

INDALA TEST REPORT

FOR THE

MI100-BTCF MIFARE 100 SERIES READER

FCC PART 15 SUBPART C SECTIONS 15.207, 15.209 & 15.225 AND RSS-210

COMPLIANCE

DATE OF ISSUE: JUNE 30, 2004

PREPARED FOR:

PREPARED BY:

Indala 6850 B Santa Teresa Blvd. San Jose, CA 95119-1205

P.O. No.: 10001838 W.O. No.: 81687 Mary Ellen Clayton CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

Date of test: April 26, 2004

Report No.: FC04-049

This report contains a total of 29 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Summary of Results	4
Conditions for Compliance	4
Approvals	4
FCC 15.31(m) Number Of Channels	5
FCC 15.33(a) Frequency Ranges Tested	5
FCC 15.35 Analyzer Bandwidth Settings	
Eut Operating Frequency	5
Temperature And Humidity During Testing	5
Equipment Under Test (EUT) Description	
Equipment Under Test	
Peripheral Devices	
Report of Measurements	7
Table 1: FCC 15.225(a) Fundamental	7
Table 2: FCC 15.207 Six Highest Conducted Emission Levels	8
Table 3: FCC 15.209 Six Highest Radiated Emission Levels	
Frequency Stability and Voltage Variations	10
RSS-210 Occupied Bandwidth	
EUT Setup	12
Correction Factors	12
Table A: Sample Calculations	12
Test Instrumentation and Analyzer Settings	13
Spectrum Analyzer Detector Functions	13
Peak	13
Quasi-Peak	13
Average	13
EUT Testing	
Mains Conducted Emissions	14
Radiated Emissions	14
Appendix A: Test Setup Photographs	15
Photograph Showing Mains Conducted Emissions	
Photograph Showing Radiated Emissions	17
Photograph Showing Radiated Emissions	18
Photograph Showing Temperature Testing	
Appendix B: Test Equipment List	20
Appendix C: Measurement Data Sheets	21

ADMINISTRATIVE INFORMATION

DATE OF TEST:	April 26, 2004
DATE OF RECEIPT:	April 26, 2004
PURPOSE OF TEST:	To demonstrate the compliance of the MI100-btcf Mifare 100 Series Reader with the requirements for FCC Part 15 Subpart C Sections 15.207, 15.209 & 15.225 and RSS-210 devices.
TEST METHOD:	ANSI C63.4 (2001) & RSS-212
MANUFACTURER:	Indala 6850 B Santa Teresa Blvd. San Jose, CA 95119-1205
REPRESENTATIVE:	Steve Rose
TEST LOCATION:	CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

SUMMARY OF RESULTS

As received, the Indala MI100-btcf Mifare 100 Series Reader was found to be fully compliant with the following standards and specifications:

Canadian	Canadian	FCC	FCC	Test Description
Standard	Section	Standard	Section	
RSS 210	6.2.1	47CFR	15.209	General Radiated Emissions Requirement
RSS 210	6.2.2(e)	47CFR	15.225(a)	Fundamental Requirements
RSS 210	6.2.2(e)	NA	NA	±150kHz to ±450kHz Emissions Requirement
RSS 210	6.6	47CFR	15.207	AC Mains Conducted Emissions Requirement
	IC 3082-D		784962	Site No.

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

ather

Joyce Walker, Quality Assurance Administrative Manager

were Clark

Randy Clark, EMC Engineer

FCC 15.31(m) Number Of Channels

This device operates on a single channel.

FCC 15.33(a) Frequency Ranges Tested

15.207 Conducted: 150 kHz – 30 MHz 15.209 Radiated: 9 kHz – 1000 MHz

FCC SECTION 15.35:							
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS 150 kHz		30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				

Eut Operating Frequency

The EUT was operating at 13.56 MHz.

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was a production unit.

