

TEST REPORT

APPLICANT	: Nice North America LLC
PRODUCT NAME	: System Controller
MODEL NAME	: EL-SC-350
BRAND NAME	: Nice
FCC ID	: EF400241
STANDARD(S)	: 47 CFR Part 15 Subpart E
RECEIPT DATE	: 2023-10-24
TEST DATE	: 2023-11-06 to 2023-12-07
ISSUE DATE	: 2023-12-22

allestics . Comp	Edited by:	Su xiaoxian
Certification Rogal SERVICE	Approved by	Su Xiaoxian (Rapporteur) Shon Junchem
		Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

DIRECTORY

1. S	Summary of Test Result 4
1.1.	Testing Applied Standards 5
1.2.	Test Equipment List 6
1.3.	Measurement Uncertainty 8
1.4.	Testing Laboratory 8
2. 0	Seneral Description
2.1.	Information of Applicant and Manufacturer9
2.2.	Information of EUT9
2.3.	Channel List of EUT 9
2.4.	Test Configuration of EUT10
2.5.	Test Conditions10
2.6.	Test Setup Layout Diagram 11
3. T	est Results ·······14
3.1.	Antenna Requirement14
3.2.	Duty Cycle of Test Signal15
3.3.	Maximum Conducted Output Power16
3.4.	Emission Bandwidth18
3.5.	Peak Power Spectral Density20
3.6.	Frequency Stability21
3.7.	Conducted Emission
3.8.	Restricted Frequency Bands23
3.9.	Radiated Emission25
Ann	ex A Test Data and Result27

Http://www.morlab.cn

Change History		
Version	Date	Reason for change
1.0	2023-12-22	First edition

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

1. Summary of Test Result

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	ANSI C63.10	Duty Cycle of the Test Signal	Nov. 07, 2023	Zhong Yanshan	PASS	No deviation
3	15.407(a)	Maximum Conducted Output Power	Nov. 07, 2023	Zhong Yanshan	PASS	No deviation
4	15.407(a) (e)	Emission Bandwidth	Nov. 07, 2023	Zhong Yanshan	PASS	No deviation
5	15.407(a)	Peak Power Spectral Density	Nov. 07, 2023	Zhong Yanshan	PASS	No deviation
6	15.407(g)	Frequency Stability	Nov. 07, 2023	Zhong Yanshan	PASS	No deviation
7	15.207	Conducted Emission	Nov. 23, 2023	Wang Deyong	PASS	No deviation
8	15.407(b)	Restricted Frequency Bands	Dec. 09, 2023	Su Zhan	PASS	No deviation
9	15.407(b)	Radiated Emission	Dec. 09, 2023	Su Zhan	PASS	No deviation

Note 1: The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10-2013.

Note 2: These RF tests were performed according to the method of measurements prescribed in KDB 789033 D02 v02r01.

Note 3: These RF tests were performed according to the method of measurements prescribed in KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02.

Note 4: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 5: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.1. Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

• 47 CFR Part 15 Subpart E Radio Frequency Devices

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

1.2. Test Equipment List

1.2.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
EXA Signal	MV53470836	N0010A	Agilent	2023 02 27	2024 02 26
Analzyer	WIT 3347 0030	NSUIDA	Aglient	2020.02.21	2024.02.20
USB Wideband	MVE4190009		Agilant	2022 00 10	2024 00 19
Power Sensor	IVI 1 54 100000	020217A	Aglient	2023.09.19	2024.09.10
Temperature	10109015	DTL-003S	VOMA	2022 00 10	2024 00 19
Chamber	12106015	101	YOWA	2023.09.19	2024.09.10
RF Cable	0004		Maylah	N1/A	N1/A
(30MHz-26GHz)	CB01	RFUT	Worlad	N/A	N/A
Coaxial Cable	CB02	RF02	Morlab	N/A	N/A
SMA Connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Attenuator	MTJ6004-10	10dB	MTJ cooperation	N/A	N/A

1.2.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY56400093	N9038A	KEYSIGHT	2023.02.09	2024.02.08
	9107440	NSLK	Sobworzbook	2022 02 21	2024 02 20
LISIN	8127449	8127	Schwarzbeck	2023.02.21	2024.02.20
Pulse Limiter	VTSD 9561	VTSD	Cobyyor=book	2022 06 27	2024 06 26
(10dB)	F-B #206	9561-F	Schwarzbeck	2023.00.27	2024.00.20
RF Coaxial Cable	DNC		Qualwaya	NI/A	
(DC-100MHz)	BNC		Qualwave	IN/A	IN/A

