

POWERWAVE TECHNOLOGIES, INC. TEST REPORT FOR THE

NEXUS RT DIGITAL REPEATER, NP50B0-22311

FCC PART 24 AND RSS 131 ISSUE 2 (2003)

TESTING

DATE OF ISSUE: OCTOBER 7, 2008

PREPARED FOR:

PREPARED BY:

Powerwave Technologies, Inc. 1801 E. St. Andrew Place Santa Ana, CA 92705 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: 123037 W.O. No.: 88231 Date of test: September 15-26, 2008

Report No.: FC08-094

This report contains a total of 99 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	
Temperature and Humidity During Testing	6
FCC 2.1033(c)(3) User's Manual	6
FCC 2.1033(c)(4) Type of Emissions	6
FCC 2.1033(c)(5) Frequency Range	6
FCC 2.1033(c)(6) Operating Power	6
FCC 2.1033(c)(7) Maximum Power Rating	6
FCC 2.1033(c)(8) DC Voltages	6
FCC 2.1033(c)(9) Tune-Up Procedure	6
FCC 2.1033(c)(10) Schematics and Circuitry Description	6
FCC 2.1033(c)(11) Label and Placement	6
FCC 2.1033(c)(12) Submittal Photos	6
FCC 2.1033(c)(13) Modulation Information	6
FCC 2.1033(c)(14)/2.1046/24.232(a) - RF Power Output	7
RSS-131 Section 6.2 RF Power Output	9
FCC 2.1033(c)(14)/2.1049(i) – Input Plots	11
FCC 2.1033(c)(14)/2.1049(i) – Output Plots	22
FCC 2.1033(c)(14)/2.1051/24.238(a) - Spurious Emissions at Antenna Terminal	33
FCC 2.1033(c)(14)/2.1053/24.238(a) - Field Strength of Spurious Radiation	37
Blockedge	40
Intermodulation	48
Out of Band Rejection	63
99% Bandwidth	74
Passband Gain and Bandwidth	85

Page 2 of 99 Report No.: FC08-094

ADMINISTRATIVE INFORMATION

DATE OF TEST: Septen	nber 15-26, 2008	DATE OF RECEIPT: September 15	, 2008

REPRESENTATIVE: Charlotte Yu

MANUFACTURER:TEST LOCATION:Powerwave Technologies, Inc.CKC Laboratories, Inc.1801 E. St. Andrew Place110 Olinda PlaceSanta Ana, CA 92705Brea, CA 92823

FREQUENCY RANGE TESTED: 9 kHz-20 GHz

TEST METHOD: FCC Part 24, RSS 131 Issue 2 (2003) and RSS GEN Issue 2

PURPOSE OF TEST: To perform the testing of the Nexus RT Digital Repeater, NP50B0-22311 with the requirements for FCC Part 24 and RSS 131 devices.

APPROVALS

QUALITY ASSURANCE: TEST PERSONNEL:

Steve Behm, Director of Engineering Services Eddie Wong, Senior EMC Engineer

Page 3 of 99 Report No.: FC08-094

SUMMARY OF RESULTS

Test	Specification	Results
RF Power Output	FCC 24.232(a)	Pass
	RSS 131 Issue 2 (2003) Section 6.2	
Input Plots	FCC 2.1049(i)	Pass
	()	
Output Plots	FCC 2.1049(i)	Pass
•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Spurious Emissions at	FCC 24.238(a)	Pass
Antenna Terminal		
Field Strength of Spurious	FCC 24.238(a)	Pass
Radiation		
Blockedge		Pass
Intermodulation		Pass
Out of Band Rejection		Pass
99% Bandwidth	RSS 133 Section 5.6	Pass
Passband Gain and	RSS 131 Issue 2 (2003) Section 6.1	Pass
Bandwidth		
Site File No.	FCC 90473	
	RSS 131 IC 3172-A	

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

Page 4 of 99 Report No.: FC08-094

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit. The Nexus RT Digital Repeater increases the coverage and capacity of existing wireless networks. It simultaneously supports 3G and 4G communications protocols and multiple RF carriers using advanced processing. The repeaters are designed to increase the coverage and capacity of existing wireless networks for both indoor and outdoor use. GSM, EDGE and WCDMA protocols can operate simultaneously on the same unit. Key features include support for multiple GSM/EDGE carriers and WCDMA support in 850MHz and 1900MHz operating bands. The Nexus RT Digital Repeater also provides feedback cancellation to effectively increase antenna isolation and enable greater operating gain without oscillation. Remote control and supervision is supported through either a direct IP connection or a wireless modem supporting the Simple Network Management Protocol (SNMP).

The following model has been tested by CKC Laboratories: NP50B0-22311 (tested 1900 band of the 1900/850 dual band with Modem)

The manufacturer states that the following additional models are identical electrically to the one which was tested, or any differences between them do not affect their EMC characteristics, and therefore they meet the level of testing equivalent to the tested models.

