Intermec Technologies Corporation

CN3 Long Keyboard

August 21, 2007

Report No. ITRM0163.1

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2007Northwest EMC, Inc

Certificate of Test Issue Date: August 21, 2007 Intermec Technologies Corporation Model: CN3 Long Keyboard

Emissions							
Test Description	Specification	Test Method	Pass/Fail				
Effective Radiated Power (ERP)	FCC 22H:2006	ANSI/TIA/EIA-603-B-2002	Pass				
Effective Radiated Power (EIRP)	FCC 24E:2006	ANSI/TIA/EIA-603-B-2002	Pass				
Out of Band Emissions	FCC 22H:2006	ANSI/TIA/EIA-603-B-2002	Pass				
Out of Band Emissions	FCC 24E:2006	ANSI/TIA/EIA-603-B-2002	Pass				

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:	
Then I	
Ethan Schoonover, Sultan Lab Manager	

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

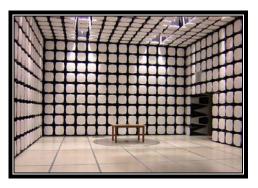
Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294*).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>


BSMI

NEMKO

Revision 03/18/05

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Scott Holub
Model:	CN3 Long Keyboard
First Date of Test:	July 16, 2007
Last Date of Test:	August 7, 2007
Receipt Date of Samples:	July 16, 2007
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

EM5625 CDMA radio in the CN3.

Testing Objective:

To demonstrate compliance to FCC Parts 22H and 24E requirements.

CONFIGURATION 1 ITRM0163

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
CDMA / EVDO Radio Module	Sierra Wireless	EM5625	Unknown

Peripherals in test setup boundary							
Description Manufacturer Model/Part Number Serial							
Handheld Computer (EVDO enabled)	Intermec Technologies Corporation	CN3E	17890701002				
Charging Cradle	Intermec Technologies Corporation	AD10	Unknown				
AC Adapter	Intermec Technologies Corporation	073573	515299				

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
DC	No	1.3m	Yes	AC Adapter	Charging Cradle		
AC	No	1.8m	No	AC Adapter	AC Mains		
PA = Cable	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

CONFIGURATION 2 ITRM0163

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
CDMA / EVDO Radio Module	Sierra Wireless	EM5625	Unknown

Peripherals in test setup boundary							
Description Manufacturer Model/Part Number Serial Number							
Handheld Computer (CDMA enabled)	Intermec Technologies Corporation	CN3E	17890701001				
Charging Cradle	Intermec Technologies Corporation	AD10	Unknown				
AC Adapter	Intermec Technologies Corporation	073573	515299				

Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
DC	No	1.3m	Yes	AC Adapter	Charging Cradle			
AC	No	1.8m	No	AC Adapter	AC Mains			
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.								

	Equipment modifications						
Item	Date	Test	Modification	Note	Disposition of EUT		
		Effective	Tested as	No EMI suppression	EUT remained at		
1	7/16/2007	Radiated	delivered to	devices were added or	Northwest EMC		
		Power- 22H	Test Station.	modified during this test.	following the test.		
		Out of Band	Tested as	No EMI suppression	EUT remained at		
2	7/17/2007	Emissions	delivered to	devices were added or	Northwest EMC		
		EIIIISSIOIIS	Test Station.	modified during this test.	following the test.		
		Effective	Tested as	No EMI suppression	Scheduled testing		
3	8/7/2007	Radiated	delivered to	devices were added or	was completed.		
		Power-24E	Test Station.	modified during this test.	was completed.		

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

Transmitting CDMA 1xRRT RC3, S02 Transmitting CDMA 1xRRT RC3, S02		0	/					
CONFIGURATIONS INVESTIGATED								
Stretch CN3 in charging cradle								
Stretch CN3 standalone								
POWER SETTINGS INVESTIGATED)							
120VAC/60Hz								
FREQUENCY RANGE INVESTIGATI	ED							
Start Frequency	30 MHz	Stop Frequ	uency		20 GHz			
SAMPLE CALCULATIONS								
Radiated Emissions: Field Strength = Measured Lev	rel + Antenna Factor + Cable Factor -	- Amplifier Gain + Dis	stance Adjustment Factor +	External Atten	uation			
TEST EQUIPMENT								
Description	Manufacturer		Model	ID	Last Cal.	Interva		
Low Pass Filter 0-1000 MHz	Micro-Tronics	LI	LPM50004		12/29/2006	13		
Low Pass Filter 0-425 MHz	Micro-Tronics	LI	PM50003	LFB	12/29/2006	13		
High Pass Filter 1.2 - 18 GHz	Micro-Tronics	H	PM50108	HFV	12/29/2006	13		
High Pass Filter	Micro-Tronics	HI	PM50111	HFO	12/29/2006	13		
Spectrum Analyzer	Agilent		E4446A	AAT	12/7/2006	13		
Signal Generator	Agilent		E8257D	TGX	1/25/2007	13		
Antenna, Horn	EMCO		3115		10/3/2005	24		
Antenna, Dipole (part of ADA)	ETS	31	21C-DB4	ADAA	12/28/2006	24		
Antenna, Dipole (ADAA included)	Roberts		Roberts	ADA	12/28/2006	24		
Pre-Amplifier	Miteq	AMF-4D	010100-24-10P	APW	5/10/2007	13		
Pre-Amplifier	Miteq	AM-	1616-1000	AOL	12/29/2006	13		
Antenna, Horn	EMCO		3115	AHC	8/24/2006	12		
Antenna, Biconilog	EMCO		3141	AXE	12/28/2005	24		
EV01 cables g,h,j				EVB	5/10/2007	13		
EV01 cables c,g, h				EVA	12/29/2006	13		
MEASUREMENT BANDWIDTHS								
F	requency Range			B\	VI			
	(MHz)			(kł	lz)			
	0.15 - 30.0				1.0			
	30.0 - 400.0 10.0							

