

Phone: +1 (949) 393-1123

Web: www.vista-compliance.com Email: info@vista-compliance.com

FCC ISED RF Test Report

Test Report Number

NSC-22100853-L-FCC-IC-RF

Applicant

Nice North America LLC

Applicant Address 5919 Sea Otter Place, Suite 100, Carlsbad, CA 92010

Product Name Residential Garage Door Opener

Model (s) LINEAR600

Date of Receipt | 03/16/2023

Date of Test | 03/16/2023 - 03/24/2023

Report Issue Date

03/24/2023

Test Standards

47 CFR Part 15.247

RSS 247 Issue2, February 2017

Test Result

Issued by:

Vista Compliance Laboratories

1261 Puerta Del Sol, San Clemente, CA 92673 USA www.vista-compliance.com

Zach Peng

Zach Peng (Test Technician)

David Zhang (Technical Manager)

This report is for the exclusive use of the applicant. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. Note that the results contained in this report pertain only to the test samples identified herein, and the results relate only to the items tested and the results that were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested and the results thereof based upon the information provided to us. The applicant has 60 days from date of issuance of this report to notify us of any material error or omission. Failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies. This report is not to be reproduced by any means except in full and in any case not without the written approval of Vista Laboratories.

REVISION HISTORY

Report Number	Version	Description	Issued Date
NSC-22100853-L-FCC-IC-RF	01	Initial report	03/24/2023

TABLE OF CONTENTS

1 11	EST SUMMARY	4
2 G	ENERAL INFORMATION	5
2.1	Applicant	
2.2	Product information	
2.3	Test standard and method	5
3 TI	EST SITE INFORMATION	6
4 M	ODIFICATION OF EUT / DEVIATIONS FROM STANDARDS	6
5 TI	EST CONFIGURATION AND OPERATION	6
5.1	EUT Test Configuration	6
5.2	Supporting Equipment	
6 U	NCERTAINTY OF MEASUREMENT	7
7 TI	EST RESULTS	8
7.1	Antenna Requirement	8
7.2	DTS (6 dB) Bandwidth	9
7.3	Occupied Bandwidth (99%)	12
7.4	Maximum Output Power	15
7.5	Power Spectral Density	18
7.6	Conducted Band-Edge & Unwanted Emissions	21
7.7	Radiated Band-Edge & Spurious Emissions into Restricted Frequency Bands	23
7.8	Conducted Emissions	32
8 E	UT AND TEST SETUP PHOTOS	36
9 TI	EST INSTRUMENT LIST	37

1 Test Summary

Test Item	Test Requirement	Test Method	Result
Antenna Requirement	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass
DTS (6 dB) Channel Bandwidth	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass
Occupied Bandwidth	RSS-Gen Issue 5, Mar 2019	RSS-Gen Issue 5, Feb 2021	Pass
Conducted Maximum Output Power	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass
Power Spectral Density	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass
Conducted Band-Edge & Unwanted Emissions	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass
Radiated Emissions & Unwanted Emissions into Restricted Frequency Bands	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass
AC Power Line Conducted Emissions	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017	ANSI C63.10 (2013)	Pass

2 General Information

2.1 Applicant

Applicant	Nice North America LLC	
Applicant address	5919 Sea Otter Place, Suite 100, Carlsbad, CA 92010	
Manufacturer	Nice North America LLC	
Manufacturer Address	5919 Sea Otter Place, Suite 100, Carlsbad, CA 92010	

2.2 Product information

Product Name	Residential Garage Door Opener	
Model Number	LINEAR600	
Family Models	N/A	
Serial Number	230214B04190	
Frequency Band	2402-2480MHz (BLE), 318 MHz (Receiver)	
Type of modulation	GFSK (BLE)	
Equipment Class	Emission Class B	
Antenna Information	Internal PCB trace antenna, 0.95 dBi peak gain	
Clock Frequencies	N/A	
Input Power	19V DC	
Power Adapter	Model: MKS-1902000H	
Manufacturer/Model		
Power Adapter SN	N/A	
Hardware version	N/A	
Software version	N/A	
Additional Info	N/A	

2.3 Test standard and method

Test standard	47 CFR Part 15.247 RSS-247 Issue 2, Feb 2017
Test method	ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02

3 Test Site Information

Lab performing tests	Vista Laboratories, Inc.	
Lab Address	1261 Puerta Del Sol, San Clemente, CA 92673 USA	
Phone Number	+1 (949) 393-1123	
Website	www.vista-compliance.com	

Test Condition	Temperature	Humidity	Atmospheric Pressure
RF Testing	23.2°C	57.5%	996 mbar
Radiated Emission Testing	23.2°C	57.5%	996 mbar

4 Modification of EUT / Deviations from Standards

The EUT is an engineering test sample loaded with RF testing firmware specifically designed to support the RF TX/RX measurement in different aspects.

5 Test Configuration and Operation

5.1 EUT Test Configuration

The EUT is mounted onto a development board to support testing. EUT is set to different transmission mode in terms of radio data rate, power level, test channel, etc.

