

RADIO TEST REPORT FCC ID: EF400201

Product: SAFETY EDGE TRANSMITTER

Trade Mark: N/A

Model No.: 3022

Family Model: N/A

Report No.: S20031202402001

Issue Date: 27 Mar. 2020

Prepared for

Nortek Security & Control LLC 5919 Sea Otter Place Carlsbad, CA 92010 United States

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China

Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

Table of Contents	Page
1.TEST RESULT CERTIFICATION	3
2. SUMMARY OF TEST RESULTS	4
3.FACILITIES AND ACCREDITATIONS	5
3.1 FACILITIES	5
3.2 LABORATORY ACCREDITATIONS AND LISTINGS	5
3.3 MEASUREMENT UNCERTAINTY	5
4. GENERAL DESCRIPTION OF EUT	6
5. DESCRIPTION OF TEST MODES	8
6. SETUP OF EQUIPMENT UNDER TEST	9
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
6.2 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
7. ANTENNA REQUIREMENT	12
7.1 STANDARD REQUIREMENT	12
7.2 EUT ANTENNA	12
8. CONDUCTED EMISSION MEASUREMENT	13
8.1 APPLICABLE STANDARD	13
8.2 CONFORMANCE LIMIT 8.3 MEASURING INSTRUMENTS	13 13
8.4 TEST CONFIGURATION	13
8.5 TEST PROCEDURE	13
8.6 TEST RESULTS	14
9. RADIATED EMISSION MEASUREMENT	15
9.1 APPLICABLE STANDARD	15
9.2 RADIATED EMISSION LIMITS 9.3 TEST PROCEDURE	15 17
9.4 TEST SETUP	19
9.5 TEST RESULTS	20
10. BANDWIDTH TEST	25
10.1 TEST PROCEDURE	25
10.2 DEVIATION FROM STANDARD	25 25
10.3 TEST SETUP 10.4 TEST RESULTS	25 26
11. TRANSMITTER TIMEOUT	27
11.1 REQUIREMENTS	27 27
·	

1.TEST RESULT CERTIFICATION

Applicant's name:	Nortek Security & Control LLC
Address:	5919 Sea Otter Place Carlsbad, CA 92010 United States
Manufacturer's Name:	Flextronics Electronics Technology (Shenzhan) Co., Ltd
Address:	89 Yong Fu Road, Tong Fu Yu Industrial Park, Fu Yong Town, Bao An District, Shenzhen 518103, China
Product description	
Product name:	SAFETY EDGE TRANSMITTER
Model and/or type reference:	3022
Family Model:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS		
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 15, Subpart C KDB 174176 D01 Line Conducted FAQ v01r01 ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd. personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: <u></u>	12 Mar. 2020 ~ 27 Mar. 2020		
Testing Engineer	:	12 Wen lin		
		(Allen Liu)		
Technical Manager	:	Jason chen		
_		(Jason Chen)		
		San . Chew		
Authorized Signatory	:			
		(Sam Chen)		

2. SUMMARY OF TEST RESULTS

FCC Part15 (15.231), Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	Conducted Emission N/A Not			
15.203	Antenna Requirement Pass				
15.231(b) 15.209 15.205	Radiated Spurious Emission	Pass			
15.231(c)	Occupied Bandwidth	Pass	_		
15.231(a)(2)	Transmitter Timeout	Pass			

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The EUT is using a new battery

3.FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126

P.R. China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

CNAS-Lab. : The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)

The Certificate Registration Number is L5516.

IC-Registration The Certificate Registration Number is 9270A.

CAB identifier: CN0074

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for

the competence of testing and calibration laboratories.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4. GENERAL DESCRIPTION OF EUT

Equipment	SAFETY EDGE TRANSMITTER		
Trade Name	N/A		
Model Name	3022		
Family Model	N/A		
Model Difference	N/A		
Product Description	The EUT is a SAFETY EDGE TRANSMITTER Operation Frequency: 300MHz Modulation Type: OOK Number Of Channel 1CH Antenna Designation: PCB Antenna Antenna Gain: 0dBi Field Strength: 70.43dBuV/m Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.		
Channel List	Refer to below		
Power supply	DC 9V From Battery		
Adapter	N/A		
HW Version	Rev-X1		
SW Version	N/A		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel	Frequency (MHz)
01	300MHz

Page 6 of 27

Revision History

Version	Description	Issued Date
Rev.01	Initial issue of report	27 Mar. 2020

Page 7 of 27

`

5. DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX

For Radiated Emission		
Final Test Mode	Description	
Mode 1	TX	

Page 8 of 27

	1
6. SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	
Measurement C-1 EUT	
Note:The temporary antenna connector is soldered on the PCB board in order to per this temporary antenna connector is listed in the equipment list.	form conducted tests and