MEASUREMENT UNCERTAINTY

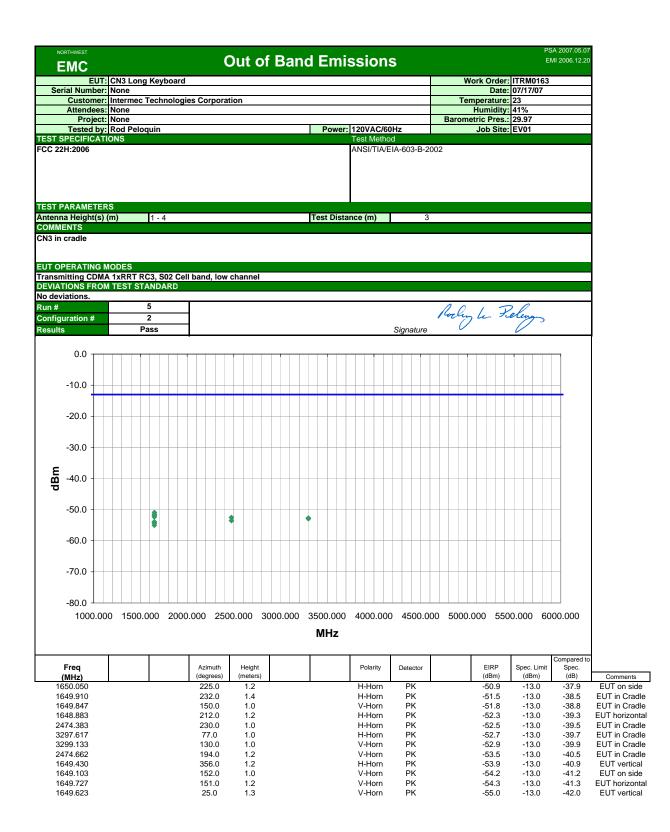
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