EQUIPMENT UNDER TEST

Mifare 100 Series Reader

Manuf:	Indala
Model:	MI100-btcf Mifare 100 Series Reader
Serial:	042604-01
FCC ID:	pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

DC Power Supply

Manuf:Topward Electric Instruments Co., Ltd.Model:TPS-2000Serial:920035FCC ID:NA

				MIFARE 1	00 SIERIES	READER				
Dees	01.1	T	0.1	Output	Description					
Base	Style	Type	Color	Protocol	Description					
MI100-	1	1	1	А	WAVE	SLIM	BLACK			
MI100-	1	1	4	А	WAVE	SLIM	BLUE			
MI100-	1	2	1	A	WAVE	WALL	BLACK			
MI100-	1	2	4	А	WAVE	WALL	BLUE			
MI100-	2	1	1	А	CURVE	SLIM	BLACK			
MI100-	2	1	4	А	CURVE	SLIM	BLUE			
MI100-	2	2	1	А	CURVE	WALL	BLACK			
MI100-	2	2	4	А	CURVE	WALL	BLUE			
MI100-	3	1	1	А	ARCH	SLIM	BLACK			
MI100-	3	1	5	А	ARCH	SLIM	GREY			
MI100-	3	1	6	Α	ARCH	SLIM	WHITE			
MI100-	3	1	7	А	ARCH	SLIM	BEIGE			
MI100-	3	2	1	А	ARCH	WALL	BLACK			
MI100-	3	2	5	А	ARCH	WALL	GREY			
MI100-	3	2	6	А	ARCH	WALL	WHITE			
MI100-	3	2	7	А	ARCH	WALL	BEIGE			
MI100-	4	1	1	А	LINEAR	SLIM	BLACK			
MI100-	4	1	5	А	LINEAR	SLIM	GREY			
MI100-	4	1	6	А	LINEAR	SLIM	WHITE			
MI100-	4	1	7	А	LINEAR	SLIM	BEIGE			
MI100-	4	2	1	А	LINEAR	WALL	BLACK			
MI100-	4	2	5	A	LINEAR	WALL	GREY			
MI100-	4	2	6	А	LINEAR	WALL	WHITE			
MI100-	4	2	7	Α	LINEAR	WALL	BEIGE			
MI100-	0	0	0	А	Core Electro	onics Module				
Family		MI100-	b	t	с	f				
			Ĩ		ŭ	'				
		1	1			-				
		İ	I					OUTPUT FO	RMAT	
		1	I						A=Wiega	nd
			I				COLOR			
		I	Ι	I						
		I	I			Type (Slim, Wa	allswitch)			
		I	I							
		I		Bezel Sty	le WAVE, C	URVE, ARCH,	LINEAR			
			Base I	Model Nun	nber					

REPORT OF MEASUREMENTS

The following tables report the worst case emissions levels recorded during the tests performed on the EUT. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

Table 1: FCC 15.225(a) Fundamental									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
13.566	29.2	8.4		0.8	-19.0	19.4	84.0	-64.6	Н
13.566	28.7	8.4		0.8	-19.0	18.9	84.0	-65.1	V

NOTES:

Test Method:ANSI C63.4 (2001)Spec Limit:FCC Part 15 Subpart C Section 15.225(a)Test Distance:10 Meters

H = Horizontal Polarization V = Vertical Polarization

COMMENTS: EUT is a Smart Card Reader with an operating frequency 13.56MHz. 12VDC power supplied via support DC power supply. EUT drain wire connected to power supply chassis. Frequency Range Investigated: Carrier. Test distance correction factor used in accordance with 15.31 of 40dB per decade for comparison to the limit.

	METER	COR	RECTIO	ON FACT	FORS	CORRECTED	SPEC		
FREQUENCY MHz	READING dBµV	Lisn dB	HPF dB	Cable dB	dB	READING dBµV	LIMIT dBµV	MARGIN dB	NOTES
4.781254	25.9	0.4	0.1	0.3		26.7	46.0	-19.3	W
13.480340	33.3	0.5	0.1	0.4		34.3	50.0	-15.7	W
13.565500	48.0	0.4	0.0	0.4		48.8	50.0	-1.2	В
13.566190	48.6	0.5	0.1	0.4		49.6	50.0	-0.4	WA
13.579440	48.7	0.4	0.0	0.4		49.5	50.0	-0.5	В
13.642500	32.7	0.5	0.1	0.4		33.7	50.0	-16.3	W

Test Method: Spec Limit: ANSI C63.4 (2001) FCC Part 15 Subpart C Section 15.207 NOTES:

B = Black Lead W = White Lead

COMMENTS: EUT is a Smart Card Reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire connected to power supply chassis. Frequency Range Investigated: 150 kHz to 30 MHz.