NPB0-11111 (1900 band without Modem)

NPB0-11311 (1900 band with Modem)

NP50B0-22111 (1900 band of the 1900/850 dual band without Modem)

EQUIPMENT UNDER TEST

Nexus RT Digital Repeater

Manuf: Powerwave Technologies, Inc.

Model: NP50B0-22311

Serial: NA

FCC ID: E675JS00106

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

LaptopEthernet SwitchManuf:HPManuf:LinksysModel:HSTNNC18CModel:SD205Serial:CND63661JIC7Serial:REF003600624

FCC ID: NA FCC ID: NA

<u>Powermeter</u>

Manuf:AgilentManuf:HPModel:E4433BModel:E4419BSerial:US40052191Serial:MY40510694FCC ID:NAFCC ID:NA

Page 5 of 99 Report No.: FC08-094

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS G7W, GXW, F9W

FCC 2.1033 (c)(5) FREQUENCY RANGE 1820-1910MHz Uplink, 1930-1990MHz Downlink

FCC 2.1033 (c)(6) OPERATING POWER 0.63 watts

FCC 2.1033 (c)(7) MAXIMUM POWER RATING 100 watts peak

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION

EDGE, GSM, WCDMA

Page 6 of 99 Report No.: FC08-094

FCC 2.1033(c)(14)/2.1046/24.232(a) - RF POWER OUTPUT

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
RF Power meter	02778	HP	EPM-441A	GB37170458	021508	021510
Power Sensor	02777	HP	E4412A	MY41499662	021508	021510

Test Setup Photos

Test Conditions

Base stations are limited to 1640 watts EIRP with antenna up to 300 meters HAAT In no case may the peak output power of a base station transmitter exceed 100 watts.

The EUT is a RF amplifier. The manufacturer does not provide an antenna for sale with the product, hence EIRP is not measured nor calculated. The end user of this product is to exercise proper engineering judgment to select the appropriate antenna to comply with the EIRP limitation set forth by 24.232(a).

The RF power of the EUT was measured at the antenna port. The measurement satisfies the above requirement by demonstrating the measured power is below 100 watts.

Page 7 of 99 Report No.: FC08-094

The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a remote power meter. For uplink configuration, 1900MHz Donor antenna port is connected to remote Power meter and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet switch. RF signal measured at the output antenna port

Test Data

Uplink EDGE, GSM, WCDMA

	dBm	Watts
1850MHz	28	0.63
1880MHz	28	0.63
1910MHz	28	0.63

Downlink EDGE, GSM, WCDMA

	dBm	Watts
1930MHz	28	0.63
1960MHz	28	0.63
1990MHz	28	0.63

Conclusion

As indicated above, each single channel does not exceed the 100 Watt peak power limit.

Page 8 of 99 Report No.: FC08-094

RSS-131 SECTION 6.2 RF POWER OUTPUT

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02869	Agilent	E4440A	MY46186290	021207	021209
Hi-Freq 3' 40 GHz cable	02945	Astrolab	NA	NA	091807	091809

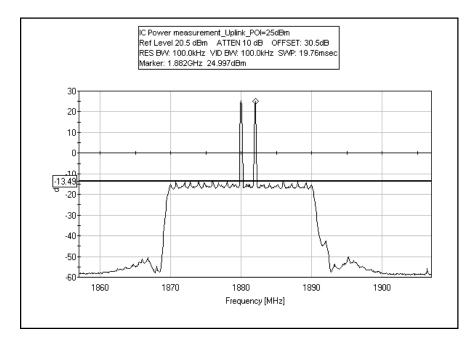
Test Conditions

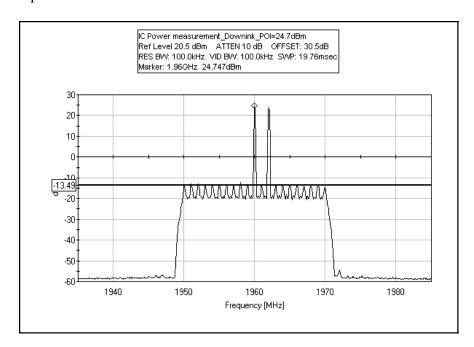
4.3 Mean Output power.

The EUT is a RF amplifier. The manufacturer does not provide an antenna for sale with the product, hence EIRP is not measured nor calculated.

The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a remote power meter. For uplink configuration, 1900MHz Donor antenna port is connected to remote Power meter and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet

The RF power of the EUT was measured at the antenna port in accordance with RSS 131, 4.3.1 requirement.




Page 9 of 99 Report No.: FC08-094

Test Plots

Uplink 1850-1910MHz

Downlink 1930-1990MHz

Highest Measured Po1 =+ 25 dBm P mean = Po1 + 3 dB = 25 + 3 dBm = 28 dBm = 0.6309W=**0.6Watt**

FCC 2.1033(c)(14)/2.1049(i)- INPUT PLOTS

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02869	Agilent	E4440A	MY46186290	021207	021209
36" 40GHz cable	02945	Strolab	NA	NA	091807	091809

Test Conditions

The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a spectrum analyzer. For uplink configuration, 1900MHz Donor antenna port is connected to spectrum analyzer and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet switch.