100.0

1000.0

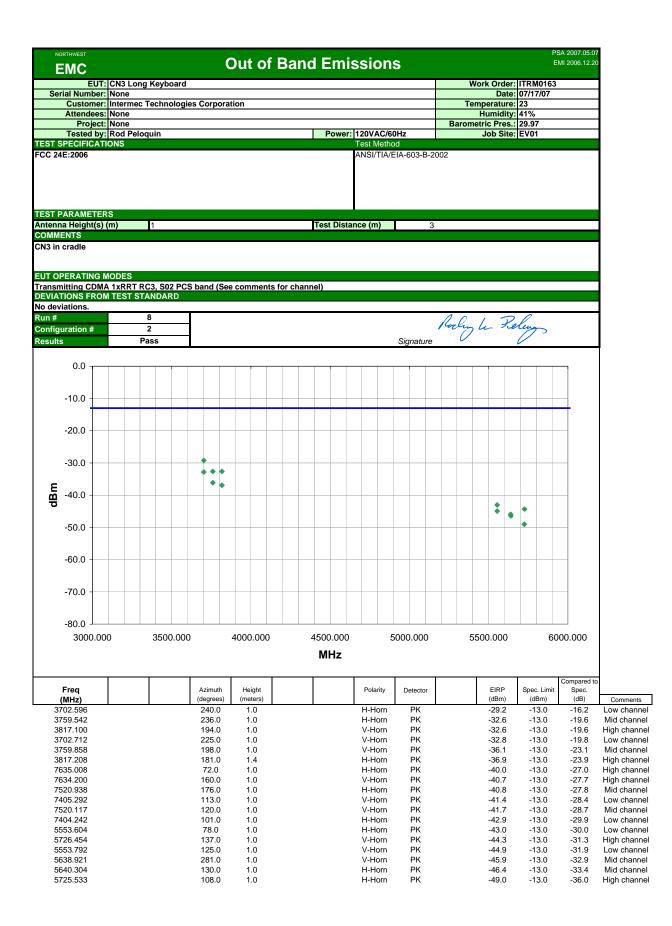
400.0 - 1000.0

1000.0 - 6000.0

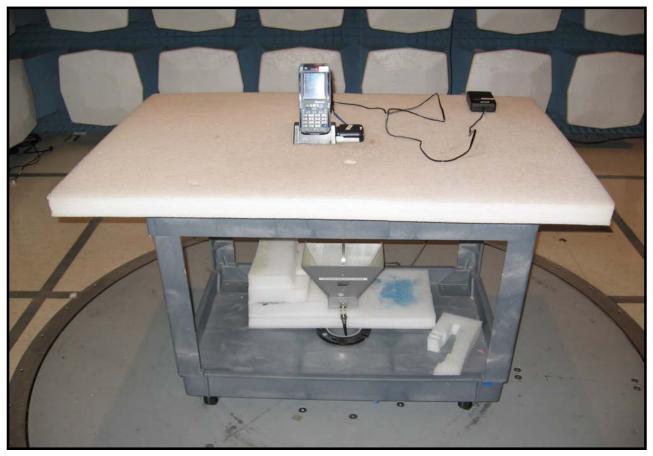

TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

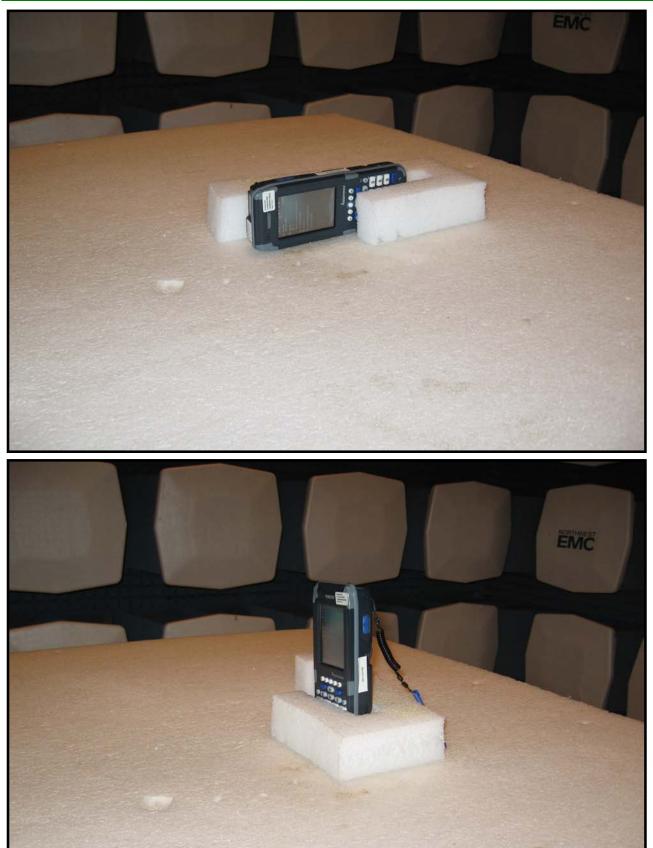

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above.


NORTHWEST					_	_		_		_			_													F	PSA	2007.05
EMC					C	Out	of	Ba	an	d	En	ni	SS	ior	۱S												EMI	2006.12
			Keyboar	d																	Wo					1016	3	
Serial Number																					_		Date			7/07		
Customer Attendees			echnolo	gies Cor	pora	tion														Т			idity					
Project																			Ba	ror			Pres			7		
Tested by			iin								Pow	/er:	120	AC/	60H	z			Ба				Site					
TEST SPECIFICA														Meth									0111					
FCC 22H:2006													ANS	i/TIA	/EIA	-60	3-B-	-200	02									
TEST PARAMETE													I															
Antenna Height(s) (m)	ŕ	- 4							Te	st Di	ista	nce	(m)				3										
COMMENTS CN3 in cradle EUT OPERATING Transmitting CDN	IA 1xR	RT RC		ell band	l, mid	chan	nel																					
DEVIATIONS FRO	M TES	T STA	NDARD																									
Run #		6		1															1	0		,	-	2	0			
Configuration #		2		-														1	la	Ľ,	, 1	i	F	el	ing	~		
Results		Pas	s	-											s	igna	nture	e		0				6		ر		
0.0 —											-			-		1 1	-	_			1	_		_				1
-10.0							_			_			_	_	_			-		_		_	-		_		-	-
+							-		+									-		-					-		-	t
-20.0		+							+	++		\vdash	+		-	$\left \right $		-	\vdash	+	+		+	\vdash	-	+	+	-
-30.0							-		+	+		\vdash	+					-	\vdash	+	+	-		\vdash	-	+	+	-
ε																												
ug -40.0																												
-50.0		+	•		++		+		++			\vdash		+	-		-	+		+	+	+		\vdash	-	+	-	1
			•							۲																		
						•																						
-60.0							+											1		1		+			-			1
70.0																												
-70.0																												
-80.0 ⊥																												1
1000.0	00 1	500.00	00 200	00.000	250	0.000	30	00.0	000	350	0.0	00	400	00.00	00	45	00.0	000	5	00	0.0	00	55	00.	000) 6	000	0.000
										Ν	/Hz	z																
Freq				Azim	uth	Heig	ht						Pr	larity		Dete	ctor					FI	RP		Snec	. Limi		ompareo Spec.
(MHz)				(degre		(mete							-0	nanty	1	Dele	CIOF						кР 3m)	ľ		. Limi 3m)	1	(dB)
1672.743				218		1.2							V-	Horn		Pl	<	_			1		0.0			3.0	-	-37.0
3345.911				158		1.9								Horn		PI							2.0			3.0		-39.0
2509.087				356		1.2								Horn		PI							2.4			3.0		-39.4
3345.948				132	2.0	1.0)							Horn		Pl	<					-5	2.6		-1:	3.0		-39.6
1672.970				339		1.0								Horn		Pl							3.8			3.0		-40.8
2509.479				212	2.0	1.0)						V-	Horn		Pl	<					-5	6.1		-13	3.0		-43.1


