

FCC TEST REPORT

REPORT NO.: RF960921A14B

MODEL NO.: KG-0609

RECEIVED: Nov. 12, 2007

TESTED: Nov. 12 ~ 27, 2007

ISSUED: Dec. 3, 2007

APPLICANT: Chicony Electronics Co., Ltd.

ADDRESS: No. 25, Wu-Gong 6th Rd., Wu Ku Industrial Park, Taipei Hsien, Taiwan, R.O.C.

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang 244, Taipei Hsien, Taiwan, R.O.C.

This test report consists of 23 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF, A2LA or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1.	CERTIFICATION	3
2. 2.1	SUMMARY OF TEST RESULTS MEASUREMENT UNCERTAINTY	
3. 3.1 3.2 3.2.1 3.2.2 3.3 3.4	GENERAL INFORMATION GENERAL DESCRIPTION OF EUT DESCRIPTION OF TEST MODES CONFIGURATION OF SYSTEM UNDER TEST TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL: GENERAL DESCRIPTION OF APPLIED STANDARDS DESCRIPTION OF SUPPORT UNITS	5 6 7 8
4. 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 5.	TEST TYPES AND RESULTS CONDUCTED EMISSION MEASUREMENT	9 9 10 11 12 12 13 18 18 18 18 18 18 18
•		
6.	INFORMATION ON THE TESTING LABORATORIES	22
7.	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	23

1. CERTIFICATION

PRODUCT:	Wireless Keyboard
BRAND NAME:	Chicony
MODEL NO.:	KG-0609
APPLICANT:	Chicony Electronics Co., Ltd.
TESTED:	Nov. 12 ~ 27, 2007
TEST SAMPLE:	ENGINEERING SAMPLE
STANDARDS:	FCC Part 15, Subpart C (Section 15.249)
	ANSI C63.4-2003

The above equipment has been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	: <u>Chia Chen</u> , DATE: Dec. 3, 2007 (Celia Chen / Specialist)
TECHNICAL ACCEPTANCE Responsible for RF	: Jamison Chan / Senior Engineer), DATE: Dec. 3, 2007
APPROVED BY	: <u>Lin</u> , DATE : Dec. 3, 2007 (Ken Liu / Deputy Manager)

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C (Section 15.249)								
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK					
15.207	Conducted Emission Test	N/A	Power supply is 3Vdc from batteries					
15.209 15.249 15.249 (d)	Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 12.209	PASS	Minimum passing margin is –10.42dB at 918.357MHz					

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Uncertainty
Dedicted emissions	30MHz ~ 1GHz	3.75 dB
Radiated emissions	1GHz ~ 40GHz	2.89 dB

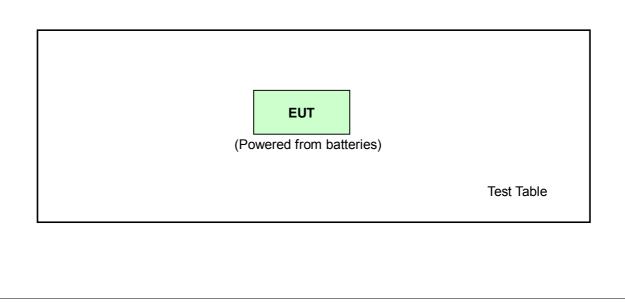
3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Wireless Keyboard
MODEL NO.	KG-0609
FCC ID	E8HKG-0609
POWER SUPPLY	3Vdc from batteries
MODULATION TYPE	GFSK
FREQUENCY RANGE	2402MHz ~ 2479MHz
NUMBER OF CHANNEL	78
ANTENNA TYPE	Strip antenna with -1.93dBi gain
DATA CABLE	N/A
I/O PORTS	N/A
ASSOCIATED DEVICES	N/A

NOTE:

- 1. The EUT is a wireless keyboard, which is a transceiver.
- 2. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



3.2 DESCRIPTION OF TEST MODES

78 channels are provided to this EUT:

CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460		
19	2421	39	2441	59	2461		

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL:

	EUT Applica		able to					
	mode	PLC	RE<1G	RE≥1G	BM			
	-	Note	\checkmark	\checkmark	\checkmark			
Where PLC: Power Line Conducted Emission RE<1G RE: Radiated Emission below 1GHz RE≥1G: Radiated Emission above 1GHz BM: Bandedge Measurement Note: No need to concern of Conducted Emission due to the EUT is powered by battery.								
	ATED EMIS Pre-Scan ha between ava architecture) Following ch	s been c ilable m	onducted	l to deter s, data ra	mine th ates and			
	AVAILABLE		ESTED IANNEL	MODUL				
	0 to 77		0	GFS				
			-					
	ATED EMIS Pre-Scan ha between ava architecture)	s been c ilable m	onducted	l to deter	mine the			
	ATED EMIS Pre-Scan ha between ava	s been c ilable m annel(s)	onducted odulation:	l to deter s, data ra	mine th ates and ted for t ATION	t t		
 	ATED EMIS Pre-Scan ha between ava architecture) Following ch	s been c ilable m annel(s)	onducted odulation was (wei ESTED	l to deter s, data ra re) select MODUL	mine the ates and ted for th ATION PE	i		
1]]	ATED EMIS Pre-Scan ha between ava architecture) Following ch AVAILABLE O to 77 DEDGE MEA Pre-Scan ha between ava architecture) Following ch	s been c ilable m annel(s) T CF 0, SUREN s been c ilable m annel(s)	onducted odulation: was (wei ESTED IANNEL 38, 77 IENT: onducted odulation: was (wei ESTED	I to deter s, data ra re) select MODUL TYF GFS I to deter s, data ra re) select	mine thates and ted for ATION PE SK mine thates and ted for ATION	d th 		
<u>N</u> [ATED EMIS Pre-Scan ha between ava architecture) Following ch AVAILABLE CHANNEL 0 to 77 DEDGE MEA Pre-Scan ha between ava architecture) Following ch	s been c ilable m annel(s) T CF 0, SUREN s been c ilable m annel(s)	onducted odulation: was (wer ESTED IANNEL 38, 77 IENT: onducted odulation: was (wer	I to deter s, data ra re) select MODUL TYF GFS I to deter s, data ra re) select	mine thates an ted for thates an ted for thates an ted for thates an ted for t	d th 		

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.249)

ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit.

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

N/A

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	May 09, 2008
HP Preamplifier	8449B	3008A01201	Oct. 01, 2008
HP Preamplifier	8449B	3008A01292	Aug. 05, 2008
ROHDE & SCHWARZ TEST RECEIVER	ESCI	100613	Jul. 19, 2008
Schwarzbeck Antenna	VULB 9168	137	Sep. 13, 2008
Schwarzbeck Antenna	VHBA 9123	480	Apr. 18, 2008
EMCO Horn Antenna	3115	6714	Oct. 18, 2008
EMCO Horn Antenna	3115	9312-4192	Apr. 19, 2008
ADT. Turn Table	TT100	0306	NA
ADT. Tower	AT100	0306	NA
Software	ADT_Radiated_V 7.6.15	NA	NA
SUHNER RF cable	SF104-26.5	CABLE-CH6-17m-01	Nov. 04, 2008
ROHDE & SCHWARZ Spectrum Analyzer	FSP 40	100036	Mar. 13, 2008

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

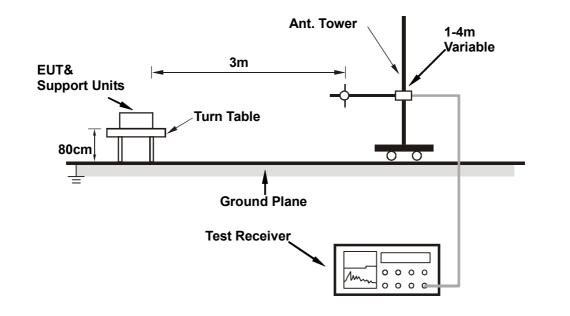
3. The test was performed in ADT Chamber No. 6.

4. The Industry Canada Reference No. IC 3789-6.

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak method or average method as specified and then reported in data sheet.

NOTE:


- 1. The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Set the EUT under transmission condition continuously at specific channel frequency.

4.2.7 TEST RESULTS

RADIATED WORST CASE DATA: BELOW 1GHz

MODULATION TYPE	GFSK	CHANNEL	0
INPUT POWER	3Vdc	FREQUENCY RANGE	Below 1000MHz
ENVIRONMENTAL CONDITIONS	21deg. C, 67%RH, 1004Pa	DETECTOR FUNCTION	Quasi-Peak
TESTED BY	Jun Wu		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	189.399	26.14 QP	43.50	-17.36	1.32 H	181	13.36	12.78		
2	210.782	26.46 QP	43.50	-17.04	1.30 H	10	14.03	12.43		
3	751.182	28.24 QP	46.00	-17.76	1.25 H	13	1.04	27.20		
4	762.846	29.19 QP	46.00	-16.81	1.20 H	97	1.74	27.45		
5	801.723	29.32 QP	46.00	-16.68	1.16 H	4	1.07	28.25		
6	830.882	29.73 QP	46.00	-16.27	1.08 H	337	1.14	28.59		
7	877.535	30.76 QP	46.00	-15.24	1.03 H	316	1.73	29.03		
8	933.908	31.18 QP	46.00	-14.82	1.00 H	274	1.73	29.45		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor
	(10112)	(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)
1	41.663	24.95 QP	40.00	-15.05	1.00 V	241	10.69	14.26
2	103.868	27.85 QP	43.50	-15.65	1.00 V	229	15.86	11.99
3	688.978	30.40 QP	46.00	-15.60	1.00 V	127	4.63	25.77
4	729.800	30.38 QP	46.00	-15.62	1.05 V	247	3.70	26.68
5	784.228	31.02 QP	46.00	-14.98	1.15 V	217	3.12	27.90
6	792.004	33.69 QP	46.00	-12.31	1.21 V	286	5.63	28.06
7	844.489	30.27 QP	46.00	-15.73	1.29 V	328	1.53	28.74
8	873.647	32.95 QP	46.00	-13.05	1.33 V	256	3.95	29.00
9	918.357	35.58 QP	46.00	-10.42	1.27 V	160	6.24	29.34

REMARKS: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m) 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) 3The other emission levels were very low against the limit. 4. Margin value = Emission level – Limit value.

RADIATED WORST CASE DATA: ABOVE 1GHz

MODULATION TYPE	GFSK	CHANNEL	0
INPUT POWER	3Vdc	FREQUENCY RANGE	1 ~ 25GHz
ENVIRONMENTAL CONDITIONS	21deg. C, 67%RH, 1004Pa	DETECTOR FUNCTION	Peak(PK) Average (AV)
TESTED BY	Jun Wu		

	ANTENN	NA POLARI	TY & TE	ST DIST	ANCE: H	IORIZOI	NTAL AT	3 M
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.000	58.73 PK	74.00	-15.27	1.28 H	201	24.31	34.42
2	2390.000	41.66 AV	54.00	-12.34	1.28 H	201	7.24	34.42
3	*2402.000	98.60 PK	114.00	-15.40	1.28 H	201	64.16	34.44
4	*2402.000	81.53 AV	94.00	-12.47	1.28 H	201	47.09	34.44
5	4804.000	53.56 PK	74.00	-20.44	1.49 H	66	12.17	41.39
6	4804.000	36.49 AV	54.00	-17.51	1.49 H	66	-4.90	41.39

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq.	Emission Level	Limit	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor
	(MHz)	(dBuV/m)	(dBuV/m) (dB)	(m)	(Degree)	(dBuV)	(dB/m)	
1	2390.000	57.75 PK	74.00	-16.25	1.49 V	208	23.33	34.42
2	2390.000	40.68 AV	54.00	-13.32	1.49 V	208	6.26	34.42
3	*2402.000	90.41 PK	114.00	-23.59	1.49 V	208	55.97	34.44
4	*2402.000	73.34 AV	94.00	-20.66	1.49 V	208	38.90	34.44
5	4804.000	52.87 PK	74.00	-21.13	1.10 V	221	11.48	41.39
6	4804.000	35.80 AV	54.00	-18.20	1.10 V	221	-5.59	41.39

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - 3. The other emission levels were very low against the limit.
 - 4. Margin value = Emission level Limit value.
- 5. " * " : Fundamental frequency
- 6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:

$$20\log(\text{Duty cycle}) = 20\log\frac{2.9 \text{ ms}}{20.7 \text{ ms}} = -17.07 \text{dB}$$

Please see page 17 for plotted duty.

MODULATION TYPE	GFSK	CHANNEL	38
INPUT POWER	3Vdc	FREQUENCY RANGE	1 ~ 25GHz
ENVIRONMENTAL CONDITIONS	21deg. C, 67%RH, 1004Pa	DETECTOR FUNCTION	Peak(PK) Average (AV)
TESTED BY	Jun Wu		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.000	98.71 PK	114.00	-15.29	1.01 H	196	64.19	34.52
2	*2440.000	81.64 AV	94.00	-12.36	1.01 H	196	47.12	34.52
3	4880.000	56.26 PK	74.00	-17.74	1.00 H	0	14.67	41.59
4	4880.000	39.19 AV	54.00	-14.81	1.00 H	0	-2.40	41.59

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.000	90.60 PK	114.00	-23.40	1.45 V	212	56.08	34.52
2	*2440.000	73.53 AV	94.00	-20.47	1.45 V	212	39.01	34.52
3	4880.000	53.05 PK	74.00	-20.95	1.09 V	222	11.46	41.59
4	4880.000	35.98 AV	54.00	-18.02	1.09 V	222	-5.61	41.59

REMARKS: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * " : Fundamental frequency

6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:

 $20\log(\text{Duty cycle}) = 20\log\frac{2.9 \text{ ms}}{20.7 \text{ ms}} = -17.07 \text{dB}$

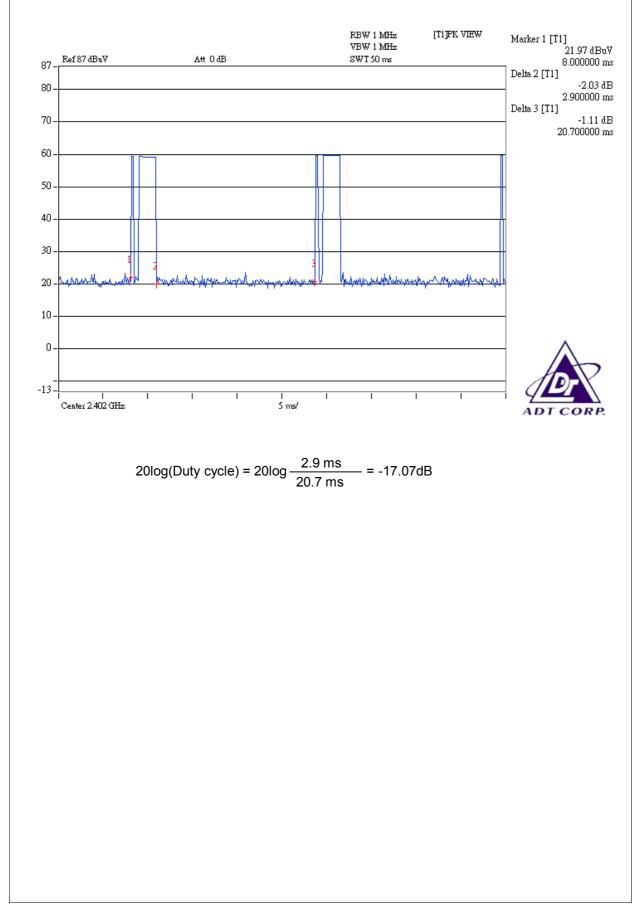
Please see page 17 for plotted duty.

MODULATION TYPE	GFSK	CHANNEL	77
INPUT POWER	3Vdc	FREQUENCY RANGE	1 ~ 25GHz
ENVIRONMENTAL CONDITIONS	21deg. C, 67%RH, 1004Pa	DETECTOR FUNCTION	Peak(PK) Average (AV)
TESTED BY	Jun Wu		

	ANTENN	NA POLARI	TY & TE	ST DIST	ANCE: I	IORIZO	NTAL AT	3 M
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	•	Level	-	(dB)	Height	Angle	Value	Factor
	(MHz) (dBuV/m) (dBuV/m)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)		
1	*2479.000	96.72 PK	114.00	-17.28	1.05 H	162	62.12	34.60
2	*2479.000	79.65 AV	94.00	-14.35	1.05 H	162	45.05	34.60
3	2483.500	60.25 PK	74.00	-13.75	1.05 H	162	25.64	34.61
4	2483.500	43.18 AV	54.00	-10.82	1.05 H	162	8.57	34.61
5	4958.000	55.57 PK	74.00	-18.44	1.09 H	352	13.77	41.79
6	4958.000	38.50 AV	54.00	-15.50	1.09 H	352	-3.29	41.79

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq.	Emission Level	Limit	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	*2479.000	89.90 PK	114.00	-24.10	1.50 V	172	55.30	34.60
2	*2479.000	72.83 AV	94.00	-21.17	1.50 V	172	38.23	34.60
3	2483.500	58.97 PK	74.00	-15.03	1.50 V	172	24.36	34.61
4	2483.500	41.90 AV	54.00	-12.10	1.50 V	172	7.29	34.61
5	4958.000	53.80 PK	74.00	-20.20	1.04 V	257	12.01	41.79
6	4958.000	36.73 AV	54.00	-17.27	1.04 V	257	-5.06	41.79

REMARKS:


1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - 3. The other emission levels were very low against the limit.
 - 4. Margin value = Emission level Limit value.
 - 5. " * " : Fundamental frequency
 - 6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:

$$20\log(\text{Duty cycle}) = 20\log\frac{2.9 \text{ ms}}{20.7 \text{ ms}} = -17.07 \text{dB}$$

Please see page 17 for plotted duty.

4.3 BAND EDGES MEASUREMENT

4.3.1 LIMITS OF BAND EDGES MEASUREMENT

Below –50dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
SPECTRUM ANALYZER	FSP 40	100036	Mar. 13, 2008

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

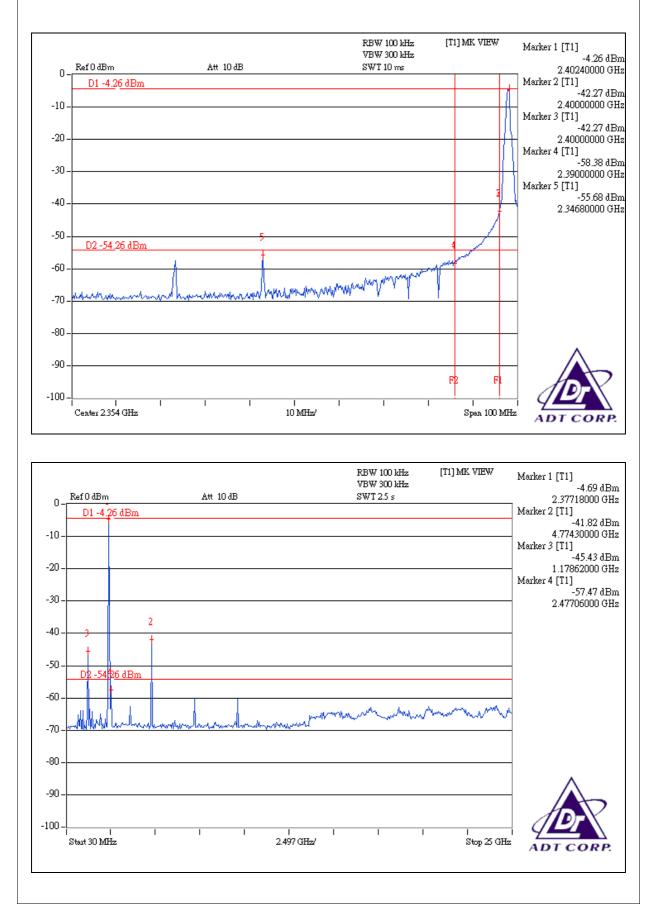
4.3.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

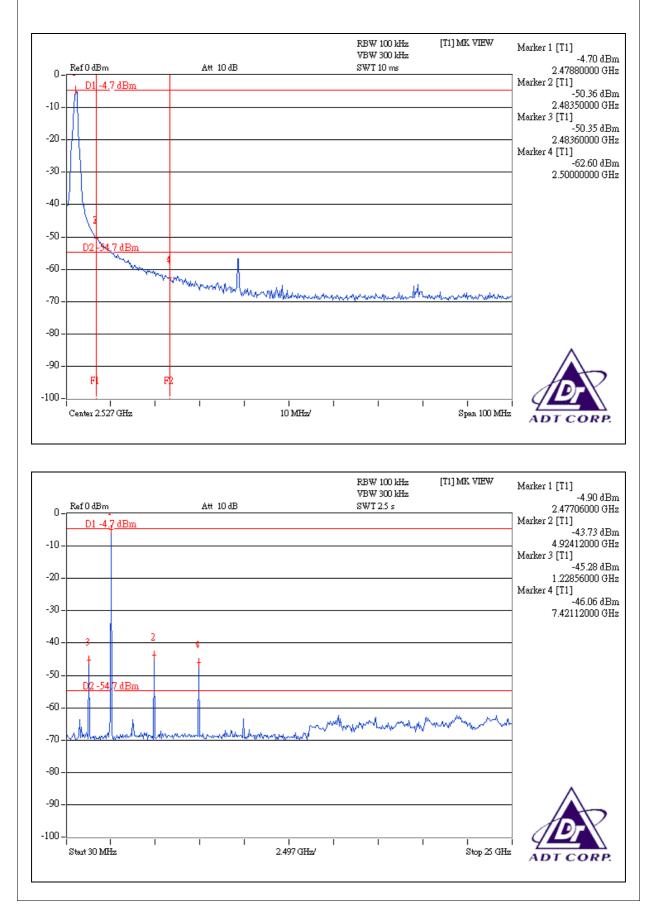
The spectrum plots are attached on the following pages.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation


4.3.5 EUT OPERATING CONDITION

Same as Item 4.2.6


4.3.6 TEST RESULTS

The spectrum plots are attached on the following 4 images. D1 line indicates the highest level, and D2 line indicates the 50dB offset below D1. It shows compliance with the requirement in part 15.249(d).

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
Netherlands	Telefication
Singapore	GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.