Output waveform is recorded with a spectrum analyzer at the Antenna port of the device. Input waveform is recorded with a spectrum analyzer at the RF out of the support ESG.

Uplink: 1850 to 1910MHz Downlink: 1930 to 1990MHz

Uplink

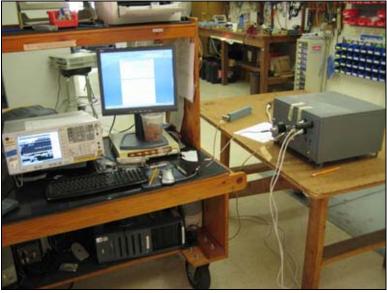
Modulation: EDGE

TX = 1850.5MHz, 1880MHz, 1909.5MHz

Power = 28dBm = 0.63W

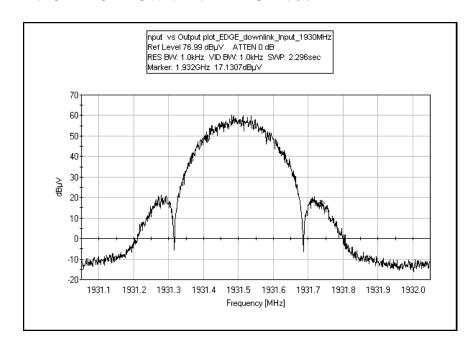
Downlink:

Modulation: EDGE


TX = 1930.5MHz, 1960MHz, 1989.5MHz

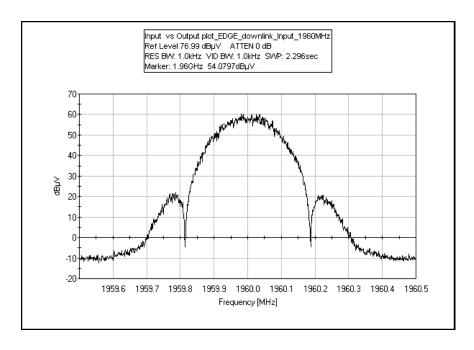
Power = 28dBm = 0.63W

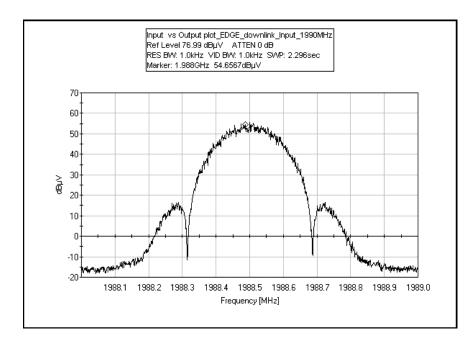
Page 11 of 99 Report No.: FC08-094



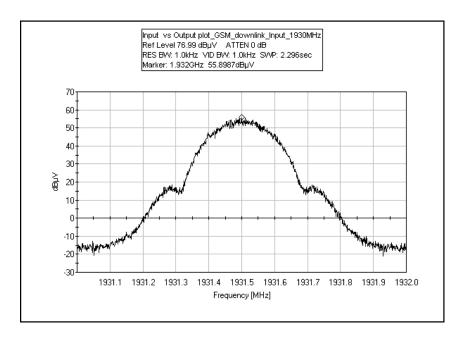
Test Setup Photos

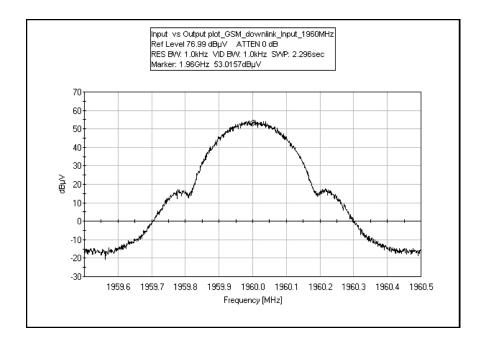
Test Plots


INPUT PLOT DOWNLINK - EDGE 1930MHz

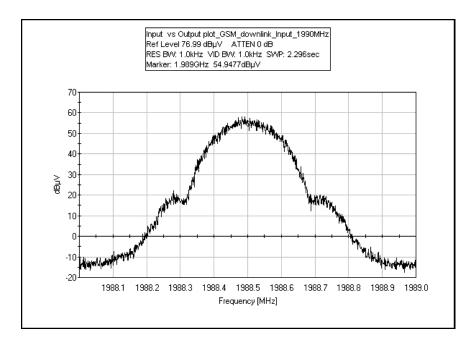

Page 12 of 99 Report No.: FC08-094

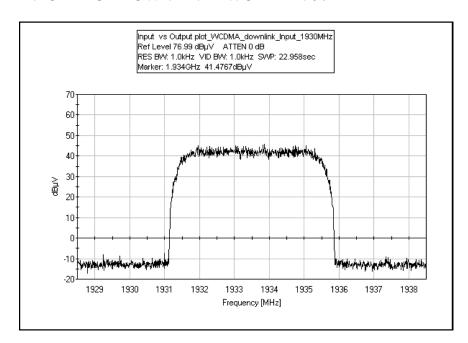
INPUT PLOT DOWNLINK - EDGE 1960MHz


INPUT PLOT DOWNLINK - EDGE 1990MHz

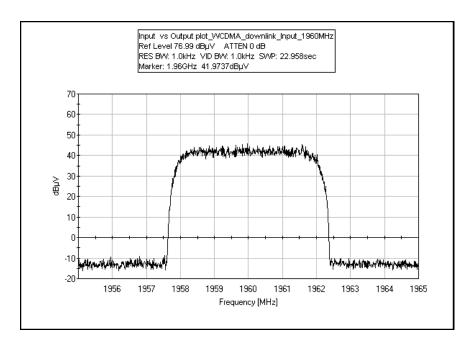

Page 13 of 99 Report No.: FC08-094

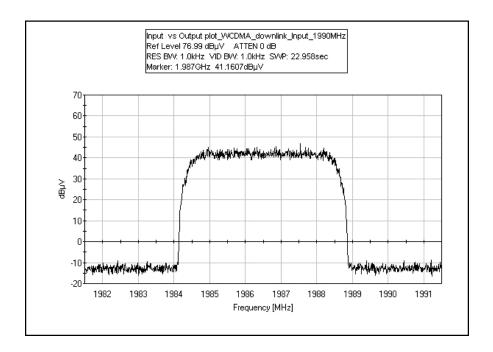
INPUT PLOT DOWNLINK - GSM 1930MHz


INPUT PLOT DOWNLINK - GSM 1960MHz

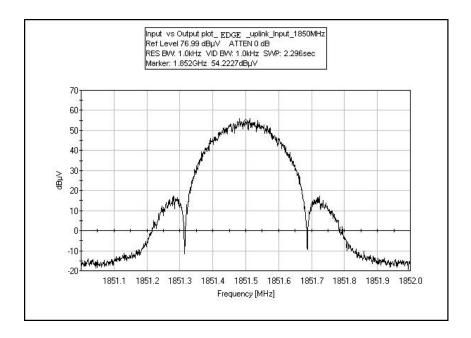

Page 14 of 99 Report No.: FC08-094

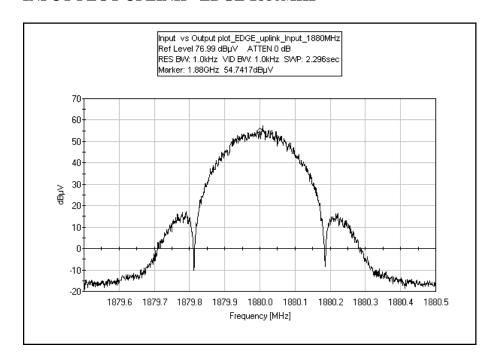
INPUT PLOT DOWNLINK - GSM 1990MHz


INPUT PLOT DOWNLINK - WCDMA 1930MHz

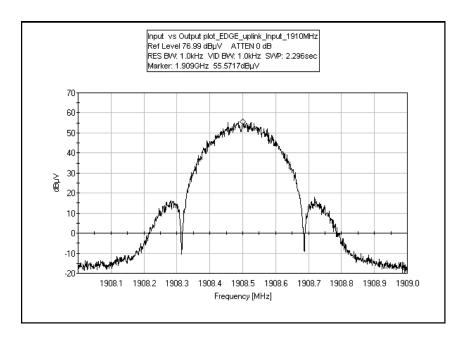

Page 15 of 99 Report No.: FC08-094

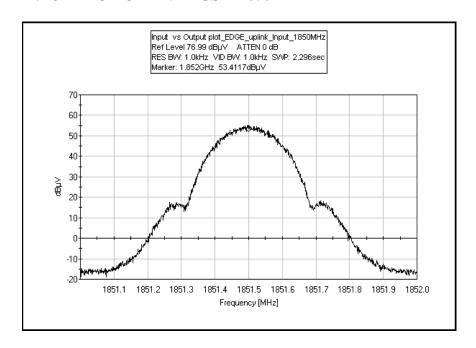
INPUT PLOT DOWNLINK - WCDMA 1960MHz


INPUT PLOT DOWNLINK - WCDMA 1990MHz

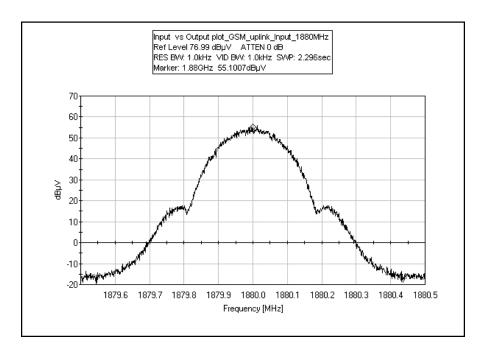

Page 16 of 99 Report No.: FC08-094

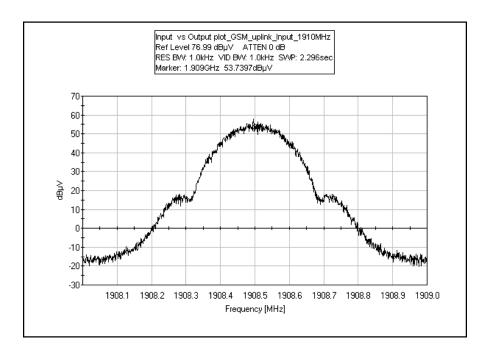
INPUT PLOT UPLINK – EDGE 1850MHz


INPUT PLOT UPLINK - EDGE 1880MHz

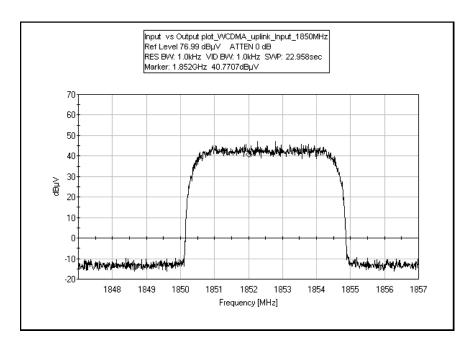