NORTHWEST																														07.05
EMC					C	Jut	: 0	t E	Bar	٦d	E	m	IS	Si	on	S												EM	li 200	06.12
		Long K	eyboar	ď																		Wo				TR				
Serial Number			chnole	aios Co-	nore	tion													+	_	т					07/1	7/07	7		
Customer Attendees			LUU1010	gies Cor	pora	uon															10			atur		23 41%				
Project																				Ва	ron					29.9				
Tested by	: Rod		n								P	owe	r: 12	20V	AC/6	0Hz										EV0				
TEST SPECIFICA															Metho															
FCC 22H:2006													А	NSI	/TIA/I	=1A-1	603	-B-)	200	2										
TEST PARAMETE																														
Antenna Height(s)) (m)	1	- 4							T	est	Dist	tanc	e (r	n)			3	3											
COMMENTS CN3 in cradle EUT OPERATING			502.0) all band	hia	h oh s		.1																						
Transmitting CDN DEVIATIONS FRO				ell band	l, hig	h cha	anne																							
No deviations.																			_	~						~				
Run #		7																	1	orl	2	1		F	et	/				
Configuration #		2																	1		0	, 4	-	- 6	1	in	\sim			
Results		Pase	6													Sig	nai	ture	•						6					
0.0 —							,															.							_	
0.0									1						1							1								
-10.0			+++					_						_			_	_			_			_			_		_	
								_						_			-	-			-					-	-		+	
-20.0		+	+			+	+				+	\vdash	+	-	+	+	-	-		_	-	$\left \right $	-		\square	_	-	\vdash	_	
-30.0			+	+++			+				+	\vdash	+	+		+	+	+	+		+	+	+	-	\square		-	$\left \cdot \right $	-	
u -40.0																				+						_				
-50.0							+	-		<u> </u> .		-	+	+		+		+			+		-	-	\square	-	-	$\left \cdot \right $	-	
			\$								•																			
-60.0											+			+			+	+			+		-							
-70.0																														
-70.0																														
-80.0	00 4	500.00	0 200	0.000	250	0.00		2002			- 00				0.00		150					2.04	00	EF			•	600		000
1000.0		500.00	5 200	00.000	200	0.00	0.	5000					, 4	-00	0.00	5 2	100	<i>.</i> 0.0	,00	5	000	5.0	00	50	100	.00	0	000	<i>.</i> 0.0	,00
											Mł	ΠZ																		
																1						Т			1	_				pared
Freq				Azim (dogra			eight							Pola	arity	D	etec	tor	1					RP		Spec				Spec.
(MHz)				(degre			eters)						<u> </u>		lora	I	DM		<u> </u>					Bm)			IBm)			(dB)
2545.410 2545.193				186 36.			.1 3								lorn Iorn		PK							0.6 1.4			13.0 13.0			37.6 38.4
2545.193 3393.127				36. 123			.3 .0								lorn Iorn		PK PK							1.4 2.0			13.0 13.0			38.4 39.0
3392.144				26.			.0								lorn		PK							2.5			13.0			39.5 39.5
1696.904				209			.1								lorn		PK							2.7			13.0			39.7
1696.758				75.			.2								lorn		ΡK							4.1			13.0			41.1

Out of Band Emissions


Out of Band Emissions

Out of Band Emissions

Effective Radiated Power (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION INVESTIGATED
Transmitting 1xEV-DO Rev. A, PCS band
Transmitting 1xEV-DO Rev. 0, PCS band
Transmitting CDMA 1xRRT RC3, S055 PCS band
Transmitting CDMA 1xRRT RC3, S02 PCS band

CONFIGURATIONS INVESTIGATED

Stretch CN3 in a charging cradle Stretch CN3 standalone

POWER SETTINGS INVESTIGATED

120VAC/60Hz

EMC

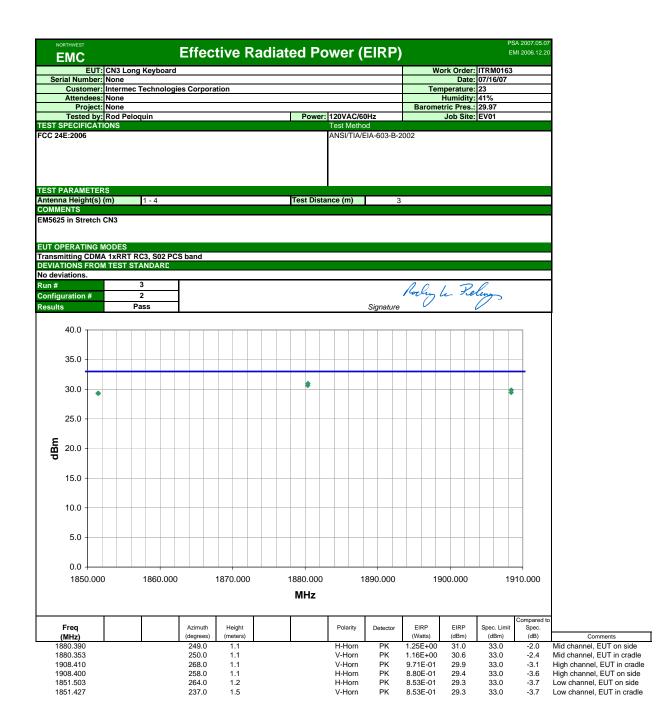
FREQUENCY RANGE IN	/ESTIGATED		
Start Frequency	1851.25MHz	Stop Frequency	1908.75MHz