1.2.3 List of Software Used

Description	Manufacturer	Software Version
Test System	MaiWei	2.0.0.0
Morlab EMCR	Morlab	V1.2
TS+ -[JS32-CE]	Tonscend	V2.5.0.0

1.2.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY54130016	N9038A	Agilent	2023.06.21	2024.06.20
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2022.05.25	2025.05.24
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2022.02.11	2025.02.10
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2022.07.13	2025.07.12
Test Antenna – Horn	BBHA9170 #773	BBHA9170	Schwarzbeck	2022.07.14	2025.07.13
Preamplifier (10MHz-6GHz)	46732	S10M100L38 02	LUCIX CORP.	2023.06.26	2024.06.27
Preamplifier (2GHz-18GHz)	61171/61172	S020180L32 03	LUCIX CORP.	2023.06.26	2024.06.27
Preamplifier (18GHz-40GHz)	DS77209	DCLNA0118- 40C-S	Decentest	2023.07.04	2024.07.03
RF Coaxial Cable (DC-18GHz)	MRE001	PE330	Pasternack	2023.06.27	2024.06.26
RF Coaxial Cable (DC-18GHz)	MRE002	CLU18	Pasternack	2023.06.27	2024.06.26
RF Coaxial Cable (DC-18GHz)	MRE003	CLU18	Pasternack	2023.06.27	2024.06.26
RF Coaxial Cable (DC-40GHz)	22290045	QA360-40-K K-0.5	Qualwave	2023.07.04	2024.07.03
RF Coaxial Cable (DC-40GHz)	22290046	QA360-40-K KF-2	Qualwave	2023.07.04	2024.07.03
RF Coaxial Cable (DC-18GHz)	22120181	QA500-18-N N-5	Qualwave	2023.07.04	2024.07.03
Notch Filter	N/A	WRCG- 5150-5350	Wainwright	N/A	N/A
Notch Filter	N/A	WRCG- 5725-5850	Wainwright	N/A	N/A
Anechoic Chamber	N/A	9m*6m*6m	CRT	2022.05.10	2025.05.09

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Fax: 86-755-36698525

Http://www.morlab.cn

1.3. Measurement Uncertainty

Test Items	Uncertainty	Remark
Peak Output Power	±2.22dB	Confidence levels of 95%
Power Spectral Density	±2.22dB	Confidence levels of 95%
Bandwidth	±5%	Confidence levels of 95%
Restricted Frequency Bands	±5%	Confidence levels of 95%
Radiated Emission	±2.95dB	Confidence levels of 95%
Conducted Emission	±2.44dB	Confidence levels of 95%

1.4. Testing Laboratory

Laboratory Name	Shenzhen Morlab Communications Technology Co., Ltd.	
	FL.3, Building A, FeiYang Science Park, No.8 LongChang	
Laboratory Address	Road, Block 67, BaoAn District, ShenZhen, GuangDong	
	Province, P. R. China	
Telephone	+86 755 36698555	
Facsimile	+86 755 36698525	
FCC Designation Number	CN1192	
FCC Test Firm	226174	
Registration Number		

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

_ .

2. General Description

2.1. Information of Applicant and Manufacturer

Applicant	Nice North America LLC
Applicant Address	5919 Sea Otter Place, Suite 100, Carlsbad, CA 92010 USA
Manufacturer	Nice North America LLC
Manufacturer Address	5919 Sea Otter Place, Suite 100, Carlsbad, CA 92010 USA

2.2. Information of EUT

Product Name:	System Controller
Sample No.:	2#
Hardware Version:	X1
Software Version:	X1
Modulation Technology:	OFDM
Modulation Mode:	802.11a, 802.11n (HT20)
Operating Frequency Range:	5180MHz-5240MHz; 5745MHz-5825MHz
Antenna Type:	External antenna
Antenna Gain:	3.0dBi

Note 1: We use the dedicated software to control the EUT continuous transmission.

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2.3. Channel List of EUT

(U-NII-1) 5180MH	lz-5240MHz			
Bandwidth	Channel	Frequency (MHz)	Channel	Frequency (MHz)
201411-	36	5180	40	5200
	44	5220	48	5240
(U-NII-3) 5745MH	lz-5825MHz			
Bandwidth	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	149	5745	153	5765
20MHz	157	5785	161	5805
	165	5825		

Note 1: The black bold channels were selected for test.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4. Test Configuration of EUT

2.4.1.Modulation Type and Data Rate of EUT

Mode	Bandwidth (MHz)	Modulation Technology	Modulation Type	Data Rate	RU Size
			DBPSK		
802.11a	20	OFDM	DQPSK	1 /2/5.5/11Mbps	N/A
			CCK		
			BPSK		
802.11n	20 (HT20)	OFDM	QPSK	MCS0~MCS7	N/A
			16QAM		
			64QAM		

Note1: The worst-case mode (bold face) in all data rates has been determined during the pre-scan, only the test data of the worst-case were recorded in this report.