The following software was used for testing and to monitor EUT performance

Software	Description	
EMISoft Vasona	EMC/RF Spurious emission test software used during testing	
PuTTY	Set the module work at BLE mode	

Power setting as below

BLE	_1M	BLE	_2M
Channel	Power Setting	Channel	Power Setting
02	Pos8dBm	02	Pos8dBm
40	Pos8dBm	40	Pos8dBm
80	Pos8dBm	80	Pos8dBm

5.2 Supporting Equipment

Description	Manufacturer	Model #	Serial #
Power Adapter	Merry King	MKS-1902000H	-
Test Laptop	DELL	P29G	G1H5102

6 Uncertainty of Measurement

Test item	Measurement Uncertainty (dB)
RF Output Power (Conducted)	±1.2 dB
Power Spectral Density	±0.9 dB
Unwanted Emission (conducted)	±2.6 dB
Occupied Channel Bandwidth	±5 %
Radiated Emission (9KHz-30MHz)	±3.5 dB
Radiated Emission (30MHz-1GHz)	±4.6 dB
Radiated Emission (1-18GHz)	±4.9 dB
Radiated Emission (18-40GHz)	±3.5 dB

7 Test Results

7.1 Antenna Requirement

7.1.1 Requirement

Per § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report#

7.1.2 Result

Analysis:

- EUT has a PCB trace antenna which is integrated to the main board.

Conclusion:

- EUT complies with antenna requirement in § 15.203.

7.2 DTS (6 dB) Bandwidth

7.2.1 Requirement

§ 15.247 (a)(2), RSS-247 §5.2

Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 KHz.

Report#

7.2.2 Test Setup

7.2.3 Test Procedure

According to section 8.2, option 2, in KDB 558074 D01 DTS Meas Guidance v05r02 and subclause 11.8 of ANSI C63.10-2013:

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW $\geq 3 \times \text{RBW}$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\geq 6 \text{ dB}$.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Use automatic bandwidth measurement capability on instrument to obtain BW result.

7.2.4 Test Result

Mode	Data rate	Frequency (MHz) Measured Bandwidth (KHz)		Minimum Bandwidth (KHz)	Result
		2402	678	500	Pass
	1Mbps	2440	605	500	Pass
BLE		2480	705	500	Pass
DLE	2Mbps	2402	1083	500	Pass
		2440	1150	500	Pass
		2480	1113	500	Pass

7.2.5 Test Plots

7.3 Occupied Bandwidth (99%)

7.3.1 Requirement

RSS-Gen §6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

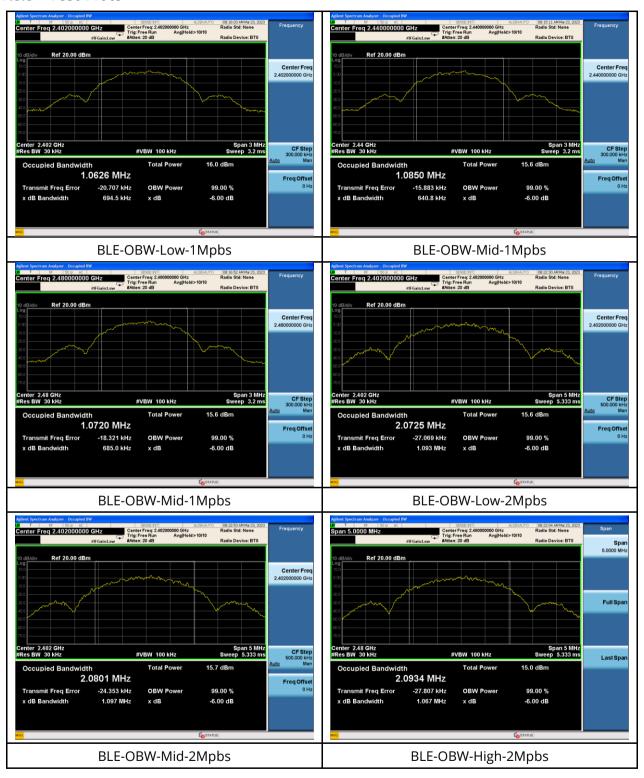
7.3.2 Test Setup

7.3.3 Test Procedure

According to section RSS-Gen §6.7

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW $\geq 3 \times \text{RBW}$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\geq 6 \text{ dB}$.

- 1. Set RBW = 1% to 5% of the actual occupied BW.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Span = large enough to capture all products of the modulation process
- 7. Allow the trace to stabilize.
- 8. Use automatic bandwidth measurement capability on instrument to obtain BW result.



7.3.4 Test Result

Mode	Data rate	Frequency (MHz)	Measured 99% OBW (KHz)	Limit (KHz)	Result	
		2402	1062.6	N/A	N/A	
	1Mbps	1Mbps 2440		1085	N/A	N/A
BLE		2480	1072	N/A	N/A	
DLE	2Mbps	2402	2072.5	N/A	N/A	
		2440	2080.1	N/A	N/A	
		2480	2093.4	N/A	N/A	

7.3.5 Test Plots

7.4 Maximum Output Power

7.4.1 Requirement

§ 15.247 (b)(3), RSS-247 §5.4

or systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: the maximum output power is 1 Watt.