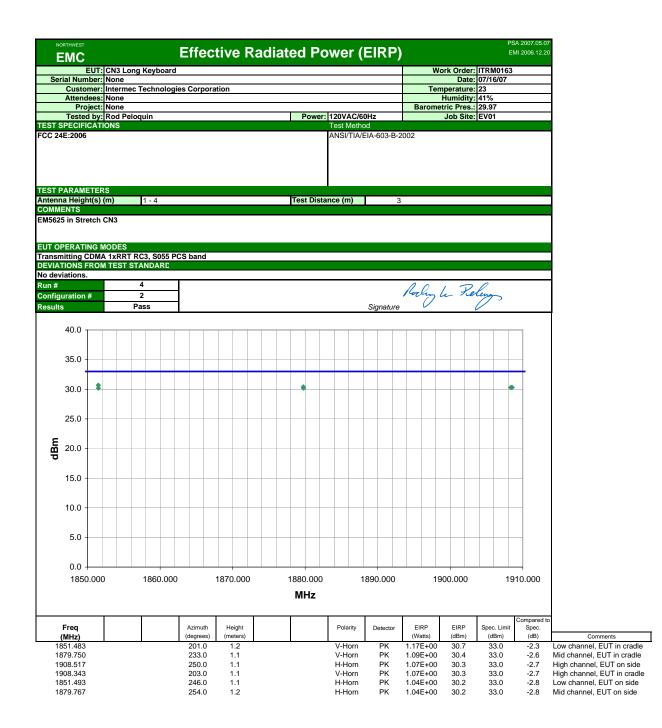
SAMPLE CALCULATIONS

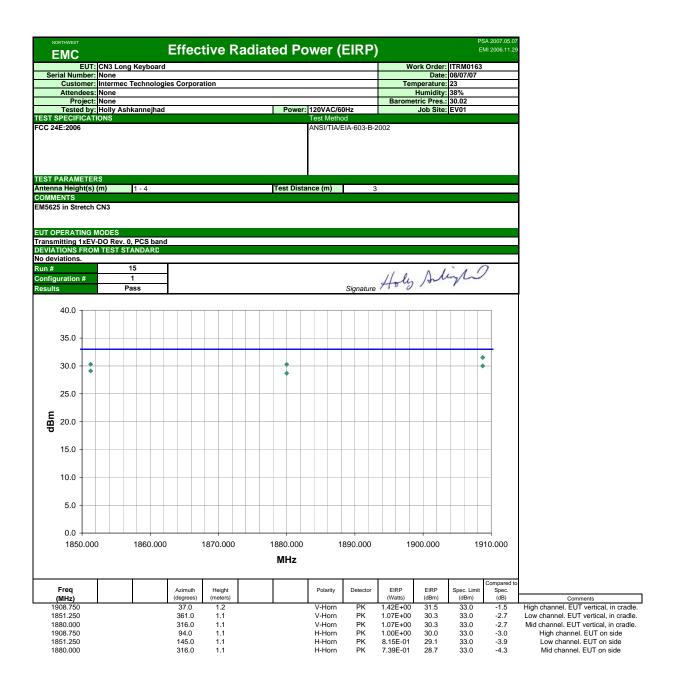
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

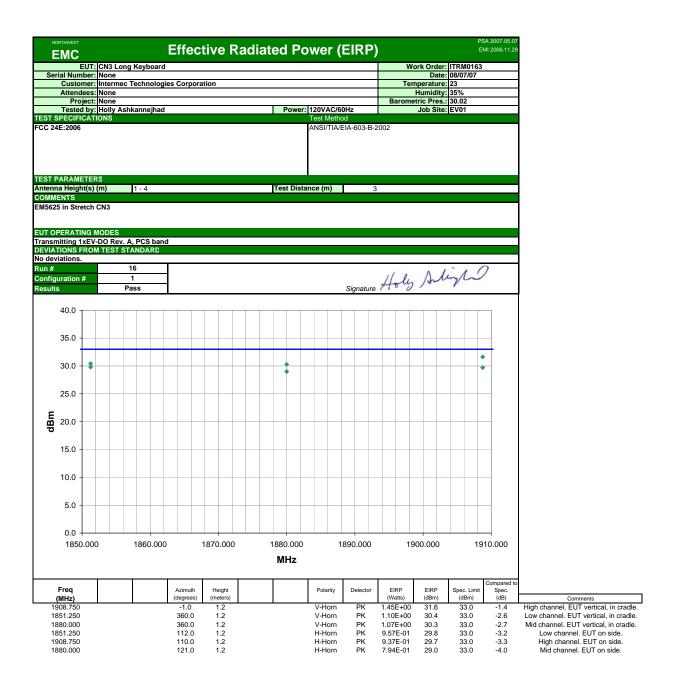
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	EMCO	3115	AHE	10/3/2005	24
Signal Generator	Agilent	E8257D	TGX	1/25/2007	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	12
EV01 cables g,h,j			EVB	5/10/2007	13
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13

Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
(MHz)	(kHz)	(kHz)	(kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		
Measurements were made us	ing the bandwidths and det	ectors specified. No video filte	er was used.		