2.5. Test Conditions

Temperature (°C)	15-35
Relative Humidity (%)	30-60
Atmospheric Pressure (kPa)	86-106

2.6. Test Setup Layout Diagram

2.6.1.Conducted Measurement

For power item that BW below 80MHz system:

For power item that BW equal or above 80MHz and other items:

2.6.2.Conducted Emission Measurement

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn

E-mail: service@morlab.cn

Page 11 of 74

2.6.3.Radiation Measurement

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

3) For radiated emissions above 1GHz

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

3.1. Antenna Requirement

3.1.1.Requirement

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.2.Test Result

According to the manufacturer declared, the EUT has an external antenna, the directional gain of antennais 3.0 dBi and this device must be professionally installed, which does not permit use of any antenna with the transmitter; the permitted types of antenna must be specified, refer to user manual for the detail.

Therefore the EUT is considered sufficient to comply with the provision.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-755-36698525

 Http://www.morlab.cn
 E-mail:
 service@morlab.cn

3.2. Duty Cycle of Test Signal

3.2.1.Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration(T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this sub clause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than $\pm 2\%$; otherwise, the duty cycle is considered to be non constant.

3.2.2.Test Result

Refer to Annex A.1 in this report.

3.3. Maximum Conducted Output Power

3.3.1.Requirement

(1) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250mW provided the maximum antenna gain does not exceed 6dBi.

(2)For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250mW or 11dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

(4) According to KDB662911D01Measure-and-sum technique, the conducted emission level (e.g., transmit power or power in specified bandwidth) is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in units that are directly proportional to power.

(5) According to KDB 662911 D01, the directional gain = G_{ANT} +10log(N_{ANT})dBi, where G_{ANT} is the antenna gain in dBi, N_{ANT} is the number of outputs.

3.3.2.Test Procedures

Section E) 3) of KDB 789033 defines a methodology using a USB Wideband Power Sensor. **Test Setup:**

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in USB Wideband Power Sensor.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

For ac (VHT80) mode power

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

3.3.3.Test Result

Refer to Annex A.2 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax

Fax: 86-755-36698525

Http://www.morlab.cn

3.4. Emission Bandwidth

3.4.1.Requirement

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement. Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.4.1.Test Procedures

1. KDB 789033 Section C) 1) Emission Bandwidth was used in order to prove compliance

a) Set RBW = approximately 1% of the emission bandwidth.

b) Set VBW > RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. KDB 789033 Section C) 2) minimum emission bandwidth for the band 5.725-5.85GHz was used in order to prove compliance.

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for theband5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

a) Set RBW = 100 kHz.

b) Set video bandwidth (VBW) \geq 3 × RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.4.2.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.4.3.Test Result

Refer to Annex A.3 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

3.5. Peak Power Spectral Density

3.5.1.Requirement

(1)For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

(2)For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

(3) For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30dBm in any 500kHz band.

If transmitting antennas of directional gain greater than 6dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

(4) According to KDB662911D01Measure-and-sum technique, the conducted emission level (e.g., transmit power or power in specified bandwidth) is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in units that are directly proportional to power.

(5) According to KDB 662911 D01, the directional gain = G_{ANT} +10log(N_{ANT}) dBi, where G_{ANT} is the antenna gain in dBi, N_{ANT} is the number of outputs.

3.5.2.Test Procedures

KDB 789033 Section F) Maximum Power Spectral Density (PSD) Method SA-3 was used in order to prove compliance

- 1) Set span to encompass the entire 26-dB emission bandwidth
- 2) Set RBW = 1MHz. Set VBW ≥ 3MHz
- 3) Number of points in sweep \geq 2 Span / RBW. Sweep time = auto
- 4) Detector = Average
- 5) Trace mode=Max hold

Record the max value

3.5.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.5.4.Test Result

Refer to Annex A.4 in this report.

