

FCC TEST REPORT

REPORT NO.: RF990702D10-2

MODEL NO.: RG-0976

FCC ID: E8HRG-0976

RECEIVED: July 2, 2010

TESTED: July 8 ~ 9, 2010

ISSUED: July 21, 2010

APPLICANT: Chicony Electronics Co., Ltd.

ADDRESS: No. 25, Wu-Gong 6th Rd., Wu Ku Industrial Park, Taipei Hsien, Taiwan, R.O.C.

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

LAB LOCATION: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien, 244 Taiwan

This test report consists of 28 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1.	CERTIFICATION
2. 2.1	SUMMARY OF TEST RESULTS
3. 3.1 3.2 3.2.1 3.2.2 3.3 3.4	GENERAL INFORMATION5GENERAL DESCRIPTION OF EUT5DESCRIPTION OF TEST MODES6CONFIGURATION OF SYSTEM UNDER TEST6TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL:7GENERAL DESCRIPTION OF APPLIED STANDARDS8DESCRIPTION OF SUPPORT UNITS8
$\begin{array}{c} 4.\\ 4.1\\ 4.1.1\\ 4.1.2\\ 4.1.3\\ 4.1.4\\ 4.1.5\\ 4.1.6\\ 4.1.7\\ 4.2\\ 4.2.1\\ 4.2.2\\ 4.2.3\\ 4.2.4\\ 4.2.5\\ 4.2.6\\ 4.2.7\\ 4.3\\ 4.3.1\\ 4.3.2\\ 4.3.3\\ 4.3.4\\ 4.3.5\\ 4.3.6\\ 5.\end{array}$	TEST TYPES AND RESULTS.9CONDUCTED EMISSION MEASUREMENT9LIMITS OF CONDUCTED EMISSION MEASUREMENT.9TEST INSTRUMENTS9TEST PROCEDURES.10DEVIATION FROM TEST STANDARD10EUT OPERATING CONDITIONS11TEST RESULTS12RADIATED EMISSION MEASUREMENT14LIMITS OF RADIATED EMISSION MEASUREMENT14TEST PROCEDURES15TEST PROCEDURES16DEVIATION FROM TEST STANDARD16TEST NSTRUMENTS15TEST PROCEDURES16DEVIATION FROM TEST STANDARD16TEST SETUP17EUT OPERATING CONDITIONS17TEST RESULTS18BAND EDGES MEASUREMENT23LIMITS OF BAND EDGES MEASUREMENT23TEST INSTRUMENTS23TEST INSTRUMENTS23TEST PROCEDURE23DEVIATION FROM TEST STANDARD23TEST INSTRUMENTS23TEST INSTRUMENTS23TEST PROCEDURE23DEVIATION FROM TEST STANDARD23TEST PROCEDURE23DEVIATION FROM TEST STANDARD23TEST RESULTS23DEVIATION FROM TEST STANDARD23TEST RESULTS23PHOTOGRAPHS OF THE TEST CONFIGURATION26
6. -	INFORMATION ON THE TESTING LABORATORIES
7.	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

1. CERTIFICATION

PRODUCT:	Dongle
BRAND NAME:	Chicony
MODEL NO.:	RG-0976
APPLICANT:	Chicony Electronics Co., Ltd.
TESTED:	July 8 ~ 9, 2010
TEST SAMPLE:	ENGINEERING SAMPLE
STANDARDS:	FCC Part 15, Subpart C (Section 15.249)
	ANSI C63.4-2003

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : Annie Chang, DATE: July 21, 2010 (Annie Chang / Senior Specialist)

: Janison Chan, DATE: July 21, 2010 ACCEPTANCE Responsible for RF (Jamison Chan / Supervisor) APPROVED BY : ________, DATE: ______, July 21, 2010

TECHNICAL

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C (Section 15.249)						
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK			
15.207	Conducted Emission Test	PASS	Minimum passing margin is –12.75dB at 0.486MHz			
15.209 15.249 15.249 (d)	Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 12.209	PASS	Minimum passing margin is –7.5dB at 2390.00MHz			

