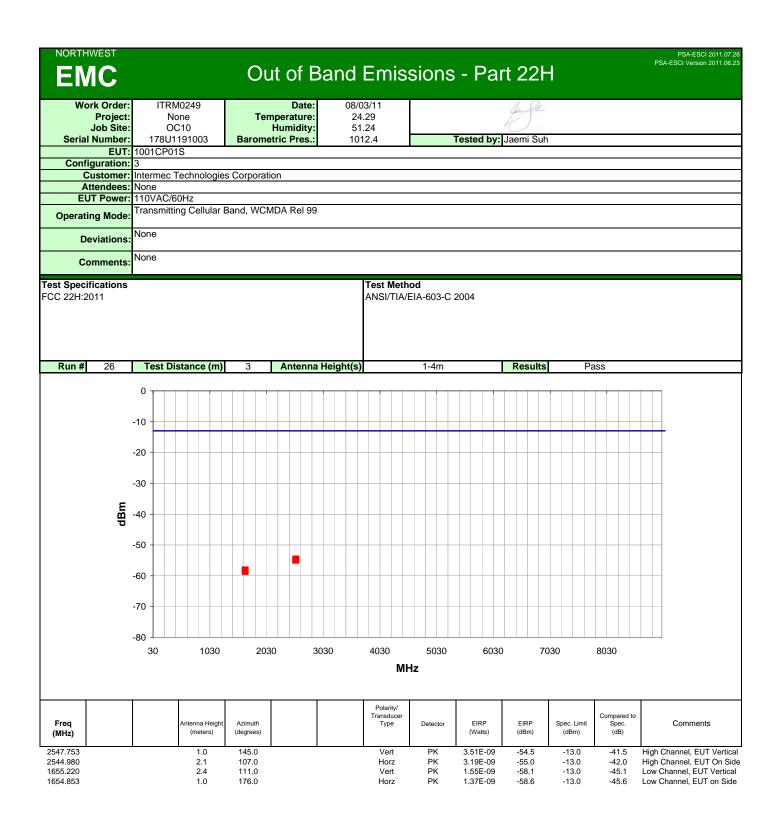
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION


The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

EMC

Out of Band Emissions - Part 24E

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION	
Transmitting PCS Band, E-GPRS (EDGE)	
Transmitting PCS Band, GPRS (GMSK)	
Transmitting PCS Band, WCDMA	
POWER SETTINGS INVESTIGATED	
110VAC/60Hz	

CONFIGURATIONS INVESTIGATED ITRM0249 - 1

FREQUENCY RANGE INVESTIGATED Start Frequency

Stop Frequency

18 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

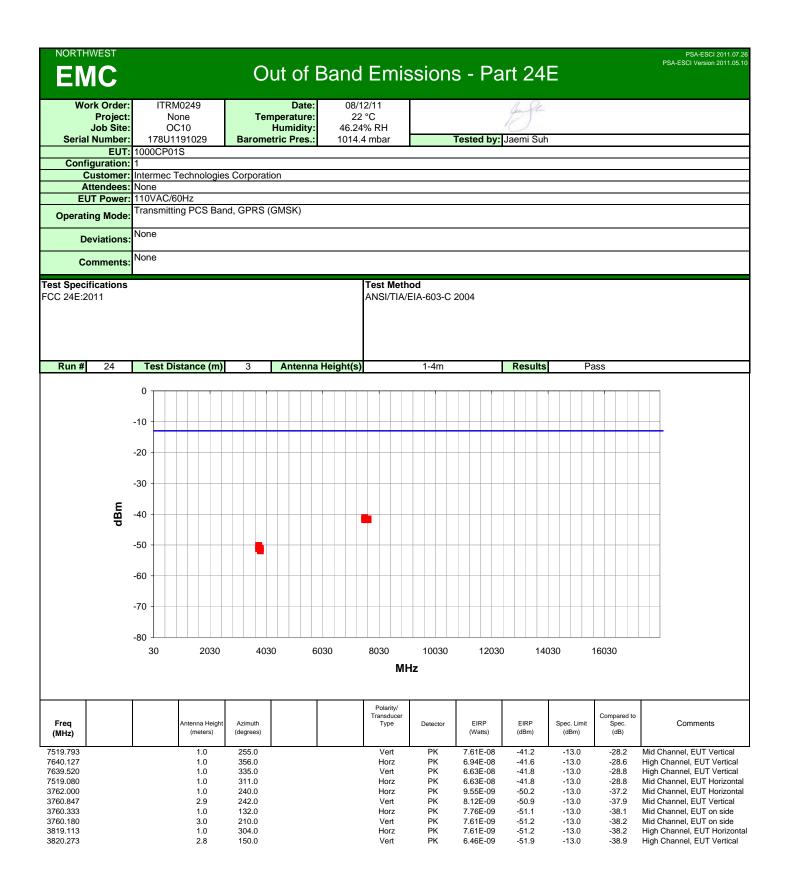
30 MHz

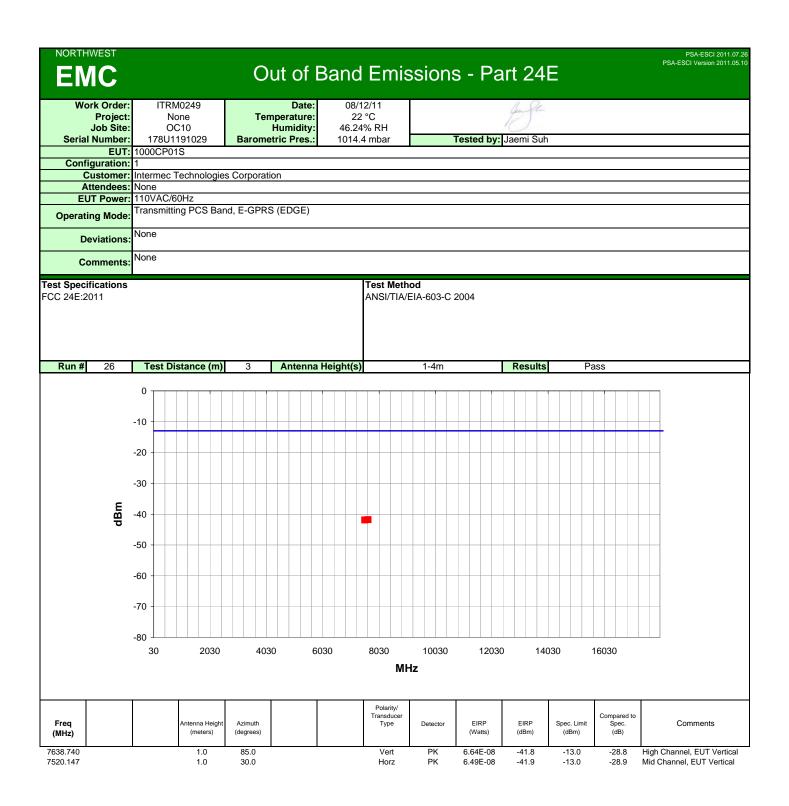
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	EMCO	3115	AHA	10/22/2009	24 mo
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	BSW	NCR	0 mo
High Pass Filter 1.2-18 GHz	Micro-Tronics	HPM50108	HFW	3/17/2010	24 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	11/17/2010	12 mo
Antenna, Horn	ETS	3160-08	AHT	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	11/17/2010	12 mo
Antenna, Horn	ETS	3160-07	AHR	NCR	0 mo
OC 10 Cables	N/A	12-18GHz RE Cables	000	6/24/2011	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12 mo
Antenna, Horn	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Antenna, Dipole	EMCO	3121C	ADF	NCR	0 mo

MEASUREMENT BANDWIDTHS Frequency Range Peak Data Quasi-Peak Data Average Data (MHz) (kHz) (kHz) (kHz) 0.01 - 0.15 1.0 0.2 0.2 0.15 - 30.0 10.0 9.0 9.0 30.0 - 1000 100.0 120.0 120.0 Above 1000 1000.0 N/A 1000.0 Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the

FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

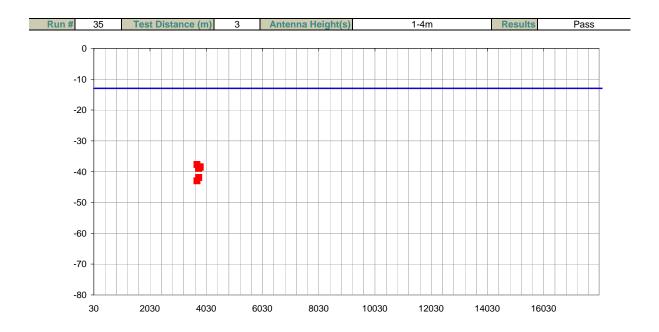

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty available upon request.


TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

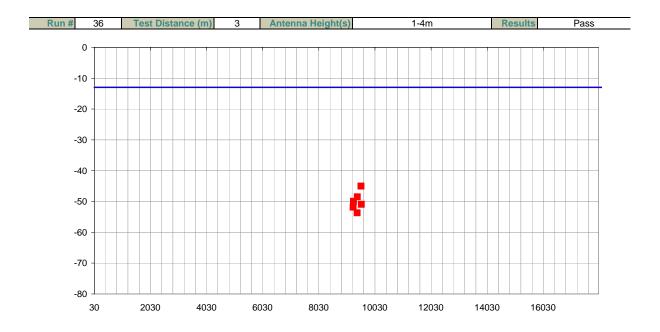
For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.



	HERRYN	144		
Work Order:	ITRM0249	Date:	08/24/11	Un Pt
Project:	None	Temperature:	22 °C	Jun
Job Site:	OC10	Humidity:	49% RH	
Serial Number:	178U1191029	Barometric Pres.:	1111 mbar	Tested by: Jaemi Suh
EUT:	1000CP01S			
Configuration:	1 - CONFIGURATION	N 1		
Customer:	Intermec Technologie	es Corporation		
Attendees:	None			
EUT Power:	110VAC/60Hz			
Operating Mode:	WCDMA PCS Band.			
Deviations	None			
Comments	None			
Test Specifications			Test Meth	od

FCC 24E:2011



Freq (MHz)	Antenna He (meters	U 1		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
3702.450	1.0	64.0		Horz	PK	1.71E-07	-37.7	-13.0	-24.7	Low Channel, X-Axis
3813.167	1.0	42.0		Vert	PK	1.44E-07	-38.4	-13.0	-25.4	High Channel, X-Axis
3812.467	1.0	47.0		Horz	PK	1.38E-07	-38.6	-13.0	-25.6	High Channel, X-Axis
3758.390	1.2	69.0		Horz	PK	1.28E-07	-38.9	-13.0	-25.9	Mid Channel, X-Axis
3761.464	1.2	191.0		Vert	PK	6.45E-08	-41.9	-13.0	-28.9	Mid Channel, X-Axis
3702.367	1.0	36.0		Vert	PK	5.03E-08	-43.0	-13.0	-30.0	Low Channel, X-Axis

	HIMM	1/1/		
Work Order:	ITRM0249	Date:	08/24/11	New Ste
Project:	None	Temperature:	22 °C	year the
Job Site:	OC10	Humidity:	49% RH	0
Serial Number:	178U1191029	Barometric Pres.:	1111 mbar	Tested by: Jaemi Suh
EUT:	1000CP01S			
Configuration:	1 - CONFIGURATION	11		
Customer:	Intermec Technologie	s Corporation		
Attendees:	None			
EUT Power:	110VAC/60Hz			
Operating Mode:	WCDMA PCS Band.			
Deviations:	None			
Comments:	None			
Test Specifications			Test Meth	od
E00.04E-0044				

FCC 24E:2011

Freq (MHz)	Antenna Heigh (meters)	Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
9532.230	1.0	4.0		Vert	PK	3.15E-08	-45.0	-13.0	-32.0	High Channel, X-Axis
9404.700	1.2	1.0		Vert	PK	1.42E-08	-48.5	-13.0	-35.5	Mid Channel, X-Axis
9266.090	1.2	297.0		Horz	PK	1.02E-08	-49.9	-13.0	-36.9	Low Channel, X-Axis
9544.230	1.0	121.0		Horz	PK	8.12E-09	-50.9	-13.0	-37.9	High Channel, X-Axis
9256.520	1.2	12.0		Vert	PK	6.55E-09	-51.8	-13.0	-38.8	Low Channel, X-Axis
9396.300	1.0	17.0		Horz	PK	4.29E-09	-53.7	-13.0	-40.7	Mid Channel, X-Axis

EMC

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION			
Transmitting PCS Band, E	-GPRS (EDGE)		
Transmitting PCS Band, G	PRS (GMSK)		
Transmitting PCS Band, W	/CDMA		
· · · · ·			
POWER SETTINGS INVE	STIGATED		
110VAC/60Hz			
•			
CONFIGURATIONS INVE	STIGATED		
ITRM0249 - 2			
•			
FREQUENCY RANGE IN	VESTIGATED		
Start Frequency	30 MHz	Stop Frequency	18 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