3.6. Frequency Stability

3.6.1.Requirement

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2.Test Procedures

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between 5°C to 40°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

3.6.3.Test Result

Refer to Annex A.5 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

3.7. Conducted Emission

3.7.1.Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

Fraguanay Panga (MHz)	Conducted Limit (dBµV)			
	Quai-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5	56	46		
5 - 30	60	50		

Note:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

3.7.2.Test Procedures

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

3.7.3.Test Setup Layout

Refer to chapter 2.6.2 in this report.

3.7.4.Test Result

Refer to Annex A.7 in this report.

3.8. Restricted Frequency Bands

3.8.1.Requirement

The peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

The following formula is used to convert the equipment isotropic radiated power(e.i.r.p.) to field strength (dBµV/m);

 $E = 1000000 \times \sqrt{30P} / 3 \text{ µV/m}$

where P is the EIRP in Watts

Therefore: -27 dBm/MHz = 68.23 dBuV/m

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel:
 86-755-36698555
 Fax:
 86-755-36698525

 Http://www.morlab.cn
 E-mail:
 service@morlab.cn

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

3.8.2.Test Procedures

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

KDB 789033 Section H) 3)5)6(d)) was used in order to prove compliance

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

3.8.3.Test Setup Layout

Refer to chapter 2.6.3 in this report.

3.8.4.Test Result

Refer to Annex A.8 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3.9. Radiated Emission

3.9.1.Requirement

The peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

The following formula is used to convert the equipment isotropic radiated power(e.i.r.p.) to field strength (dBµV/m);

$$E = 1000000 \times \sqrt{30P} / 3 \mu V/m$$

where P is the EIRP in Watts
Therefore: -27 dBm/MHz = 68.23 dBuV/m

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

3.9.2.Test Procedures

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz.The antenna to EUT distance is 3meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 30MHz, the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9kHz-90 kHz, 110kHz-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

For measurements below 1GHz the resolution bandwidth is set to 100kHz for peak detection measurements or 120kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video band width is set to 3MHz for peak measurements and as applicable for average measurements.

The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions. For measurements above 1 GHz, keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

3.9.3.Test Setup Layout

Refer to chapter 2.6.3 in this report.

3.9.4.Test Result

Refer to Annex A.9 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

Annex A Test Data and Result

A.1. Duty Cycle of Test Signal

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	а	5180	Ant1	93.33	0.3	0.71
NVNT	а	5220	Ant1	93.33	0.3	0.71
NVNT	а	5240	Ant1	93.33	0.3	0.71
NVNT	а	5745	Ant1	92.11	0.36	0.71
NVNT	а	5785	Ant1	93.33	0.3	0.71
NVNT	а	5825	Ant1	92	0.36	0.72
NVNT	n20	5180	Ant1	92.96	0.32	0.76
NVNT	n20	5220	Ant1	92.86	0.32	0.77
NVNT	n20	5240	Ant1	92.86	0.32	0.77
NVNT	n20	5745	Ant1	92.96	0.32	0.76
NVNT	n20	5785	Ant1	92.86	0.32	0.77
NVNT	n20	5825	Ant1	91.55	0.38	0.77

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

E-mail: service@morlab.cn

Http://www.morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

RL RF 50 @ AC Sense:Pulse! Source OFF ALIGNAUTO OS:35:15 PM/wrv07.2 Center Freq 5.220000000 GHz PN0: Fast IFGain:Low IFG Avg Type: Log-Pwr Trace Plant Ref Offset 14.8 dB Mkr1 960.0 Mkr1 960.0 15.18 dB 16.18 dB 10 dB/div Ref 40.00 dBm 15.18 dB 15.18 dB 20.0 30.0 30.0 10.0 10.0 10.0 20.0 1 3 10.0 10.0 10.0 20.0 1 10.0 10.0 10.0 10.0 20.0 1 10.0 10.0 10.0 10.0 20.0 1 10.0 10.0 10.0 10.0 20.0 1 10.0 10.0 10.0 10.0 20.0 1 10.0 10.0 10.0 10.0 20.0 1 10.0 10.0 10.0 10.0 20.0 1 10.0 10.0 10.0 10.0 20.0 1 10.0 10.0 10.0 10.0 20.0 1 10.0 10.0 10.0 10.0 20.0 1 10.0 10.0 10.0 10.0 20.0 <td< th=""></td<>
Center Freq 5.220000000 GHz Avg Type: Log-Pwr Trace 12.38 IFGain:Low #Atten: 36 dB Mikr 1960.0 10 dB/div Ref 40.00 dBm 15.18 dE 10 dB/div Ref 40.00 dBm 15.18 dE 10 dB/div Ref 40.00 dBm 15.18 dE 10 dB/div Ref 40.00 dBm 15.18 dE
Ref Offset 14.8 dB 10 dB/div Ref 40.00 dBm 15.18 dB 10 dB/div Ref 40.00 dBm 15.18 dB 10 dB/div 10 dB/d
Log 3
20.0
-20.0
-40.0
50.0
Center 5.22000000 GHz Span 0
Res BW 8 MHz #VBW 8.0 MHz Sweep 20.00 ms (1001 p
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE
1 N 1 t 960.0 μs 15.18 dBm 2 N 1 t 1.060 ms 15.44 dBm 3 N 1 t 2.360 ms 1.997 dBm
MSG STATUS

