GTCO CALCOMP

REPORT TO FCC PART 15 SUBPART C:

GTCO CALCOMP TRANSDUCER PEN

PREPARED FOR:

GTCO CALCOMP 14555 North 82nd Street Scottsdale, AZ 85260

PREPARED BY:

Kenneth B. Jacobson Product Support Engineer GTCO CALCOMP 14555 North 82nd Street Scottsdale, AZ 85260

DATE OF REPORT:

03/31/99

TABLE OF CONTENTS

COV	<u>ITENT</u>	<u>PAGE</u>
l.	Overview of Test Report	. 2
11.	Statement of Compliance	. 3
III.	Description of the Test Sample	. 4
IV.	List of Subassemblies of Test Sample (If Applicable)	. 5
V.	Test Equipment and Calibration	. 6
VI.	Cable Loss and Antenna Factors	. 7-13
VII.	Description of Equipment and Cables Used for Testing	. 14
VIII.	Radiated Test Procedure	. 15
IX.	Radiated Test Data/Photographs	. 16-17
X.	Conducted Test Procedure	. 19
XI.	Summary of Results	.20

I. OVERVIEW OF TEST REPORT

The procedures used for the conducted and radiated tests were derived from the American National Standard ANSI C63.4-1991 as stated in FCC CFR 47, Part 15, Paragraph 15.31. The test site attenuation and layout was done in accordance with ANSI C63.4-1991 and is on file with the FCC as required in FCC CFR 47, Part 2, Paragraph 2.948.

PRODUCT TESTED:

GTCO CALCOMP Transducer Pen

TRADE NAME:

None

APPLICANT:

GTCO CALCOMP

14555 North 82nd Street Scottsdale, AZ 85260

MANUFACTURER:

Same as Applicant

TEST FACILITY LOCATION:

Same as Applicant

TEST DATE:

03/24/99

The measurement data contained in this report reflects an accurate representation of the emission characteristics of the produce mentioned above.

REPORT PREPARED AND APPROVED BY:

Kenneth B. Jacobson Product Support Engineer GTCO CALCOMP

II. STATEMENT OF COMPLIANCE

Under the test configuration as described in this test report, the product tested has shown that it complies to the requirements of:

FCC RULES, PART 15, SUBPART C

We, GTCO CALCOMP, assume full responsibility to manufacture the product as shown in the enclosed photographs to uphold compliance to the FCC rules.

SIGNED:	buf that	
	Randy Crutchfield	·
TITLE:	Manager of Engineering	
DATE:	4/1/99	

III. <u>DESCRIPTION OF TEST SAMPLE</u>

The GTCO CALCOMP Pen is a transducer which radiates a nominal radio frequency of 1.84MHz. Due to the tolerance of the components of the LC circuit ("antenna"), the radiated frequency may vary ±5%.

When the transducer is placed on a digitizer, the digitizer receives the transmitted frequency through a grid and determines the X-Y position of the transducer.

IV. SUBASSEMBLIES OF TEST SAMPLE

The GTCO CALCOMP Transducer Pen has only one PCB and is a stand-alone transducer with no attachments or subassemblies. See attached photographs.

V. TEST EQUIPMENT AND CALIBRATION

The following is a list of equipment and calibration dates that are used at GTCO CALCOMP'S test site.

TEST EQUIPMENT	MODEL	CALIBRATION DATE	FREQUENCY
Com-Power Log Periodic Antenna	CPAL-100	06/08/98	1 Year
Com-Power Biconical Antenna	AB-100	05/28/98	1 Year
Com-Power Loop Antenna	AL-130	06/26/98	1 Year
EMCO LISN	3825/2	09/25/98	1.5 Year
EMCO LISN	3825/2	09/25/98	1.5 Year
HP Spectrum Analyzer with Quasi-Peak Adapter	8568B 85650 A	11/10/98	1 Year
HP Signal Generator	HP8656B	09/15/98	1 Year
EMCO Turntable	1060	N/A	N/A
HP Plotter	HP7470	N/A	N/A
Cable	RG-59/U	05/13/98	1 Year

VI. CABLE LOSS AND ANTENNA FACTORS

Com-Power Corporation (949) 587-9800

Antenna Calibration

Antenna Type: Model: Serial Number: Calibration Date:		Biconical AB-100 14069 5/28/98
Frequency MHz	Gain dBi	Factors dB/m
30	-14.6	
40	-9.8	14.4
50	-8.0	12.1
60		12.2
70	-5.7	11.5
80	-3.3	10.4
90	0.8	7.5
100	3.0	6.3
125	4.1	6.1
150	-0.9	13.0
175	5.1	8.6
200	-1.8	16.9
250	-1.9	18.1
300	-2.0	20.2
300	-1.4	21.2