Report#

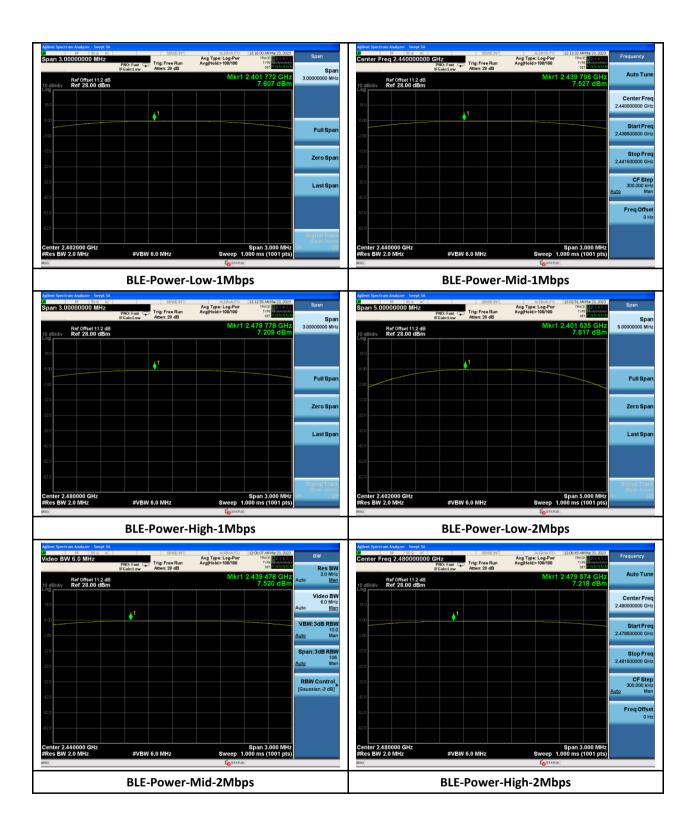
If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.4.2 Test Setup

7.4.3 Test Procedure

For BLE, power measurement is according to subclause 11.9.1.1 of ANSI C63.10-2013:

- 1. Set the RBW ≥ DTS bandwidth
- 2. Set VBW ≥ 3 X RBW.
- 2. Set SPAN \geq 3 X RBW.
- 3. Sweep time = auto couple.
- 4. Detector = peak.
- 5. Trace mode = max hold
- 6. Allow trace to fully stabilize.
- 7. Use peak marker function to determine the peak amplitude level.



7.4.4 Test Result

Mode	Data rate	Frequency (MHz)	Measured Output Power (dBm)	Max Output Power (dBm)	Result
		2402	7.61	30	Pass
	1Mbps	2440	7.53	30	Pass
BLE		2480	7.21	30	Pass
DLE		2402	7.62	30	Pass
	2Mbps	2440	7.52	30	Pass
		2480	7.22	30	Pass

7.4.5 Test Plots

7.5 Power Spectral Density

7.5.1 Requirement

§ 15.247 (e), RSS-247 §5.2

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power is used to determine the power spectral density.

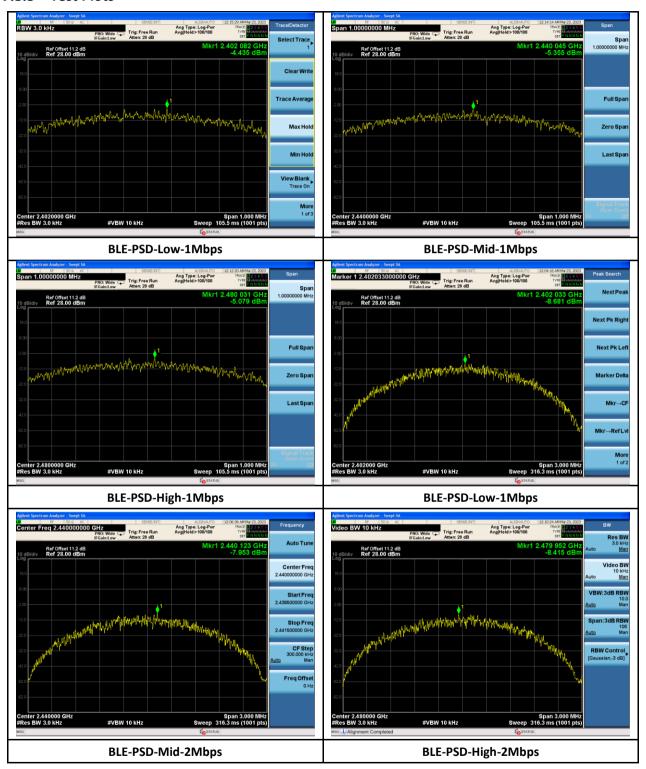
Report#

7.5.2 Test Setup

7.5.3 Test Procedure

According to section 8.4 in KDB 558074 D01 DTS Meas Guidance v05r02 and subclause 11.10.2 PKPSD of ANSI C63.10-2013:

- 1. Set analyser centre frequency to DTS channel centre frequency.
- 2. Set the span to 1.5 X DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.