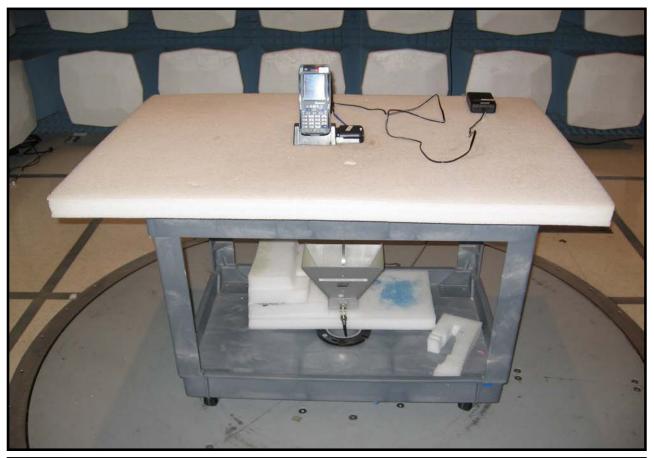

MEASUREMENT UNCERTAINTY

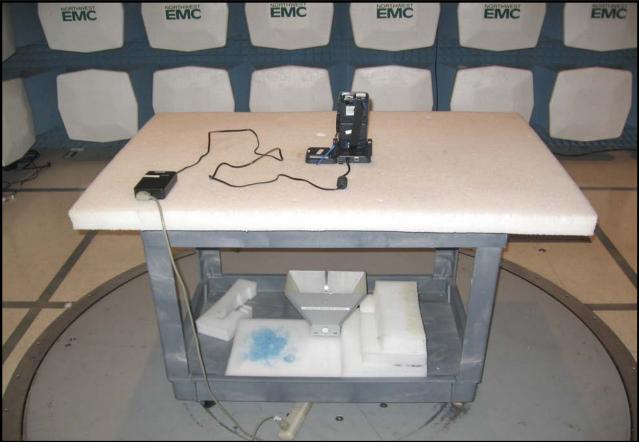

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION

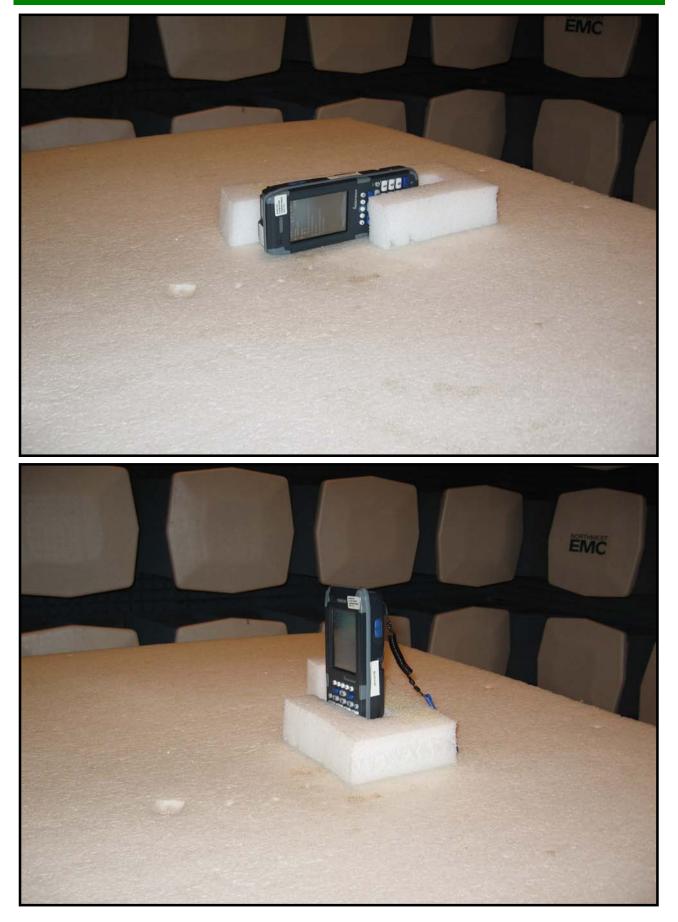

The antennas to be used with the EUT were tested. The EUT was transmitting and/or receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).

The amplitude and frequency of the highest emissions were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the dipole antenna and its gain (dBi); the effective radiated power for each radiated spurious emission was determined.





Effective Radiated Power (EIRP)


Effective Radiated Power (EIRP)

PSA 2007.05.07

Effective Radiated Power (EIRP)

Effective Radiated Power (ERP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