Trans. Antenna He Receiving Antenna	Haight	2 meter	
Calibration	ricialif	l to 4 met	er
Spectrum Analyzer		3 meter	
	Resolution Bandwidth	100 kHz	
	Video Bandwidth	100 kHz	
ignal Generator Or	itput	120 dBuV	

Com-Power Corporation (949) 587-9800

Antenna Calibration

Antenna Type: Model:		Log Periodic
Serial Number:		AL-100
Calibration Date:		1011
		6/8/98
Frequency	Gain	Factors
MHz	₫Bi	dB/m
300	5.2	
400	5.2	14.6
500	6.9	15.4
600	5.2	19.0
700	3.2	22.6
	5.4	21.7
800	5.6	22.7
900	7.6	21.7
1000	3.4	26.8
		

Trans. Antenna Height		2 meter	
Receiving Antenna Heig Spectrum Analyzer	ht	l to 4 meter	
•	Resolution Bandwidth	100 kHz	
Signal Generator Output	Video Bandyadth	100 kHz	
ocuctator output		114 dBuV	

Com-Power Corporation (714) 587-9800

Antenna Calibration

Anteuna Type: Model:		Loop Antenn
Serial Number:		AL-130
Calibration Date:		17000
Frequency	Мадпенс	6/26/98
MHz	(dB/m)	Electric
		dB/m
0.01	-41.3	
0.02	-42.3	10.2
0.03	-40.6	9.2
0.04	-40.6	10.9
0.05	-41.8	10.9
0.06	-41.4	9.7
0.07	-41.5	10.1
0.08	-41.8	10.0
0.09	-41.9	9.7
0.1	-41.9	9.6
0.2	41.0	9.6
0.3	-41.6	7.5
0.4	-41.6	9.9
0.5	41.5	9.9
0.6	-41.3	10.0
0.7	-41.2	10.2
0.8	-41.2	10.3
0.9	41.1	10.3
1	-40.4	10.4
2	-39.7	11.1
3	-40.3	11.8
4	40.6	11.2
5	-40.2	10.9
6	-40.3	11.3
7	-40.7	11.2
8	-41.1	10.8
9	40.3	10.4
10	40.5	11.2
12	-41.1	11.0
14	<u>-41.5</u>	10.4
15	-41.5 -41.7	10.0
16	-41.7	9.8
18		9.5
20	<u>-42.0</u> -42.0	9.5
25	-43.4	9.5
30	<u>-43.4</u> <u>-46.7</u>	8.1
	+ 0./	4.8

Trans. Antenna Heighi Receiving Antenna Heighi	
	\$600000 March Control
	224 0000 0000 0000 0000 0000 0000 0000
■ 1 ■ 1 ■ 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	400 A 200 COCCOCCO A 200 COCCO
	\sim 100 for \sim 1
	UNA PROPERTURA NEL ENTRE EL PERTURA DE CARTO DE CONTRA PORTO CARTO DE CONTRA DE CONTRA DE CONTRA DE CARTO CONT
	@#####################################

CERTIFICATE OF CALIBRATION CONFORMANCE

COM-POWER CORPORATION

20621 Pascal Way Lake Forest, CA 92630 TEL: (949) 587-9800 FAX: (949) 587-9960

This antenna has been individually calibrated using ANSI C63.5, American National Standard for Calibration of Antennas used for radiated emission measurement in EMI control.

1001
Calcomp
Com-Power
AB-100
14069
05/28/98

Calibration Accuracy:

 $\pm 1 dB$

Calibration Traceability:

All measurement instrumentation is traceable to the United States National Institute of Standards and Technology (NIST). Supporting Documentation relative to traceability is on file and is available for examination upon request.

Measurement procedure per Military Handbook-52A as guidance for Military Standard 45662A. ANSI/NCSL Z540-1-1994 and ISO Guide 25.

Notes:

Re-Certification Date: 1 Year from Calibration Date.

Calibration Engineer

TEL: (949) 587-9800 FAX: (949) 587-9960

This antenna has been individually calibrated using ANSI C63.5, American National Standard for Calibration of Antennas used for radiated emission measurement in EMI control.