7.5.4 Test Result

Mode	Data rate	Frequency (MHz)	Measured PSD (dBm/3KHz)	Max PSD (dBm/3KHz)	Result
		2402	-4.44	8	Pass
	1Mbps	2440	-5.36	8	Pass
BLE		2480	-5.08	8	Pass
DLC		2402	-8.68	8	Pass
	2Mbps	2440	-7.95	8	Pass
		2480	-8.42	8	Pass

7.5.5 Test Plots

7.6 Conducted Band-Edge & Unwanted Emissions

7.6.1 Requirement

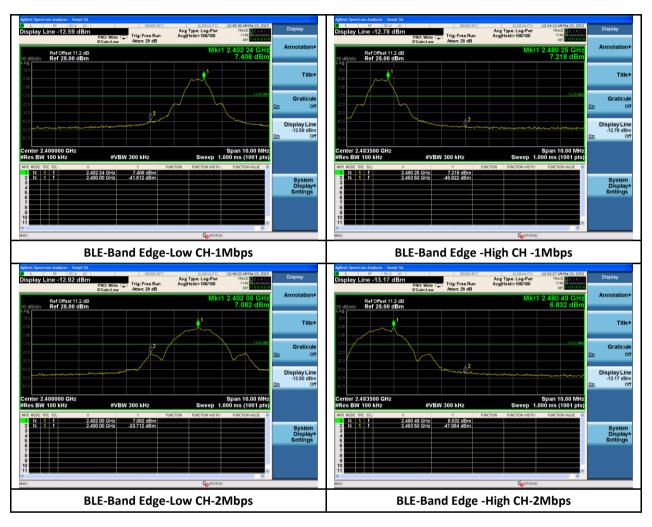
§ 15.247 (d), RSS-247 §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Report#

7.6.2 Test Setup

7.6.3 Test Procedure


According to ANSI C63.10-2013 clause 11.13

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW=100 KHZ, VBW=300 KHZ, Peak Detector. Unwanted Emissions measured in any 100 khz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 db relative to the maximum in-band peak PSD level in 100 KHZ when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 db instead of 20 db per 15.247(d).
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete and record the results in the test report.

7.6.4 Test Result

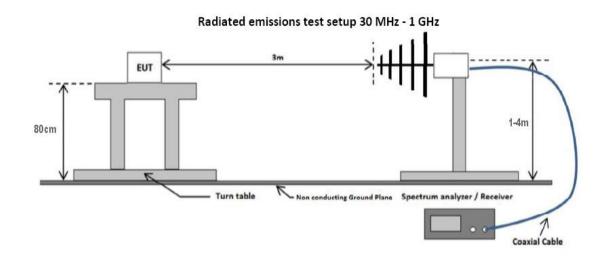
Conducted Band edge

7.7 Radiated Band-Edge & Spurious Emissions into Restricted Frequency Bands

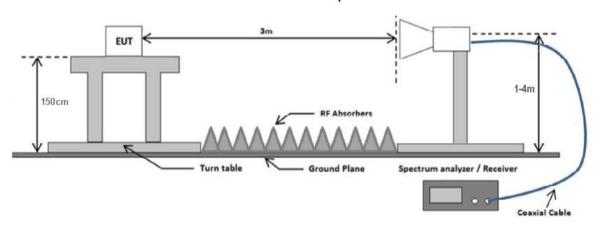
7.7.1 Requirement

§ 15.247 (d), RSS-247 §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


Attenuation below the general limits specified in §15.209(a) and RSS-Gen is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency Range (MHZ)	Field Strength (µV/m)
0.009~0.490	2400/F(KHz)
0.490~1.705	24000/F(KHz)
1.705~30.0	30
30 – 88	100
88 – 216	150
216 960	200
Above 960	500


7.7.2 Test Setup

Radiated emissions test setup 9KHz - 30MHz Loop Antenna 3 meter Ground Plane RF Test Receiver

Radiated emissions test setup above 1 GHz

7.7.3 Test Procedure

According to section 8.6 in KDB 558074 D01 DTS Meas Guidance v05r02 and subclause 11.12.2.7 Radiated spurious emission measurements in ANSI C63.10-2013 as well as the procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 was followed. Boresight antenna mast was used during the scanning to point to EUT to maximize the emission. The process will be repeated in 3 EUT orientations.

Report#

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - a. Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b. The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 300 Hz for frequency below 150KHz.
- 4. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 10 kHz for frequency between 150KHz 30MHz.
- 5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-Peak detection at frequency between 30MHz 1GHz.
- 6. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak and average measurement at frequency above 1GHz.
- 7. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.

7.7.4 Test Result

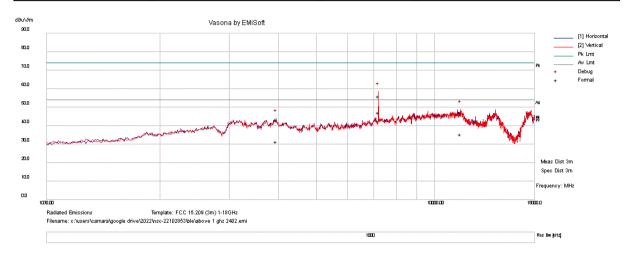
Radiated Emission between 9KHz - 30MHz test result

Note: no substantial emission is found other than the noise floor. Different modes have been verified.