Table 3: FCC 15.209 Six Highest Radiated Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
447.628	41.9	16.4	-27.5	5.0	10.0	45.8	46.0	-0.2	HQ
447.629	40.6	16.4	-27.5	5.0	10.0	44.5	46.0	-1.5	VQ
461.191	39.1	16.7	-27.6	5.1	10.0	43.3	46.0	-2.7	HQ
461.191	38.1	16.7	-27.6	5.1	10.0	42.3	46.0	-3.7	VQ
474.753	39.4	16.9	-27.7	5.3	10.0	43.9	46.0	-2.1	VQ
501.874	37.1	17.4	-27.8	5.5	10.0	42.2	46.0	-3.8	HQ

Test Method: Spec Limit: Test Distance:

Г

ANSI C63.4 (2001) FCC Part 15 Subpart C Sections 15.209 10 Meters NOTES:

H = Horizontal Polarization V = Vertical Polarization Q = Quasi Peak Reading

COMMENTS: EUT is a Smart Card Reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire connected to power supply chassis. Frequency Range Investigated: 9 kHz to 1000 MHz. Test distance correction factor used in accordance with 15.31 of 20 dB per decade. No emissions detected within 20dB of the limit for the 9 kHz - 30 MHz testing.

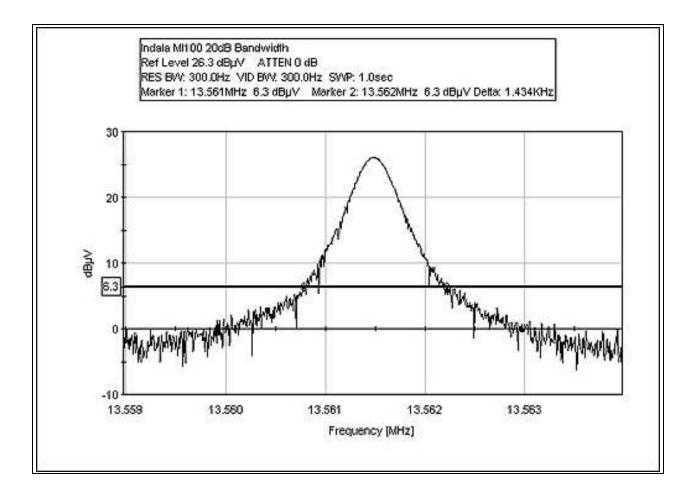
FREQUENCY STABILITY AND VOLTAGE VARIATIONS

Test Conditions: EUT is a Smart Card reader operating on a frequency of 13.56 MHz. The EUT is located inside of a temperature chamber and is powered via external DC power supply.

Customer: WO#: Date: Test Engineer:	Indala 81687 30-Jun-04		
Device Model #: Operating Voltage: Frequency Limit:		MI100 12 0.01	VDC %

Temperature Variations

		Channel 1 (MHz)	Dev. (MHz)
Channel Fre	equency:	13.561475	
Temp (C)	Voltage		
-30	12	13.56126	0.00021
-20	12	13.56134	0.00014
-10	12	13.56140	0.00007
0	12	13.56144	0.00004
10	12	13.56145	0.00002
20	12	13.56148	0.00000
30	12	13.56145	0.00002
40	12	13.56145	0.00002
50	12	13.56146	0.00001


Voltage Variations (±15%)

20	10.2	13.56148	0.00000
20	12	13.56148	0.00000
20	13.8	13.56146	0.00001

Max Deviation (MHz)	0.00021
Max Deviation (%)	0.00157
	PASS

RSS-210 OCCUPIED BANDWIDTH

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAI	BLE A: SAMPLE CAL	CULATIONS
	Meter reading	(dBµV)
+	Antenna Factor	(dB)
+	Cable Loss	(dB)
-	Distance Correction	(dB)
-	Preamplifier Gain	(dB)
=	Corrected Reading	$(dB\mu V/m)$