Page 17 of 99 Report No.: FC08-094

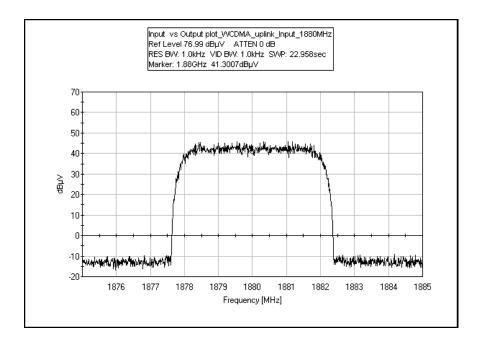
INPUT PLOT UPLINK - EDGE 1910MHz


INPUT PLOT UPLINK - GSM 1850MHz

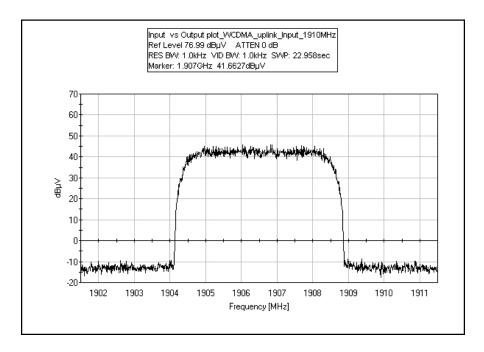

Page 18 of 99 Report No.: FC08-094

INPUT PLOT UPLINK - GSM 1880MHz


INPUT PLOT UPLINK - GSM 1910MHz


Page 19 of 99 Report No.: FC08-094

INPUT PLOT UPLINK - WCDMA 1850MHz


INPUT PLOT UPLINK - WCDMA 1880MHz

Page 20 of 99 Report No.: FC08-094

INPUT PLOT UPLINK - WCDMA 1910MHz

Page 21 of 99 Report No.: FC08-094

FCC 2.1033(c)(14)/2.1049(i)- OUTPUT PLOTS

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02869	Agilent	E4440A	MY46186290	021207	021209
36" 40GHz cable	02945	Strolab	NA	NA	091807	091809

Test Conditions

The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a spectrum analyzer. For uplink configuration, 1900MHz Donor antenna port is connected to spectrum analyzer and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet switch.

Output waveform is recorded with a spectrum analyzer at the Antenna port of the device. Input waveform is recorded with a spectrum analyzer at the RF out of the support ESG.

Uplink: 1850 to 1910MHz Downlink: 1930 to 1990MHz

Uplink

Modulation: EDGE

TX = 1850.5MHz, 1880MHz, 1909.5MHz

Power = 28dBm = 0.63W

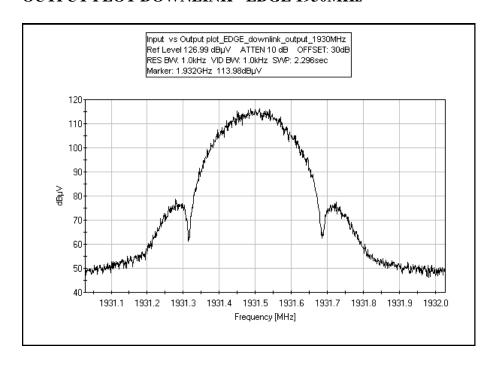
Downlink:

Modulation: EDGE

TX = 1930.5MHz, 1960MHz, 1989.5MHz

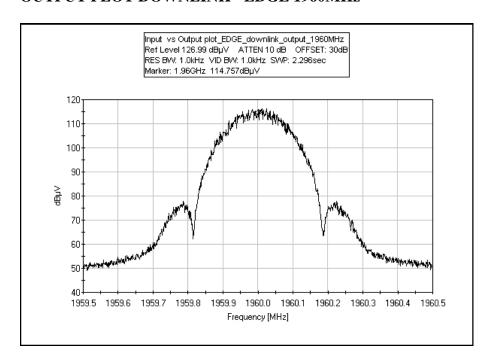
Power = 28dBm = 0.63W

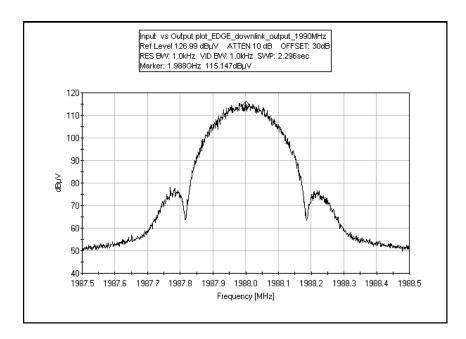
Page 22 of 99 Report No.: FC08-094



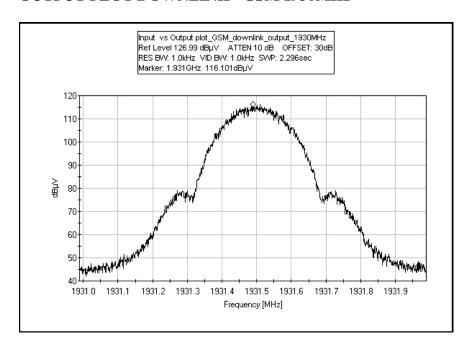
Test Setup Photos

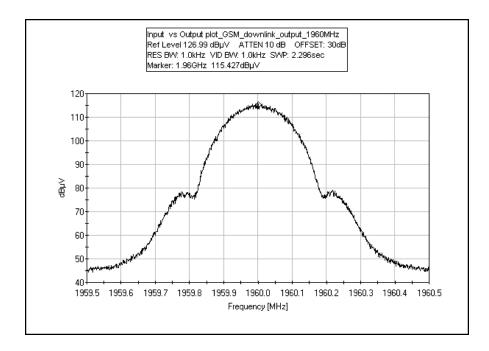
Test Plots


OUTPUT PLOT DOWNLINK - EDGE 1930MHz

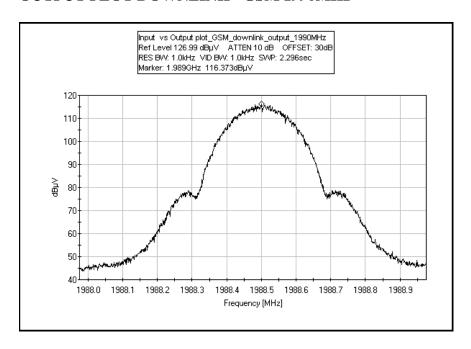

Page 23 of 99 Report No.: FC08-094

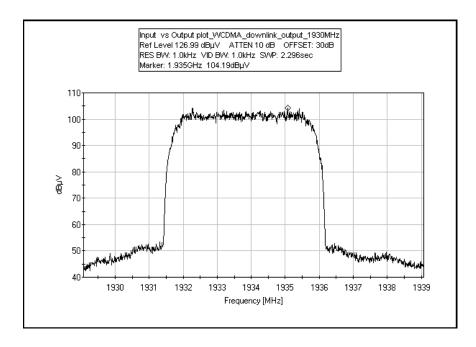
OUTPUT PLOT DOWNLINK - EDGE 1960MHz


OUTPUT PLOT DOWNLINK - EDGE 1990MHz

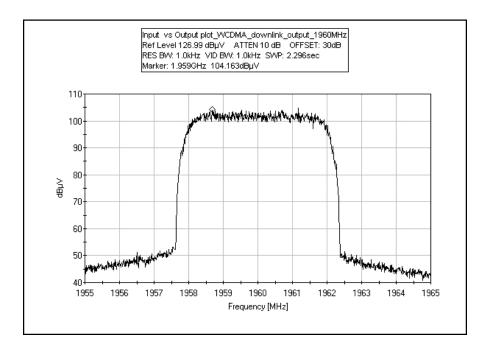

Page 24 of 99 Report No.: FC08-094

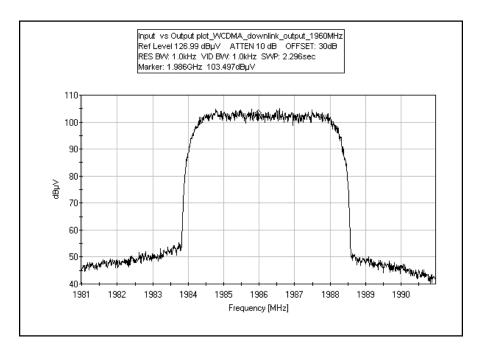
OUTPUT PLOT DOWNLINK - GSM 1930MHz


OUTPUT PLOT DOWNLINK - GSM 1960MHz

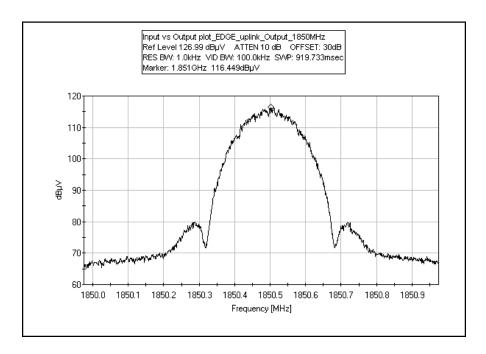

Page 25 of 99 Report No.: FC08-094

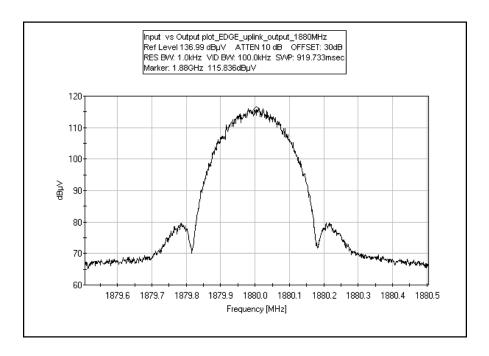
OUTPUT PLOT DOWNLINK - GSM 1990MHz


OUTPUT PLOT DOWNLINK - WCDMA 1930MHz

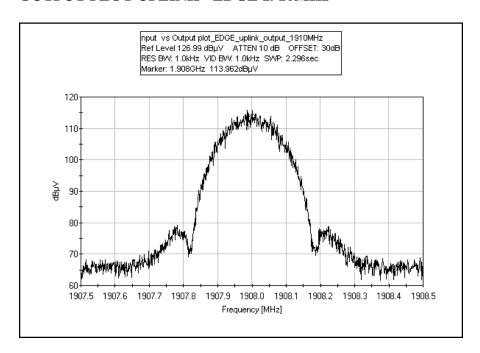

Page 26 of 99 Report No.: FC08-094

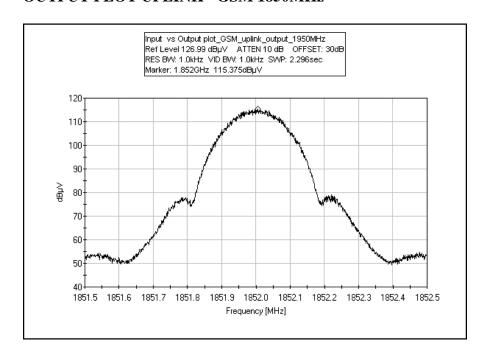
OUTPUT PLOT DOWNLINK - WCDMA 1960MHz


OUTPUT PLOT DOWNLINK - WCDMA 1960MHz

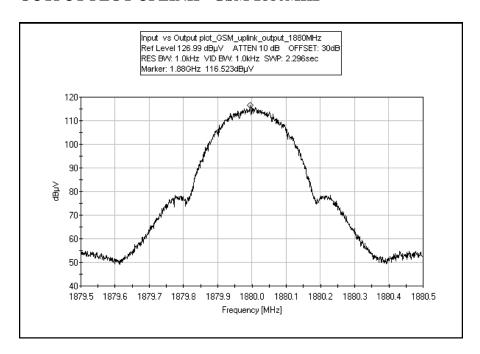

Page 27 of 99 Report No.: FC08-094

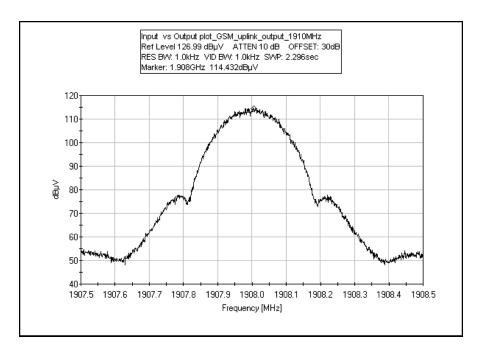
OUTPUT PLOT UPLINK - EDGE 1850MHz


OUTPUT PLOT UPLINK - EDGE 1880MHz

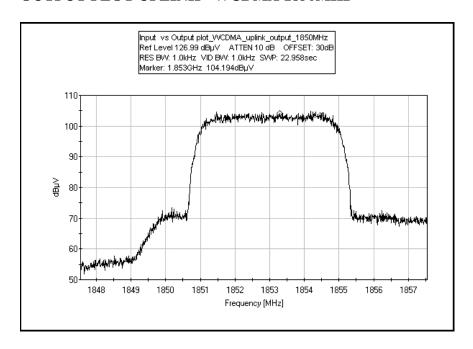

Page 28 of 99 Report No.: FC08-094

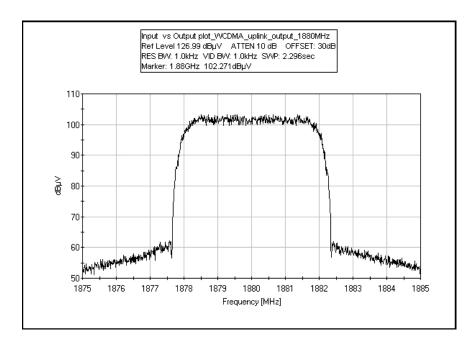
OUTPUT PLOT UPLINK - EDGE 1910MHz


OUTPUT PLOT UPLINK - GSM 1850MHz

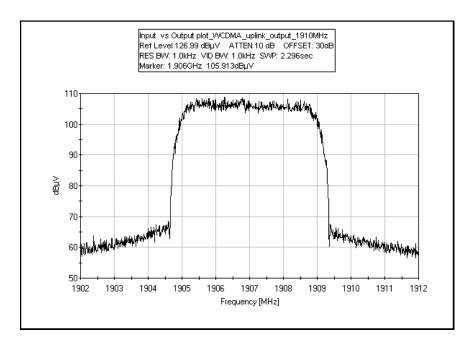