RADIATED EMISSIONS BELOW 1 GHZ

Report#

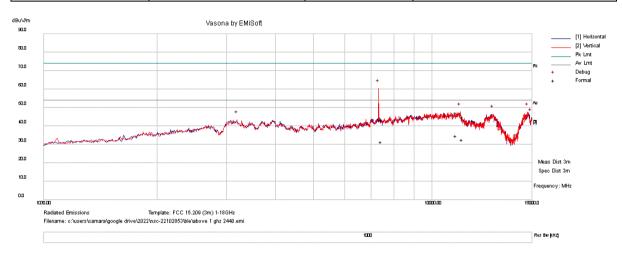
	Test Standard:	: FCC15.247, 15.209, RSS-247			RSS-247	Mode: BLE_1Mbps							
Fr	requency Rang	e:	30 MHz - 1 GHz			Test Da	ate:			03/	/23/2023		
	enna Type/Pola		Bi-Log/Hor & Ver			Test Perso	onnel:		Zach Peng				
	Remark:		L	ow channel		Test Res	sult:		Pass				
dBu\//m raa			Vasona by EMiSoft										
60.0												[1] Horizor [2] Vertica Qpk Lmt + Debug	
2010											Ор	+ Formal	
40.0			+ -	+									
30.0	+		1		+ A	+ + Λ	i Marie and a	_ adk.	المالين ا		a Haribara		
200	m	MA	/ vy	\sim \sim	Con South	1 marine	MAN LOND	A STATE OF THE PARTY OF THE PAR	The state of the s				
10.0	- war	www	′ √		V/V /							leas Dist 3m pec Dist 3m	
0.0												quency: MHz	
30.	III	100.00											
	Radiated Emissions Filename: c:\users\camara\go			s B (3m) 30MHz-1GHz elow 1 ghz 2402.emi									
							120				Res	Bw [kHz]	
No.	Frequency MHz	Raw dBuV	Cabl		Level dBuV/m	Measurer Type		Pol	Hgt cm	Azt Deg	Limit dBuV/r	Margin n dB	Pass/
													_
. 1	75.330	50.8	3.2	-20.2	33.8	Quasi N	1ax	V	136	63	40.0	-6.2	Pas


No.	Frequency MHz	Raw dBuV	Cable Loss	AF dB/m	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass/Fail
1	75.330	50.8	3.2	-20.2	33.8	Quasi Max	٧	136	63	40.0	-6.2	Pass
2	106.680	51.1	3.7	-18.9	35.9	Quasi Max	V	101	154	43.5	-7.6	Pass
3	33.620	38.9	2.4	-13.5	27.7	Quasi Max	V	177	328	40.0	-12.3	Pass
4	166.907	42.3	4.4	-17.5	29.2	Quasi Max	V	100	357	43.5	-14.3	Pass
5	203.820	33.9	4.8	-16.8	21.9	Quasi Max	V	120	208	43.5	-21.6	Pass
6	284.158	31.1	5.6	-14.3	22.3	Quasi Max	V	150	248	46.0	-23.7	Pass

- 1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).
- 2. AF(dB/m) = Antenna Factor (dB) Preamplifier Gain (dB)
- 3. Margin = Level (dBuV/m) Limit value(dBuV/m)

RADIATED EMISSIONS 1 - 18 GHZ

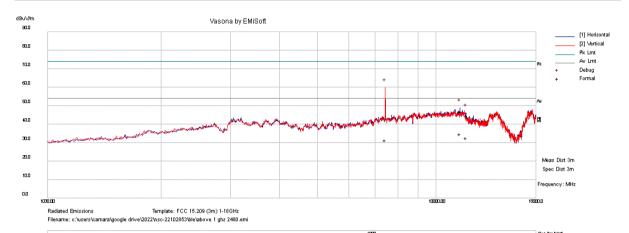
Test Standard:	FCC15.247, 15.209, RSS-247	Mode:	BLE_1Mbps
Frequency Range:	1 GHz – 18 GHz	Test Date:	03/23/2023
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Zach Peng
Remark:	Low Channel	Test Result:	Pass


No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
INO.	MHz	dBuV	Loss	dB/m	dBuV/m	Type	POI	cm	Deg	dBuV/m	dB	Pass/Fall
1	7204.833	48.7	12.7	-5.6	55.8	Peak Max	V	134	122	74.0	-18.2	Pass
2	11635.185	33.3	18.1	-4.3	47.1	Peak Max	V	396	0	74.0	-26.9	Pass
3	3955.460	27.6	9.8	5.8	43.1	Peak Max	Η	334	106	74.0	-30.9	Pass
4	7204.833	46.0	12.7	-5.6	52.1	Average Max	٧	134	122	54.0	-1.9	Pass
5	11635.185	21.5	18.1	-4.3	35.3	Average Max	V	396	0	54.0	-18.7	Pass
6	3955.460	15.9	9.8	5.8	31.4	Average Max	Н	334	106	54.0	-22.6	Pass

- 1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).
- 2. AF(dB/m) = Antenna Factor (dB) Preamplifier Gain (dB)
- 3. Margin = Level (dBuV/m) Limit value(dBuV/m)

RADIATED EMISSIONS 1 - 18 GHZ

Test Standard:	FCC15.247, 15.209, RSS-247	Mode:	BLE_1Mbps
Frequency Range:	1 GHz – 18 GHz	Test Date:	03/23/2023
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Zach Peng
Remark:	Mid Channel	Test Result:	Pass


No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
NO.	MHz	dBuV	Loss	dB/m	dBuV/m	Type	101	cm	Deg	dBuV/m	dB	r ass/raii
1	7319.214	54.3	12.9	-5.5	61.7	Peak Max	V	107	0	74.0	-12.3	Pass
2	11814.934	31.8	18.3	-4.1	46.0	Peak Max	Ι	247	68	74.0	-28.0	Pass
Ω	3193.675	41.1	7.9	-5.9	43.2	Peak Max	V	200	0	74.0	-30.8	Pass
4	7319.214	46.2	12.9	-5.5	53.6	Average Max	V	107	0	54.0	-0.4	Pass
5	11814.934	20.1	18.3	-4.1	34.3	Average Max	Ι	247	68	54.0	-19.7	Pass
6	3193.675	31.9	7.9	-5.9	33.9	Average Max	V	200	0	54.0	-20.1	Pass