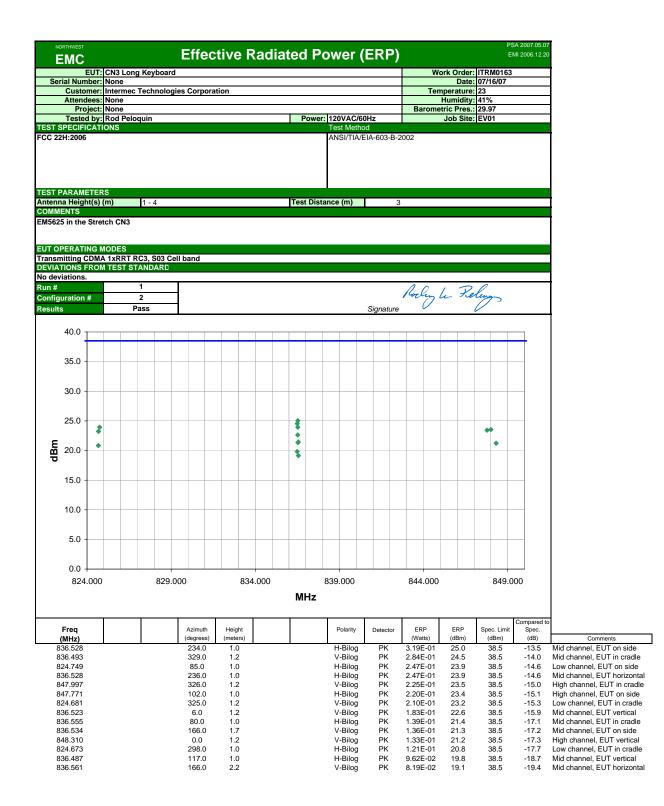
MODES OF OPERATION INV	ESTIGATED		
Transmitting 1xEV-DO Rev. A	Cell band		
Transmitting 1xEV-DO Rev. 0,	Cell band		
Transmitting CDMA 1xRRT R0	C3, S055 Cell band		
Transmitting CDMA 1xRRT R0	C3, S03 Cell band		
CONFIGURATIONS INVESTI	GATED		
Stretch CN3 in charging cradle	1		
Stretch CN3 standalone			
POWER SETTINGS INVESTIG	SATED		
120VAC/60Hz			
FREQUENCY RANGE INVES			
Start Frequency	824.7MHz	Stop Frequency	848.31MHz