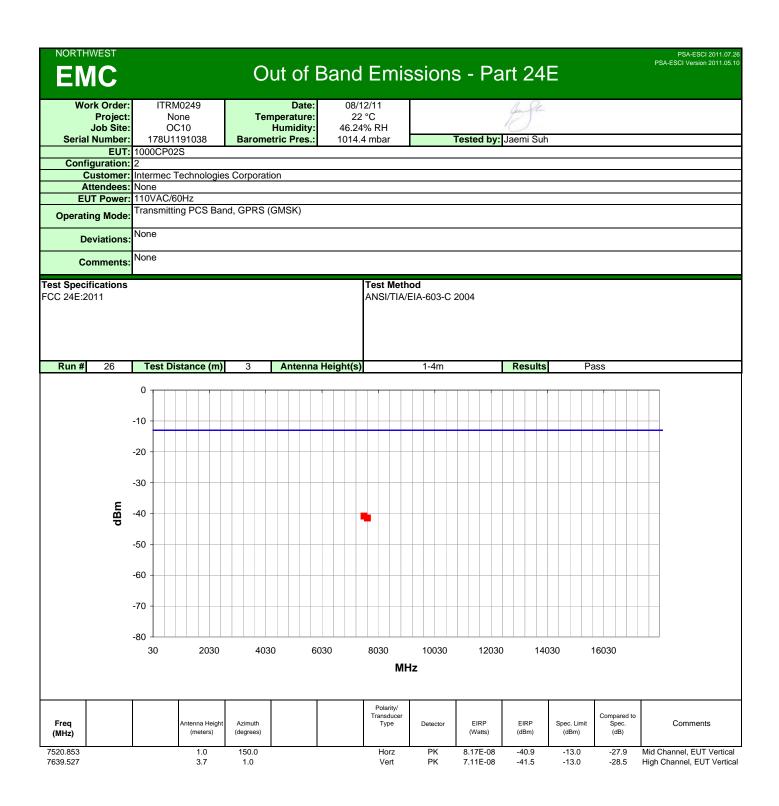
TEST EQUIPMENT

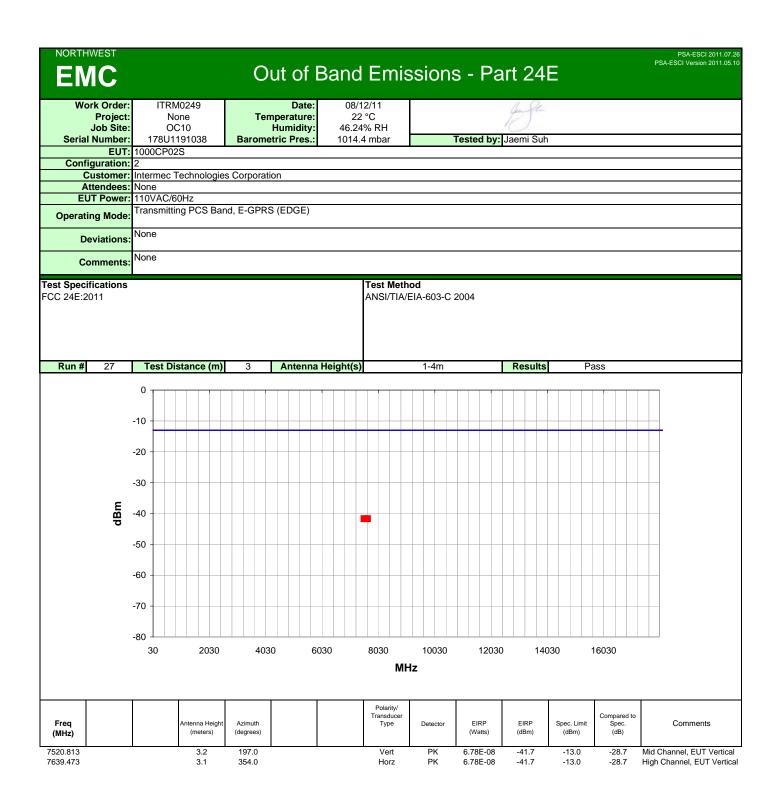
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	EMCO	3115	AHA	10/22/2009	24 mo
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	BSW	NCR	0 mo
High Pass Filter 1.2-18 GHz	Micro-Tronics	HPM50108	HFW	3/17/2010	24 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	11/17/2010	12 mo
Antenna, Horn	ETS	3160-08	AHT	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	11/17/2010	12 mo
Antenna, Horn	ETS	3160-07	AHR	NCR	0 mo
OC 10 Cables	N/A	12-18GHz RE Cables	000	6/24/2011	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12 mo
Antenna, Horn	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Antenna, Dipole	EMCO	3121C	ADF	NCR	0 mo

MEASUREMENT BANDWIDTHS

MEROONEMEN	BANDINDING							
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data				
	(MHz)	(kHz)	(kHz)	(kHz)				
	0.01 - 0.15	1.0	0.2	0.2				
	0.15 - 30.0	10.0	9.0	9.0				
	30.0 - 1000	100.0	120.0	120.0				
	Above 1000	1000.0	N/A	1000.0				
Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the								
FCC Average Me	easurements above 1GHz. In that	case, a peak detector wit	th a 10Hz video bandwidth w	vas used.				

MEASUREMENT UNCERTAINTY

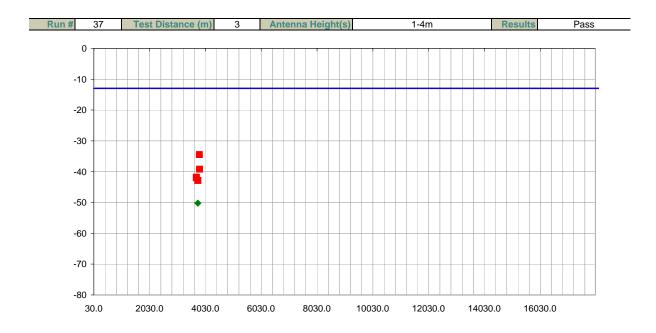

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

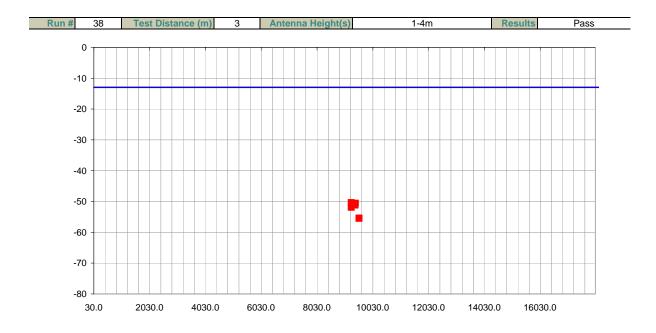
For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.



	HERRYN	111		
Work Order:	ITRM0249	Date:	08/24/11	Un Pt
Project:	None	Temperature:	22 °C	1 deal 1
Job Site:	OC10	Humidity:	49% RH	
Serial Number:	178U1191038	Barometric Pres.:	1111 mbar	Tested by: Jaemi Suh
EUT:	1000CP02S			
Configuration:	2 - CONFIGURATION	12		
Customer:	Intermec Technologie	es Corporation		
Attendees:	None			
EUT Power:	110VAC/60Hz			
Operating Mode:	WCDMA PCS Band.			
Deviations	None			
Comments	None			
Test Specifications			Test Meth	od
ECO 04E.0044				

FCC 24E:2011



Freq (MHz)	Antenna Heigh (meters)	t Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
3817.173	1.2	51.0		Horz	PK	3.55E-07	-34.5	-13.0	-21.5	High Channel, X-Axis
3817.318	1.2	53.0		Vert	PK	1.20E-07	-39.2	-13.0	-26.2	High Channel, X-Axis
3703.367	1.0	71.0		Horz	PK	6.65E-08	-41.8	-13.0	-28.8	Low Channel, X-Axis
3703.217	1.0	26.0		Vert	PK	6.34E-08	-42.0	-13.0	-29.0	Low Channel, X-Axis
3760.933	1.0	63.0		Vert	PK	5.12E-08	-42.9	-13.0	-29.9	Mid Channel, X-Axis
3758.713	1.7	173.0		Horz	PK	9.51E-09	-50.2	-13.0	-37.2	Mid Channel, X-Axis

	HERRYN	111		
Work Order:	ITRM0249	Date:	08/24/11	Un Pt
Project:	None	Temperature:	22 °C	1 deal 1
Job Site:	OC10	Humidity:	49% RH	
Serial Number:	178U1191038	Barometric Pres.:	1111 mbar	Tested by: Jaemi Suh
EUT:	1000CP02S			
Configuration:	2 - CONFIGURATION	12		
Customer:	Intermec Technologie	es Corporation		
Attendees:	None			
EUT Power:	110VAC/60Hz			
Operating Mode:	WCDMA PCS Band.			
Deviations	None			
Comments	None			
Test Specifications			Test Meth	od
ECO 04E.0044				

FCC 24E:2011

Freq (MHz)	Antenna (mete		Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
9257.677	1.2	2	326.0		Vert	PK	9.26E-09	-50.3	-13.0	-37.3	Low Channel, X-Axis
9406.330	1.0)	6.0		Horz	PK	8.78E-09	-50.6	-13.0	-37.6	Mid Channel, X-Axis
9396.070	1.0)	1.0		Vert	PK	7.64E-09	-51.2	-13.0	-38.2	Mid Channel, X-Axis
9258.527	1.2	2	117.0		Horz	PK	6.41E-09	-51.9	-13.0	-38.9	Low Channel, X-Axis
9536.360	1.0)	359.0		Horz	PK	2.88E-09	-55.4	-13.0	-42.4	High Channel, X-Axis
9536.060	1.0)	263.0		Vert	PK	2.81E-09	-55.5	-13.0	-42.5	High Channel, X-Axis