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

STATUS

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China STATUS

		Frequency		Total	Total	Limit	
Condition	Mode		Antenna	Conducted	Conducted	Conducted	Verdict
				Power (dBm)	Power (W)	(dBm)	
NVNT	а	5180	Ant1	11.72	0.01486	24	Pass
NVNT	а	5220	Ant1	14.66	0.02924	24	Pass
NVNT	а	5240	Ant1	14.16	0.02606	24	Pass
NVNT	а	5745	Ant1	11.52	0.01419	30	Pass
NVNT	а	5785	Ant1	11.35	0.01365	30	Pass
NVNT	а	5825	Ant1	11.04	0.01271	30	Pass
NVNT	n20	5180	Ant1	11.03	0.01268	24	Pass
NVNT	n20	5220	Ant1	14.59	0.02877	24	Pass
NVNT	n20	5240	Ant1	14.2	0.0263	24	Pass
NVNT	n20	5745	Ant1	11.88	0.01542	30	Pass
NVNT	n20	5785	Ant1	11.33	0.01358	30	Pass
NVNT	n20	5825	Ant1	11	0.01259	30	Pass

A.2. Maximum Conducted Output Power

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.3. Emission Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-26 dB Bandwidth (MHz)	Verdict
NVNT	а	5180	Ant1	21.373	Pass
NVNT	а	5220	Ant1	21.557	Pass
NVNT	а	5240	Ant1	22.176	Pass
NVNT	n20	5180	Ant1	21.903	Pass
NVNT	n20	5220	Ant1	23.653	Pass
NVNT	n20	5240	Ant1	24.042	Pass

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	а	5745	Ant1	16.318	0.5	Pass
NVNT	а	5785	Ant1	16.333	0.5	Pass
NVNT	а	5825	Ant1	16.324	0.5	Pass
NVNT	n20	5745	Ant1	17.572	0.5	Pass
NVNT	n20	5785	Ant1	17.574	0.5	Pass
NVNT	n20	5825	Ant1	17.57	0.5	Pass

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

A.4. Peak Power Spectral Density

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Duty Factor (dB)	Total Conducted PSD (dBm)	Limit Conducted (dBm)	Verdict
NVNT	а	5180	Ant1	2.22	0.3	2.51	11	Pass
NVNT	а	5220	Ant1	1.88	0.3	2.18	11	Pass
NVNT	а	5240	Ant1	2.02	0.3	2.32	11	Pass
NVNT	а	5745	Ant1	-4.06	0.36	-3.7	30	Pass
NVNT	а	5785	Ant1	-4.45	0.3	-4.15	30	Pass
NVNT	а	5825	Ant1	-4.61	0.36	-4.25	30	Pass
NVNT	n20	5180	Ant1	1.43	0.32	1.75	11	Pass
NVNT	n20	5220	Ant1	1.46	0.32	1.78	11	Pass
NVNT	n20	5240	Ant1	1.37	0.32	1.69	11	Pass
NVNT	n20	5745	Ant1	-4.69	0.32	-4.37	30	Pass
NVNT	n20	5785	Ant1	-4.96	0.32	-4.64	30	Pass
NVNT	n20	5825	Ant1	-5.06	0.38	-4.68	30	Pass

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China STATUS

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Center 5.74500 GHz #Res BW 510 kHz

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

#VBW 1.6 MHz*

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

STATUS

Span 30.00 MHz Sweep 1.000 ms (1001 pts)

Agilent Spectrum Analyzer - Swept SA RL 59 PM Nov 07, 2023 SENSE: PULSE SOURCE OFF TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N Center Freq 5.825000000 GHz Avg Type: RMS Avg|Hold: 300/300 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 5.826 20 GHz -5.064 dBm Ref Offset 14.69 dB Ref 20.00 dBm 10 dB/div **1** Center 5.82500 GHz #Res BW 510 kHz Span 30.00 MHz Sweep 1.000 ms (1001 pts) #VBW 1.6 MHz* STATUS