Page 29 of 99 Report No.: FC08-094

OUTPUT PLOT UPLINK - GSM 1880MHz


OUTPUT PLOT UPLINK - GSM 1910MHz


Page 30 of 99 Report No.: FC08-094

OUTPUT PLOT UPLINK - WCDMA 1850MHz


OUTPUT PLOT UPLINK - WCDMA 1880MHz

Page 31 of 99 Report No.: FC08-094

OUTPUT PLOT UPLINK - WCDMA 1910MHz

Page 32 of 99 Report No.: FC08-094

$\frac{FCC\ 2.1033(c)(14)/2.1051/24.238(a)\ -\ SPURIOUS\ EMISSIONS\ AT\ ANTENNA}{TERMINAL}$

Test Setup Photos

Page 33 of 99 Report No.: FC08-094

Test Data

Limit line for Spurious Conducted Emission

Required Attenuation	=	43+10 Log P dB
Limit line (dBuV)	=	V_{dBuv} - Attenuation
$V_{ m dBuV}$	=	$20 \log \frac{V}{1 \times 10^{-6}}$
	=	$20 \left(\text{Log V} - \text{Log 1 x } 10^{-6} \right)$
	=	$20 \text{Log} V - 20 \text{Log} 1 \text{x} 10^{-6}$
	=	$20 \log V - 20 (-6)$
	=	$20 \operatorname{Log} V + 120$
Attenuation	=	$43 + 10 \operatorname{Log} P$
	=	$43 + 10 \operatorname{Log} \frac{V^2}{R}$
	=	$43+10\left(\operatorname{Log} V^{2}-\operatorname{Log} R\right)$
	=	$43+10\left(2\operatorname{Log} V-\operatorname{Log} R\right)$
	=	43 + 20 Log V - 10 Log R
Limit line	=	V dBuy - Attenuation
Lilling line	=	$^{20} \text{Log V} + 120 - (43 + 20 \text{Log V} - 10 \text{Log R})$
	=	20 Log V + 120 – 43 – 20 Log V + 10Log R
	=	20 Log V + 120 - 43 - 20 Log V + 10 Log R
	=	$120 - 43 + 10 \text{ Log } 50$ Note: $R = 50 \Omega$
	=	120 - 43 + 16.897
	=	94 dBuV at any power level

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Powerwave Technologies, Inc.**