6.2 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	SAFETY EDGE TRANSMITTER	N/A	3022	N/A	EUT

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	Yes	NO	0.1m

N I		۱.
I۷	()	ıe

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Page 10 of 27

`

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

<u>Radiat</u>	adiation Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2019.05.13	2020.05.12	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2019.08.28	2020.08.27	1 year
3	EMI Test Receiver	Agilent	N9038A	MY53227146	2019.08.28	2020.08.27	1 year
4	Test Receiver	R&S	ESPI	101310	2019.05.13	2020.05.12	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2019.05.13	2020.05.12	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2019.05.13	2020.05.12	1 year
8	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2019.11.03	2020.11.02	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2019.08.06	2020.08.05	1 year
10	Amplifier	MITEQ	TTA1840-35- HG	177156	2019.11.03	2020.11.02	1 year
11	Loop Antenna	ARA	PLA-1030/B	1029	2019.08.06	2020.08.05	1 year
12	Power Meter	DARE	RPR3006W	15I00041SN O84	2017.04.21	2020.04.20	3 year
13	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
14	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
16	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.19	2020.04.18	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

7. ANTENNA REQUIREMENT

7.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2 EUT ANTENNA

The EUT antenna is permanent attached PCB Antenna (Gain: 0dBi). It comply with the standard requirement.

Page 12 of 27

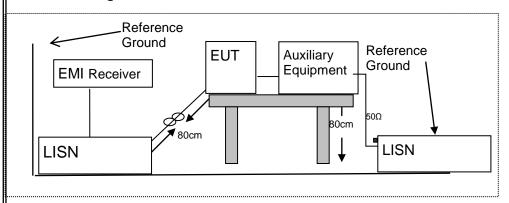
8. CONDUCTED EMISSION MEASUREMENT

8.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

8.2 Conformance Limit

Fraguenov(MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

8.4 Test Configuration

8.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other suppor
 equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for
 the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

8.6 Test Results

EUT:	SAFETY EDGE TRANSMITTER	Model Name :	3022
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

Note: Not applicable

Page 14 of 27

9. RADIATED EMISSION MEASUREMENT

9.1 Applicable Standard

According to 15.209& 15.205 and ANSI C63.10-2013

9.2 Radiated Emission Limits

(FCC 15.209)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m)=20log Emission level (uV/m).
- (3) Measurement was performed at an antenna to the closed point of EUT distance of meters.
- (4) For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

According to FCC Part 15.205, Restricted bands:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.231)

Fundamental Frequency (MHz)	Field Strength of fundamental (microvolts/meter)	Field Strength of Unwanted Emissions (microvolts/meter)
40.66 - 40.70	2250.00	225.00
70 - 130	950.00	95.00
130 - 174	1,250 to 3,750 **	95 to 375 **
174 - 260	3750.00	375.00
260 - 470	3,750 to 9,500 **	375 to 1,250 **
Above 470	9500.00	950.00

Notes:

(1) ** linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in 93 Section 15.209, whichever limit permits a higher field strength.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 90kHz for QP

9.3 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

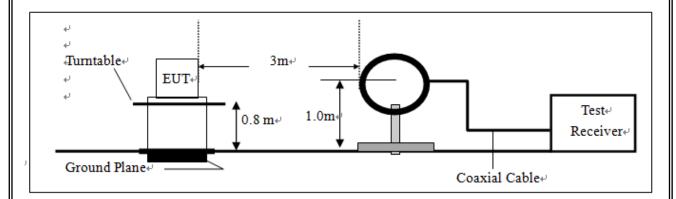
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

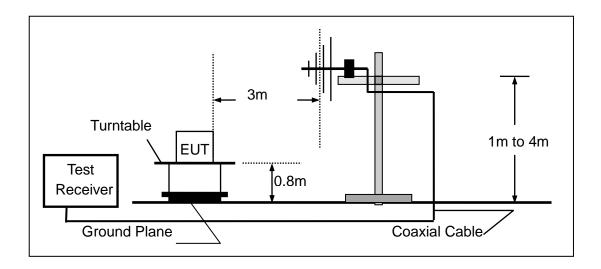
Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

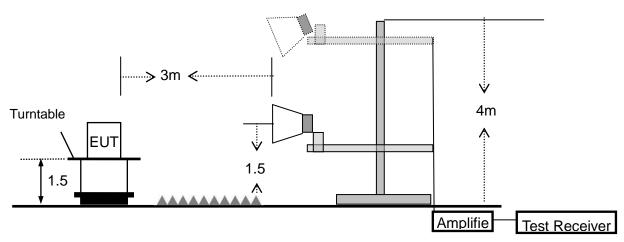
During the radiated emission test, the Spectrum Analyzer was set with the following configurations:


Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Ab 200 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.