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

A.5. Frequency Stability

Condition	Mode	Frequency (MHz)	Antenna	Measured Frequency (MHz)	Frequency Error (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
20C 10V	Carrier	5180	Ant1	5180.008	8000	1.54	25	Pass
20C 14V	Carrier	5180	Ant1	5180.008	8000	1.54	25	Pass
0C 12V	Carrier	5180	Ant1	5180.008	8000	1.54	25	Pass
10C 12V	Carrier	5180	Ant1	5180.007	7000	1.35	25	Pass
20C 12V	Carrier	5180	Ant1	5180.007	7000	1.35	25	Pass
30C 12V	Carrier	5180	Ant1	5180.007	7000	1.35	25	Pass
40C 12V	Carrier	5180	Ant1	5180.007	7000	1.35	25	Pass
20C 10V	Carrier	5745	Ant1	5745.009	9000	1.57	25	Pass
20C 14V	Carrier	5745	Ant1	5745.008	8000	1.39	25	Pass
0C 12V	Carrier	5745	Ant1	5745.008	8000	1.39	25	Pass
10C 12V	Carrier	5745	Ant1	5745.008	8000	1.39	25	Pass
20C 12V	Carrier	5745	Ant1	5745.008	8000	1.39	25	Pass
30C 12V	Carrier	5745	Ant1	5745.008	8000	1.39	25	Pass
40C 12V	Carrier	5745	Ant1	5745.008	8000	1.39	25	Pass

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.6. Conducted Emission

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Set RBW=9kHz, VBW=30kHz. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A. Test Setup:

Test Mode: EUT+Adapter+PC +PC Adapter + WIFI TX Test voltage: AC 120V/60Hz The measurement results are obtained as below: $E [dB\mu V] = U_R + L_{Cable loss} [dB] + A_{Factor}$ U_R: Receiver Reading A_{Factor}: Voltage division factor of LISN

B. Test Plot:

(L Phase)

No.	Fre.	Emission L	evel (dBµV)	Limit (dBµV)	Power-line Ver	
	(MHz)	Quai-peak	Average	Quai-peak	Average		rendiet
1	0.1545	36.70	27.14	65.75	55.75		PASS
2	0.1860	33.44	25.59	64.22	54.22		PASS
3	0.3390	28.32	22.03	59.23	49.23	Lino	PASS
4	1.0003	31.46	22.10	56.00	46.00	LITE	PASS
5	1.3156	31.33	22.78	56.00	46.00		PASS
6	8.0753	32.26	25.14	60.00	50.00		PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

(N	Phase)
----	--------

No.	Fre.	Emission L	evel (dBµV)	Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1860	36.26	26.83	64.21	54.21		PASS
2	0.2582	34.98	26.69	61.49	51.49		PASS
3	0.4288	38.67	30.67	57.28	47.28	Noutral	PASS
4	0.4511	35.51	28.07	56.86	46.86	neutrai	PASS
5	0.9832	32.15	24.64	56.00	46.00		PASS
6	8.5277	30.38	23.66	60.00	50.00		PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.7. Restricted Frequency Bands

The lowest and highest channels are tested to verify the Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

Note 1: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

Note 2 All test modes and bandwidth were considered and evaluated respectively by performing full test, only the worst data were recorded for each bandwidth.

802.11a Mode

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor} (dB@	Max. Emission	Limit (dBµV/	Verdict
Channel	(MHz)	PK/ AV	U _R (dBµV)	(dB)	3m)	E (dBµV/m)	m)	
36	5149.40	PK	51.20	-19.54	32.20	63.86	74	PASS
36	5150.00	AV	40.16	-19.54	32.20	52.82	54	PASS
48	5430.74	PK	43.69	-19.54	32.20	56.35	74	PASS
48	5408.96	AV	32.68	-19.54	32.20	45.34	54	PASS
149	5725.00	PK	62.24	-19.01	32.20	75.43	122.23	PASS
165	5850.00	PK	54.29	-19.01	32.20	67.48	122.23	PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Marker	M Dec 08, 2023 E 123456 M WWWW P P N N N N	11:35:04 PI TRAC TYF DE	ALIGN OFF : Voltage :>100/100	Avg Ty Avg Ho	SE:INT Run dB	Trig: Free #Atten: 6	GHz PNO: Fast G	yzer - Swept SA 50 Ω DC 4000000000	Spectrum Ar RF PRES 2 5.14	I Keysight WRL Marker
	40 GHz 0 dBµV	2 5.149 51.20	Mkr					02.99 dBµV	Ref	10 dB/div
Normal										93.0
Delta	2	winjahrsteistore		م م	1 Magandriana	Provide States		ما و مرد ما و مرد ما	ور مار مار مار مار مار	63.0
Fixed⊳										33.0 23.0 13.0
2 5) Off	1800 GHz 1001 pts)	Stop 5.1 400 ms (Sweep 1.	CTION F	FUI	7 3.0 MHz	#VBV	z x) 1 MHz x	5000 GI W (CISP	Start 4. #Res B
Properties►	=				JV JV	50.879 dBj 51.200 dBj	0 00 GHz 9 40 GHz	5.150 5.149	1 f 1 f	1 N 2 N 3 4 5
More 1 of 2										7 8 9 10 11
	- F		STATUS							MSG