Certificate Number	1005	-
Client	CalComp Inc.	
Manufacturer	Com-Power	
Model Number	AL-130	
Serial Number	17000	
Date of Calibration	06/26/98	

Calibration Traceability:

All measurement instrumentation is traceable to the United States National Institute of Standards and Technology (NIST). Supporting Documentation relative to traceability is on file and is available for examination upon request.

Measurement procedure per Military Handbook-52A as guidance for Military Standard 45662A, ANSI/NCSL Z540-1-1994 and ISO Guide 25.

Notes:

Re-Certification Date: 1 Year from Calibration Date.

Calibration Engineer

RG-59/U 3 METER CABLE LOSS

MHz	LOSS (db)	Maz	LOSS (eb)
		280	1.30
30	.47	290	1.37
35	.31	300	1.61
40	.64	310	1.28
45	.77	320	1.53
50	.70	330	1.71
55	.69	340	1.99
60	.76	350	1.84
65	.67	360	2.11
70	.48	370	2.06
75	.36	380	1.82
80	.23	390	2.29
85	.16	400	2.02
90	.12	410	2.18
95	.19	420	2.12
100	.24	430	2.31
105	.31	440	2.43
110	.48	450	2.57
115	.71	460	2.62
120	.45	470	3.03
125	.46	480	3.04
130	.50	490	3.18
135	.61	500	3.21
140	.61	525	2.95
145	.46	550	2.54
150	.58	575	2.85
155	.87	600	3.18
160	.95	625	3.15
165	.48	650	3.54
170	.48_	675	3.71
175	.75	700	3.93
180	1.23	725	4.08
185	1.07	750	3.70
190	.43	775	3.65
195	38	800	3.52
200	.58	825	4.41
210	.46	850	4.51
220	.58	875	4.33
230	.61	900	4.29
240	.90	925	4.78
250	.80	950	4.91
260	1.17	975	4.93
270	1.13	990	4.87

VII. DESCRIPTION OF EQUIPMENT/CABLES USED FOR TESTING

Since the GTCO CALCOMP Transducer Pen is a stand-alone intentional radiator, no additional equipment was used and/or needed during the radiated tests.

DESCRIPTION OF CABLE

No cabling was used during the radiated tests.

VIII. RADIATED TEST PROCEDURE

Testing in the field as specified in ANSI C63.4, Section 8, the EUT was evaluated from the range of 9 KHz - 1000 MHz. The EUT was placed on a wooden turntable .8 meters above the ground plane and at a distance of 3 meters from the search antenna.

Maximum emissions were obtained by rotating the turntable and raising and lowering the search antenna. Appendix D in ANSI C63.4 was used for a reference. Since the radiated tests used a active loop antenna, only the vertical polarization was scanned. Worst case configuration is shown in photographs 1 and 2.

All emission levels were measured with a spectrum analyzer and represent <u>peak readings</u> at 100 KHz bandwidth resolution. Converting the spectrum analyzer readings of dbm to dbμv/m proceeds as follows:

- A. Convert dbm to dbμν by adding 107db to the reading in dbm. This is derived from the voltage for a power level into a 50 ohm load.
- B. Finally, adding the antenna factor with any cable loss to the dbμν reading yields dbμν/m.

By formula:

 $db\mu v/m = dbm (reading) + 107db + AF + CL$

Where:

AF = Antenna Factor in db

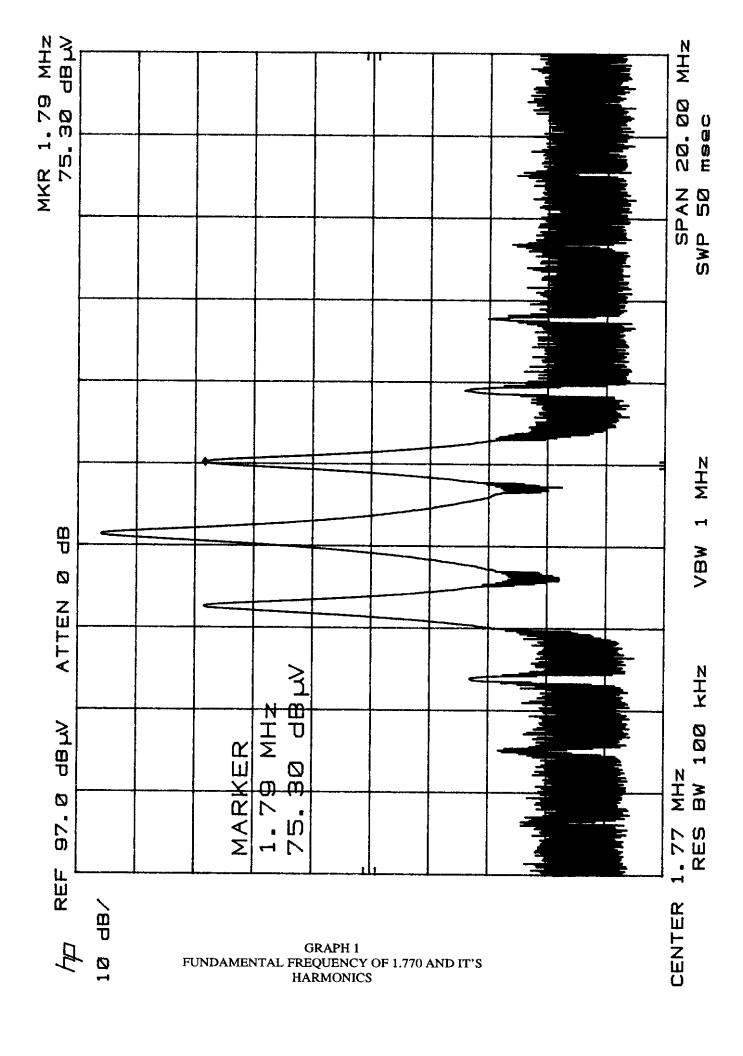
CL = Cable Loss in db

C. Since the transducer radiates a nominal frequency of 1.84 MHz, field strength limits were given for 30 meters. Measurement was done at 3 meters and extrapolated to 30 meters by using the square of an inverse linear distance extrapolation factor of 40db/decade as outlined in the FCC rules 15.31. Therefore, a total of 40db was subtracted from the measured readings at 3 meters.

The field strength limit for an intentional radiator at 1.84 MHz is 30 μ v/m per FCC rules in Paragraph 15.209. Therefore:

Limit @ $30m = 30\mu v/m$ or 20 LOG $30\mu v/m = 29.54db\mu v/m$

Since the intentional radiator (transducer) is incorporated with a digital device, the frequency scanned was beyond the 10th harmonic up to 1000 MHz as described in FCC rules Paragraph 15.33.


The transducer has such low power, the only frequency recorded through the scanned spectrum was the fundamental frequency, 1.84MHz. The transducer does, however, emit harmonics which was detected by a close field probe. These harmonics are so weak they cannot be detected at 3 meters. Graph 1 indicates the fundamental frequency of 1.84MHz and it's harmonics.

IX. RADIATED TEST DATA/PHOTOGRAPHS

COMPANY NAME: GTCO CA		<u> DATE: 3-24-99</u>			
TEST SAMPLE: GTCO CALCO	OMP Transducer pen				
SERIAL NUMBER: N/A					
ANTENNA TYPE: DIPOLE	BICONICAL	LOG PER	LOOP _	X	
TEST DISTANCE: 3M	PEN X	_ CURS			
NOTE:					

MHz EMISSION FREQUENCY	ANT. POL	ANT HEIGHT (M)	*AZIMUTH DEGREES	METER READ dbjiv	ANTENNA FACTOR & CABLE LOSS	**FINAL READING dbµv/m	FGC LIMIT dbµv/m	MARGIN
1.770	V	1.0	180	37.50	12.3	9.80	29.54	+19.74

- * A 0-degree reading means the front of the EUT is facing the antenna. 180 degrees would mean the back of the EUT is facing the antenna. Rotation is clockwise from 0 degrees.
- ** Final reading is after a -40db extrapolation factor was taken for a 3-meter reading as outlined in FCC Rules 15.31.

X. CONDUCTED TEST PROCEDURE

Since the GTCO CALCOMP transducer pen is powered by batteries, the conducted tests were not necessary.

XI. SUMMARY OF RESULTS

The GTCO CALCOMP transducer pen has shown that it passes the radiated test limits in FCC's CFR 47, Part 15, Subpart C, Paragraph 15.209. As noted before, only the fundamental frequency was noted at 3 meters which is 1.770 MHz. Therefore, the worse case margin would be the fundamental and has a margin of +19.74db.

The product tested had no specific modifications done to it to pass the above limits.