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Uncertainty
Conducted emissions	150kHz ~ 30MHz	2.41 dB
Dedicted emissions	30MHz ~ 1GHz	3.67 dB
Radiated emissions	Above 1GHz	2.89 dB

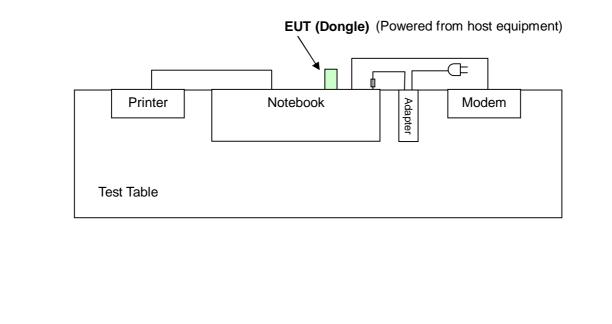
3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Dongle
MODEL NO.	RG-0976
FCC ID	E8HRG-0976
POWER SUPPLY	5Vdc from host equipment
MODULATION TYPE	GFSK
OPERATING FREQUENCY	2403MHz ~ 2480MHz
NUMBER OF CHANNEL	78
ANTENNA TYPE	Strip antenna with -0.76dBi gain
ANTENNA CONNECTOR	N/A
DATA CABLE	N/A
I/O PORTS	USB port
ASSOCIATED DEVICES	N/A

NOTE:

- 1. The EUT is a transceiver.
- 2. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



3.2 DESCRIPTION OF TEST MODES

78 channels are provided to this EUT:

CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		
20	2422	40	2442	60	2462		

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL:

EUT configure		Applic	able to		Description
mode	PLC	RE<1G	RE ³ 1G	BM	2000 pilon
-	\checkmark	\checkmark	\checkmark	\checkmark	-

Where PLC: Power Line Conducted Emission RE≥1G: Radiated Emission above 1GHz RE<1G RE: Radiated Emission below 1GHz BM: Bandedge Measurement

POWER LINE CONDUCTED EMISSION TEST:

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1 to 78	1	GFSK

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	
1 to 78	1	GFSK	

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1 to 78	1, 39, 78	GFSK

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1 to 78	1, 78	GFSK

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
PLC	27deg. C, 75% RH, 1008hPa	120Vac, 60Hz	Nick Chen
RE<1G	27deg. C, 77% RH, 1006hPa	120Vac, 60Hz	Nick Chen
RE ³ 1G	27deg. C, 77% RH, 1006hPa	120Vac, 60Hz	Nick Chen
BM	27deg. C, 77% RH, 1006hPa	120Vac, 60Hz	Nick Chen

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.249)

ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

NOTE: The product has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID	
1	NOTEBOOK	DELL	DDOEL	20275526726		
	COMPUTER	DELL	PP05L	20375526736	FCC DoC Approved	
2	PRINTER	EPSON	LQ-300+	DCGY017054	FCC DoC Approved	
3	MODEM	ACEEX	1414	980020520	IFAXDM1414	

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A
2	1.8m braid shielded wire, terminated with DB25 and Centronics connector via metallic frame, w/o core
3	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame, w/o core.
NOTE	: All power cords of the above support units are non-shielded (1.8m).

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTE	D LIMIT (dBµV)
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

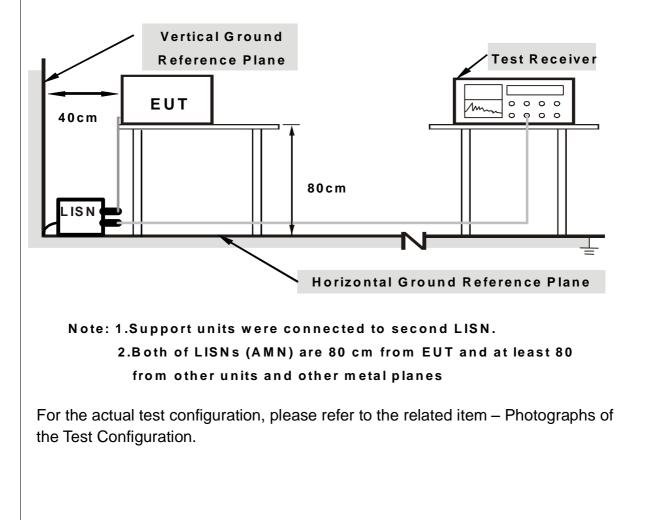
4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
ROHDE & SCHWARZ Test Receiver	ESCS 30	100276	Dec. 15, 2009	Dec. 14, 2010	
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ESH3-Z5	100218	Nov. 24, 2009	Nov. 23, 2010	
LISN With Adapter (for EUT)	AD10	C10Ada-001	Nov. 24, 2009	Nov. 23, 2010	
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100219	Nov. 23, 2009	Nov. 22, 2010	
Software	ADT_Cond_V7.3.7	NA	NA	NA	
Software	ADT_ISN_V7.3.7	NA	NA	NA	
RF cable (JYEBAO)	5D-FB	Cable-C10.01	Feb. 23, 2010	Feb. 22, 2011	
SUHNER Terminator (For ROHDE & SCHWARZ LISN)	65BNC-5001	E1-010773	Feb. 23, 2010	Feb. 22, 2011	

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 10.

3. The VCCI Site Registration No. C-1852.


4.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under limit 20dB was not recorded.

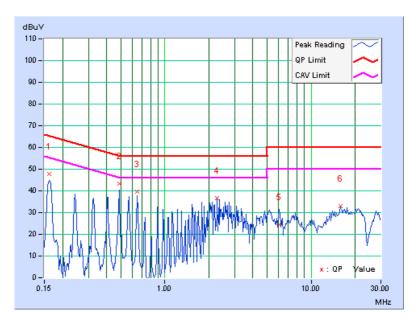
4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

4.1.6 EUT OPERATING CONDITIONS

- a. Connected the EUT to a notebook placed on a testing table.
- b. The notebook ran a test program (provided by manufacturer) to enable EUT under transmission/receiving condition continuously at specific channel frequency.
- c. The notebook sent messages to printer and the printer printed them out.
- d. The notebook sent messages to modem.
- e. Repeated c ~ e.

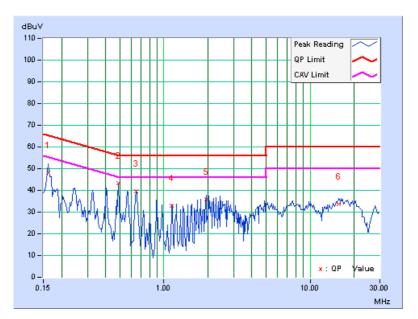

4.1.7 TEST RESULTS

CONDUCTED WORST CASE DATA

PHASE Line 1					6dB BAI	NDWIDT	Н	9 kl	Hz		
	Freq.	Freq. Corr. Reading Value Emiss		l l imit			Margin				
No		Facto	or [dB ([dB (uV)] [dB ((uV)]	[dB (uV)]			(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	A١	V.	Q.P.	AV.
1	0.162	0.19	47.71	-	47.90	-	65.38	55.	38	-17.48	-
2	0.486	0.30	43.18	-	43.48	-	56.23	46.	23	-12.75	-
3	0.650	0.30	39.36	-	39.66	-	56.00	46.	00	-16.34	-
4	2.273	0.36	36.22	-	36.58	-	56.00	46.	00	-19.42	-
5	6.086	0.57	24.05	-	24.62	-	60.00	50.	00	-35.38	-
6	15.835	1.07	32.00	-	33.07	-	60.00	50.	00	-26.93	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



PHA	SE		Line 2			6dB BAI	NDWIDT	Η	9 kHz					
	Freq. Corr. Reading Value			ssion vel	Limit		Mar	gin						
No		Facto	r [dB	(uV)]	[dB (uV)]		[dB (uV)]		[dB (uV)]		[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV	. Q.P.	AV.				
1	0.162	0.29	47.70	-	47.99	-	65.37	55.3	37 -17.39	-				
2	0.487	0.38	42.89	-	43.27	-	56.22	46.2	22 -12.94	-				
3	0.650	0.38	39.09	-	39.47	-	56.00	46.0	00 -16.53	-				
4	1.137	0.39	32.65	-	33.04	-	56.00	46.0	00 -22.96	-				
5	1.949	0.41	35.39	-	35.80	-	56.00	46.0	00 -20.20	-				
6	15.684	0.94	32.65	-	33.59	-	60.00	50.0	00 -26.41	-				

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209, 15.249 as following:

5.209 Limit								
Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
0.009 ~ 0.490	2400/F(kHz)	300						
0.490 ~ 1.705	24000/F(kHz)	30						
1.705 ~ 30.0	30	30						
30 ~ 88	100	3						
88 ~ 216	150	3						
216 ~ 960	200	3						
Above 960	500	3						
15.249 Limit								
Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)						
902 ~ 928 MHz	50	500						
2400 ~ 2483.5 MHz	50	500						
5725 ~ 5875 MHz	50	500						
24 ~ 24.25 GHz	250	2500						

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	May 06, 2010	May 05, 2011
HP Preamplifier	8449B	3008A01924	Aug. 31, 2009	Aug. 30, 2010
HP Preamplifier	8449B	3008A01292	Aug. 10, 2009	Aug. 09, 2010
ROHDE & SCHWARZ TEST RECEIVER	ESU26	100005	Jun. 10, 2010	Jun. 09, 2011
Schwarzbeck Antenna	VULB 9168	137	Apr. 29, 2010	Apr. 28, 2011
Schwarzbeck Antenna	VHBA 9123	480	Apr. 29, 2010	Apr. 28, 2011
EMCO Horn Antenna	3115	6714	Oct. 26, 2009	Oct. 25, 2010
EMCO Horn Antenna	3115	9312-4192	Apr. 23, 2010	Apr. 22, 2011
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	ADT_Radiated_V 7.6.15.9.2	NA	NA	NA
SUHNER RF cable	SF104-26.5	CABLE-CH6-17m -01	Aug. 20, 2009	Aug. 19, 2010
ROHDE & SCHWARZ Spectrum Analyzer	FSP 40	100036	Apr. 06, 2010	Apr. 05, 2011

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

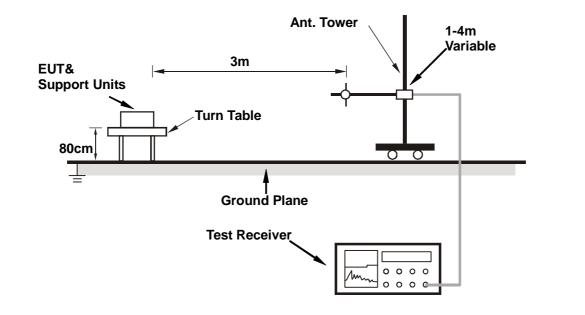
3. The test was performed in Chamber No. 6.

- 4. The Industry Canada Reference No. IC 7450E-6.
- 5. The FCC Site Registration No. is 447212.

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak method or average method as specified and then reported in data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Set the EUT under transmission condition continuously at specific channel frequency.

4.2.7 TEST RESULTS

ABOVE 1GHz DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 1	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	27deg. C, 77% RH 1006hPa	TESTED BY	Nick Chen	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	61.1 PK	74.0	-12.9	1.00 H	310	29.19	31.89	
2	2390.00	46.4 AV	54.0	-7.6	1.00 H	310	14.53	31.89	
3	2400.00	52.9 PK	74.0	-21.1	1.00 H	310	20.96	31.93	
4	2400.00	25.3 AV	54.0	-28.7	1.00 H	310	-6.64	31.93	
5	*2403.00	94.6 PK	114.0	-19.4	1.00 H	310	62.65	31.94	
6	*2403.00	67.0 AV	94.0	-27.0	1.00 H	310	35.05	31.94	
7	4806.00	51.6 PK	74.0	-22.4	1.00 H	174	12.49	39.08	
8	4806.00	24.0 AV	54.0	-30.0	1.00 H	174	-15.11	39.08	
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	61.9 PK	74.0	-12.1	1.30 V	178	29.98	31.89	
2	2390.00	46.5 AV	54.0	-7.5	1.30 V	178	14.62	31.89	
3	2400.00	52.2 PK	74.0	-21.8	1.30 V	178	20.27	31.93	
4	2400.00	24.6 AV	54.0	-29.4	1.30 V	178	-7.33	31.93	
5	*2403.00	93.9 PK	114.0	-20.1	1.30 V	178	61.96	31.94	
6	*2403.00	66.3 AV	94.0	-27.7	1.30 V	178	34.36	31.94	
7	4806.00	54.6 PK	74.0	-19.4	1.00 V	339	15.47	39.08	
8	4806.00	27.0 AV	54.0	-27.0	1.00 V	339	-12.13	39.08	

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. " * " : Fundamental frequency

6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:
20 log (Duty cycle) = 20 log (0.128 ms / 3.09 ms) = -27.6 dB
Please see page 21 for plotted duty.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 39	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	27deg. C, 77% RH 1006hPa	TESTED BY	Nick Chen	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)			
1	*2441.00	96.6 PK	114.0	-17.4	1.13 H	179	64.52	32.07			
2	*2441.00	69.0 AV	94.0	-25.0	1.13 H	179	36.92	32.07			
3	4882.00	49.8 PK	74.0	-24.2	1.20 H	171	10.33	39.42			
4	4882.00	22.2 AV	54.0	-31.8	1.20 H	171	-17.27	39.42			
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)			
1	*2441.00	96.0 PK	114.0	-18.0	1.00 V	178	63.90	32.07			
2	*2441.00	68.4 AV	94.0	-25.6	1.00 V	178	36.30	32.07			
3	4882.00	52.0 PK	74.0	-22.0	1.11 V	344	12.55	39.42			
4	4882.00	24.4 AV	54.0	-29.6	1.11 V	344	-15.05	39.42			

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

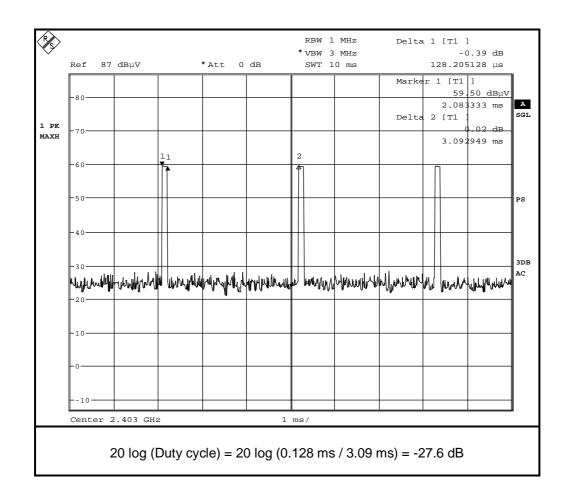
4. Margin value = Emission level – Limit value.