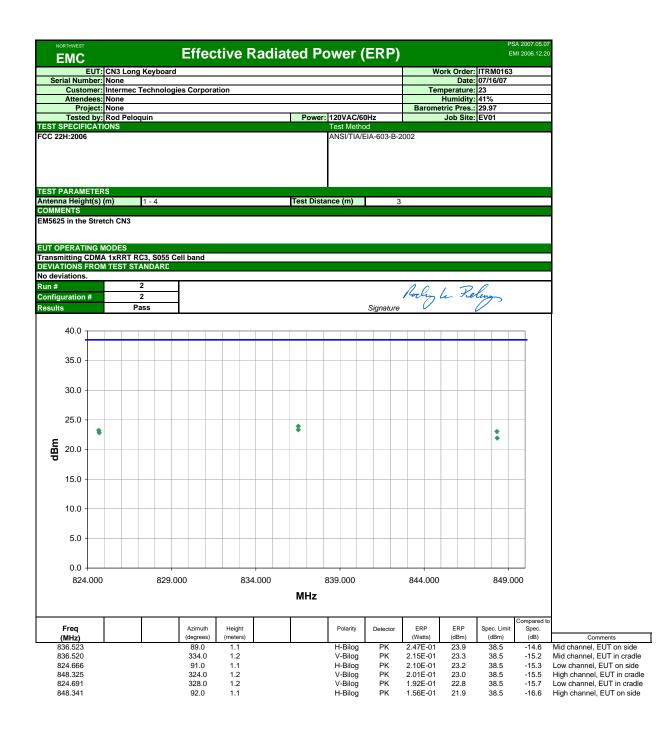
SAMPLE CALCULATIONS

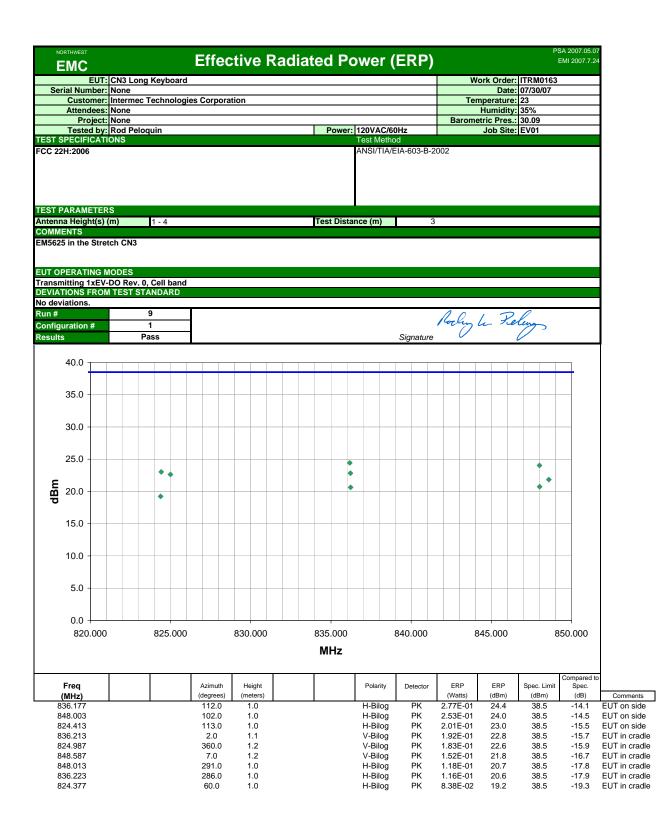
EMC

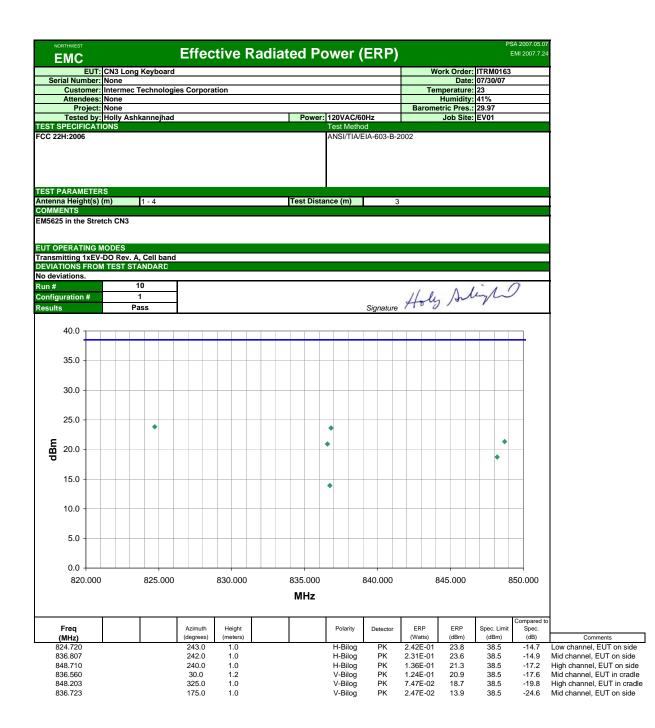
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Dipole (part of ADA)	ETS	3121C-DB4	ADAA	12/28/2006	24
Antenna, Dipole (ADAA included)	Roberts	Roberts	ADA	12/28/2006	24
EV01 cables c,g, h			EVA	12/29/2006	13
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24
Signal Generator	Agilent	E8257D	TGX	1/25/2007	13
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13

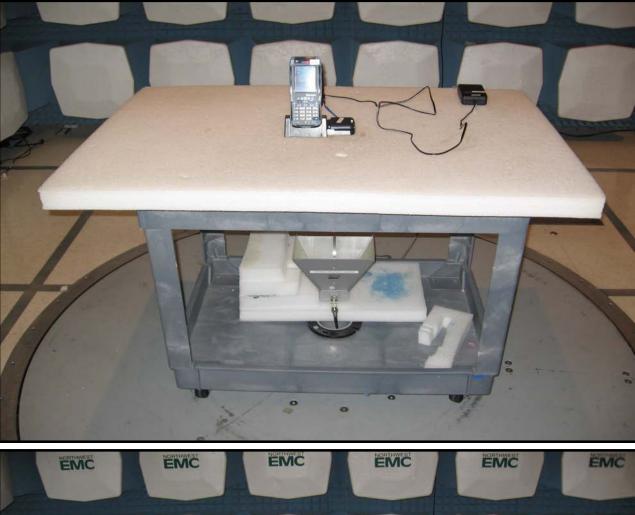

Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
(MHz)	(kHz)	(kHz)	(kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		

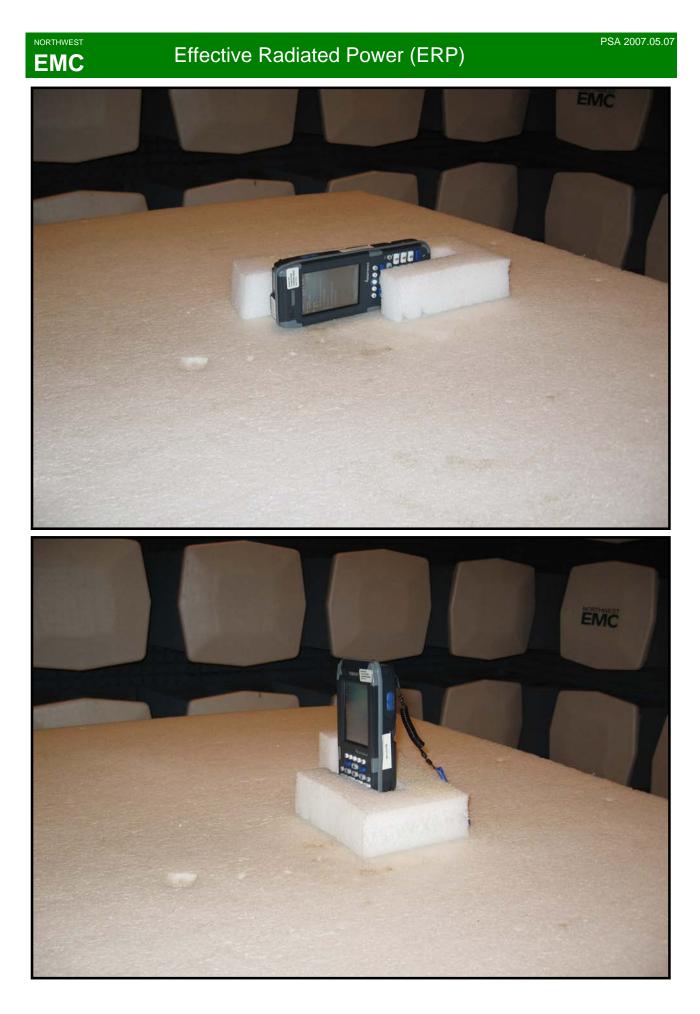

MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarizationThe amplitude and frequency of the highest emission were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to the highest emission. A signal generator was connected to the dipole, and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded. The signal generator, amplifier, and cable were then connected to an analyzer and the power output was recorded. By factoring in the dipole antenna gain (dBi), the effective radiated power for the maximum fundamental emission was determined.




Effective Radiated Power (ERP)

Effective Radiated Power (ERP)