9.4 TEST SETUP


(A) For radiated emissions below 30MHz

(B) For radiated emissions from 30MHz to 1000MHz

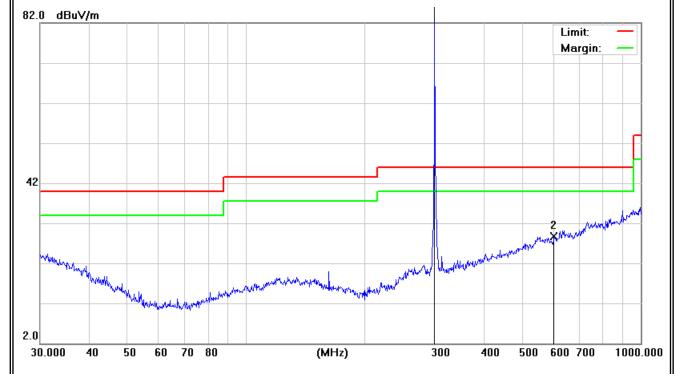
(C) For radiated emissions above 1000MHz

9.5 TEST RESULTS

■ Emission below 30MHz (9KHz to 30MHz)

EUT:	SAFETY EDGE TRANSMITTER	Model No.:	3022
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 1	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK \ AV ^		PK	AV	PK	AV


Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Page 20 of 27

■ Emission below 1GHz (30MHz to 1GHz)

All the modulation modes have been tested, and the worst result was report as below:

EUT:	SAFETY EDGE TRANSMITTER	Model Name :	3022
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 9V		

Polar	Frequency	Reading	Correct	Result	Limit	Over Limit	Remark
(H/V)	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
Н	300	72.31	14.74	87.05	95.32	-8.27	Peak
Н	300	•	•	70.43	75.32	-4.89	AVG
Н	600	6.95	21.71	28.66	75.32	-46.66	Peak
Н	600	-	-	12.04	55.32	-43.28	AVG

Note: The average value of fundamental frequency is:

Average= Peak Value+ 20log(Duty cycle), Final Average=Peak-16.62

Page 21 of 27

EUT:	SAFETY EDGE TRANSMITTER	Model Name :	3022
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 9V		

Polar	Frequency	Reading	Correct	Result	Limit	Over Limit	Remark
(H/V)	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
V	300	61.35	14.74	76.09	95.32	-19.23	Peak
V	300	-	-	59.47	75.32	-15.85	AVG
V	600	4.08	21.71	25.79	75.32	-49.53	Peak
V	600	-	1	9.17	55.32	-46.15	AVG

Note: The average value of fundamental frequency is:

Average= Peak Value+ 20log(Duty cycle), Final Average= Peak -16.62

■ Emission Above 1GHz (1GHz to 6GHz)

EUI:	SAFETY EDGE TRANSMITTER	Model Name :	3022
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 9V
Test Mode :	Mode 1	Polarization :	Horizontal

No.	Frequency	Reading	Correct	Dutycycle	Result	Limit	Over Limit	Remark
			Factor	Factor				
	(MHz)	(dBuV/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1200.000	39.32	1.89	-	41.21	75.32	-34.11	Peak
2	1500.000	39.52	2.15	-	41.67	75.32	-33.65	Peak
3	1800.000	37.02	3.71	-	40.73	75.32	-34.59	Peak
4	1200.000	-	-	-16.62	24.59	55.32	-30.73	AVG
5	1500.000		-	-16.62	25.05	55.32	-30.27	AVG
6	1800.000	-	-	-16.62	24.11	55.32	-31.21	AVG

- - - - - - - - - - - -	SAFETY EDGE TRANSMITTER	Model Name :	3022
Temperature:	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 9V
Test Mode :	Mode 1	Polarization :	Vertical

No.	Frequency	Reading	Correct Factor	Dutycycle Factor	Result	Limit	Over Limit	Remark
	(MHz)	(dBuV/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	1200.000	39.53	1.89	-	41.42	75.32	-33.90	Peak
2	1500.000	40.41	2.15	-	42.56	75.32	-32.76	Peak
3	1800.000	38.60	3.71	-	42.31	75.32	-33.01	Peak
4	1200.000	-	-	-16.62	24.80	55.32	-30.52	AVG
5	1500.000	-	-	-16.62	25.94	55.32	-29.38	AVG
6	1800.000	-	-	-16.62	25.69	55.32	-29.63	AVG

Note: 1. EUT Pre-scan X/Y/Z orientation, only worst case is presented in the report(Y orientation).