EMC

Out of Band Emissions - Part 24E

Stop Frequency

18 GHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION	
Transmitting PCS Band, E-GPRS (EDGE)	
Transmitting PCS Band, GPRS (GMSK)	
Transmitting PCS Band, WCDMA	
POWER SETTINGS INVESTIGATED	
110VAC/60Hz	

CONFIGURATIONS INVESTIGATED ITRM0249 - 3

FREQUENCY RANGE INVESTIGATED Start Frequency

SAMPLE CALCULATIONS

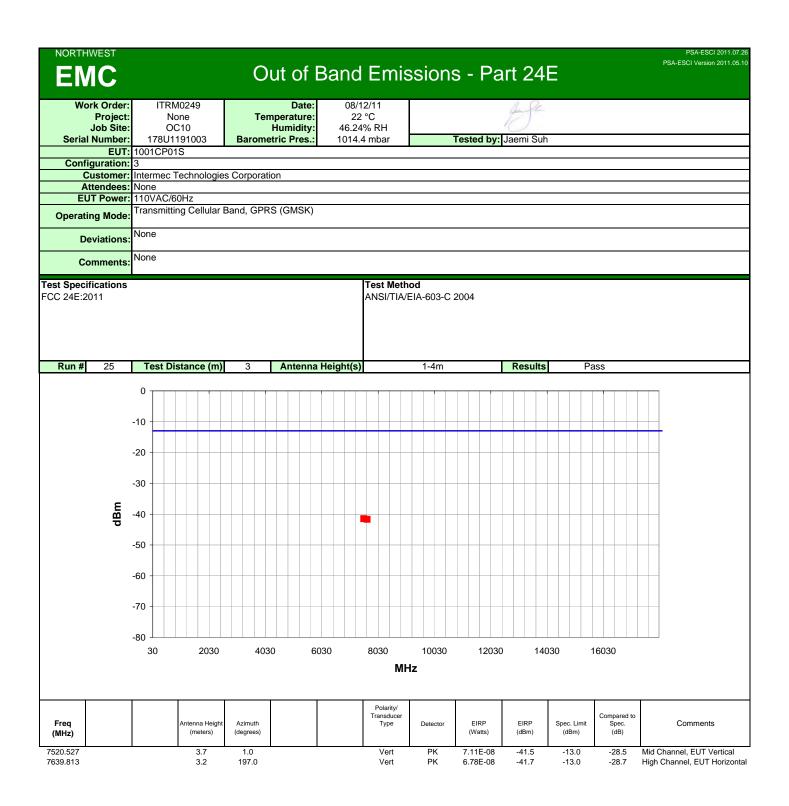
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

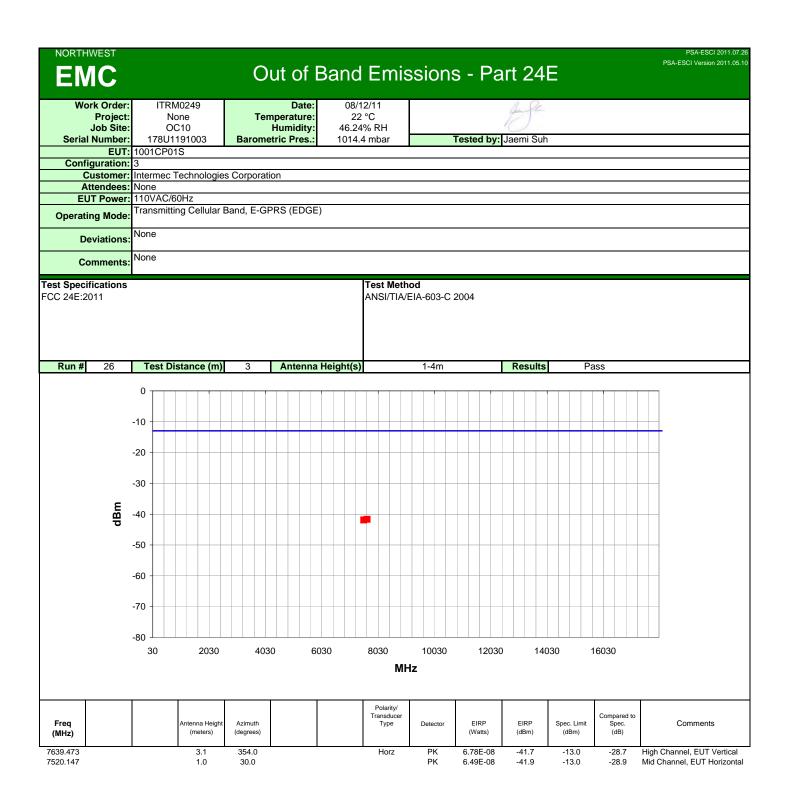
30 MHz

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	EMCO	3115	AHA	10/22/2009	24 mo
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	BSW	NCR	0 mo
High Pass Filter 1.2-18 GHz	Micro-Tronics	HPM50108	HFW	3/17/2010	24 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	11/17/2010	12 mo
Antenna, Horn	ETS	3160-08	AHT	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	11/17/2010	12 mo
Antenna, Horn	ETS	3160-07	AHR	NCR	0 mo
OC 10 Cables	N/A	12-18GHz RE Cables	000	6/24/2011	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12 mo
Antenna, Horn	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Antenna, Dipole	EMCO	3121C	ADF	NCR	0 mo

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

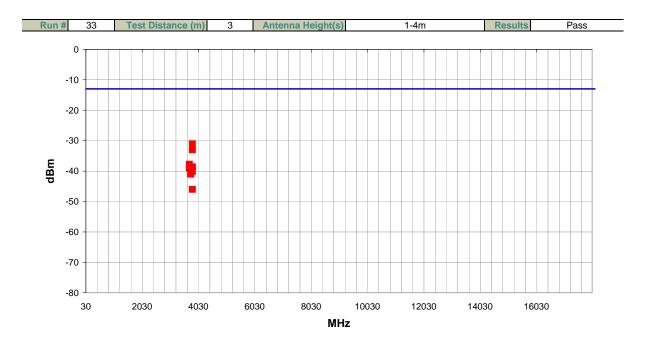

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

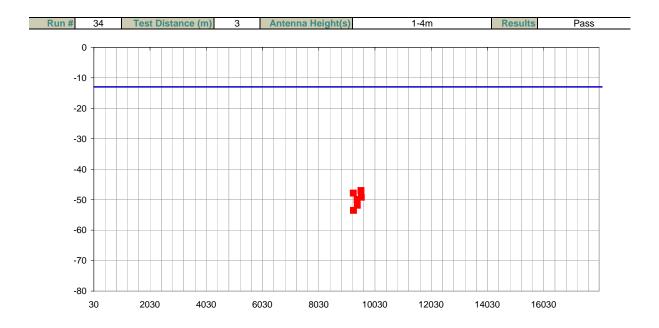
For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest purious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.