(PEAK, Channel 36, 802.11a)

(AVERAGE, Channel 36, 802.11a)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

23 Marker	E 123456	07:24:08 PI TRAC TYF	ALIGN OFF pe: Voltage Id:>100/100	ιτ Avg n Avg	SENSE:I	GHz PNO: Fast	llyzer - Swept SA L 50 Ω DC 7400000000 C	trum A RF PRES 5.43	vsight Spec
Select Marker 2 V	74 GHz 9 dBµV	2 5.430 43.68	Mkr		#Atten: 6 dB	IFGain:Low	102.99 dBµV	Ref	B/div
Normal									and t
Delta		2-	NAN Distance on the tight of	เลิงรูปใ _{ญา} ประการโรสาวไ	1	+++vlauturtura	~www.men.men.men.men.men.men.men.men.men.men	NANGEN L	
Fixed⊳									
iz s) Off	600 GHz 1001 pts)	Stop 5.4 .000 ms (Sweep 1	FUNCTION	3.0 MHz	#VB	z R) 1 MHz	00 GI (CISF	t 5.240 s BW (
Properties⊁	E	FUNCTIO	ONC HON WIDTH	FUNCTION	41.441 dBµV 43.689 dBµV	0 00 GHz 0 74 GHz	^ <u>5.350</u> 5.430	f	N 1 N 1
More 1 of 2									
			STATUS						

(PEAK, Channel 48, 802.11a)

(AVERAGE, Channel 48, 802.11a)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

📕 Keysight Spectrum Analyzer - Swept SA				- F 🔀
Marker 4 5.725000000000	GHz	AVg Type: Voltage	07:47:18 PM Nov 27, 2023 TRACE 123456	Marker
	PNO: Fast Trig: Free Rui IFGain:Low #Atten: 6 dB	n Avg Hold:>100/100	DET P P N N N N	Select Marker
10 dB/div Ref 102.99 dBµV		Mkr4	4 5.725 000 GHz 62.242 dBμV	4
93.0				Normal
73.0				
53.0		1 1	2 m W	Delta
43.0	allerstelste anderstelste anderstelste anderstelste anderstelste anderstelste anderstelste anderstelste anderste	angi an a'n af an fan fan fan fan fan fan fan fan		
23.0				Fixed⊳
13.0				
Start 5.4600 GHz			Stop 5.7450 GHz	
#Res BW (CISPR) 1 MHz	#VBW 3.0 MHz	Sweep	1.000 ms (1001 pts)	Off
MKR MODE TRC SCL X) 000 GHz 42.455 dBµV	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 5.700 3 N 1 f 5.720	0000 GHz 45.591 dBµV 0000 GHz 60.830 dBµV			Properties >
4 N 1 f 5.725	5 000 GHz 62.242 dBµV			riopeniesv
6 7				
8 9				More
10			-	1 of 2
	III		•	
mou		STAT	33	

(PEAK, Channel 149, 802.11a)

(PEAK, Channel 165, 802.11a)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

802.11n20 Mode

	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R (dBµV)	(dB)	(db@ 3m)	E (dBµV/m)	m)	verdict
36	5146.68	PK	50.82	-19.54	32.20	63.48	74	PASS
36	5150.00	AV	39.49	-19.54	32.20	52.15	54	PASS
48	5363.86	PK	44.23	-19.54	32.20	56.89	74	PASS
48	5406.54	AV	32.74	-19.54	32.20	45.40	54	PASS
149	5725.00	PK	62.32	-19.01	32.20	75.51	122.23	PASS
165	5850.00	PK	57.01	-19.01	32.20	70.20	122.23	PASS