2. *Calculate Average value based on Duty Cycle correction factor:

Ton1=:0.8ms; Ton2=:1.55ms;

Duty Cycle=Ton/(Ton+Toff) = (0.8*1+1.55*9) /100=0.1475=14.75%

Duty Cycle factor= 20log (Duty Cycle) =20log (0.1475) = -16.62

Average=Peak+ Duty Cycle factor

- 2. FCC Limit for Average Measurement = 41.6667(300)-7083.3333=5416.6767uV/m =74.67dBuV/m
- 3. Pulse Desensitization Correction Factor

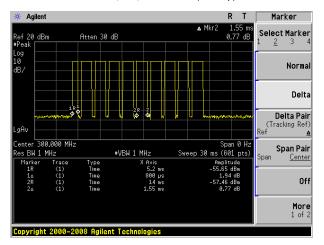
Pulse Width(PW)= 100ms 2/PW=2/100ms=0.02kHz

RBW(100kHz) > 2/PW (0.02kHz),

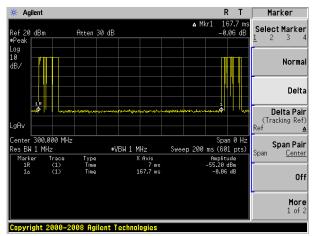
Therefore PDCF is not needed.

Duty Cycle:

The duty cycle is simply the on time divided by the period:


The duration of one cycle = 100ms

Effective period of the cycle =0.8*1+1.55*9=14.75ms,


Duty Cycle =14.75ms/100ms=0.1475=14.75%

Test Plot For Duty cycle

(Duty cycle) T_{ON(one hop)}

(Duty cycle) The duration of one cycle

10. BANDWIDTH TEST

10.1 TEST PROCEDURE

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

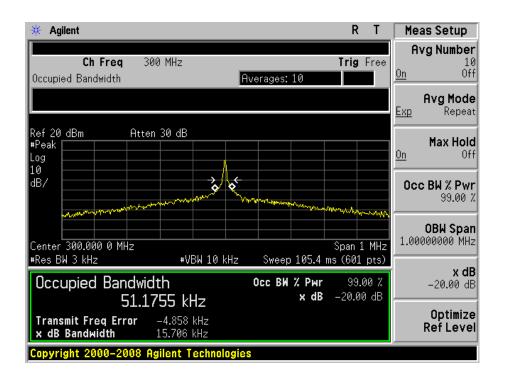
Limit: 300MHz*0.25%=750KHz

10.2 DEVIATION FROM STANDARD

No deviation.

10.3 TEST SETUP

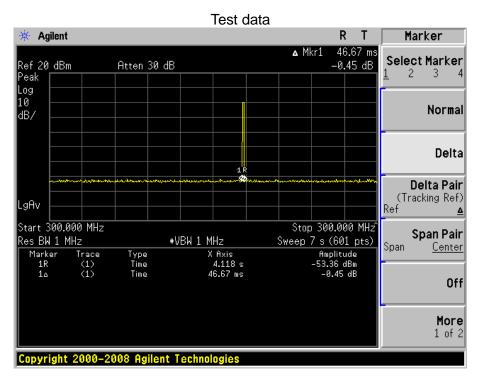
EUT	SPECTRUM
	ANALYZER



10.4 TEST RESULTS

 - 	SAFETY EDGE TRANSMITTER	Model Name :	3022
Temperature:	26 ℃	Relative Humidity:	53%
Pressure :	1020 hPa	Test Power :	DC 9V
Test Mode :	TX CH 1		

Test Channel	Frequency	20 dBc Bandwidth	<limit< th=""></limit<>
	(MHz)	(kHz)	(kHz)
CH01	300	15.706	750


11. TRANSMITTER TIMEOUT

11.1 REQUIREMENTS

- 1 A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
 - **Result:** The EUT is a manually activated transmitter, press 5 seconds will automatically stop working
- 2 A transmitter activated automatically shall cease transmission within 5 seconds after activation.
 - **Result:** The EUT is a manually activated transmitter, press 5 seconds will automatically stop working
- Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour

Result: The EUT does not employ periodic transmission.

- 4 Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.
 - Result: The section is not applicable to EUT.

THE DURATION OF EACH TRANSMISSION	LIMIT	RESULT
0.04667	<5s	PASS

END OF REPORT