	HINKIN	1/1/		
Work Order:	ITRM0249	Date:	08/24/11	No. St.
Project:	None	Temperature:	22 °C	The second se
Job Site:	OC10	Humidity:	49% RH	
Serial Number:	178U1191003	Barometric Pres.:	1111 mbar	Tested by: Jaemi Suh
EUT:	1001CP01S			
Configuration:	3 - CONFIGURATION	13		
Customer:	Intermec Technologie	s Corporation		
Attendees:				
EUT Power:	110VAC/60Hz			
Operating Mode:	WCDMA PCS Band.			
Deviations	None			
Comments	None			
Test Specifications			Test Meth	od
500 015 0011				

FCC 24E:2011



Freq (MHz)	Antenna H (meters	U		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
3812.583	1.5	2.0		Horz	PK	7.93E-07	-31.0	-13.0	-18.0	High Channel, X-Axis
3812.233	1.0	316.0		Vert	PK	5.00E-07	-33.0	-13.0	-20.0	High Channel, X-Axis
3703.313	1.2	312.0		Vert	PK	1.67E-07	-37.8	-13.0	-24.8	Low Channel, X-Axis
3812.289	1.2	37.0		Horz	PK	1.38E-07	-38.6	-13.0	-25.6	High Channel, Y-Axis
3703.106	1.2	289.0		Horz	PK	1.24E-07	-39.1	-13.0	-26.1	Low Channel, X-Axis
3812.439	1.3	293.0		Vert	PK	1.23E-07	-39.1	-13.0	-26.1	High Channel, Z-Axis
3812.366	1.2	350.0		Horz	PK	9.75E-08	-40.1	-13.0	-27.1	High Channel, Z-Axis
3757.550	1.1	40.0		Horz	PK	8.08E-08	-40.9	-13.0	-27.9	Mid Channel, X-Axis
3758.583	1.0	297.0		Vert	PK	7.91E-08	-41.0	-13.0	-28.0	Mid Channel, X-Axis
3812.423	1.9	150.0		Vert	PK	2.51E-08	-46.0	-13.0	-33.0	High Channel, Y-Axis

	HERRY	144		
Work Order:	ITRM0249	Date:	08/24/11	Nen St.
Project:	None	Temperature:	22 °C	1 deal 1
Job Site:	OC10	Humidity:	49% RH	
Serial Number:	178U1191003	Barometric Pres.:	1111 mbar	Tested by: Jaemi Suh
EUT	1001CP01S			
Configuration	2 - CONFIGURATION	12		
Customer:	Intermec Technologie	s Corporation		
Attendees	None			
EUT Power:	110VAC/60Hz			
Operating Mode	WCDMA PCS Band			
Deviations	None			
Comments	None			
Test Specifications			Test Meth	od
E00 04E-0044				

FCC 24E:2011

Freq (MHz)	Antenna He (meters)	ght Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
9534.000	1.0	352.0		Vert	PK	1.99E-08	-47.0	-13.0	-34.0	High Channel, X-Axis
9258.470	1.2	16.0		Vert	PK	1.65E-08	-47.8	-13.0	-34.8	Low channel, X-Axis
9542.430	1.0	345.0		Horz	PK	1.20E-08	-49.2	-13.0	-36.2	High Channel, X-Axis
9398.700	1.0	359.0		Vert	PK	1.01E-08	-50.0	-13.0	-37.0	Mid Channel, X-Axis
9404.130	1.0	199.0		Horz	PK	6.51E-09	-51.9	-13.0	-38.9	Mid Channel, X-Axis
9262.900	1.0	347.0		Horz	PK	4.44E-09	-53.5	-13.0	-40.5	Low Channel, X-Axis

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION
WCDMA AWS Band. Low Channel, 1712.4 MHz
WCDMA AWS Band. Mid Channel, 1735.4 MHz
WCDMA AWS Band. High Channel, 1752.6 MHz
AXIS INVESTIGATED
X-Axis, Y-Axis, Z-Axis

POWER SETTINGS INVESTIGATED

CONFIGURATIONS INVESTIGATED

FREQUENCY RANGE INVESTIGATED

Stop Frequency 26 GHz

Start Frequency 30 MHz SAMPLE CALCULATIONS

1 - CONFIGURATION 1

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
OC10 Cables	N/A	Double Ridge Horn Cables	N/A	N/A	0 mo
Universal Radio Communication	Rohde & Schwarz	CMU200	BSW	NCR	0 mo
Tester					
Antenna, Horn (DRG)	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	4/29/2011	12 mo
Antenna, Horn	EMCO	3160-09	AHN	NCR	0 mo
OC floating Cable	N/A	18-26GHz RE Cables	OCK	4/29/2011	12 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	11/17/2010	12 mo
Antenna, Horn	ETS	3160-08	AHT	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	11/17/2010	12 mo
Antenna, Horn	ETS	3160-07	AHR	NCR	0 mo
OC 10 Cables	N/A	12-18GHz RE Cables	000	6/24/2011	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12 mo
Antenna, Horn	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Antenna, Dipole	EMCÖ	3121C	ADF	NCR	0 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
(MHz)	(kHz)	(kHz)	(kHz)		
 0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
 30.0 - 1000	100.0	120.0	120.0		
 Above 1000	1000.0	N/A	1000.0		

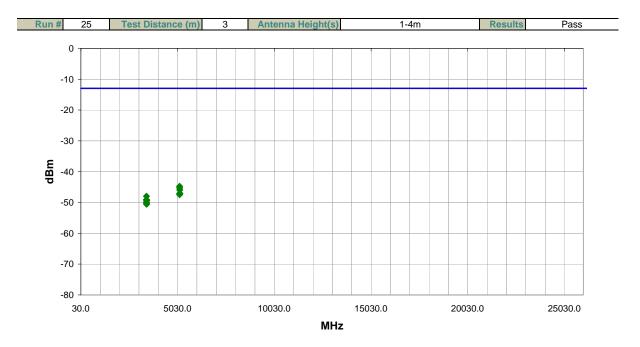
Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

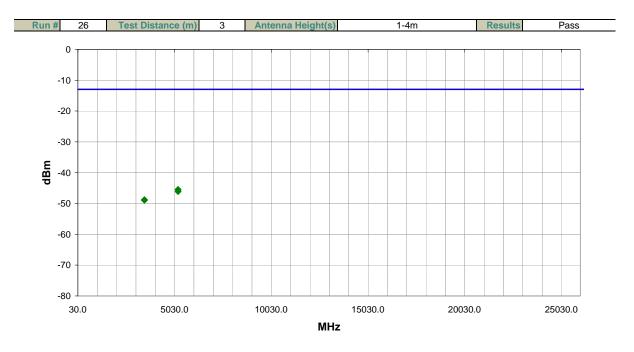
The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.


For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for remissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

	HINKIN									
Work Order:	ITRM0249	Date:	08/24/11	E.						
Project:	None	Temperature:	22 °C	Jung Da						
Job Site:	OC11	Humidity:	42% RH							
Serial Number:	178U1191029	Barometric Pres.:	1111 mbar	Tested by: Jeremiah Darden						
EUT:	1000CP01S									
Configuration:	1 - CONFIGURATION	N 1								
Customer:	Intermec Technologie	termec Technologies Corporation								
Attendees:		one								
EUT Power:	110VAC/60Hz									
Operating Mode	WCDMA AWS Band.	WCDMA AWS Band. Low Channel. 1712.4 MHz.								
Deviations	None									
Comments	None									
Test Specifications			Test Meth	od						
500.07.00//										

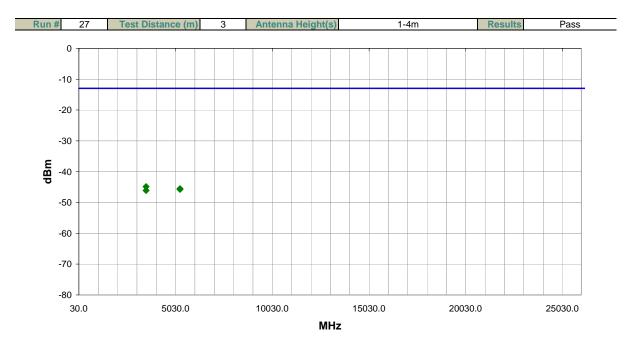
FCC 27:2011



Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
5136.093	1.0	62.0	Vert	PK	3.34E-08	-44.8	-13.0	-31.8	Z
5135.793	1.0	5.0	Horz	PK	2.98E-08	-45.3	-13.0	-32.3	Z
5138.860	2.5	210.0	Vert	PK	2.54E-08	-45.9	-13.0	-32.9	х
5139.153	1.0	113.0	Horz	PK	1.97E-08	-47.0	-13.0	-34.0	Y
5138.027	1.0	134.0	Vert	PK	1.93E-08	-47.2	-13.0	-34.2	Y
5135.627	2.4	305.0	Horz	PK	1.79E-08	-47.5	-13.0	-34.5	х
3423.160	1.0	128.0	Vert	PK	1.59E-08	-48.0	-13.0	-35.0	Y
3423.640	1.0	359.0	Horz	PK	1.24E-08	-49.1	-13.0	-36.1	х
3426.613	1.0	120.0	Vert	PK	1.15E-08	-49.4	-13.0	-36.4	х
3423.007	1.0	104.0	Horz	PK	1.03E-08	-49.9	-13.0	-36.9	Y
3422.940	1.8	215.0	Vert	PK	9.16E-09	-50.4	-13.0	-37.4	Z
3426.433	1.0	355.0	Horz	PK	8.76E-09	-50.6	-13.0	-37.6	Z

	HIMM	1/1//								
Work Order:	ITRM0249	Date:	08/24/11	5-						
Project:	None	Temperature:	22 °C	Jung Da						
Job Site:	OC11	Humidity:	42% RH							
Serial Number:	178U1191029	Barometric Pres.:	1111 mbar	Tested by: Jeremiah Darden						
EUT:	1000CP01S									
Configuration:	1 - CONFIGURATION	1 1								
Customer:	Intermec Technologie	termec Technologies Corporation								
Attendees:	lone									
EUT Power:	110VAC/60Hz									
Operating Mode:	WCDMA AWS Band.	Mid Channel. 1735.4 Mł	Hz.							
Deviations	None									
Comments	None									
Test Specifications			Test Metho	bd						
E00 07:0044				14 000 0 0004						

FCC 27:2011



Freq (MHz)	F	Antenna Height (meters)	Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
5207.147		1.0	68.0		Vert	PK	2.84E-08	-45.5	-13.0	-32.5	Z
5204.947		1.0	4.0		Horz	PK	2.46E-08	-46.1	-13.0	-33.1	Z
3469.500		1.0	8.0		Vert	PK	1.32E-08	-48.8	-13.0	-35.8	Z
3469.013		1.0	24.0		Horz	PK	1.29E-08	-48.9	-13.0	-35.9	Z

	HINKIN	1/1/									
Work Order:	ITRM0249	Date:	08/24/11	AT .							
Project:	None	Temperature:	22 °C	Jeng Da							
Job Site:	OC11	Humidity:	42% RH								
Serial Number:	178U1191029	Barometric Pres.:	1111 mbar	Tested by: Jeremiah Darden							
EUT:	1000CP01S										
Configuration:	1 - CONFIGURATION	11									
Customer:	Intermec Technologie	s Corporation									
Attendees:	Vone										
EUT Power:	110VAC/60Hz										
Operating Mode:	WCDMA AWS Band.	High Channel. 1752.6 M	lHz.								
Deviations:	None										
Comments:	None										
Test Specifications			Test Meth	od							
E00 07:0044											

FCC 27:2011

Freq (MHz)	A	Antenna Height (meters)	Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
3503.820		1.0	68.0		Vert	PK	3.25E-08	-44.9	-13.0	-31.9	Z
5257.147		1.0	176.0		Vert	PK	2.80E-08	-45.5	-13.0	-32.5	Z
5258.967		1.0	306.0		Horz	PK	2.68E-08	-45.7	-13.0	-32.7	Z
3503.753		2.2	217.0		Horz	PK	2.47E-08	-46.1	-13.0	-33.1	Z

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION
WCDMA AWS Band. Low Channel, 1712.4 MHz
WCDMA AWS Band. Mid Channel, 1735.4 MHz
WCDMA AWS Band. High Channel, 1752.6 MHz
AXIS INVESTIGATED
X-Axis, Y-Axis, Z-Axis

POWER SETTINGS INVESTIGATED

2 - CONFIGURATIONS INVESTIGATED

FREQUENCY RANGE INVESTIGATED

Stop Frequency 26 GHz

Start Frequency 30 MHz SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
OC10 Cables	N/A	Double Ridge Horn Cables	N/A	N/A	0 mo
Universal Radio Communication	Rohde & Schwarz	CMU200	BSW	NCR	0 mo
Tester					
Antenna, Horn (DRG)	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	4/29/2011	12 mo
Antenna, Horn	EMCO	3160-09	AHN	NCR	0 mo
OC floating Cable	N/A	18-26GHz RE Cables	OCK	4/29/2011	12 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	11/17/2010	12 mo
Antenna, Horn	ETS	3160-08	AHT	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	11/17/2010	12 mo
Antenna, Horn	ETS	3160-07	AHR	NCR	0 mo
OC 10 Cables	N/A	12-18GHz RE Cables	000	6/24/2011	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12 mo
Antenna, Horn	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Antenna, Dipole	EMCO	3121C	ADF	NCR	0 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
(MHz)	(kHz)	(kHz)	(kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		

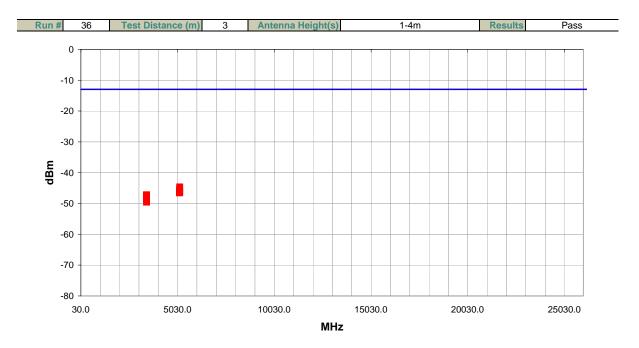
Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

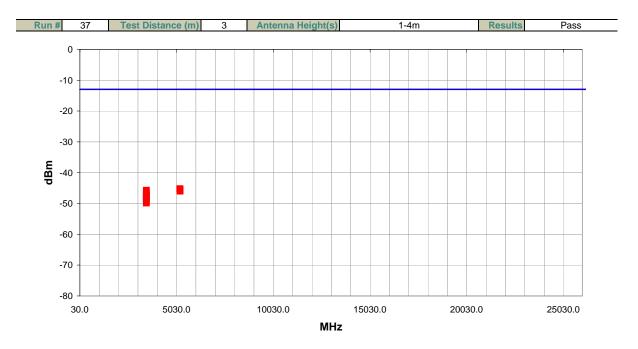
The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.


For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for remissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

	HINKIN									
Work Order:	ITRM0249	Date:	08/24/11	A-						
Project:	None	Temperature:	22 °C	Jeng Da						
Job Site:	OC11	Humidity:	42% RH	0/						
Serial Number:	178U1191038	Barometric Pres.:	1111 mbar	Tested by: Jeremiah Darden						
EUT	1000CP02S									
Configuration	2 - CONFIGURATION	12								
Customer:	Intermec Technologie	termec Technologies Corporation								
Attendees										
EUT Power:	110VAC/60Hz									
Operating Mode	WCDMA AWS Band.	WCDMA AWS Band. Low Channel. 1712.4 MHz.								
Deviations	None									
Comments	None									
Test Specifications			Test Method							

FCC 27:2011



Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
5137.447	1.0	137.0	Horz	PK	3.43E-08	-44.7	-13.0	-31.7	Y
5135.307	1.3	103.0	Vert	PK	2.78E-08	-45.6	-13.0	-32.6	Y
5138.873	2.4	235.0	Horz	PK	2.48E-08	-46.0	-13.0	-33.0	Z
5136.893	2.7	359.0	Vert	PK	2.31E-08	-46.4	-13.0	-33.4	х
5138.307	1.0	109.0	Vert	PK	2.27E-08	-46.4	-13.0	-33.4	Z
5136.513	1.0	324.0	Horz	PK	2.21E-08	-46.6	-13.0	-33.6	х
3426.067	1.0	60.0	Horz	PK	1.91E-08	-47.2	-13.0	-34.2	Y
3426.527	1.9	18.0	Vert	PK	1.83E-08	-47.4	-13.0	-34.4	Y
3426.173	1.0	265.0	Horz	PK	1.55E-08	-48.1	-13.0	-35.1	х
3426.227	1.4	234.0	Horz	PK	1.45E-08	-48.4	-13.0	-35.4	Z
3426.740	1.5	310.0	Vert	PK	1.39E-08	-48.6	-13.0	-35.6	Z
3425.767	1.0	187.0	Vert	PK	1.10E-08	-49.6	-13.0	-36.6	Х

	HINKIN			
Work Order:	ITRM0249	Date:	08/24/11	K-
Project:	None	Temperature:	22 °C	Jeng Da
Job Site:	: OC11	Humidity:	42% RH	0/
Serial Number:	178U1191038	Barometric Pres.:	1111 mbar	Tested by: Jeremiah Darden
EUT	1000CP02S			
Configuration:	2 - CONFIGURATION	12		
Customer:	Intermec Technologie	es Corporation		
Attendees	None			
EUT Power:	110VAC/60Hz			
Operating Mode	WCDMA AWS Band.	Mid Channel. 1735.4 MH	Hz.	
Deviations	None			
Comments	None			
Test Specifications			Test Meth	od

FCC 27:2011

Freq (MHz)	Antenna Heigt (meters)	t Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
5203.220	2.2	47.0		Horz	PK	3.02E-08	-45.2	-13.0	-32.2	Z
5206.960	1.7	86.0		Vert	PK	2.83E-08	-45.5	-13.0	-32.5	Z
5203.833	1.6	284.0		Vert	PK	2.82E-08	-45.5	-13.0	-32.5	х
3472.180	1.0	28.0		Horz	PK	2.67E-08	-45.7	-13.0	-32.7	Y
5204.893	3.5	79.0		Horz	PK	2.64E-08	-45.8	-13.0	-32.8	Y
5207.127	1.0	72.0		Horz	PK	2.59E-08	-45.9	-13.0	-32.9	х
5205.553	1.0	342.0		Vert	PK	2.52E-08	-46.0	-13.0	-33.0	Υ
3468.913	1.0	176.0		Vert	PK	2.06E-08	-46.9	-13.0	-33.9	Z
3468.960	1.0	220.0		Horz	PK	1.68E-08	-47.8	-13.0	-34.8	Z
3472.100	1.0	228.0		Vert	PK	1.61E-08	-47.9	-13.0	-34.9	х
3469.293	1.0	295.0		Horz	PK	1.33E-08	-48.8	-13.0	-35.8	х
3469.147	2.4	70.0		Vert	PK	1.03E-08	-49.9	-13.0	-36.9	Y

	HIMM	1/1//		
Work Order:	ITRM0249	Date:	08/24/11	K-
Project:	None	Temperature:	22 °C	Jung Da
Job Site:	OC11	Humidity:	42% RH	
Serial Number:	178U1191038	Barometric Pres.:	1111 mbar	Tested by: Jeremiah Darden
EUT	1000CP02S			
Configuration	2 - CONFIGURATION	12		
Customer:	Intermec Technologie	s Corporation		
Attendees				
EUT Power:	110VAC/60Hz			
Operating Mode	WCDMA AWS Band.	High Channel. 1752.6 N	IHz.	
Deviations	None			
Comments	None			
Test Specifications			Test Metho	d
E00 07 0044				14 000 0 000 /

FCC 27:2011

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
5259.713	1.5	88.0		Horz	PK	7.39E-08	-41.3	-13.0	-28.3	Y
3503.927	1.0	151.0		Vert	PK	4.81E-08	-43.2	-13.0	-30.2	Y
5259.540	1.0	134.0		Vert	PK	4.45E-08	-43.5	-13.0	-30.5	Y
5258.920	1.3	50.0		Horz	PK	4.45E-08	-43.5	-13.0	-30.5	Z
5259.780	1.0	300.0		Vert	PK	3.97E-08	-44.0	-13.0	-31.0	х
3507.087	1.7	171.0		Horz	PK	3.12E-08	-45.1	-13.0	-32.1	Y
5257.287	2.1	6.0		Vert	PK	2.80E-08	-45.5	-13.0	-32.5	Z
5258.180	1.0	238.0		Horz	PK	2.50E-08	-46.0	-13.0	-33.0	х
3503.793	2.0	171.0		Vert	PK	2.47E-08	-46.1	-13.0	-33.1	Z
3506.647	1.0	10.0		Vert	PK	2.02E-08	-47.0	-13.0	-34.0	х
3503.420	1.8	226.0		Horz	PK	1.36E-08	-48.7	-13.0	-35.7	х
3503.887	1.0	88.0		Horz	PK	1.15E-08	-49.4	-13.0	-36.4	Z

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION
WCDMA AWS Band. Low Channel, 1712.4 MHz
WCDMA AWS Band. Mid Channel, 1735.4 MHz
WCDMA AWS Band. High Channel, 1752.6 MHz
AXIS INVESTIGATED
X-Axis, Y-Axis, Z-Axis

POWER SETTINGS INVESTIGATED

CONFIGURATIONS INVESTIGATED

FREQUENCY RANGE INVESTIGATED

Stop Frequency 26 GHz

Start Frequency 30 MHz SAMPLE CALCULATIONS

3 - CONFIGURATION 3

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
OC10 Cables	N/A	Double Ridge Horn Cables	N/A	N/A	0 mo
Universal Radio Communication	Rohde & Schwarz	CMU200	BSW	NCR	0 mo
Tester					
Antenna, Horn (DRG)	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	4/29/2011	12 mo
Antenna, Horn	EMCO	3160-09	AHN	NCR	0 mo
OC floating Cable	N/A	18-26GHz RE Cables	OCK	4/29/2011	12 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	11/17/2010	12 mo
Antenna, Horn	ETS	3160-08	AHT	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	11/17/2010	12 mo
Antenna, Horn	ETS	3160-07	AHR	NCR	0 mo
OC 10 Cables	N/A	12-18GHz RE Cables	000	6/24/2011	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12 mo
Antenna, Horn	ETS Lindgren	3115	AIR	5/26/2011	24 mo
Antenna, Dipole	EMCO	3121C	ADF	NCR	0 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

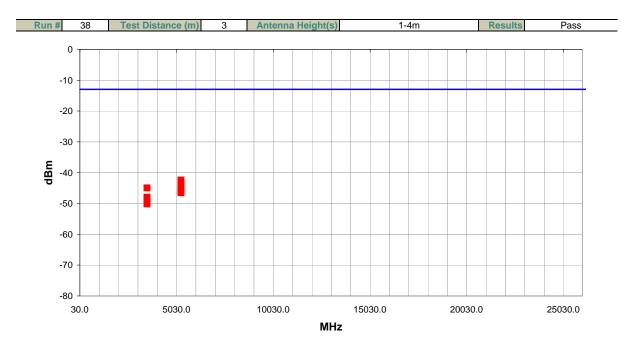
Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

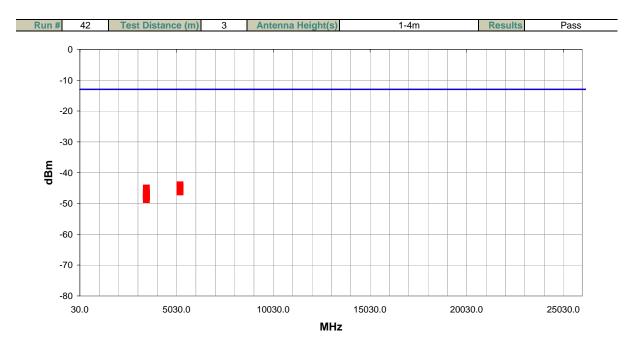
The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.


For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for remissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

	HERRY			
Work Order:	ITRM0249	Date:	08/24/11	K-
Project:	None	Temperature:	22 °C	Jeng Da
Job Site:	OC10	Humidity:	42% RH	0/
Serial Number:	: 178U1191003	Barometric Pres.:	1111 mbar	Tested by: Jeremiah Darden
EUT	: 1001CP01S			
Configuration:	3 - CONFIGURATION	13		
Customer:	Intermec Technologie	es Corporation		
Attendees	None			
EUT Power:	: 110VAC/60Hz			
Operating Mode	WCDMA AWS Band.	High Channel. 1752.6 M	IHz.	
Deviations	None			
Comments	None			
Test Specifications			Test Meth	od

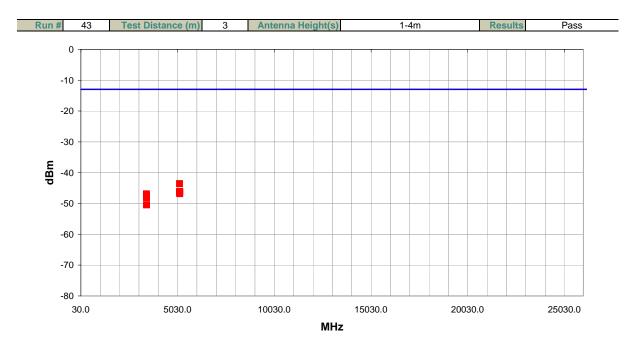
FCC 27:2011



Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
5259.733	1.0	64.0		Horz	PK	5.74E-08	-42.4	-13.0	-29.4	Y
5255.867	1.3	133.0		Vert	PK	4.54E-08	-43.4	-13.0	-30.4	Y
3506.580	2.0	94.0		Horz	PK	3.19E-08	-45.0	-13.0	-32.0	Z
5256.700	1.0	12.0		Vert	PK	2.93E-08	-45.3	-13.0	-32.3	х
5256.633	1.0	79.0		Vert	PK	2.74E-08	-45.6	-13.0	-32.6	Z
5256.147	2.8	143.0		Horz	PK	2.44E-08	-46.1	-13.0	-33.1	Z
5258.733	3.4	320.0		Horz	PK	2.23E-08	-46.5	-13.0	-33.5	х
3503.953	1.0	17.0		Horz	PK	1.59E-08	-48.0	-13.0	-35.0	х
3507.167	1.0	351.0		Vert	PK	1.27E-08	-49.0	-13.0	-36.0	Z
3503.767	1.3	12.0		Vert	PK	1.27E-08	-49.0	-13.0	-36.0	х
3506.807	1.0	309.0		Horz	PK	1.16E-08	-49.4	-13.0	-36.4	Y
3504.827	2.4	205.0		Vert	PK	9.62E-09	-50.2	-13.0	-37.2	Y

	HERRY			
Work Order:	ITRM0249	Date:	08/24/11	K-
Project	None	Temperature:	22 °C	Jeng Da
Job Site	: OC10	Humidity:	42% RH	0/
Serial Number	: 178U1191003	Barometric Pres.:	1111 mbar	Tested by: Jeremiah Darden
EUT	: 1001CP01S			
Configuration	3 - CONFIGURATION	13		
Customer	Intermec Technologie	es Corporation		
Attendees	None			
EUT Power	: 110VAC/60Hz			
Operating Mode	WCDMA AWS Band.	Mid Channel. 1735.4 Mł	Hz.	
Deviations	None			
Comments	None			
Test Specifications			Test Meth	od

FCC 27:2011



Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
5206.628	1.0	143.0		Horz	PK	4.00E-08	-44.0	-13.0	-31.0	Y
5207.797	1.0	333.0		Vert	PK	3.18E-08	-45.0	-13.0	-32.0	Х
3472.566	1.2	171.0		Vert	PK	3.14E-08	-45.0	-13.0	-32.0	Y
5205.677	1.0	203.0		Vert	PK	2.70E-08	-45.7	-13.0	-32.7	Y
5204.240	1.3	115.0		Horz	PK	2.64E-08	-45.8	-13.0	-32.8	Z
5205.453	1.8	250.0		Vert	PK	2.46E-08	-46.1	-13.0	-33.1	Z
5207.813	4.0	316.0		Horz	PK	2.36E-08	-46.3	-13.0	-33.3	х
3469.167	1.0	34.0		Vert	PK	2.21E-08	-46.6	-13.0	-33.6	Z
3472.037	1.0	83.0		Horz	PK	2.12E-08	-46.7	-13.0	-33.7	Y
3472.365	1.2	41.0		Vert	PK	1.72E-08	-47.6	-13.0	-34.6	х
3472.573	1.0	164.0		Horz	PK	1.68E-08	-47.7	-13.0	-34.7	х
3468.827	1.0	59.0		Horz	PK	1.33E-08	-48.8	-13.0	-35.8	Z

	HERRY	1/1/									
Work Order:	ITRM0249	Date:	08/24/11	K-							
Project:	None	Temperature:	22 °C	Jenny Da							
Job Site:	OC10	Humidity:	42% RH								
Serial Number:	178U1191003	Barometric Pres.:	1111 mbar	Tested by: Jeremiah Darden							
EUT:	1001CP01S										
Configuration:	3 - CONFIGURATION 3										
Customer:	Intermec Technologies Corporation										
Attendees:	None										
EUT Power:	110VAC/60Hz										
Operating Mode	WCDMA AWS Band. Low Channel. 1712.4 MHz.										
Deviations	None										
Comments	None										
Test Specifications			Test Meth	od							

FCC 27:2011

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)		Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
5135.200	1.0	144.0		Horz	PK	4.40E-08	-43.6	-13.0	-30.6	Y
5137.807	1.0	344.0		Vert	PK	2.48E-08	-46.1	-13.0	-33.1	Х
5138.687	1.0	132.0		Horz	PK	2.37E-08	-46.2	-13.0	-33.2	х
5138.460	1.0	68.0		Vert	PK	2.32E-08	-46.3	-13.0	-33.3	Z
5135.467	1.6	264.0		Vert	PK	2.31E-08	-46.4	-13.0	-33.4	Y
5137.880	3.9	325.0		Horz	PK	2.07E-08	-46.9	-13.0	-33.9	Z
3423.187	1.0	176.0		Vert	PK	2.05E-08	-46.9	-13.0	-33.9	Y
3426.607	1.0	34.0		Horz	PK	1.83E-08	-47.4	-13.0	-34.4	Z
3426.380	1.0	64.0		Vert	PK	1.55E-08	-48.1	-13.0	-35.1	Z
3426.327	1.0	84.0		Horz	PK	1.55E-08	-48.1	-13.0	-35.1	Y
3426.087	1.0	268.0		Vert	PK	9.15E-09	-50.4	-13.0	-37.4	х
3425.160	2.3	28.0		Horz	PK	8.94E-09	-50.5	-13.0	-37.5	Х