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated and conducted emissions data. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For frequencies from 30 to 1000 MHz, the biconilog antenna was used. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dBµV, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data. Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

The LISNs used were 50 μ H-/+50 ohms. Above 150 kHz, a 0.15 μ F series capacitor was added in-line prior to connecting the analyzer to restore the proper impedance for the range. A 30 to 50 second sweep time was used for automated measurements in the frequency bands of 150 kHz to 500 kHz, and 500 kHz to 30 MHz. All readings within 20 dB of the limit were recorded, and those within 6 dB of the limit were examined with additional measurements using a slower sweep time.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

APPENDIX A

TEST SETUP PHOTOGRAPHS

Page 15 of 29 Report No.: FC04-049

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions

Page 16 of 29 Report No.: FC04-049

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

PHOTOGRAPH SHOWING TEMPERATURE TESTING

APPENDIX B

TEST EQUIPMENT LIST

15.225(a) & 15.209 9 kHz to 30 MHz							
Function	S/N	Calibration Date	Cal Due Date	Asset #			
HP 8566B SA	2209A01404	02/26/2003	02/26/2005	00490			
HP 8566B SA Display	2403A08241	02/26/2003	02/26/2005	00489			
HP 85650A QPA	2811A01267	02/26/2003	02/26/2005	00478			
EMCO Loop Antenna	1074	05/21/2003	05/21/2005	00226			

15.207

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B SA	2209A01404	02/26/2003	02/26/2005	00490
HP 8566B SA Display	2403A08241	02/26/2003	02/26/2005	00489
HP 85650A QPA	2811A01267	02/26/2003	02/26/2005	00478
LISN Model 8028-50-TS-24-BNC	8379276 & 8379280	06/05/2003	06/05/2005	00330
150kHz HP Filter TTE	G7754	04/20/2004	04/20/2006	02608

15.209 30-1000 MHz

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B SA	2209A01404	02/26/2003	02/26/2005	00490
HP 8566B SA Display	2403A08241	02/26/2003	02/26/2005	00489
HP 85650A QPA	2811A01267	02/26/2003	02/26/2005	00478
HP 8447D Preamp	1937A02604	03/07/2003	03/07/2005	00099
Chase CBL6111C Bilog	2456	12/13/2002	12/13/2004	01991

APPENDIX C:

MEASUREMENT DATA SHEETS

Page 21 of 29 Report No.: FC04-049

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer:	Indala	
Specification:	FCC 15.225(a) (30 Meters)	
Work Order #:	81687	Date:
Test Type:	Maximized Emissions	Time:
Equipment:	Smart Card Reader	Sequence#:
Manufacturer:	Indala	Tested By:
Model:	MI100	
S/N:	042604-01	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Smart Card Reader*	Indala	MI100	042604-01	
Support Devices:				
Encoding	Manafa ataunan	M- J-14	C /N	

04/26/2004 16:02:39 29

Randal Clark

DC Power Supply Topw			
Instru	vard Electric Tl uments Co., Ltd.	PS-2000 9	920035

Test Conditions / Notes:

EUT is a Smart Card Reader with an operating frequency 13.56MHz. 12VDC power supplied via support DC power supply. EUT drain wire connected to power supply chassis. Frequency Range Investigated: Carrier Test distance correction factor used in accordance with 15.31 of 40dB per decade for comparison to the limit.

Transducer Legend:

T1=Mag Loop - Site B - AN 00226 - 9kHz-30M T2=Cable - 10 Meter

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 10 Meter	s	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1 13.566M	29.2	+8.4	+0.8			-19.0	19.4	84.0	-64.6	Horiz
											100
2	2 13.566M	28.7	+8.4	+0.8			-19.0	18.9	84.0	-65.1	Vert
											100

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer:	Indala
Specification:	FCC 15.207 - AVE
Work Order #:	81687
Test Type:	Conducted Emissions
Equipment:	Smart Card Reader
Manufacturer:	Indala
Model:	MI100
S/N:	042604-01

Equipment Under Test (* = EUT):

Equipment Chaer Test	$(-\mathbf{E}(\mathbf{I}))$			
Function	Manufacturer	Model #	S/N	
Smart Card Reader*	Indala	MI100	042604-01	
Support Devices:				

Support Devices.				
Function	Manufacturer	Model #	S/N	
DC Power Supply	Topward Electric Instruments Co., Ltd.	TPS-2000	920035	

Test Conditions / Notes:

EUT is a Smart Card Reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire connected to power supply chassis. Frequency Range Investigated: 150 kHz to 30 MHz.