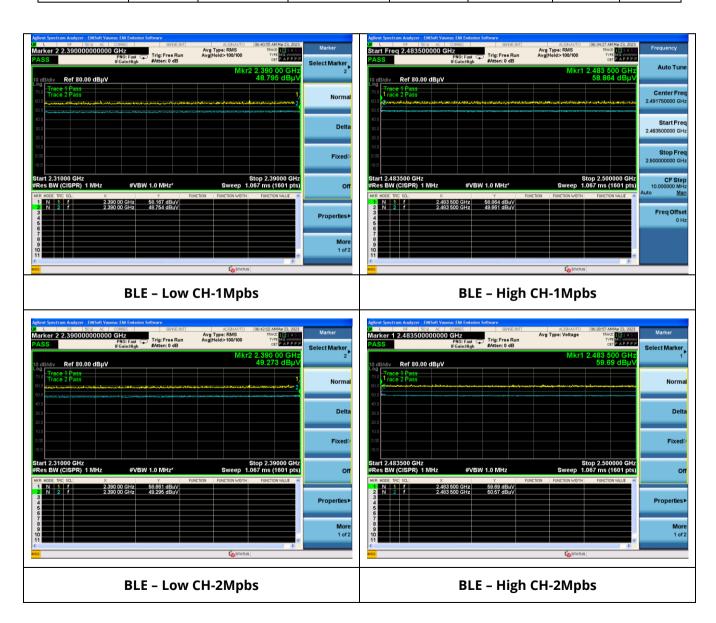
- 1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).
- 2. AF(dB/m) = Antenna Factor (dB) Preamplifier Gain (dB)
- 3. Margin = Level (dBuV/m) Limit value(dBuV/m)

RADIATED EMISSIONS 1 - 18 GHZ

Test Standard:	FCC15.247, 15.209, RSS-247	Mode:	BLE_1Mbps		
Frequency Range:	1 GHz – 18 GHz	Test Date: 03/23/2023			
Antenna Type/Polarity:	Horn/Hor & Ver	Test Personnel:	Zach Peng		
Remark:	High Channel	Test Result:	Pass		

No.	Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass/Fail
NO.	MHz	dBuV	Loss	dB/m	dBuV/m	Type	POI	cm	Deg	dBuV/m	dB	Pass/Fall
1	7435.170	35.6	13.2	-5.6	43.2	Peak Max	V	112	0	74.0	-30.8	Pass
2	11518.524	33.8	17.8	-4.6	47.0	Peak Max	Н	364	58	74.0	-27.0	Pass
3	11955.006	32.5	16.4	-4.2	44.7	Peak Max	Н	363	82	74.0	-29.3	Pass
4	7435.170	45.8	13.2	-5.6	53.4	Average Max	V	112	0	54.0	-0.6	Pass
5	11518.524	21.4	17.8	-4.6	34.6	Average Max	Н	364	58	54.0	-19.4	Pass
6	11955.006	20.4	16.4	-4.2	32.6	Average Max	Н	363	82	54.0	-21.4	Pass

- 1. Level (dBuV) = Raw (dBuV) + Cable loss(dB) + AF (dB).
- 2. AF(dB/m) = Antenna Factor (dB) Preamplifier Gain (dB)
- 3. Margin = Level (dBuV/m) Limit value(dBuV/m)


Radiated Emission between 18GHz – 40GHz test result

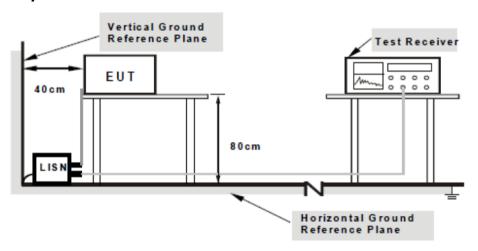
Note: no substantial emission is found other than the noise floor. Different modes have been verified.

Restricted Band Measurement Result

Mode	TX CH (MHz)	Frequency (MHz)	Emission Level (dBuV/m)	Detector Type	Limit (dBuV/m)	Margin (dB)	Result
	2402	2390	58.17	PK	74	-15.8	Pass
DIE 1M	2402	2390	48.75	AV	54	-5.3	Pass
BLE_1M	2400	2483.5	58.86	PK	74	-15.1	Pass
	2480	2483.5	49.66	AV	54	-4.3	Pass
	2402	2390	58.66	PK	74	-15.3	Pass
BLE_2M	2402	2390	49.30	AV	54	-4.7	Pass
	2490	2483.5	59.69	PK	74	-14.3	Pass
	2480	2483.5	50.57	AV	54	-3.4	Pass

7.8 Conducted Emissions

7.8.1 Requirement


Per § 15.207 (a), RSS Gen 8.8

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

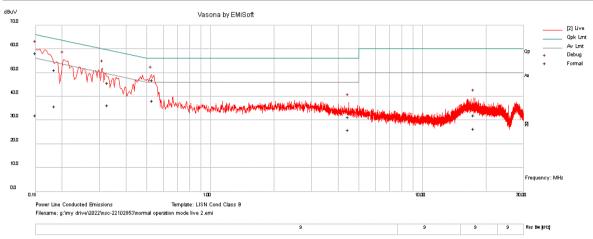
Limits for Conducted Emissions at the Mains Ports

Section	Frequency ranges	Limit (dBuV)					
Section	(MHz)	QP	Average				
	0.15 – 0.5	66 – 56	56 – 46				
Class B devices	0.5 – 5	56	46				
	5 - 30	60	50				
NOTE 1 The lower limit shall apply at the transition frequencies.							