(PEAK, Channel 36, 802.11n20)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Page 58 of 74

🎉 Keysight Sp	ectrum Anal	yzer - Swept SA							- đ <mark>×</mark>
Marker 2	5.1494	100000000	GHz	SENS	AV		11:48:17 PM TRACE	Dec 08, 2023 123456	Marker
			PNO: Fast C IFGain:Low	#Atten: 6 c	Run Avg iB	Hold:>100/100	DET	PPNNNN	Select Marker
						Mki	2 5.149 4	0 GHz	2
	Ref 1	02.99 aBha					03.102	ασμν	
93.0									Normal
83.0									
73.0									
53.0									Delta
43.0								<mark>\2</mark> '	
33.0									
23.0									Fixed⊳
13.0									
Start 4.50	000 GH2	Z					Stop 5.18	800 GHz	
#Res BW	(CISPR	t) 1 MHz	#VB	W 820 Hz		Sweep 9	950.9 ms (1	001 pts)	Off
MKR MODE T	RC SCL	× 5 15	0 00 GHz	Y 39 487 dBi	FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE 🔺	
2 N *	f	5.14	9 40 GHz	39.132 dBj	IV				
4								-	Properties►
6									
8									More
10									1 of 2
								•	
MSG						STATU	s		

(AVERAGE, Channel 36, 802.11n20)

(PEAK, Channel 48, 802.11n20)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

	4 Nov 27, 2023	07:13:08 P	ALIGN OFF		NSE:INT	SEN		alyzer - Swept SA	Keysight Spectrum
Marker Select Marker	E 123456 MWWWWW T P P N N N N	TRAC TYP DE	e: Voltage d:>100/100	Avg T Avg H	e Run dB	Trig: Free #Atten: 6 d) GHz PNO: Fast IFGain:Low	540000000	arker 2 5.4
2	54 GHz 7 dBµV	2 5.406 32.73	Mkr				1	102.99 dBµV	dB/div Re
Normal									99 13.0
									3.0
Delta									i3.0
Fixed⊳			¢ ²		> <u>'</u>				3.0
									3.0
Off	600 GHz 1001 pts)	Stop 5.4 07.7 ms (Sweep 3			BW 820 Hz	#V	z R) 1 MHz	tart 5.2400 C Res BW (CIS
	ON VALUE	FUNCTIO	INCTION WIDTH	NCTION	μV μV	Y 32.424 dBi 32.737 dBi	50 00 GHz 06 54 GHz	× 5.35 5.40	KR MODE TRC SCI 1 N 1 f 2 N 1 f
Properties ►	Ξ								3 4 5
More									7 8 9
1 of 2						III			0
			STATUS						G

(AVERAGE, Channel 48, 802.11n20)

(PEAK, Channel 149, 802.11n20)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Instrumentation Instrument	
Marker 4 5.925000000000 GHz Avg Type: Voltage TRACE [] 28 4 5 6 Marker 4 5.9250000000000 GHz PN0: East () Trig: Free Run Avg Type: Voltage TRACE [] 28 4 5 6	ier
IFGain:Low #Atten: 6 dB Det Previous Select	/larker ⊾
10 dB/div Ref 102.99 dBμV 41.573 dBμV	4
	Normal
63.0 63.0 63.0 43.0 43.0 43.0 43.0 43.0 44.0	Delta
33.0	Fixed⊳
Start 5.82500 GHz #Res BW (CISPR) 1 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	Off
I N 1 f 5.850 000 GHz 57.007 dBµV PORCHON VALUE PORCHON VALUE <th< th=""><th>oerties►</th></th<>	oerties►
	More 1 of 2

(PEAK, Channel 165, 802.11n20)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 8

Fax: 86-755-36698525

Http://www.morlab.cn

A.8. Radiated Emission

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak (or average) limit, it is unnecessary to perform an quasi-peak measurement (or average).

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Note2: For the frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Note3: For the frequency, which started from 18GHz to 40GHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Note 4: All test modes and bandwidth were considered and evaluated respectively by performing full test, only the worst data were recorded for each bandwidth.

802.11a Mode

Plot for Channel 36

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 44

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 48

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 149

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 157

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Plot for Channel 165

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

802.11n20 Mode

Plot for Channel 36

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

Plot for Channel 44

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

Plot for Channel 48

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

Plot for Channel 149

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

_

REPORT No.: SZ23100189W02

Plot for Channel 157

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

REPORT No.: SZ23100189W02

Plot for Channel 165

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

END OF REPORT

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn