



# POWERWAVE TECHNOLOGIES, INC. TEST REPORT FOR THE

#### **NEXUS RT DIGITAL REPEATER, NP50-11311**

#### FCC PART 15 22H AND RSS 131 ISSUE 2 (2003)

#### **TESTING**

DATE OF ISSUE: OCTOBER 7, 2008

PREPARED FOR:

PREPARED BY:

Powerwave Technologies, Inc. 1801 E. St. Andrew Place Santa Ana, CA 92705 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: 123038 W.O. No.: 88230 Date of test: September 10-12, 2008

Report No.: FC08-093

This report contains a total of 84 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 84 Report No.: FC08-093



### TABLE OF CONTENTS

| Administrative Information                                                  | 3  |
|-----------------------------------------------------------------------------|----|
| Approvals                                                                   | 3  |
| Summary of Results                                                          | 4  |
| Conditions During Testing                                                   | 4  |
| Equipment Under Test (EUT) Description                                      | 5  |
| Equipment Under Test                                                        | 5  |
| Peripheral Devices                                                          | 5  |
| Temperature and Humidity During Testing                                     | 6  |
| FCC 2.1033(c)(3) User's Manual                                              |    |
| FCC 2.1033(c)(4) Type of Emissions                                          | 6  |
| FCC 2.1033(c)(5) Frequency Range                                            | 6  |
| FCC 2.1033(c)(6) Operating Power                                            | 6  |
| FCC 2.1033(c)(7) Maximum Power Rating                                       | 6  |
| FCC 2.1033(c)(8) DC Voltages                                                |    |
| FCC 2.1033(c)(9) Tune-Up Procedure                                          | 6  |
| FCC 2.1033(c)(10) Schematics and Circuitry Description                      | 6  |
| FCC 2.1033(c)(11) Label and Placement                                       | 6  |
| FCC 2.1033(c)(12) Submittal Photos                                          |    |
| FCC 2.1033(c)(13) Modulation Information                                    | 6  |
| FCC 2.1033(c)(14)/2.1046/22.913(a) - RF Power Output                        | 7  |
| RSS131 Section 6.2 - RF Power Output                                        | 9  |
| FCC 2.1033(c)(14)/2.1049(i) – Input Plots                                   | 11 |
| FCC 2.1033(c)(14)/2.1049(i) – Output Plots                                  |    |
| FCC 2.1033(c)(14)/2.1051/22.917(a) - Spurious Emissions at Antenna Terminal | 33 |
| FCC 2.1033(c)(14)/2.1053/22.917(a) - Field Strength of Spurious Radiation   | 37 |
| Blockedge                                                                   | 40 |
| Intermodulation                                                             | 48 |
| Out of Band Rejection                                                       |    |
| RSS 131 99% Bandwidth                                                       |    |
| RSS 131 Gain Linearity                                                      | 78 |

Page 2 of 84 Report No.: FC08-093



#### **ADMINISTRATIVE INFORMATION**

| DATE OF TEST. September 10-12, 2000 DATE OF RECENT 1. September 10, 200 | <b>DATE OF TEST:</b> September 10-12, | , 2008 <b>DATE</b> ( | <b>OF RECEIPT:</b> Se | ptember 10. | , 2008 |
|-------------------------------------------------------------------------|---------------------------------------|----------------------|-----------------------|-------------|--------|
|-------------------------------------------------------------------------|---------------------------------------|----------------------|-----------------------|-------------|--------|

**REPRESENTATIVE:** Charlotte Yu

MANUFACTURER:TEST LOCATION:Powerwave Technologies, Inc.CKC Laboratories, Inc.1801 E. St. Andrew Place110 Olinda PlaceSanta Ana, CA 92705Brea, CA 92823

FREQUENCY RANGE TESTED: 9 kHz-9 GHz

TEST METHOD: FCC Part 15 22H, RSS 131 Issue 2 (2003) and RSS GEN Issue 2

**PURPOSE OF TEST:** To perform the testing of the Nexus RT Digital Repeater, NP50-11311 with the requirements for FCC Part 15 22H and RSS 131 devices.

#### **APPROVALS**

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE: TEST PERSONNEL:

Steve Behm, Director of Engineering Services

Eddie Wong, Senior EMC Engineer



#### **SUMMARY OF RESULTS**

| Test                                      | Specification                                       | Results |
|-------------------------------------------|-----------------------------------------------------|---------|
|                                           |                                                     |         |
| RF Power Output                           | FCC 24.913(a)<br>RSS 131 Issue 2 (2003) Section 6.2 | Pass    |
|                                           | 133 131 13suc 2 (2003) Section 0.2                  |         |
| Input Plots                               | FCC 2.1049(i)                                       | Pass    |
| Output Plots                              | FCC 2.1049(i)                                       | Pass    |
| Spurious Emissions at<br>Antenna Terminal | FCC 22.917(a)                                       | Pass    |
| Field Strength of Spurious<br>Radiation   | FCC 22.917(a)                                       | Pass    |
| Blockedge                                 |                                                     | Pass    |
| Intermodulation                           |                                                     | Pass    |
| Out of Band Rejection                     |                                                     | Pass    |
| 99% Bandwidth                             | RSS 133 Section 5.6                                 | Pass    |
| Passband Gain and<br>Bandwidth            | RSS 131 Issue 2 (2003) Section 6.1                  | Pass    |
| Site File No.                             | FCC 90473<br>RSS 131 IC 3172-A                      |         |

### **CONDITIONS DURING TESTING**

Modification: Paint underneath the internal ground stud was removed to enhance chassis to ground cable connection.

Page 4 of 84 Report No.: FC08-093



#### **EQUIPMENT UNDER TEST (EUT) DESCRIPTION**

The customer declares the EUT tested by CKC Laboratories was representative of a production unit. The Nexus RT Digital Repeater increases the coverage and capacity of existing wireless networks. It simultaneously supports 3G and 4G communications protocols and multiple RF carriers using advanced processing. The repeaters are designed to increase the coverage and capacity of existing wireless networks for both indoor and outdoor use. GSM, EDGE and WCDMA protocols can operate simultaneously on the same unit. Key features include support for multiple GSM/EDGE carriers and WCDMA support in 850MHz and 1900MHz operating bands. The Nexus RT Digital Repeater also provides feedback cancellation to effectively increase antenna isolation and enable greater operating gain without oscillation. Remote control and supervision is supported through either a direct IP connection or a wireless modem supporting the Simple Network Management Protocol (SNMP).

The following model has been tested by CKC Laboratories: **NP50-11311 (850 band with Modem)** 

The manufacturer states that the following additional models are identical electrically to the one which was tested, or any differences between them do not affect their EMC characteristics, and therefore they meet the level of testing equivalent to the tested models.

NP50-11111 (850 band without Modem) NP50B0-22111 (850 band of the 1900/850 dual band without Modem) NP50B0-22311 (850 band of the 1900/850 dual band with Modem)

#### **EQUIPMENT UNDER TEST**

#### Nexus RT Digital Repeater

Manuf: Powerwave Technologies, Inc.

Model: NP50-11311

Serial: NA

FCC ID: E675JS00107

#### PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

LaptopEthernet SwitchManuf:HPManuf:LinksysModel:HSTNNC18CModel:SD205

Serial: CND63661JIC7 Serial: REF003600624

**ESG** Powermeter

 Manuf:
 Agilent
 Manuf:
 HP

 Model:
 E4433B
 Model:
 E4419B

 Serial:
 US40052191
 Serial:
 MY40510694

Page 5 of 84 Report No.: FC08-093



#### TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within  $+15^{\circ}$ C and  $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

#### FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

# FCC 2.1033 (c)(4) TYPE OF EMISSIONS G7W, GXW, F9W

# FCC 2.1033 (c)(5) FREQUENCY RANGE 824-849MHz Uplink, 864-894MHz Downlink

# FCC 2.1033 (c)(6) OPERATING POWER 0.63 watts

# FCC 2.1033 (c)(7) MAXIMUM POWER RATING

500 watts peak power

#### **FCC 2.1033 (c)(8) DC VOLTAGES**

The necessary information is contained in a separate document.

#### FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

#### FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

#### FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

#### FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

### FCC 2.1033 (c)(13) MODULATION INFORMATION

EDGE, GSM, WCDMA

Page 6 of 84 Report No.: FC08-093



#### FCC 2.1033(c)(14)/2.1046/22.913(a) - RF POWER OUTPUT

**Test Equipment** 

| Equipment      | Asset # | Manufacturer | Model    | Serial #   | Cal Date | Cal Due |
|----------------|---------|--------------|----------|------------|----------|---------|
| RF Power meter | 02778   | HP           | EPM-441A | GB37170458 | 021508   | 021510  |
| Power Sensor   | 02777   | HP           | E4412A   | MY41499662 | 021508   | 021510  |

#### **Test Setup Photos**



#### **Test Conditions**

Effective radiated power limits

(a) Maximum ERP. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts.

The EUT is a RF amplifier. The manufacture does not provide an antenna for sale with the product, hence EIRP is not measured nor calculated.

The RF power of the EUT was measured at the antenna port. The measurement satisfies the above requirement by demonstrating the measured power is below 500 watts.

Page 7 of 84 Report No.: FC08-093



The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected to an ESG and 850MHz Server antenna port is connected to a power meter. For uplink configuration, 850MHz Donor antenna port is connected to Power meter and 850MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a support laptop, ethernet port: WAN is connected to an ethernet switch. RF signal measured at the output antenna port.

#### **Test Data**

Uplink EDGE, GSM, WCDMA

|        | dBm | Watts |
|--------|-----|-------|
| 824MHz | 28  | 0.63  |
| 836MHz | 28  | 0.63  |
| 849MHz | 28  | 0.63  |

Downlink EDGE, GSM, WCDMA

|        | dBm | Watts |
|--------|-----|-------|
| 864MHz | 28  | 0.63  |
| 881MHz | 28  | 0.63  |
| 894MHz | 28  | 0.63  |

#### Conclusion

As indicated below, each single channel does not exceed the 500 Watt peak power limit.

Page 8 of 84 Report No.: FC08-093



#### RSS 131 SECTION 6.2 - RF POWER OUTPUT

#### **Test Equipment**

| Equipment         | Asset # | Manufacturer | Model # | Serial #   | Cal Date | Cal Due |
|-------------------|---------|--------------|---------|------------|----------|---------|
| Spectrum Analyzer | 02869   | Agilent      | E4440A  | MY46186290 | 021207   | 021209  |

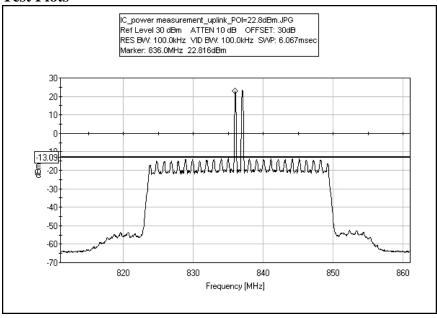
#### **Test Conditions**

#### 4.3 Mean Output power.

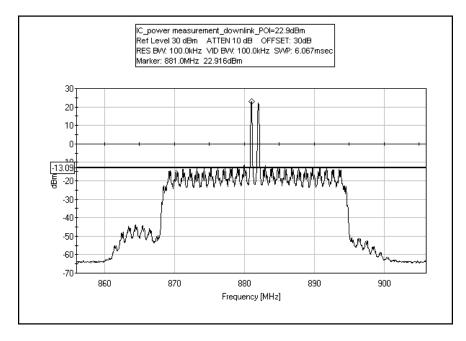
The EUT is a RF amplifier. The manufacture does not provide an antenna for sale with the product, hence EIRP is not measured nor calculated.

The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected to an ESG and 850MHz Server antenna port is connected to a power meter. For uplink configuration, 850MHz Donor antenna port is connected to Power meter and 850MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a support laptop, ethernet port: WAN is connected to an ethernet switch.

The RF power of the EUT was measured at the antenna port in accordance with RSS 131, 4.3.1 requirement.


#### **Test Setup Photos**




Page 9 of 84 Report No.: FC08-093



#### **Test Plots**



Uplink 824-849MHz



Downlink 869-893MHz

Highest Measured Po1 =+ 22.9 dBm P mean = Po1 + 3 dB = 22.9 + 3 dBm = 25.9 dBm = 0.3890W=0.4Watts

> Page 10 of 84 Report No.: FC08-093



#### FCC 2.1033(c)(14)/2.1049(i)- INPUT PLOTS

#### **Test Equipment**

| Equipment         | Asset # | Manufacturer | Model # | Serial #   | Cal Date | Cal Due |
|-------------------|---------|--------------|---------|------------|----------|---------|
| Spectrum Analyzer | 02869   | Agilent      | E4440A  | MY46186290 | 021207   | 021209  |
| 36" 40GHz cable   | 02945   | Strolab      | NA      | NA         | 091807   | 091809  |

#### **Test Conditions**

The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected to remote ESG and 850MHz Server antenna port is connected to a spectrum analyzer. For uplink configuration, 850MHz Donor antenna port is connected to spectrum analyzer and 850MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop, ethernet port: WAN is connected to a remote, support ethernet switch.

Output waveform is recorded with a spectrum analyzer at the Antenna port of the device. Input waveform is recorded with a spectrum analyzer at the RF out of the support ESG.

Uplink: 824 - 849MHz Downlink: 869 - 894MHz

Uplink

Modulation: EDGE, GSM, WCDMA TX= 824.5MHz, 836.5MHz, 848.5MHz

Power = 28dBm = 0.63W

Downlink:

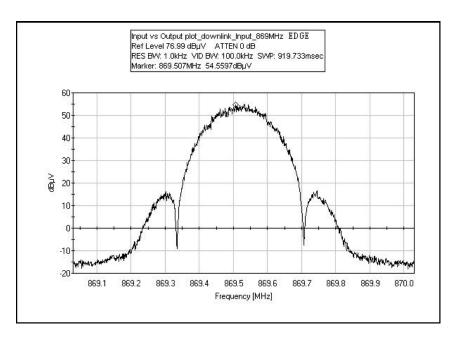
Modulation: EDGE, GSM, WCDMA TX=869.5MHz, 881.5MHz, 893.5MHz

Power = 28dBm = 0.63W

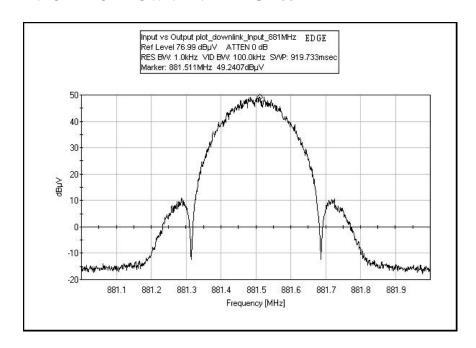
Page 11 of 84 Report No.: FC08-093



**Test Setup Photos** 



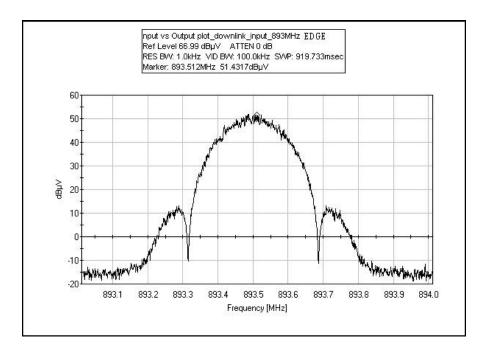

Page 12 of 84 Report No.: FC08-093



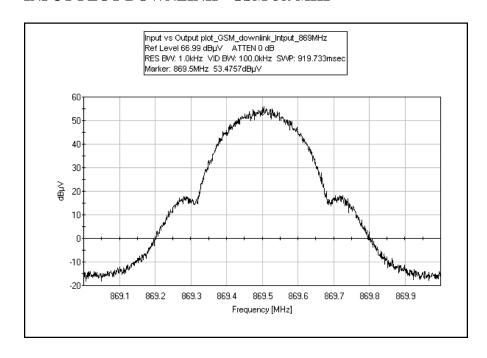

#### **Test Plots**

#### **INPUT PLOT DOWNLINK - EDGE 869MHz**




#### INPUT PLOT DOWNLINK - EDGE 881MHz

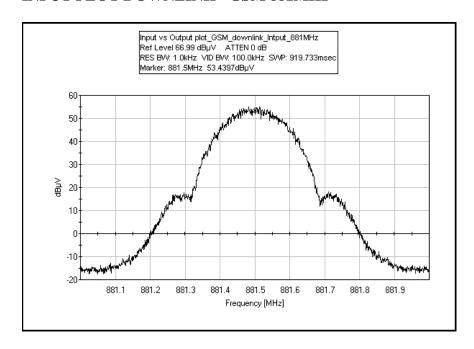



Page 13 of 84 Report No.: FC08-093

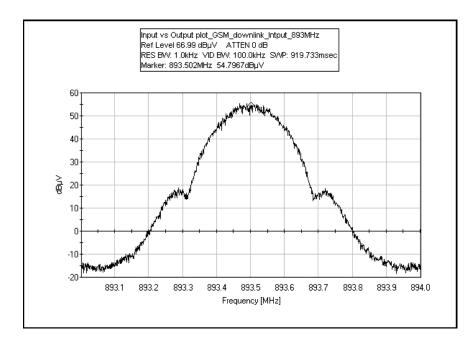


#### INPUT PLOT DOWNLINK - EDGE 893MHz




#### INPUT PLOT DOWNLINK - GSM 869MHz

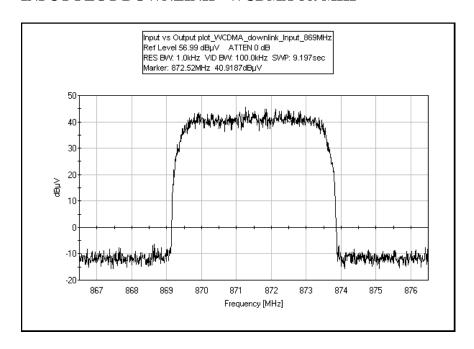



Page 14 of 84 Report No.: FC08-093

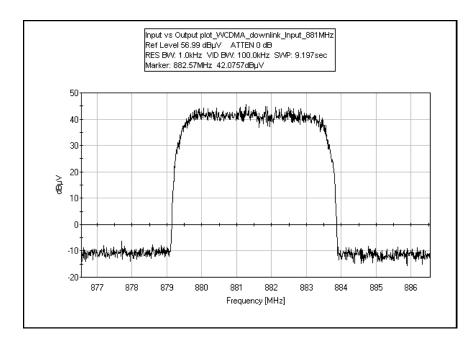


#### **INPUT PLOT DOWNLINK - GSM 881MHz**




#### INPUT PLOT DOWNLINK - GSM 893MHz

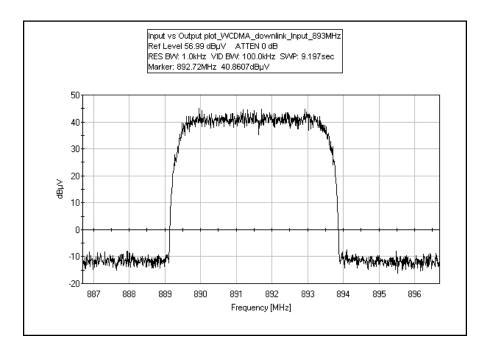



Page 15 of 84 Report No.: FC08-093

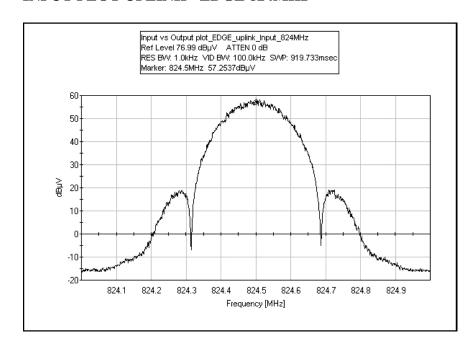


#### INPUT PLOT DOWNLINK - WCDMA 869MHz




#### INPUT PLOT DOWNLINK - WCDMA 881MHz

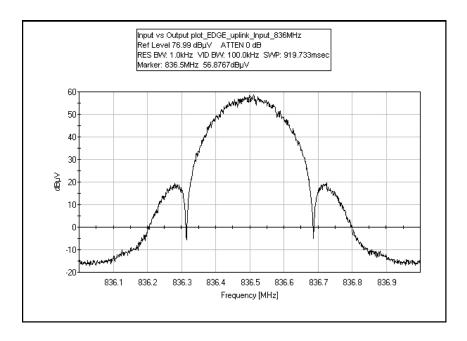



Page 16 of 84 Report No.: FC08-093

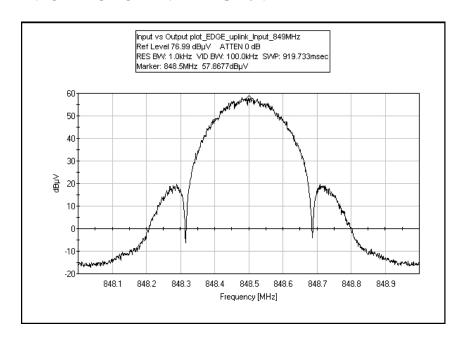


#### INPUT PLOT DOWNLINK - WCDMA 893MHz




#### INPUT PLOT UPLINK - EDGE 824MHz

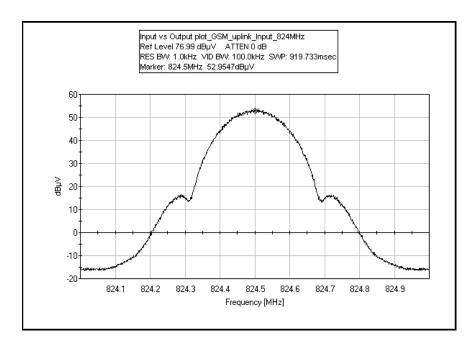



Page 17 of 84 Report No.: FC08-093

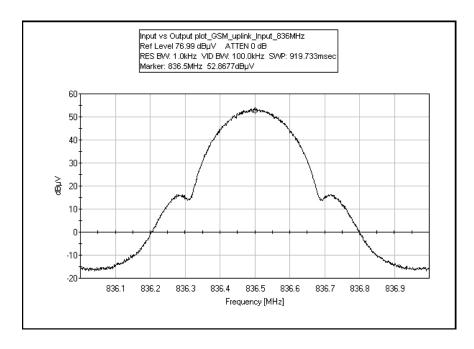


#### **INPUT PLOT UPLINK - EDGE 836MHz**




#### **INPUT PLOT UPLINK - EDGE 849MHz**

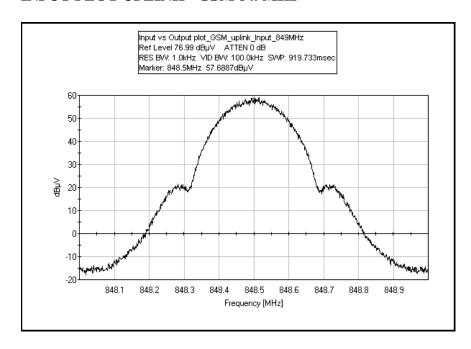



Page 18 of 84 Report No.: FC08-093

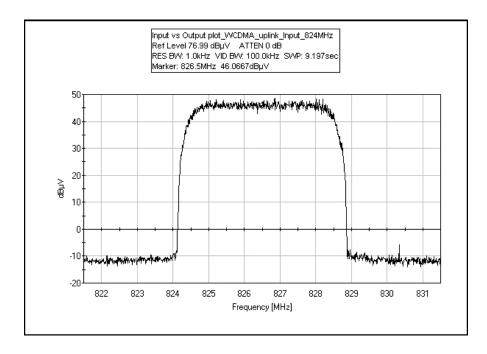


#### **INPUT PLOT UPLINK - GSM 824MHz**




#### INPUT PLOT UPLINK - GSM 836MHz

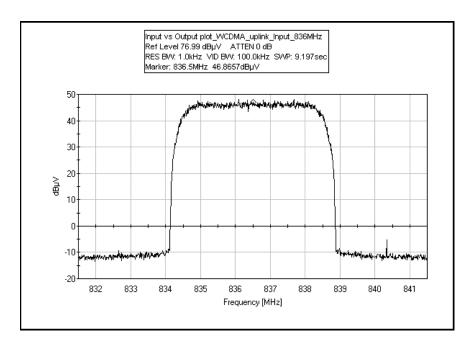



Page 19 of 84 Report No.: FC08-093

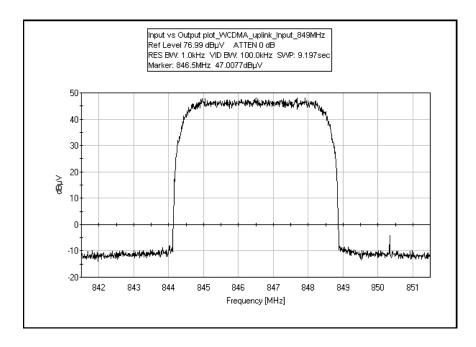


#### **INPUT PLOT UPLINK - GSM 849MHz**




#### INPUT PLOT UPLINK - WCDMA 824MHz




Page 20 of 84 Report No.: FC08-093



#### INPUT PLOT UPLINK - WCDMA 836MHz



#### INPUT PLOT UPLINK - WCDMA 849MHz



Page 21 of 84 Report No.: FC08-093



#### FCC 2.1033(c)(14)/2.1049(i)- OUTPUT PLOTS

#### **Test Equipment**

| Equipment         | Asset # | Manufacturer | Model # | Serial #   | Cal Date | Cal Due |
|-------------------|---------|--------------|---------|------------|----------|---------|
| Spectrum Analyzer | 02869   | Agilent      | E4440A  | MY46186290 | 021207   | 021209  |
| 36" 40GHz cable   | 02945   | Strolab      | NA      | NA         | 091807   | 091809  |

#### **Test Conditions**

The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected to remote ESG and 850MHz Server antenna port is connected to a spectrum analyzer. For uplink configuration, 850MHz Donor antenna port is connected to spectrum analyzer and 850MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop, ethernet port: WAN is connected to a remote, support ethernet switch.

Output waveform is recorded with a spectrum analyzer at the Antenna port of the device. Input waveform is recorded with a spectrum analyzer at the RF out of the support ESG.

Uplink: 824 - 849MHz Downlink: 869 - 894MHz

Uplink

Modulation: EDGE, GSM, WCDMA TX= 824.5MHz, 836.5MHz, 848.5MHz

Power = 28dBm = 0.63W

Downlink:

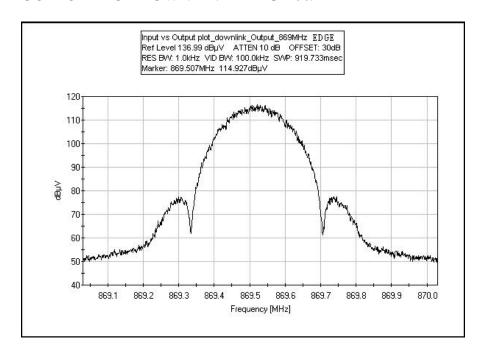
Modulation: EDGE, GSM, WCDMA TX=869.5MHz, 881.5MHz, 893.5MHz

Power = 28dBm = 0.63W

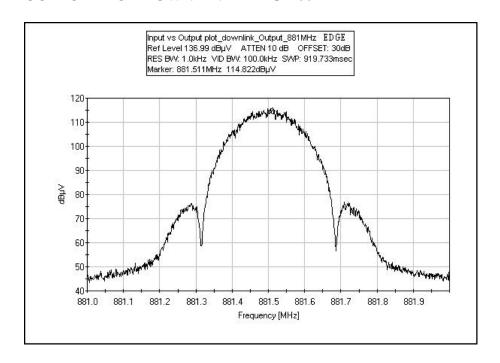
Page 22 of 84 Report No.: FC08-093



# **Test Setup Photos**



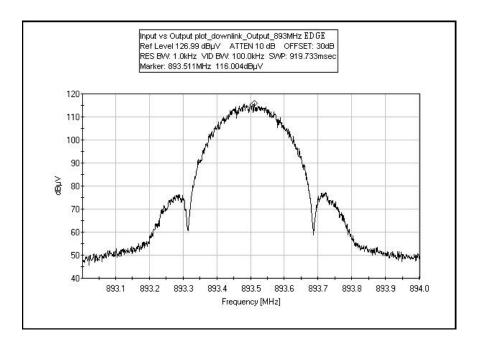

Page 23 of 84 Report No.: FC08-093



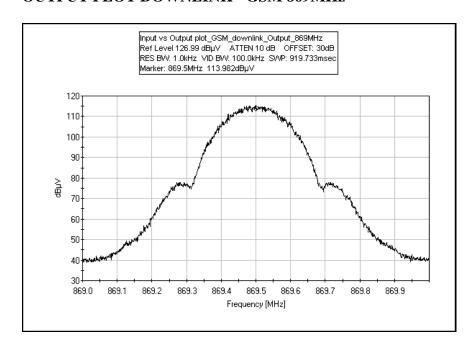

#### **Test Plots**

#### **OUTPUT PLOT DOWNLINK - EDGE 869MHz**




#### **OUTPUT PLOT DOWNLINK - EDGE 881MHz**

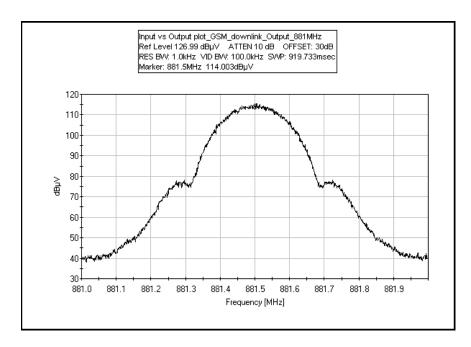



Page 24 of 84 Report No.: FC08-093

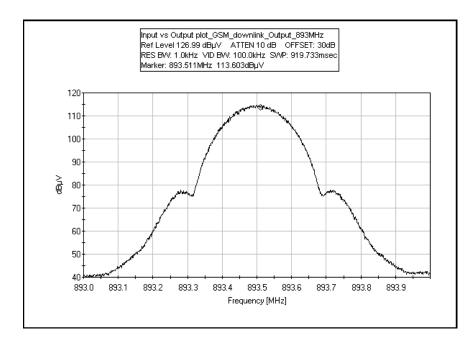


#### **OUTPUT PLOT DOWNLINK - EDGE 893MHz**




#### **OUTPUT PLOT DOWNLINK - GSM 869MHz**

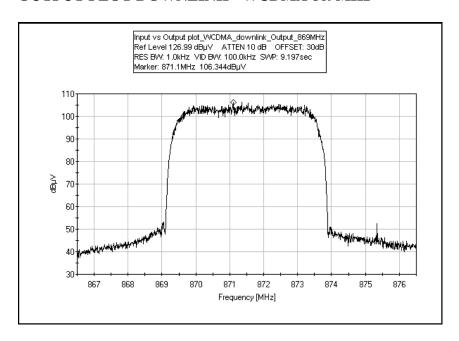



Page 25 of 84 Report No.: FC08-093

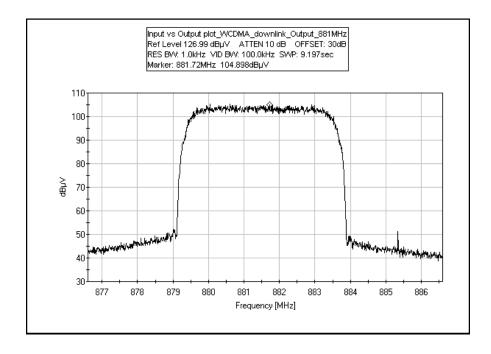


#### **OUTPUT PLOT DOWNLINK - GSM 881MHz**




#### **OUTPUT PLOT DOWNLINK - GSM 893MHz**

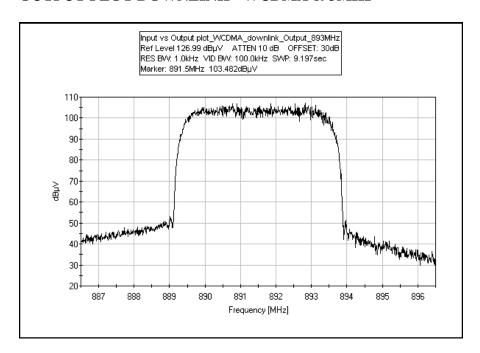



Page 26 of 84 Report No.: FC08-093

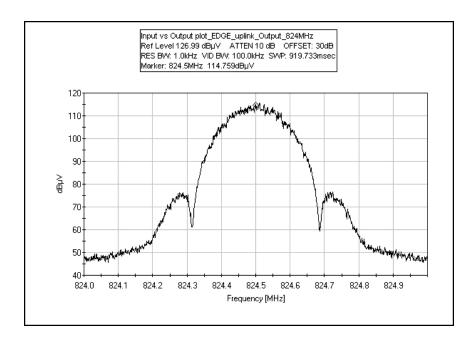


#### **OUTPUT PLOT DOWNLINK - WCDMA 869MHz**




#### **OUTPUT PLOT DOWNLINK - WCDMA 881MHz**

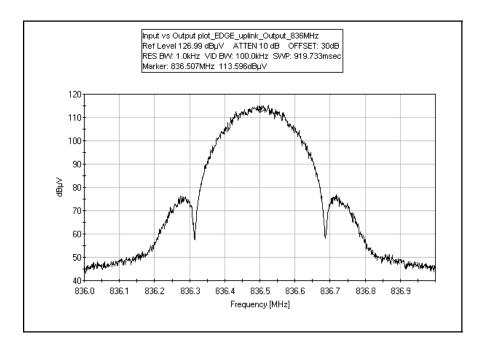



Page 27 of 84 Report No.: FC08-093

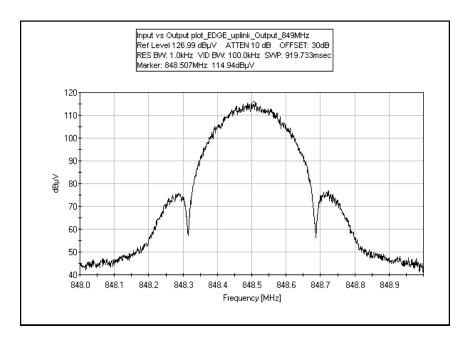


#### **OUTPUT PLOT DOWNLINK - WCDMA 893MHz**




#### **OUTPUT UPLINK - EDGE 824MHz**

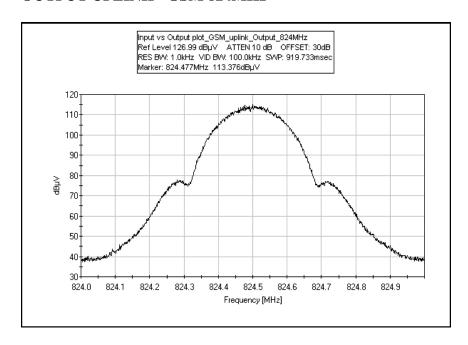



Page 28 of 84 Report No.: FC08-093

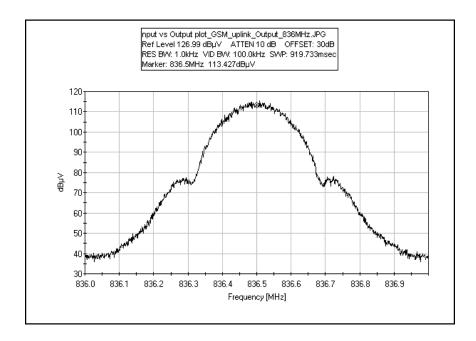


#### **OUTPUT UPLINK - EDGE 836MHz**




#### **OUTPUT UPLINK - EDGE 849MHz**

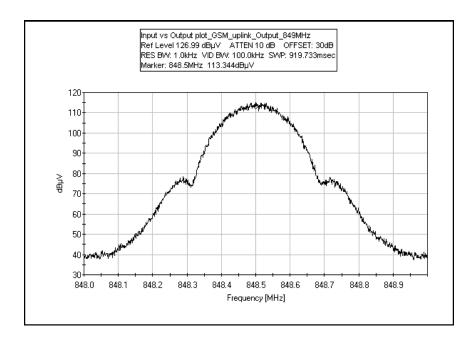



Page 29 of 84 Report No.: FC08-093

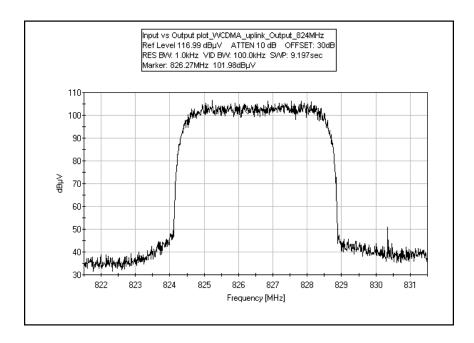


#### **OUTPUT UPLINK - GSM 824MHz**




#### **OUTPUT UPLINK - GSM 836MHz**

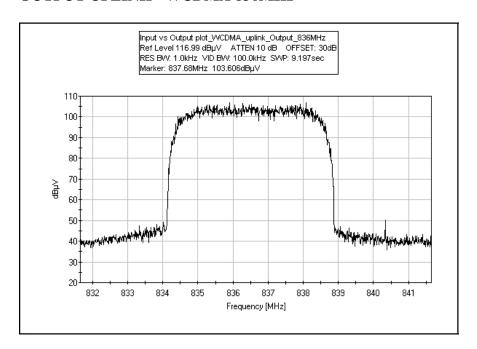



Page 30 of 84 Report No.: FC08-093

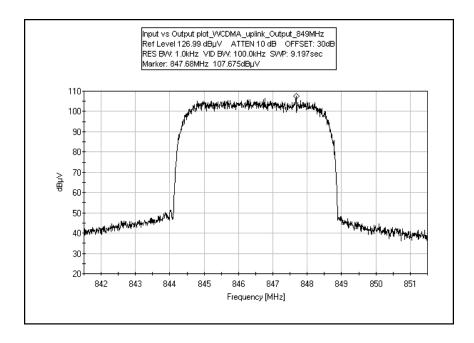


#### **OUTPUT UPLINK - GSM 849MHz**




#### **OUTPUT UPLINK - WCDMA 824MHz**




Page 31 of 84 Report No.: FC08-093



#### **OUTPUT UPLINK - WCDMA 836MHz**



#### **OUTPUT UPLINK - WCDMA 849MHz**



Page 32 of 84 Report No.: FC08-093



# $\frac{FCC\ 2.1033(c)(14)/2.1051/22.917(a)\ -\ SPURIOUS\ EMISSIONS\ AT\ ANTENNA}{TERMINAL}$

**Test Setup Photos** 



Page 33 of 84 Report No.: FC08-093



### **Test Data**

## **Limit line for Spurious Conducted Emission**

| Required Attenuation | = | 43+10 Log P dB                                                           |
|----------------------|---|--------------------------------------------------------------------------|
| Limit line (dBuV)    | = | V <sub>dBuv</sub> - Attenuation                                          |
| $V_{ m dBuV}$        | = | $20 \log \frac{V}{1 \times 10^{-6}}$                                     |
|                      | = | $20 \left( \text{Log V} - \text{Log 1 x } 10^{-6} \right)$               |
|                      | = | $20 \text{ Log V} - 20 \text{ Log1 x } 10^{-6}$                          |
|                      | = | $20 \log V - 20 (-6)$                                                    |
|                      | = | 20  Log V + 120                                                          |
|                      |   |                                                                          |
| Attenuation          | = | $43 + 10 \operatorname{Log} P$                                           |
|                      | = | $43 + 10 \operatorname{Log} \frac{\operatorname{V}^2}{\operatorname{R}}$ |
|                      | = | $43+10\left(\operatorname{Log} V^{2}-\operatorname{Log} R\right)$        |
|                      | = | $43+10(2 \operatorname{Log} V - \operatorname{Log} R)$                   |
|                      | = | 43 + 20  Log V - 10  Log R                                               |
|                      |   |                                                                          |
| Limit line           | = | V dBuy - Attenuation                                                     |
|                      | = | 20  Log V + 120 - (43 + 20  Log V - 10 Log R)                            |
|                      | = | 20  Log V + 120 - 43 - 20  Log V + 10 Log R                              |
|                      | = | 20 Log V + 120 – 43 – 20 Log V + 10Log R                                 |
|                      | = | $120 - 43 + 10 \text{ Log } 50$ Note: $R = 50 \Omega$                    |
|                      | = | 120 –43 + 16.897                                                         |
|                      | = | 94 dBuV at any power level                                               |

Page 34 of 84 Report No.: FC08-093



Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Powerwave Technologies, Inc.** 

Specification: FCC Part 22.917(a) Conducted Spurious Emission

Work Order #: 88230 Date: 9/11/2008
Test Type: Conducted Emissions Time: 16:45:32
Equipment: Nexus RT Digital Repeater Sequence#: 4
Manufacturer: Powerwave Technologies Tested By: E. Wong
Model: NP50-11311 110V 60Hz

S/N: NA

#### Test Equipment:

| Function          | S/N        | Calibration Date | Cal Due Date | Asset # |  |
|-------------------|------------|------------------|--------------|---------|--|
| Spectrum Analyzer | MY46186290 | 02/12/2007       | 02/12/2009   | 02869   |  |
| 3'-40GHz cable    | NA         | 09/18/2007       | 09/18/2009   | P02945  |  |
| 1.0 GHz HPF       | 1          | 01/11/2008       | 01/11/2010   | 02749   |  |

#### *Equipment Under Test* (\* = EUT):

| Function         | Manufacturer           | Model #    | S/N |
|------------------|------------------------|------------|-----|
| Nexus RT Digital | Powerwave Technologies | NP50-11311 | NA  |
| Repeater*        |                        |            |     |

#### Support Devices:

| Function        | Manufacturer | Model #   | S/N          |
|-----------------|--------------|-----------|--------------|
| Laptop          | HP           | HSTNNC18C | CND63661JIC7 |
| Ethernet Switch | Linksys      | SD205     | REF003600624 |
| ESG             | Agilent      | E4433B    | US40052191   |
| Powermeter      | HP           | E4419B    | MY40510694   |

#### Test Conditions / Notes:

FCC Part 22. The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected to remote ESG and 850MHz Server antenna port is connected to a remote power meter. For uplink configuration, 850MHz Donor antenna port is connected to remote Power meter and 850MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop, ethernet port: WAN is connected to a remote, support ethernet switch. All other ports are service ports hence unpopulated. Uplink: 824 - 849MHz, Downlink: 869 - 894MHz. Uplink Modulation: EDGE, GSM, WCDMA. TX=824.5MHz, 836.5MHz, 848.5MHz Power = 28dBm= 0.63W. Downlink: Modulation: EDGE, GSM, WCDMA. TX=869.5MHz, 881.5MHz, 893.5MHz. Power = 28dBm= 0.63W. 23°C, 52% relative humidity. Modification: Paint underneath the internal ground stud was removed to enhance chassis to ground cable connection. Frequency range of measurement = 9 kHz - 9 GHz. Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz- 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz - 9 GHz RBW=1MHz, VBW=1MHz.

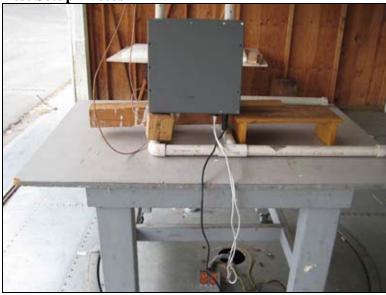
#### Transducer Legend:

| 1.0.05000000 20800000                    |                                |
|------------------------------------------|--------------------------------|
| T1=Hi Freq 40GHz 3ft CAB-ANP02945-091809 | T2=K&L 1GHz HPF AN02749 011110 |

| Measu | rement Data: | Reading listed by margin. |      |      |    | Test Lead | d: Antenna | Port        |             |        |       |
|-------|--------------|---------------------------|------|------|----|-----------|------------|-------------|-------------|--------|-------|
| #     | Freq         | Rdng                      | T1   | T2   |    |           | Dist       | Corr        | Spec        | Margin | Polar |
|       | MHz          | dΒμV                      | dB   | dB   | dΒ | dB        | Table      | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
| 1     | 1739.000M    | 53.8                      | +0.4 | +0.4 |    |           | +0.0       | 54.6        | 94.0        | -39.4  | Anten |
|       |              |                           |      |      |    |           |            |             | EDGE Dov    | wnlink |       |
| 2     | 1786.840M    | 52.6                      | +0.4 | +0.4 |    |           | +0.0       | 53.4        | 94.0        | -40.6  | Anten |
|       |              |                           |      |      |    |           |            |             | EDGE Dov    | wnlink |       |

Page 35 of 84 Report No.: FC08-093




| 3    | 1762.840M    | 52.5  | +0.4   | +0.4   | +0.0 53.3 94.0 -40.7 Anten |
|------|--------------|-------|--------|--------|----------------------------|
|      |              |       |        |        | EDGE Downlink              |
| 4    | 1762.890M    | 48.1  | +0.4   | +0.4   | +0.0 48.9 94.0 -45.1 Anten |
|      |              |       |        |        | GSM Downlink               |
| 5    | 1787.140M    | 46.2  | +0.4   | +0.4   | +0.0 47.0 94.0 -47.0 Anten |
|      |              |       |        |        | GSM Downlink               |
| 6    | 1738.920M    | 45.1  | +0.4   | +0.4   | +0.0 45.9 94.0 -48.1 Anten |
|      |              |       |        |        | GSM Downlink               |
| 7    | 1762.500M    | 44.5  | +0.4   | +0.4   | +0.0 45.3 94.0 -48.7 Anten |
|      |              |       |        |        | WCDMA                      |
|      |              |       |        |        | Downlink                   |
| 8    | 1743.250M    | 43.4  | +0.4   | +0.4   | +0.0 44.2 94.0 -49.8 Anten |
|      |              |       |        |        | WCDMA                      |
|      |              |       |        |        | Downlink                   |
| 9    | 1783.000M    | 40.6  | +0.4   | +0.4   | +0.0 41.4 94.0 -52.6 Anten |
|      |              |       |        |        | WCDMA                      |
|      |              |       |        |        | Downlink                   |
| 10   | 1697.095M    | 38.3  | +0.4   | +0.4   | +0.0 39.1 94.0 -54.9 Anten |
|      |              |       |        |        | EDGE Uplink                |
| 11   | 1673.100M    | 37.7  | +0.4   | +0.5   | +0.0 38.6 94.0 -55.4 Anten |
|      | 1 ( 10 000)  |       | 0.1    |        | EDGE Uplink                |
| 12   | 1649.000M    | 37.1  | +0.4   | +0.5   | +0.0 38.0 94.0 -56.0 Anten |
| - 10 | 1.05.000.5   | 261   | 0.4    |        | GSM_uplink                 |
| 13   | 1697.060M    | 36.1  | +0.4   | +0.4   | +0.0 36.9 94.0 -57.1 Anten |
| 1.4  | 1.672.0001.6 | 260   | . 0. 4 | . 0. 7 | GSM_uplink                 |
| 14   | 1673.080M    | 36.0  | +0.4   | +0.5   | +0.0 36.9 94.0 -57.1 Anten |
|      | 1.01.1003.5  | 261   | 0.1    |        | GSM_uplink                 |
| 15   | 1694.100M    | 36.1  | +0.4   | +0.4   | +0.0 36.9 94.0 -57.1 Anten |
|      | 1610 1003 5  | 2.5.0 | 0.4    |        | WCDMA Uplink               |
| 16   | 1649.100M    | 35.9  | +0.4   | +0.5   | +0.0 36.8 94.0 -57.2 Anten |
| 1.5  | 1651 00035   | 25.0  | . 0. 4 | . 0. 5 | EDGE Uplink                |
| 17   | 1651.000M    | 35.2  | +0.4   | +0.5   | +0.0 36.1 94.0 -57.9 Anten |
| 10   | 1.550.5.03.5 | 25.0  |        |        | WCDMA Uplink               |
| 18   | 1673.560M    | 35.0  | +0.4   | +0.5   | +0.0 35.9 94.0 -58.1 Anten |
|      |              |       |        |        | WCDMA Uplink               |

Page 36 of 84 Report No.: FC08-093



# $\underline{FCC\ 2.1033(c)(14)/2.1053/22.917(a)} - \underline{FIELD\ STRENGTH\ OF\ SPURIOUS\ RADIATION}$

**Test Setup Photos** 





Page 37 of 84 Report No.: FC08-093



#### **Test Data Sheets**

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Powerwave Technologies, Inc.** 

Specification: FCC Part 22.917(a) Radiated Spurious Emission

Work Order #: 88230 Date: 9/11/2008
Test Type: Radiated Scan Time: 09:09:54
Equipment: Nexus RT Digital Repeater Sequence#: 2
Manufacturer: Powerwave Technologies Tested By: E. Wong

Model: NP50-11311

S/N: NA

#### Test Equipment:

| z est z quip ment    |            |                  |              |         |
|----------------------|------------|------------------|--------------|---------|
| Function             | S/N        | Calibration Date | Cal Due Date | Asset # |
| Spectrum Analyzer    | MY46186290 | 02/12/2007       | 02/12/2009   | 02869   |
| Bilog Antenna        | 2451       | 01/21/2008       | 01/21/2010   | 01995   |
| Pre amp to SA Cable  | Cable #10  | 05/16/2007       | 05/16/2009   | P05050  |
| Cable                | Cable15    | 01/05/2007       | 01/05/2009   | P05198  |
| Pre Amp              | 1937A02548 | 05/02/2008       | 05/02/2010   | 00309   |
| Horn Antenna         | 6246       | 06/06/2008       | 06/06/2010   | 00849   |
| Microwave Pre-amp    | 3123A00281 | 07/28/2008       | 07/28/2010   | 00786   |
| 3'-40GHz cable       | NA         | 09/18/2007       | 09/18/2009   | P02945  |
| Heliax Antenna Cable | P5565      | 09/18/2006       | 09/18/2008   | P05565  |
| Loop Antenna         | 2014       | 06/16/2008       | 06/16/2010   | 00314   |
| 1.0 GHz HPF          | 1          | 01/11/2008       | 01/11/2010   | 02749   |
|                      |            |                  |              |         |

#### Equipment Under Test (\* = EUT):

| (                | — /-                   |            |     |  |
|------------------|------------------------|------------|-----|--|
| Function         | Manufacturer           | Model #    | S/N |  |
| Nexus RT Digital | Powerwave Technologies | NP50-11311 | NA  |  |
| Repeater*        |                        |            |     |  |

#### Support Devices:

| Function        | Manufacturer | Model #   | S/N          |
|-----------------|--------------|-----------|--------------|
| Laptop          | HP           | HSTNNC18C | CND63661JIC7 |
| Ethernet Switch | Linksys      | SD205     | REF003600624 |
| ESG             | Agilent      | E4433B    | US40052191   |
| Powermeter      | HP           | E4419B    | MY40510694   |

#### Test Conditions / Notes:

FCC part 22 (2007) The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected to remote ESG and 850MHz Server antenna port is connected to a remote power meter. For uplink configuration, 850MHz Donor antenna port is connected to remote Power meter and 850MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop, ethernet port: WAN is connected to a remote, support ethernet switch. All other ports are service ports hence unpopulated. Uplink: 824 - 849MHz, Downlink: 869 - 894MHz. Uplink Modulation: EDGE TX= 824.5MHz, 836.5MHz, 848.5MHz Power = 28dBm= 0.63W. Downlink: Modulation: EDGE TX=869.5MHz, 881.5MHz, 893.5MHz Power = 28dBm= 0.63W. 23°C, 52% relative humidity. Modification: Paint underneath the internal ground stud was removed to enhance chassis to ground cable connection. Frequency range of measurement = 9 kHz - 9 GHz. Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz - 9 GHz RBW=1MHz, VBW=1MHz. No Emission found, recorded data point represent noise floor level.

Page 38 of 84 Report No.: FC08-093



Operating Frequency: 824-849 MHz Uplink and 869-894 MHz Downlink

Highest Measured Output Power: 27.99 ERP(dBm)= 0.63 ERP(Watts)

Distance:

tance: 3 meters / Limit: 43+10Log(P) 40.99 dBc

| Freq. (MHz) | Reference Level (dBm) | Antenna Polarity (H/V) | dBc   |
|-------------|-----------------------|------------------------|-------|
| 3,293.80    | -55.5                 | Vert                   | 83.49 |
| 2,608.50    | -56.5                 | Vert                   | 84.49 |

Page 39 of 84 Report No.: FC08-093



## **BLOCKEDGE**

**Test Equipment** 

| Equipment         | Asset # | Manufacturer | Model # | Serial #   | Cal Date | Cal Due |
|-------------------|---------|--------------|---------|------------|----------|---------|
| Spectrum Analyzer | 02869   | Agilent      | E4440A  | MY46186290 | 021207   | 021209  |
| 36" 40GHz cable   | 02945   | Strolab      | NA      | NA         | 091807   | 091809  |

#### **Test Conditions**

The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected to remote ESG and 850MHz Server antenna port is connected to a spectrum analyzer. For uplink configuration, 850MHz Donor antenna port is connected to spectrum analyzer and 850MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop, ethernet port: WAN is connected to a remote, support ethernet switch.

Blockedge plot is recorded with a spectrum analyzer at the Antenna port of the device.

Uplink: 824 - 849MHz Downlink: 869 - 894MHz

Uplink

Modulation: EDGE, GSM, WCDMA TX= 824.5MHz, 836.5MHz, 848.5MHz

Power = 28dBm = 0.63W

Downlink:

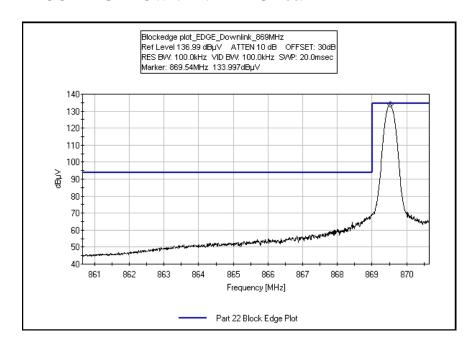
Modulation: EDGE, GSM, WCDMA TX=869.5MHz, 881.5MHz, 893.5MHz

Power = 28dBm = 0.63W

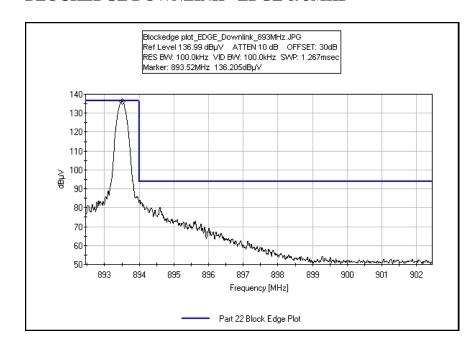
Page 40 of 84 Report No.: FC08-093



**Test Setup Photos** 



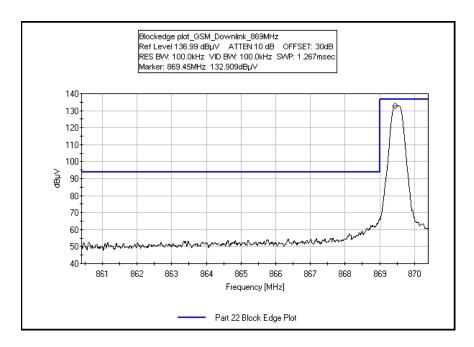

Page 41 of 84 Report No.: FC08-093



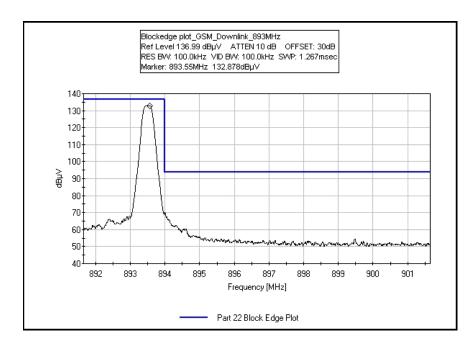

#### **Test Plots**

#### **BLOCKEDGE DOWNLINK - EDGE 869MHz**




## **BLOCKEDGE DOWNLINK - EDGE 893MHz**

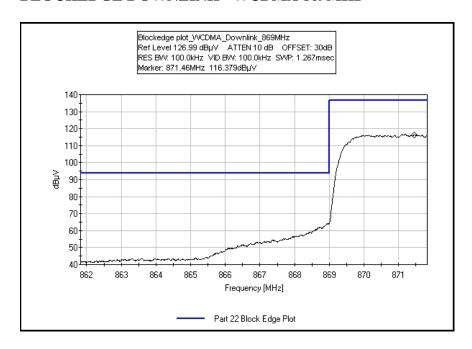



Page 42 of 84 Report No.: FC08-093

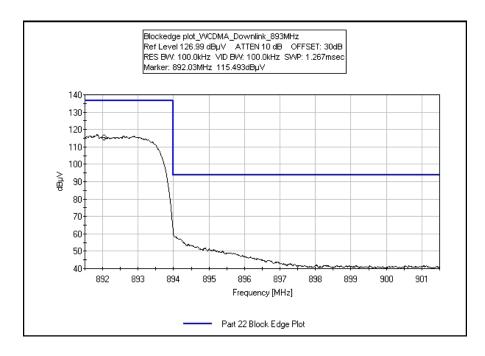


#### **BLOCKEDGE DOWNLINK - GSM 869MHz**




## **BLOCKEDGE DOWNLINK - GSM 893MHz**

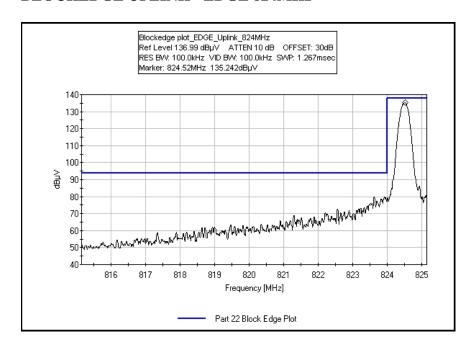



Page 43 of 84 Report No.: FC08-093

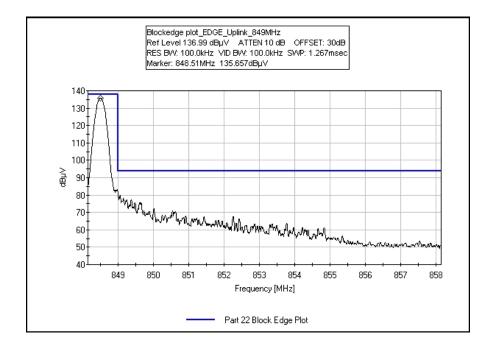


#### **BLOCKEDGE DOWNLINK - WCDMA 869MHz**




#### **BLOCKEDGE DOWNLINK - WCDMA 893MHz**

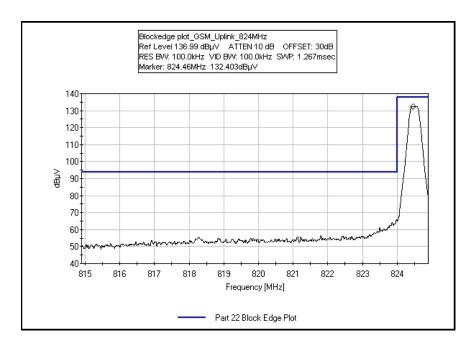



Page 44 of 84 Report No.: FC08-093

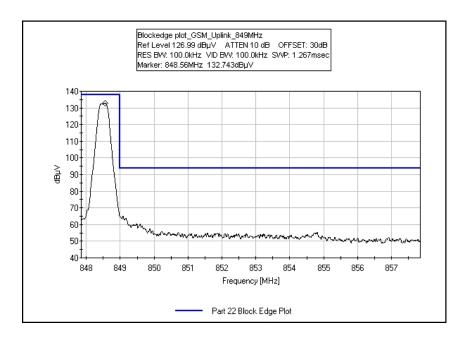


#### **BLOCKEDGE UPLINK - EDGE 824MHz**




#### **BLOCKEDGE UPLINK - EDGE 849MHz**

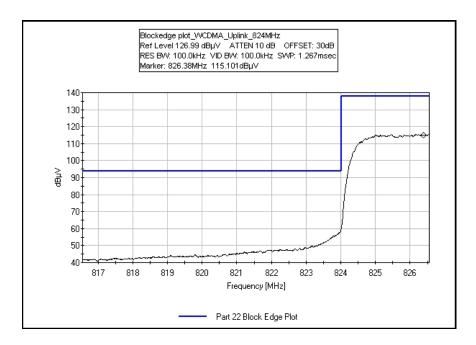



Page 45 of 84 Report No.: FC08-093

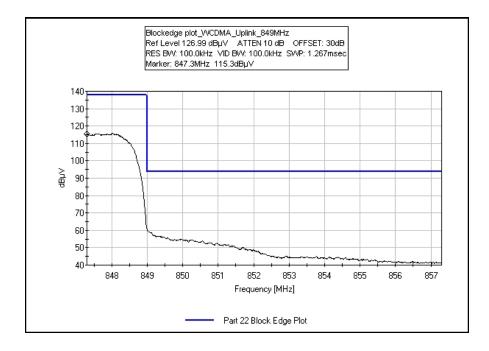


## **BLOCKEDGE UPLINK - GSM 824MHz**




#### **BLOCKEDGE UPLINK - GSM 849MHz**




Page 46 of 84 Report No.: FC08-093



#### **BLOCKEDGE UPLINK - WCDMA 824MHz**



## **BLOCKEDGE UPLINK - WCDMA 849MHz**



Page 47 of 84 Report No.: FC08-093



### **INTERMODULATION**

**Test Equipment** 

| Equipment         | Asset # | Manufacturer | Model # | Serial #   | Cal Date | Cal Due |
|-------------------|---------|--------------|---------|------------|----------|---------|
| Spectrum Analyzer | 02869   | Agilent      | E4440A  | MY46186290 | 021207   | 021209  |
| 36" 40GHz cable   | 02945   | Strolab      | NA      | NA         | 091807   | 091809  |

#### **Test Conditions**

The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected to remote ESG and 850MHz Server antenna port is connected to a spectrum analyzer. For uplink configuration, 850MHz Donor antenna port is connected to spectrum analyzer and 850MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop, ethernet port: WAN is connected to a remote, support ethernet switch.

Two modulated signal from the support ESG is injected into the device and the intermodulation product is measured at the RF antenna port under investigation.

Uplink: 824 - 849MHz Downlink: 869 - 894MHz

Uplink

Modulation: EDGE, GSM, WCDMA TX= 824.5MHz, 836.5MHz, 848.5MHz

Power = 28dBm = 0.63W

Downlink:

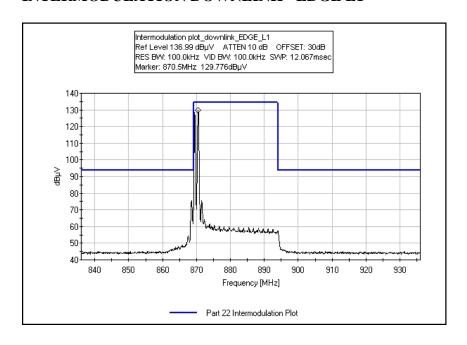
Modulation: EDGE, GSM, WCDMA TX=869.5MHz, 881.5MHz, 893.5MHz

Power = 28dBm = 0.63W

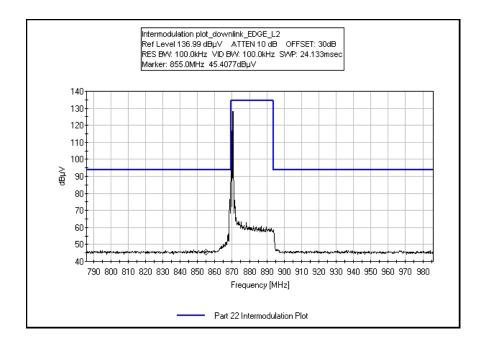
Page 48 of 84 Report No.: FC08-093



# **Test Setup Photos**




Page 49 of 84 Report No.: FC08-093



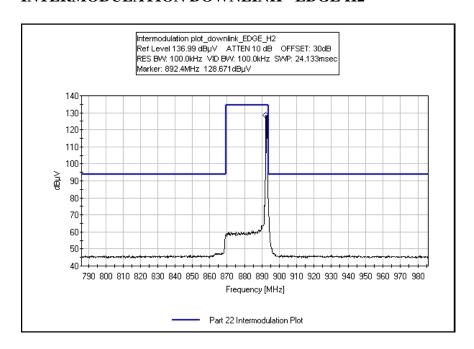

#### **Test Plots**

#### INTERMODULATION DOWNLINK - EDGE L1



## INTERMODULATION DOWNLINK - EDGE L2

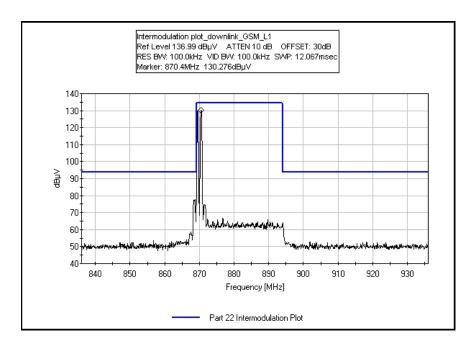



Page 50 of 84 Report No.: FC08-093

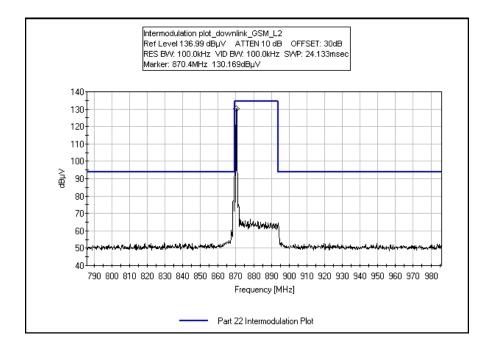


## **INTERMODULATION DOWNLINK - EDGE H1**




## **INTERMODULATION DOWNLINK - EDGE H2**

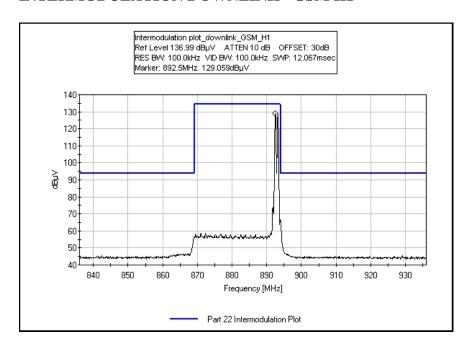



Page 51 of 84 Report No.: FC08-093

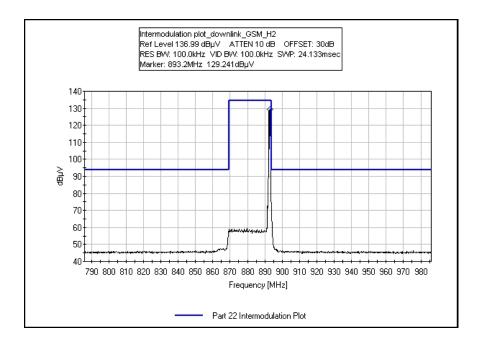


## **INTERMODULATION DOWNLINK - GSM L1**




#### **INTERMODULATION DOWNLINK - GSM L2**

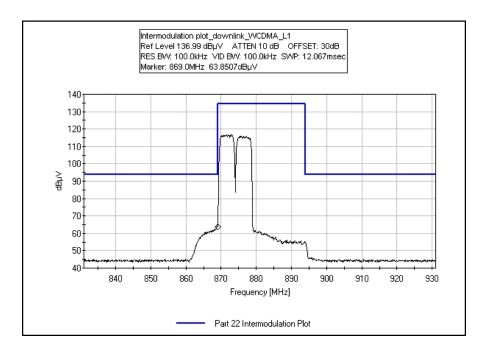



Page 52 of 84 Report No.: FC08-093

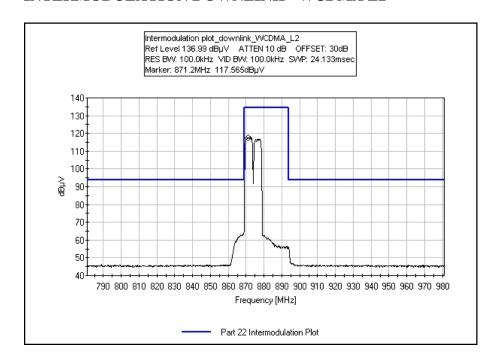


## **INTERMODULATION DOWNLINK - GSM H1**




## **INTERMODULATION DOWNLINK - GSM H2**

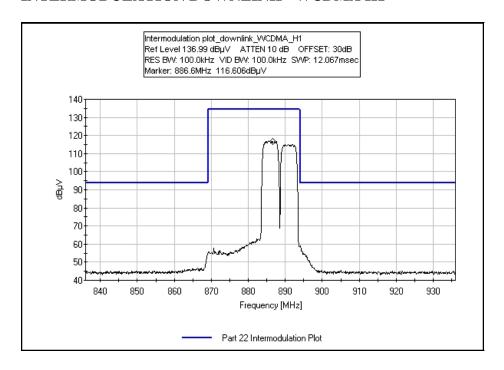



Page 53 of 84 Report No.: FC08-093

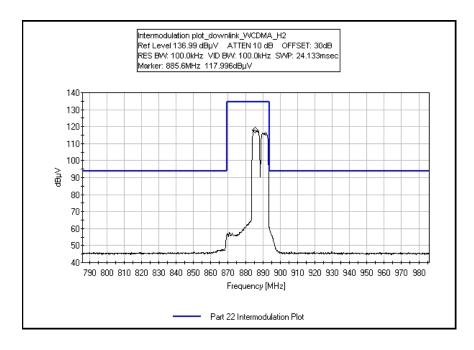


#### INTERMODULATION DOWNLINK - WCDMA L1




## INTERMODULATION DOWNLINK - WCDMA L2

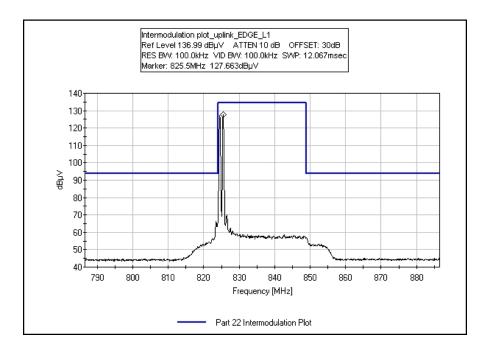



Page 54 of 84 Report No.: FC08-093

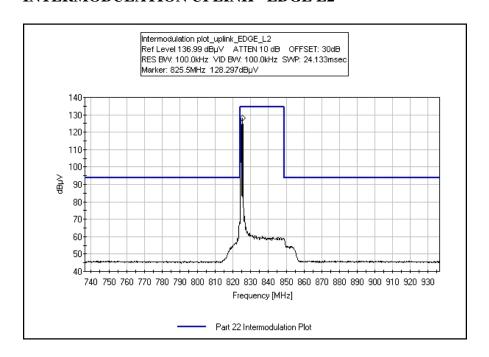


#### INTERMODULATION DOWNLINK - WCDMA H1




## INTERMODULATION DOWNLINK - WCDMA H2

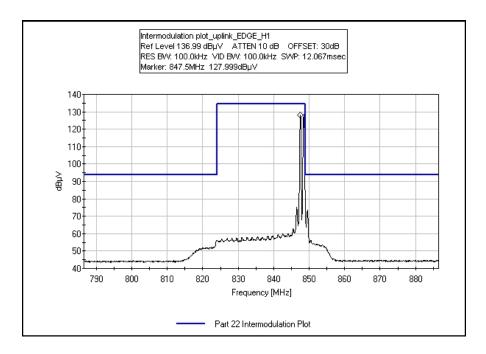



Page 55 of 84 Report No.: FC08-093

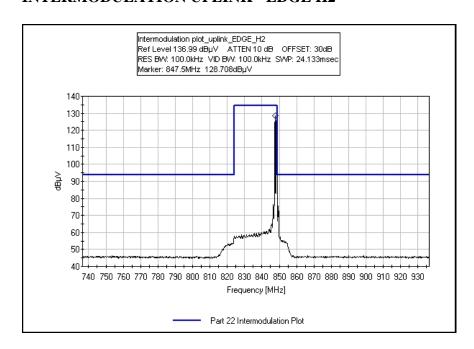


## **INTERMODULATION UPLINK - EDGE L1**




## **INTERMODULATION UPLINK - EDGE L2**

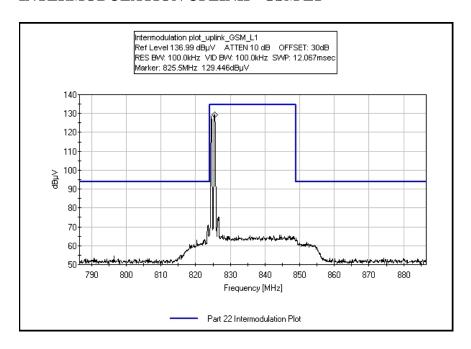



Page 56 of 84 Report No.: FC08-093

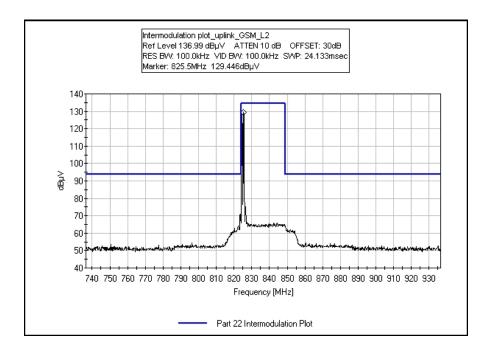


## **INTERMODULATION UPLINK - EDGE H1**




## **INTERMODULATION UPLINK - EDGE H2**

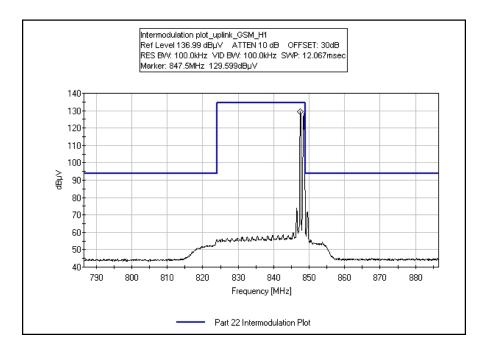



Page 57 of 84 Report No.: FC08-093

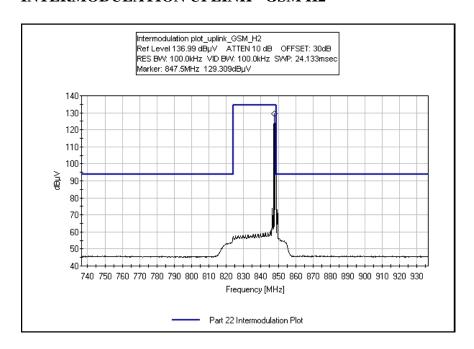


## **INTERMODULATION UPLINK - GSM L1**




#### **INTERMODULATION UPLINK - GSM L2**

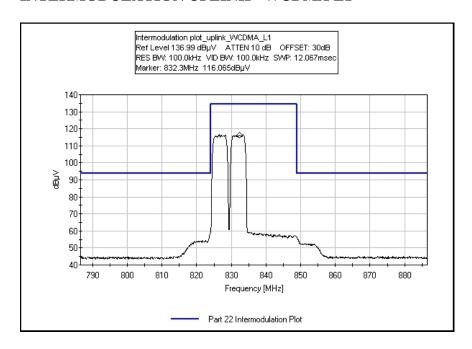



Page 58 of 84 Report No.: FC08-093

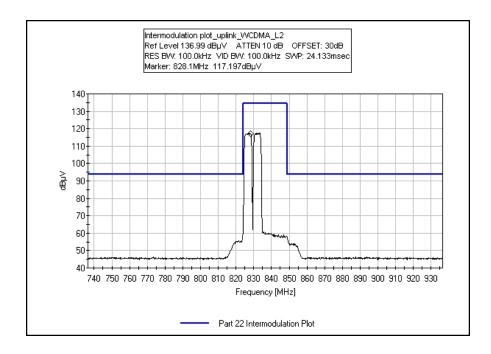


## **INTERMODULATION UPLINK - GSM H1**




## **INTERMODULATION UPLINK - GSM H2**

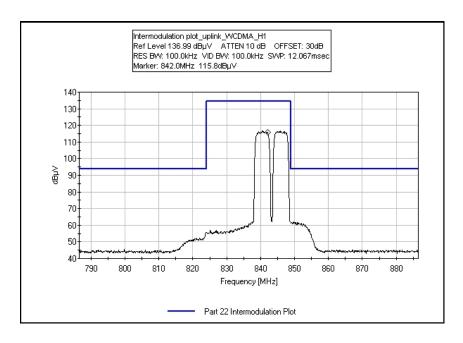



Page 59 of 84 Report No.: FC08-093

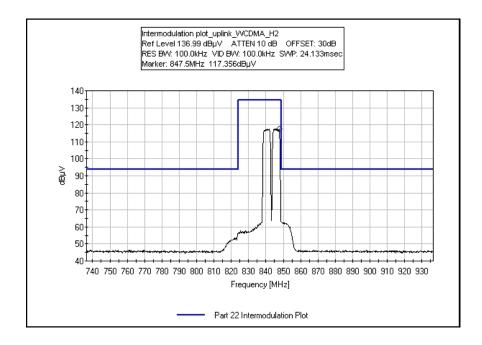


## INTERMODULATION UPLINK - WCDMA L1




## INTERMODULATION UPLINK - WCDMA L2




Page 60 of 84 Report No.: FC08-093



## INTERMODULATION UPLINK - WCDMA H1



## INTERMODULATION UPLINK - WCDMA H2



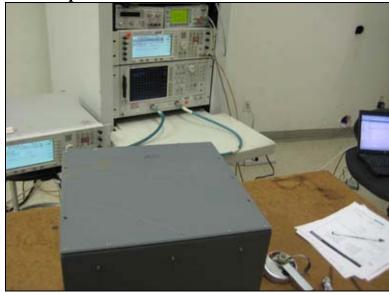


## **OUT OF BAND REJECTION**

**Test Equipment** 

| Equipment        | Asset # | Manufacturer | Model # | Serial #   | Cal Date | Cal Due |
|------------------|---------|--------------|---------|------------|----------|---------|
| Network analyzer | C00012  | HP           | 8753E   | Us38432770 | 091208   | 091208  |

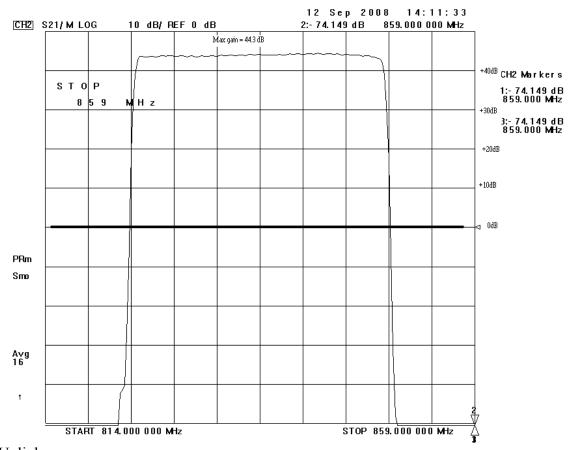
#### **Test Conditions**


The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected output port of the network analyzer and 850MHz Server antenna port is connected to an input port of the network analyzer. For uplink configuration, 850MHz Donor antenna port is connected to input port of the network analyzer and 850MHz Server antenna port is connected to an output port of the network analyzer. The Ethernet port: Local is connected to a remote support laptop, ethernet port: WAN is connected to a remote, support ethernet switch.

Uplink: 824 - 849MHz Downlink: 869 - 894MHz

The gain response is measured with a network analyzer in the uplink and down link direction.

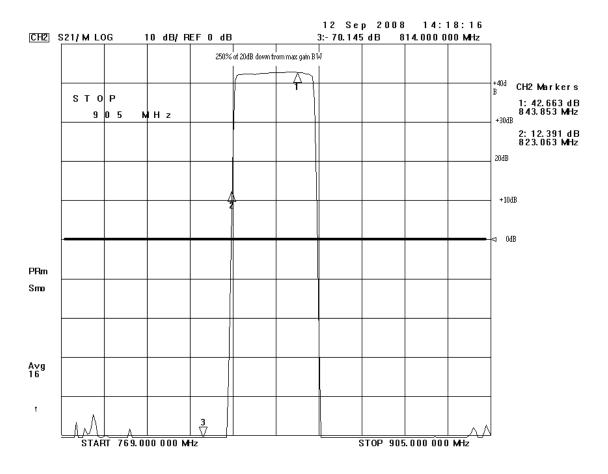
The nominal bandwidth and nominal pass band gain (dB) of the RF enhancer or translator shall be stated by the manufacturer or equipment certification applicant and indicated in the test report.


**Test Setup Photos** 



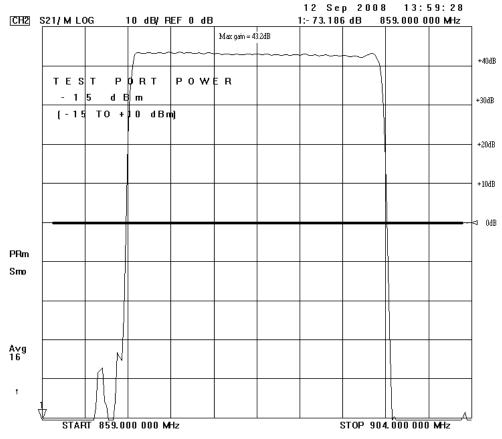
Page 62 of 84 Report No.: FC08-093




## **Test Plots**



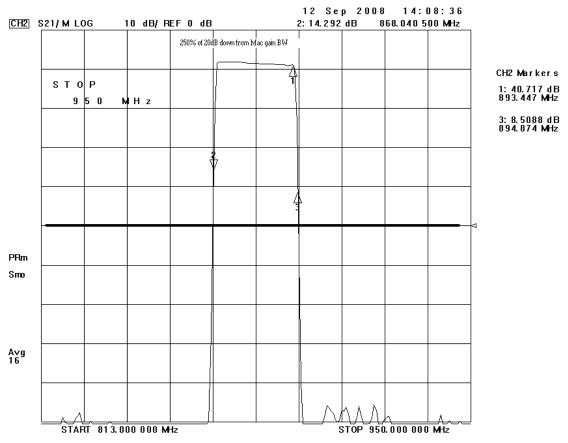
Uplink


The internal control is adjusted to the nominal gain for which equipment certification is sought.





Uplink






Downlink

The internal control is adjusted to the nominal gain for which equipment certification is sought.





Downlink

Page 66 of 84 Report No.: FC08-093



#### RSS 131 99% BANDWIDTH

**Test Equipment** 

| Equipment         | Asset # | Manufacturer | Model # | Serial #   | Cal Date | Cal Due |
|-------------------|---------|--------------|---------|------------|----------|---------|
| Spectrum Analyzer | 02869   | Agilent      | E4440A  | MY46186290 | 021207   | 021209  |
| 36" 40GHz cable   | 02945   | Strolab      | NA      | NA         | 091807   | 091809  |

#### **Test Conditions**

The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected to remote ESG and 850MHz Server antenna port is connected to a spectrum analyzer. For uplink configuration, 850MHz Donor antenna port is connected to spectrum analyzer and 850MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop, ethernet port: WAN is connected to a remote, support ethernet switch.

The 99% BW is measured at the RF antenna port under investigation using the occupied bandwidth measurement function of the spectrum analyzer.

Uplink: 824 - 849MHz Downlink: 869 - 894MHz

Uplink

Modulation: EDGE, GSM, WCDMA TX= 824.5MHz, 836.5MHz, 848.5MHz

Power = 28dBm = 0.63W

Downlink:

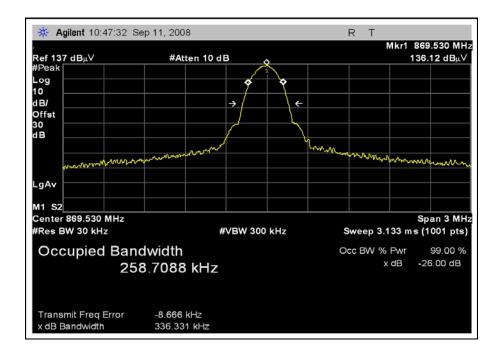
Modulation: EDGE, GSM, WCDMA TX=869.5MHz, 881.5MHz, 893.5MHz

Power = 28dBm = 0.63W

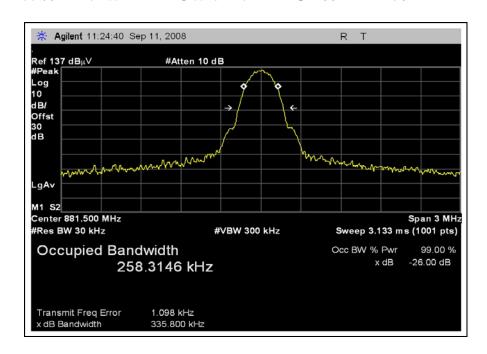
Page 67 of 84 Report No.: FC08-093



# **Test Setup Photos**



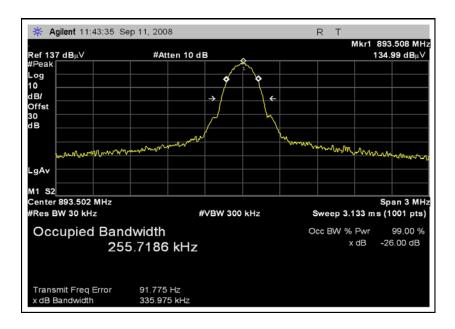

Page 68 of 84 Report No.: FC08-093



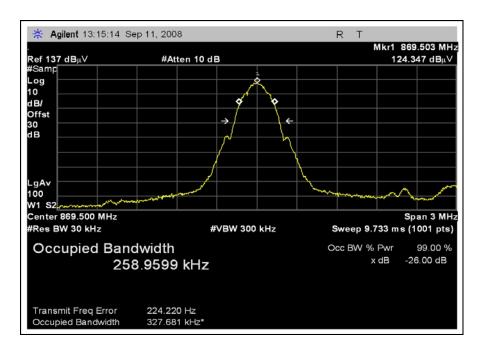

#### **Test Plots**

#### 99% BANDWIDTH DOWNLINK - EDGE 869MHz 259kHz




#### 99% BANDWIDTH DOWNLINK - EDGE 881MHz 258kHz

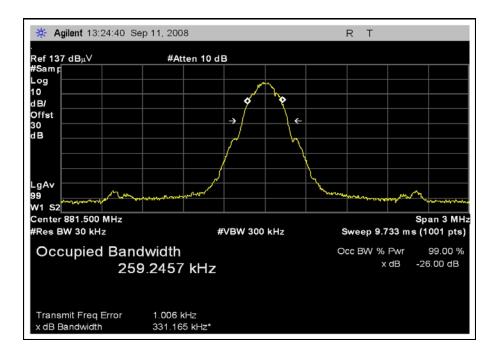



Page 69 of 84 Report No.: FC08-093

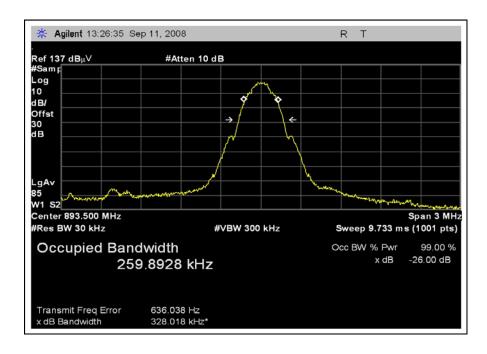


#### 99% BANDWIDTH DOWNLINK - EDGE 893MHz 255kHz




#### 99% BANDWIDTH DOWNLINK - GSM 869MHz 259kHz

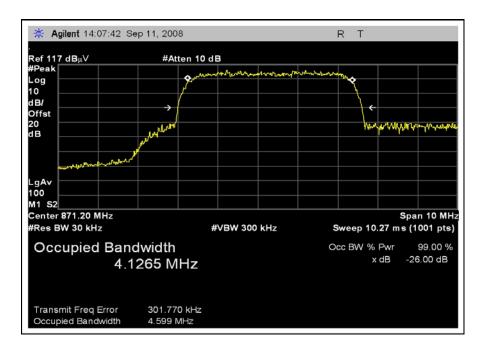



Page 70 of 84 Report No.: FC08-093

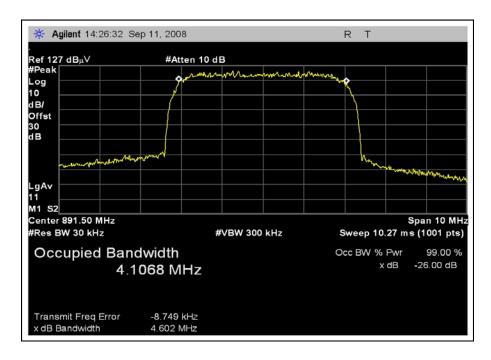


#### 99% BANDWIDTH DOWNLINK - GSM 881MHz 259kHz




#### 99% BANDWIDTH DOWNLINK - GSM 893MHz 260kHz

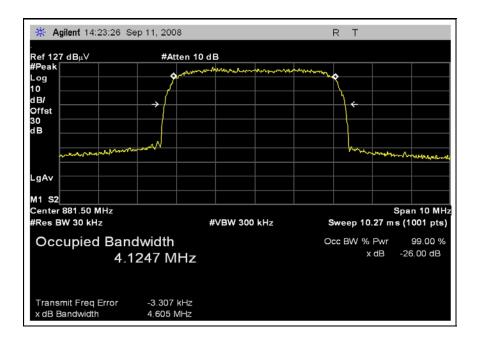



Page 71 of 84 Report No.: FC08-093

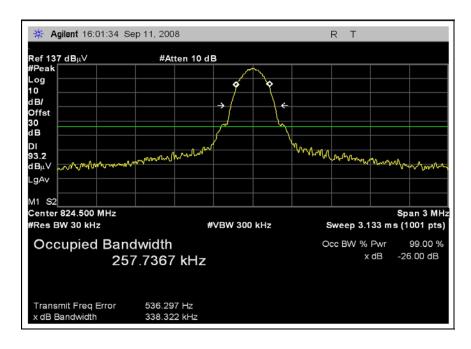


### 99% BANDWIDTH DOWNLINK - WCDMA 869MHz 4.12MHz




## 99% BANDWIDTH DOWNLINK - WCDMA 893MHz 4.10MHz

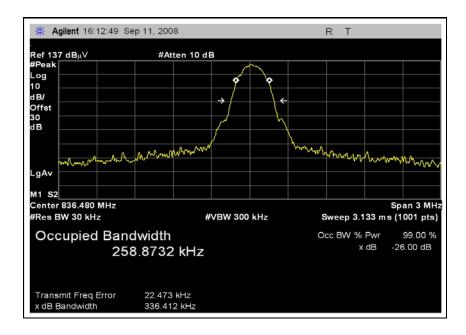



Page 72 of 84 Report No.: FC08-093

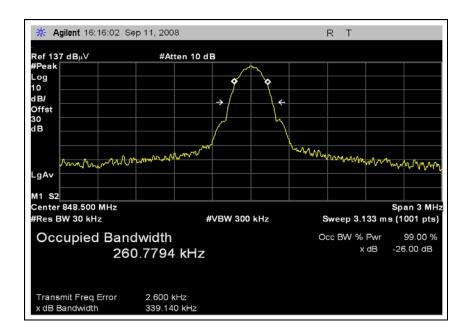


## 99% BANDWIDTH DOWNLINK - WCDMA 881MHz 4.12MHz




## 99% BANDWIDTH UPLINK - EDGE 824MHz 257.7kHz

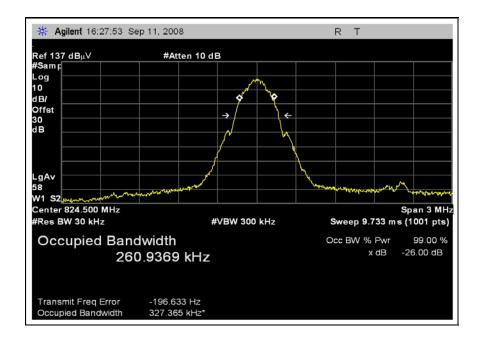



Page 73 of 84 Report No.: FC08-093

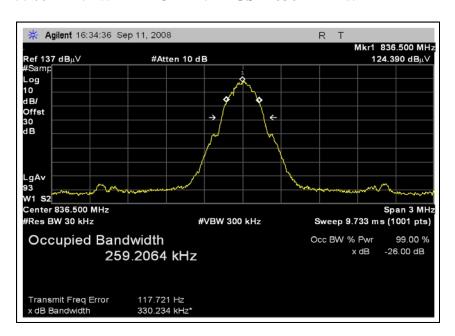


## 99% BANDWIDTH UPLINK - EDGE 835MHz 258kHz




#### 99% BANDWIDTH UPLINK - EDGE 849MHz 261kHz

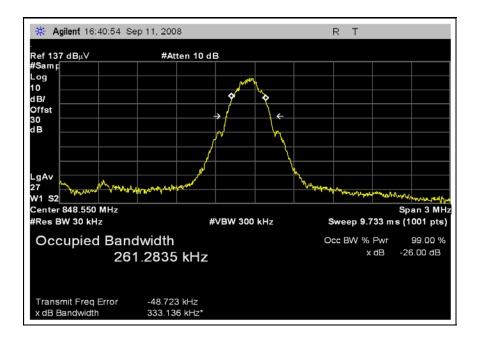



Page 74 of 84 Report No.: FC08-093

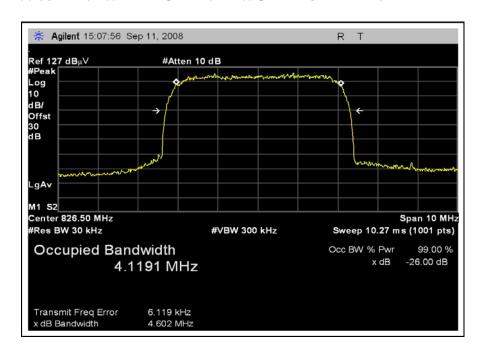


## 99% BANDWIDTH UPLINK - GSM 824MHz 261kHz




## 99% BANDWIDTH UPLINK - GSM 836MHz 259kHz

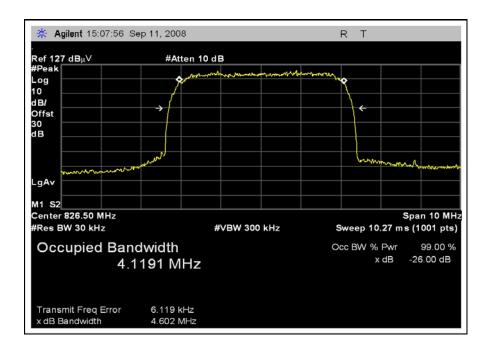



Page 75 of 84 Report No.: FC08-093

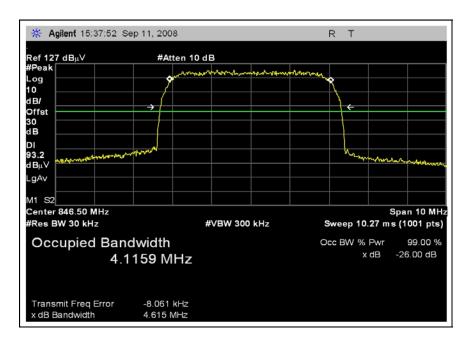


## 99% BANDWIDTH UPLINK - GSM 849MHz 261kHz




## 99% BANDWIDTH UPLINK - WCDMA 824MHz 4.11MHz




Page 76 of 84 Report No.: FC08-093



## 99% BANDWIDTH UPLINK - WCDMA 836MHz 4.12MHz



# 99% BANDWIDTH UPLINK - WCDMA 849MHz 4.12MHz



Page 77 of 84 Report No.: FC08-093



# **RSS 131 GAIN LINEARITY**

**Test Equipment** 

| Equipment        | Asset # | Manufacturer | Model # | Serial #   | Cal Date | Cal Due |
|------------------|---------|--------------|---------|------------|----------|---------|
| Network analyzer | C00012  | HP           | 8753E   | Us38432770 | 091208   | 091208  |

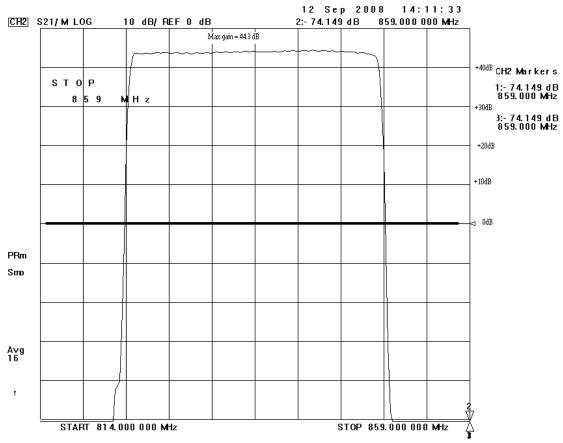
### **Test Conditions**

The rack mount EUT is placed on the wooden table. For downlink configuration, 850MHz Donor antenna port is connected output port of the network analyzer and 850MHz Server antenna port is connected to an input port of the network analyzer. For uplink configuration, 850MHz Donor antenna port is connected to input port of the network analyzer and 850MHz Server antenna port is connected to an output port of the network analyzer. The Ethernet port: Local is connected to a remote support laptop, ethernet port: WAN is connected to a remote, support ethernet switch.

Uplink: 824 - 849MHz Downlink: 869 - 894MHz

The gain response is measured with a network analyzer in the uplink and down link direction.

The nominal bandwidth and nominal pass band gain (dB) of the RF enhancer or translator shall be stated by the manufacturer or equipment certification applicant and indicated in the test report.

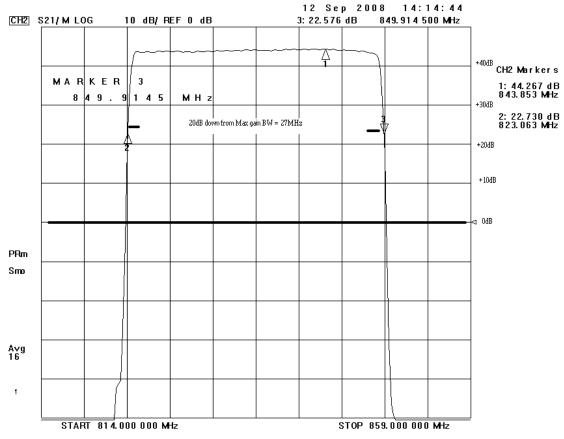

**Test Setup Photos** 



Page 78 of 84 Report No.: FC08-093



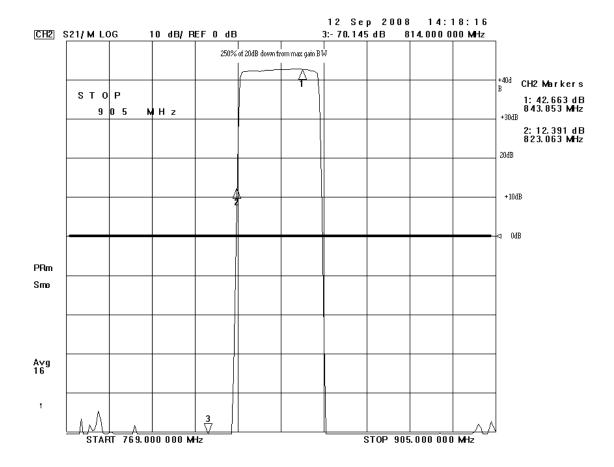
# **Test Plots**




Uplink

The internal control is adjusted to the nominal gain for which equipment certification is sought.

Page 79 of 84 Report No.: FC08-093





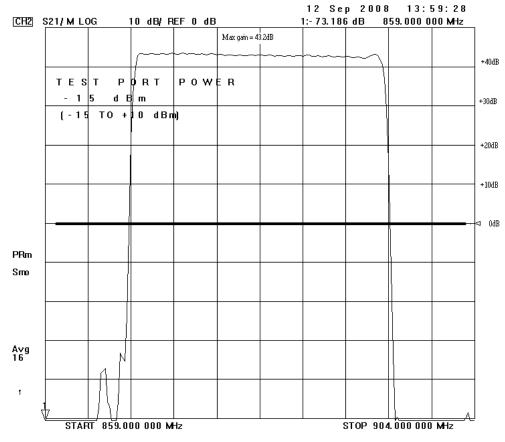

Uplink

With the aid of a network analyzer, the 20 dB Bandwidth is measured.





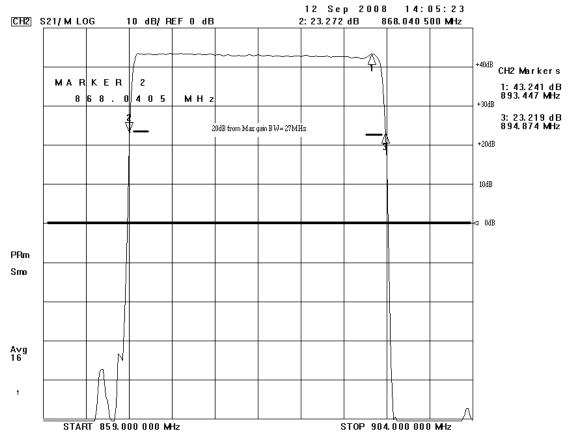
# Uplink


The gain-versus-frequency response of the amplifier from the mid band Fo of the pass band up to at least Fo + - 250% of the 20dB Bandwidth.

## **Minimum standard:**

The pass band gain response shall not exceed the nominal gain by more than 1 dB. The 20 dB bandwidth shall not exceed the nominal bandwidth that is stated by the manufacturer.

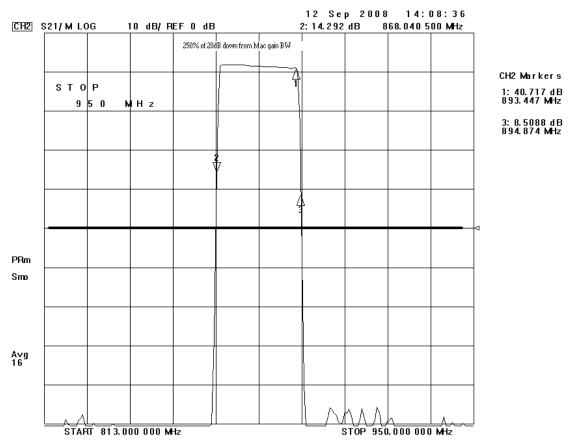
Outside of the 20dB bandwidth the gain shall not exceed that at the 20dB point.






Downlink

The internal control is adjusted to the nominal gain for which equipment certification is sought.






Downlink

With the aid of a network analyzer, the 20 dB Bandwidth is measured.





# Downlink

The gain-versus-frequency response of the amplifier from the mid band Fo of the pass band up to at least fo + - 250% of the 20dB Bandwidth.

#### **Minimum standard:**

The pass band gain response shall not exceed the nominal gain by more than 1 dB. The 20 dB bandwidth shall not exceed the nominal bandwidth that is stated by the manufacturer.

Outside of the 20dB bandwidth the gain shall not exceed that at the 20dB point.