7.8.2 Test setup

Note: 1.Support units were connected to second LISN.

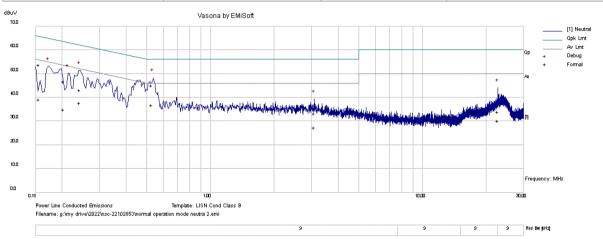
2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.


7.8.3 Test Procedure

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a $1.5 \text{m} \times 1 \text{m} \times 0.8 \text{m}$ high, non-metallic table.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipment was powered separately from another main supply.
- 5. The EUT was switched on and allowed to warm up to its normal operating condition.
- 6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 7. High peaks, relative to the limit line, were then selected.
- 8. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made
- 9. All possible modes of operation were investigated. Only the worst case emissions were measured and reported. All other emissions were relatively insignificant.

7.8.4 Test Result

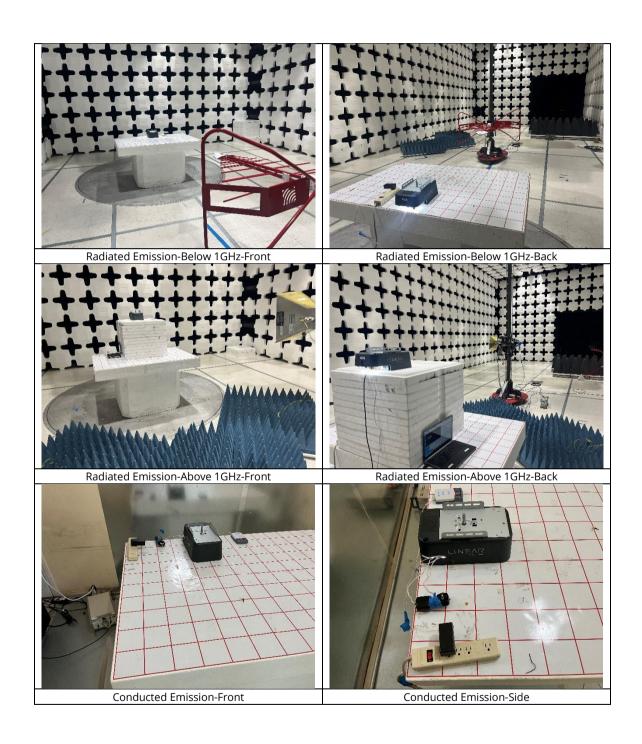
Test Standard:	Part 15.207 RSS Gen 8.8	Mode:	BLE_1M_Mid CH
Frequency Range:	0.15-30MHz	Test Date:	03/21/2023
Antenna Type/Polarity:	N/A	Test Personnel:	Zach Peng
Remark:	Line 120VAC, 60Hz	Test Result:	Pass


No.	Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	Factors (dB)	Level (dBuV)	Meas. Type	Line	Limit (dBuV)	Margin (dB)	Pass /Fail
1	.150	48.0	10.1	.2	58.3	Quasi Peak	Live	66.0	-7.7	Pass
2	.533	36.8	10.1	.1	47.0	Quasi Peak	Live	56.0	-9.0	Pass
3	.184	40.8	10.1	.2	51.1	Quasi Peak	Live	64.3	-13.2	Pass
4	.328	35.6	10.1	.1	45.8	Quasi Peak	Live	59.5	-13.7	Pass
5	4.479	21.0	10.4	.1	31.5	Quasi Peak	Live	56.0	-24.5	Pass
6	17.471	20.9	10.7	.5	32.1	Quasi Peak	Live	60.0	-27.9	Pass
7	.150	21.7	10.1	.2	32.0	Average	Live	56.0	-24.0	Pass
8	.533	28.1	10.1	.1	38.3	Average	Live	46.0	-7.7	Pass
9	.184	25.6	10.1	.2	35.9	Average	Live	54.3	-18.4	Pass
10	.328	26.2	10.1	.1	36.4	Average	Live	49.5	-13.1	Pass
11	4.479	15.5	10.4	.1	26.0	Average	Live	46.0	-20.0	Pass
12	17.471	15.3	10.7	.5	26.5	Average	Live	50.0	-23.5	Pass

REMARKS:

- 1. The emission levels of other frequencies were very low against the limit.
- 2. Margin value = Emission level Limit value
- 3. Emission Level = Raw Value + Cable loss + Factors Value.

Test Standard:	Part 15.207 RSS Gen 8.8	Mode:	BLE_1M_Mid CH
Frequency Range:	0.15-30MHz	Test Date:	03/21/2023
Antenna Type/Polarity:	N/A	Test Personnel:	Zach Peng
Remark:	Neutral 120VAC, 60Hz	Test Result:	Pass


No.	Frequency	Raw	Cable	Factors	Level	Meas.	Line	Limit	Margin	Pass
NO.	(MHz)	(dBuV)	Loss (dB)	(dB)	(dBuV)	Type	LIII	(dBuV)	(dB)	/Fail
1	.529	34.8	10.1	.1	45.0	Quasi Peak	Neutral	56.0	-11.0	Pass
2	.242	33.1	10.1	.2	43.3	Quasi Peak	Neutral	62.0	-18.7	Pass
3	.156	43.6	10.1	.2	53.9	Quasi Peak	Neutral	65.7	-11.8	Pass
4	.203	36.5	10.1	.2	46.7	Quasi Peak	Neutral	63.5	-16.8	Pass
5	22.708	22.7	10.8	.6	34.1	Quasi Peak	Neutral	60.0	-25.9	Pass
6	3.094	22.8	10.3	.1	33.2	Quasi Peak	Neutral	56.0	-22.8	Pass
7	.529	26.6	10.1	.1	36.8	Average	Neutral	46.0	-9.2	Pass
8	.242	27.5	10.1	.2	37.7	Average	Neutral	52.0	-14.3	Pass
9	.156	28.9	10.1	.2	39.2	Average	Neutral	55.7	-16.4	Pass
10	.203	24.7	10.1	.2	35.0	Average	Neutral	53.5	-18.5	Pass
11	22.708	18.9	10.8	.6	30.3	Average	Neutral	50.0	-19.7	Pass
12	3.094	17.0	10.3	.1	27.4	Average	Neutral	46.0	-18.6	Pass

REMARKS:

- 1. The emission levels of other frequencies were very low against the limit.
- 2. Margin value = Emission level Limit value
- 3. Emission Level = Raw Value + Cable loss + Factors Value.

8 EUT and Test Setup Photos

9 Test Instrument List

Equipment	Manufacturer	Model	Instrument Number	Cal. Date	Cal. Due
Semi-Anechoic Chamber	ETS-Lindgren	10M	VL001	10/18/2022	10/18/2023
Shielding Control Room	ETS-Lindgren	Series 81	VL006	N/A	N/A
Spectrum Analyzer	Keysight	N9020A	MY50110074	06/17/2022	06/17/2023
EMC Test Receiver	R&S	ESL6	100230	06/14/2022	06/14/2023
LISN (9KHz – 30MHz)	EMCO	3816/2	9705-1066	05/04/2022	05/04/2023
LISN (9KHz – 30MHz)	Com-Power	LI-550C	20140050	01/29/2023	01/29/2024
LISN (9KHz – 30MHz)	Com-Power	LI-550C	20140051	01/29/2023	01/29/2024
Bi-Log Antenna	ETS-Lindgren	3142E	217921	11/15/2022	11/15/2023
Horn Antenna (1-18GHz)	Electro-Metrics	EM-6961	6292	05/14/2022	05/14/2023
Horn Antenna (18- 40GHz)	Com-Power	AH-840	101109	06/24/2022	06/24/2023
Preamplifier	RF Bay, Inc.	LPA-10-20	11180621	07/16/2022	07/16/2023
True RMS Multi-meter	UNI-T	UT181A	C173014829	05/05/2022	05/05/2023
Temp / Humidity / Pressure Meter	PCE Instruments	PCE-THB 40	R062028	05/15/2022	05/15/2023
RF Attenuator	Pasternack	PE7005-3	VL061	07/16/2022	07/16/2023
Preamplifier 100KHz - 40GHz	Aeroflex	33711-392- 77150-11	064	07/16/2022	07/16/2023
EM Center Control	ETS-Lindgren	7006-001	160136	N/A	N/A
Turn Table	ETS-Lindgren	2181-3.03	VL002	N/A	N/A
Boresight Antenna Tower	ETS-Lindgren	2171B	VL003	N/A	N/A
Loop Antenna (9k- 30MHz)	Com-Power	AL-130	121012	05/16/22	05/16/23
RE test cable(below 6GHz)	Vista	RE-6GHz-01	RE-6GHz-01	07/16/2022	07/16/2023
RE test cable (1-18GHz)	PhaseTrack	II-240	RE-18GHz-01	07/16/2022	07/16/2023
RE test cable (>18GHz)	Sucoflex	104	344903/4	07/16/2022	07/16/2023
Pulse limiter	Com-Power	LIT-930A	531727	07/16/2022	07/16/2023
CE test cable #1	FIRST RF	FRF-C-1002- 001	CE-6GHz-01	07/16/2022	07/16/2023
CE test cable#2	FIRST RF	FRF-C-1002- 001	CE-6GHz-02	07/16/2022	07/16/2023
Vector Signal Generator	Keysight	N5182A	US47080548	06/17/2022	06/17/2023
USB RF Power Sensor	ETS-Lindgren	7002-006	SN 00151268	05/15/2012	05/15/2023
RF Power Amplifier (80- 1000MHz)	Ophir	5226FE	1013/1815	N/A	N/A
RF Power Amplifier (700- 6000MHz)	Ophir	5293FE	1063/1815	N/A	N/A
Horn Antenna (1-18GHz)	FT-RF	HA-07M18G- NF	180010HA	N/A	N/A