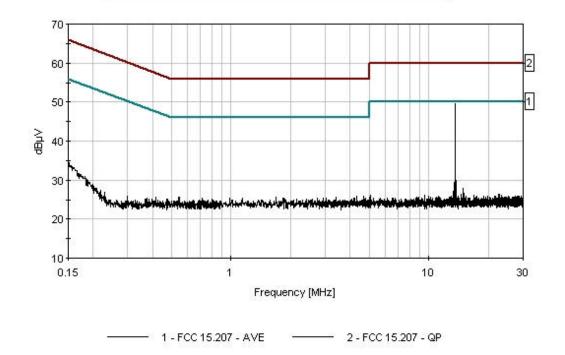
Transducer Legend:

T1=Cable - Internal + cab

T2=LISN Insertion Loss s/n280

Date: 04/26/2004 Time: 14:14:50

120V 60Hz


Tested By: Randal Clark

Sequence#: 24

Measur	rement Data	: Re	ading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.579M	48.7	+0.4	+0.4			+0.0	49.5	50.0	-0.5	Black
2	13.566M	48.0	+0.4	+0.4			+0.0	48.8	50.0	-1.2	Black
3	13.706M	29.0	+0.4	+0.4			+0.0	29.8	50.0	-20.2	Black
4	13.670M	28.7	+0.4	+0.4			+0.0	29.5	50.0	-20.5	Black
5	13.372M	28.5	+0.4	+0.4			+0.0	29.3	50.0	-20.7	Black
6	150.727k	34.1	+0.1	+0.3			+0.0	34.5	56.0	-21.5	Black
7	14.850M	27.1	+0.4	+0.4			+0.0	27.9	50.0	-22.1	Black
8	5.096M	25.5	+0.3	+0.3			+0.0	26.1	50.0	-23.9	Black
9	23.195M	25.2	+0.5	+0.4			+0.0	26.1	50.0	-23.9	Black

CKC Laboratories_Date:_04/26/2004_Time: 14:14:50_Indala WO#: 81687 FCC 15.207 - AVE_Test Lead: Black 120V 60Hz Sequence#: 24 Indala M/N MI100

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer:	Indala
Specification:	FCC 15.207 - AVE
Work Order #:	81687
Test Type:	Conducted Emissions
Equipment:	Smart Card Reader
Manufacturer:	Indala
Model:	MI100
S/N:	042604-01

Date: 04/26/2004 Time: 14:28:48 Sequence#: 26 Tested By: Randal Clark 120V 60Hz

T2=LISN Insertion Loss s/n276

Equipment Under Test (* = EUT):

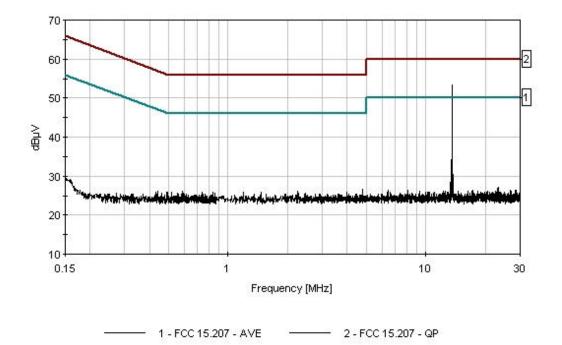
Function	Manufacturer	Model #	S/N	
Smart Card Reader*	Indala	MI100	042604-01	
Support Devices:				

Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric Instruments Co., Ltd.	TPS-2000	920035

Test Conditions / Notes:

EUT is a Smart Card Reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire connected to power supply chassis. Frequency Range Investigated: 150 kHz to 30 MHz.

Transducer Legend:


T1=Cable - Internal + cab	
T3=HP Filter AN02608	

Measurement Data: Reading listed by margin. Test Lead: White T1 T2 # Freq Т3 Dist Margin Polar Rdng Corr Spec dB MHz dBµV dB dB dB Table dBµV $dB\mu V$ dB Ant 13.566M +0.1White 48.6 +0.4+0.5+0.049.6 50.0 -0.4 1 Ave Λ 13.565M 50.8 +0.4+0.5+0.051.8 50.0 +1.8White +0.13 13.480M 33.3 +0.4+0.5+0.1+0.034.3 50.0 -15.7 White 32.7 +0.450.0 -16.3 4 13.643M +0.5+0.1+0.033.7 White 5 4.781M 25.9 +0.3+0.4+0.1+0.026.7 46.0 -19.3 White 13.706M 29.5 +0.4+0.530.5 -19.5 White 6 +0.1+0.050.0 7 -19.7 White 13.778M 29.3 +0.4+0.5+0.1+0.030.3 50.0 8 13.426M 28.2 +0.4+0.5+0.1+0.029.2 50.0 -20.8 White 13.345M 27.3 -21.7 White 9 +0.4+0.5+0.1+0.028.3 50.0

10	23.216M	26.1	+0.5	+0.4	+0.2	+0.0	27.2	50.0	-22.8	White
11	17.210M	25.5	+0.4	+0.4	+0.1	+0.0	26.4	50.0	-23.6	White
12	158.726k	26.8	+0.1	+0.4	+1.9	+0.0	29.2	55.5	-26.3	White

CKC Laboratories Date: 04/26/2004 Time: 14:28:48 Indala WO#: 81687 FCC 15.207 - AVE Test Lead: White 120V 60Hz Sequence#: 26 Indala M/N MI100

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Specification: Work Order #:	Indala FCC 15.209 81687
Test Type:	Maximized Emissions
Equipment:	Smart Card Reader
Manufacturer:	Indala
Model:	MI100
S/N:	042604-01

Date: 04/26/2004 Time: 12:06:37 Sequence#: 22 Tested By: Randal Clark

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Smart Card Reader*	Indala	MI100	042604-01	
Support Devices:				
Function	Manufacturer	Model #	S/N	
DC Power Supply	Topward Electric	TPS-2000	920035	
	Instruments Co., Ltd.			

Test Conditions / Notes:

EUT is a Smart Card Reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire connected to power supply chassis. Frequency Range Investigated: 9 kHz to 1000 MHz. Test distance correction factor used in accordance with 15.31 of 20 dB per decade.

Transducer Legend:

T1=Amp - S/N 604	T2=Bilog Site B	
T3=Cable - 10 Meter		

Measu	rement Data:	Reading listed by margin.				Test Distance: 10 Meters					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	447.628M	41.9	-27.5	+16.4	+5.0		+10.0	45.8	46.0	-0.2	Horiz
	QP						314				140
^	447.617M	43.5	-27.5	+16.4	+5.0		+10.0	47.4	46.0	+1.4	Horiz
							314				140
3	447.629M	40.6	-27.5	+16.4	+5.0		+10.0	44.5	46.0	-1.5	Vert
	QP						76				107
4	474.753M	39.4	-27.7	+16.9	+5.3		+10.0	43.9	46.0	-2.1	Vert
	QP						341				107
^	474.738M	41.8	-27.7	+16.9	+5.3		+10.0	46.3	46.0	+0.3	Vert
							341				107
6	461.191M	39.1	-27.6	+16.7	+5.1		+10.0	43.3	46.0	-2.7	Horiz
	QP						314				140
^	461.184M	43.6	-27.6	+16.7	+5.1		+10.0	47.8	46.0	+1.8	Horiz
							314				140
8	461.191M	38.1	-27.6	+16.7	+5.1		+10.0	42.3	46.0	-3.7	Vert
	QP						361				107
^	461.198M	41.9	-27.6	+16.7	+5.1		+10.0	46.1	46.0	+0.1	Vert
							361				107

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10		37.1	-27.8	+17.4	+5.5		42.2	46.0	-3.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	^	<u> </u>	38.2	-27.8	+17.4	+5.5		43.3	46.0	-27	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		501.040101	50.2	-27.0	11/.4	15.5		чэ.э	40.0	-2.7	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	637.468M	34.1	-28.0	+19.6	+6.3	+10.0	42.0	46.0	-4.0	Horiz
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	434.063M	38.1	-27.4	+16.1	+5.0	+10.0	41.8	46.0	-4.2	Horiz
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		QP					303				140
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	^	434.075M	43.7	-27.4	+16.1	+5.0	+10.0	47.4	46.0	+1.4	Horiz
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							303				140
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	393.383M	38.2	-27.2	+15.2	+5.0	+10.0	41.2	46.0	-4.8	Horiz
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		QP					311				260
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	^	393.384M	40.7	-27.2	+15.2	+5.0	+10.0	43.7	46.0	-2.3	Horiz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							311				260
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	434.037M	37.1	-27.4	+16.1	+5.0	+10.0	40.8	46.0	-5.2	Vert
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							201				107
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	556.095M	33.6	-27.8	+18.4	+6.0	+10.0	40.2	46.0	-5.8	Horiz
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							37				119
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	420.507M	36.4	-27.3	+15.8	+5.1	+10.0	40.0	46.0	-6.0	Horiz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(225				190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^	420.479M	40.3	-27.3	+15.8	+5.1		43.9	46.0	-2.1	Horiz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							225				190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	528.967M	34.0	-27.8	+17.9	+5.8		39.9	46.0	-6.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22		35.9	-27.5	+16.4	+5.0		39.8	46.0	-6.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	^	447.628M	42.6	-27.5	+16.4	+5.0		46.5	46.0	+0.5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	^	447.609M	39.5	-27.5	+16.4	+5.0		43.4	46.0	-2.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		447 (00) 4	20.5	07.5	164	5.0		12.1	16.0	2.6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	447.609M	39.5	-27.5	+16.4	+5.0		43.4	46.0	-2.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	664 50014	21.2	07.0	10.0			20.7	16.0	()	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	664.588M	31.2	-27.9	+19.9	+6.5		39.7	46.0	-6.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07	(10.220)	22.2	07.0	10.0			20 6	16.0	<i>c</i> 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	610.339M	52.2	-27.8	+19.2	+0.0		39.6	46.0	-6.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	501 860M	24.0	27.0	174	15.5		20.1	16.0	6.0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28	JUI.809IVI	54.0	-21.8	+1/.4	+3.3		39.1	40.0	-0.9	
118 119 30 556.097M 32.1 -27.8 +18.4 +6.0 +10.0 38.7 46.0 -7.3 Vert 100 31 528.962M 32.2 -27.8 +17.9 +5.8 +10.0 38.1 46.0 -7.9 Vert 107 32 271.313M 36.4 -26.5 +12.4 +3.8 +10.0 36.1 46.0 -9.9 Vert	20	582 210M	21.0	27.0	100	15.0		28 7	16.0	72	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	303.219WI	51.8	-21.8	+10.0	+3.9		30.1	40.0	-1.5	
100 31 528.962M 32.2 -27.8 +17.9 +5.8 +10.0 38.1 46.0 -7.9 Vert 107 32 271.313M 36.4 -26.5 +12.4 +3.8 +10.0 36.1 46.0 -9.9 Vert	20	556 007M	32.1	27.8	±19 <i>1</i>	+6.0		38 7	16.0	72	
31 528.962M 32.2 -27.8 +17.9 +5.8 +10.0 38.1 46.0 -7.9 Vert 107 32 271.313M 36.4 -26.5 +12.4 +3.8 +10.0 36.1 46.0 -9.9 Vert	50	550.09/WI	32.1	-21.8	+10.4	± 0.0	+10.0	30.1	40.0	-1.5	i
107 32 271.313M 36.4 -26.5 +12.4 +3.8 +10.0 36.1 46.0 -9.9 Vert	31	528 962M	32.2	-27.8	+17.0	+5 8	±10.0	38.1	46.0	_7.9	
32 271.313M 36.4 -26.5 +12.4 +3.8 +10.0 36.1 46.0 -9.9 Vert	51	520.702111	54.4	-27.0	11/.7	10.0	+10.0	50.1	-0.0	-1.7	
	30	271 313M	36 /	-26.5	+12 /	+3.8	+10.0	36.1	46.0	_0 0	
	54	211.313111	50.4	20.3	112.4	10.0		50.1	-10.0	-7.7	
33 325.555M 33.4 -26.7 +13.5 +4.3 +10.0 34.5 46.0 -11.5 Vert	22	325 555M	33 /	-267	+13.5	+4.3		34.5	46.0	_11.5	
208 107	55	525.5555111	55.4	-20.7	113.5	17.3		54.5	-0.0	-11.3	
34 379.817M 31.5 -27.0 +14.9 +4.9 +10.0 34.3 46.0 -11.7 Horiz	34	379 817M	31.5	-27.0	+14 9	+4 9		34.3	46.0	-117	
	54	577.017141	51.5	27.0	1 1 7.7	1.1.2	284	51.5	10.0	11./	142
							207				174