5. " * ": Fundamental frequency

6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:
20 log (Duty cycle) = 20 log (0.128 ms / 3.09 ms) = -27.6 dB
Please see page 21 for plotted duty.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 78	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	27deg. C, 77% RH 1006hPa	TESTED BY	Nick Chen	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)	
1	*2480.00	96.3 PK	114.0	-17.7	1.14 H	181	64.12	32.20	
2	*2480.00	68.7 AV	94.0	-25.3	1.14 H	181	36.52	32.20	
3	2483.50	53.5 PK	74.0	-20.5	1.14 H	181	21.31	32.21	
4	2483.50	25.9 AV	54.0	-28.1	1.14 H	181	-6.29	32.21	
5	4960.00	48.9 PK	74.0	-25.1	1.43 H	19	9.28	39.66	
6	4960.00	21.3 AV	54.0	-32.7	1.43 H	19	-18.32	39.66	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								


NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	93.8 PK	114.0	-20.2	1.20 V	175	61.55	32.20
2	*2480.00	66.2 AV	94.0	-27.8	1.20 V	175	33.95	32.20
3	2483.50	51.0 PK	74.0	-23.0	1.20 V	175	18.74	32.21
4	2483.50	23.4 AV	54.0	-30.3	1.20 V	175	-8.86	32.21
5	4960.00	51.0 PK	74.0	-23.0	1.00 V	86	11.36	39.66
6	4960.00	23.4 AV	54.0	-30.6	1.00 V	86	-16.24	39.66

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. "* " : Fundamental frequency

6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:
20 log (Duty cycle) = 20 log (0.128 ms / 3.09 ms) = -27.6 dB
Please see page 21 for plotted duty.

BELOW 1GHz WORST-CASE DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 1	FREQUENCY RANGE	Below 1000MHz	
INPUT POWER (SYSTEM)	120Vac, 60Hz	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	27deg. C, 77% RH 1006hPa	TESTED BY	Nick Chen	

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)	
1	398.41	33.5 QP	46.0	-12.5	1.23 H	241	15.11	18.37	
2	598.94	31.0 QP	46.0	-15.0	1.07 H	13	7.75	23.28	
3	692.21	33.3 QP	46.0	-12.7	1.22 H	181	8.57	24.72	
4	768.38	30.8 QP	46.0	-15.2	1.23 H	253	5.05	25.79	
5	801.03	33.4 QP	46.0	-12.7	1.07 H	262	7.10	26.25	
6	835.22	33.1 QP	46.0	-12.9	1.13 H	40	6.24	26.87	
7	895.85	33.6 QP	46.0	-12.4	1.07 H	25	5.79	27.85	
8	934.71	30.3 QP	46.0	-15.7	1.25 H	166	1.97	28.38	
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	365.77	36.0 QP	46.0	-10.0	1.23 V	46	18.47	17.51	
2	451.27	35.9 QP	46.0	-10.2	1.16 V	304	16.56	19.29	
3	591.17	30.5 QP	46.0	-15.5	1.28 V	46	7.41	23.09	
4	734.18	30.6 QP	46.0	-15.4	1.03 V	67	5.28	25.31	
5	799.47	32.8 QP	46.0	-13.2	1.18 V	337	6.62	26.22	
6	931.60	30.7 QP	46.0	-15.3	1.23 V	232	2.35	28.33	

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

4.3 BAND EDGES MEASUREMENT

4.3.1 LIMITS OF BAND EDGES MEASUREMENT

Below –50dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
SPECTRUMANALYZER	FSP 40	100036	Apr. 06, 2010	Apr. 05, 2011

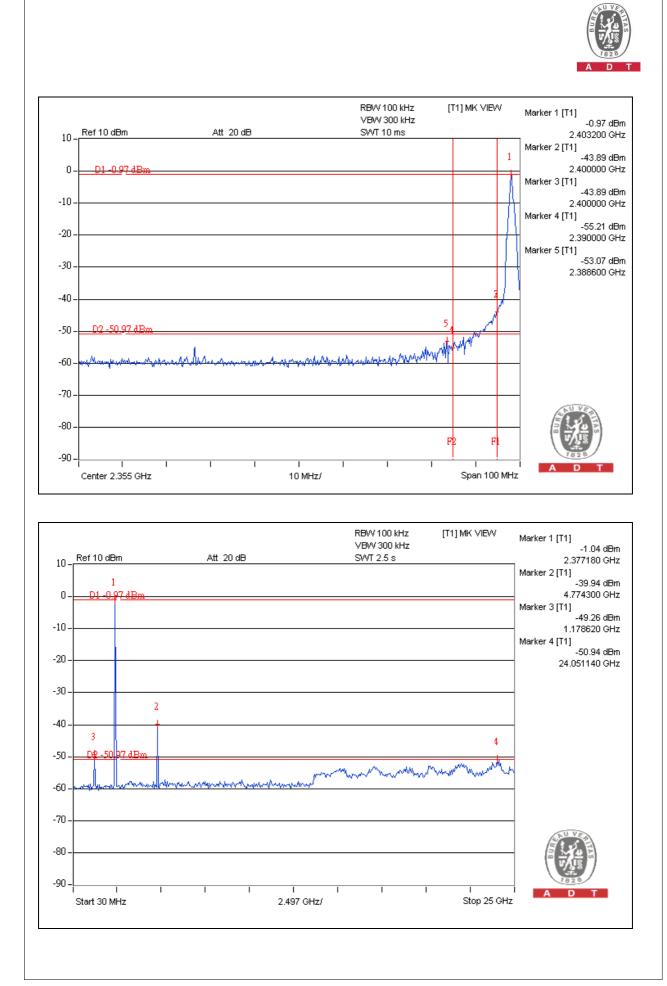
NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE

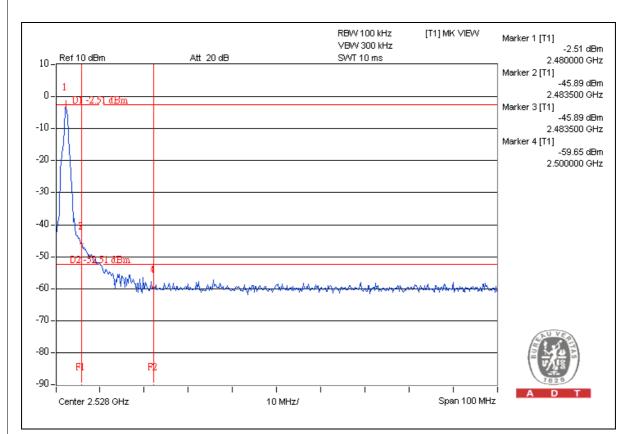
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

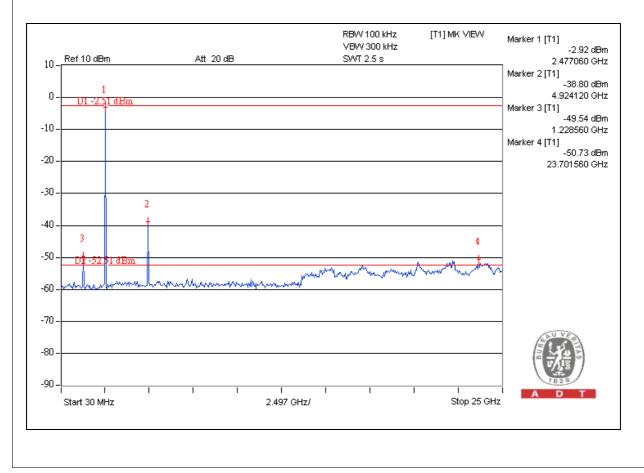
The spectrum plots are attached on the following pages.

4.3.4 DEVIATION FROM TEST STANDARD


No deviation

4.3.5 EUT OPERATING CONDITION


Same as Item 4.2.6


4.3.6 TEST RESULTS

The spectrum plots are attached on the following 4 images. D1 line indicates the highest level, and D2 line indicates the 50dB offset below D1. It shows compliance with the requirement in part 15.249(d).

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----