35	339.112M	32.7	-26.7	+13.9	+4.4	+10.0 193	34.3	46.0	-11.7	Vert 107
36	352.691M	32.2	-26.8	+14.3	+4.5	+10.0	34.2	46.0	-11.8	Horiz
						61				153
37	257.745M	34.3	-26.5	+12.1	+3.7	+10.0	33.6	46.0	-12.4	Vert
						201				107
38	366.237M	31.0	-26.9	+14.6	+4.7	+10.0	33.4	46.0	-12.6	Vert
						106				107
39	311.998M	32.3	-26.6	+13.2	+4.2	+10.0	33.1	46.0	-12.9	Vert
						183				107
40	284.854M	33.1	-26.5	+12.6	+3.9	+10.0	33.1	46.0	-12.9	Vert
						238				107
41	339.131M	31.0	-26.7	+13.9	+4.4	+10.0	32.6	46.0	-13.4	Horiz
						246				163
42	271.320M	32.7	-26.5	+12.4	+3.8	+10.0	32.4	46.0	-13.6	Horiz
						37				163
43	244.191M	33.7	-26.5	+11.6	+3.6	+10.0	32.4	46.0	-13.6	Vert
						219				107
44	108.572M	34.3	-27.2	+10.1	+2.4	+10.0	29.6	43.5	-13.9	Vert
						119				107
45	176.374M	34.7	-26.8	+8.4	+3.0	+10.0	29.3	43.5	-14.2	Vert
						150				107
46	352.672M	29.3	-26.8	+14.3	+4.5	+10.0	31.3	46.0	-14.7	Vert
47	200 42234	20.7	26.5	10.0	. 4 1	359	21.1	16.0	14.0	107
47	298.422M	30.7	-26.5	+12.8	+4.1	+10.0	31.1	46.0	-14.9	Vert
4.0	220 (2014	22.0	26.5	. 10.7	.2.4	181	20.0	16.0	15.0	107
48	230.626M	33.2	-26.5	+10.7	+3.4	+10.0	30.8	46.0	-15.2	Vert
49	202 40014	31.6	-26.7	+8.6	+3.3	204	26.9	12.5	167	107
49	203.490M	31.0	-20.7	+8.0	+3.3	+10.0 37	26.8	43.5	-16.7	Horiz 181
50	257.758M	29.4	-26.5	+12.1	+3.7	+10.0	28.7	46.0	-17.3	Horiz
50	237.73011	<i>27.</i> 4	-20.3	± 12.1	+3.7	+10.0	20.7	40.0	-17.5	163
51	203.521M	30.9	-26.7	+8.6	+3.3	+10.0	26.1	43.5	-17.4	Vert
51	203.32110	50.9	-20.7	± 0.0	<i>⊤</i> J.J	42	20.1	45.5	-1/.4	107
52	217.066M	31.0	-26.6	+9.7	+3.4	+10.0	27.5	46.0	-18.5	Vert
52	217.000101	51.0	-20.0	12.1	10.4	281	21.5	-0.0	-10.5	107
L						201				107