Specification: FCC 24.238 (a) Conducted Spurious Emission

 Work Order #:
 88230
 Date: 9/15/2008

 Test Type:
 Conducted Emissions
 Time: 15:06:43

Equipment: Nexus RT Digital Repeater Sequence#: 1

Manufacturer: Powerwave Technologies Tested By: E. Wong Model: NP50B0-22311 110V 60Hz

S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Spectrum Analyzer	MY46186290	02/12/2007	02/12/2009	02869	
3'-40GHz cable	NA	09/18/2007	09/18/2009	P02945	
3.0 GHz HPF	1	03/25/2008	03/25/2010	02744	

Equipment Under Test (* = EUT):

=quipilient enter rest (201).		
Function	Manufacturer	Model #	S/N
Nexus RT Digital	Powerwave Technologies	NP50B0-22311	NA
Repeater*			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	HP	HSTNNC18C	CND63661JIC7
Ethernet Switch	Linksys	SD205	REF003600624
ESG	Agilent	E4433B	US40052191
Powermeter	HP	E4419B	MY40510694

Test Conditions / Notes:

FCC Part 24. The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a remote power meter. For uplink configuration, 1900MHz Donor antenna port is connected to remote Power meter and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet switch. All other ports are service ports hence unpopulated. Operation in the 850MHz band is under consideration for this test. Uplink: 1850 to 1910MHz, Downlink: 1930 to 1990MHz. Uplink Modulation: EDGE, GSM, WCDMA. TX= 1850.5MHz, 1880MHz, 1909.5MHz. Power = 28dBm = 0.63W. Downlink Modulation: EDGE, GSM, WCDMA. TX=1930.5MHz, 1960MHz, 1989.5MHz. Power = 28dBm = 0.63W. 23°C, 53% relative humidity. Frequency range of measurement = 9 kHz - 20 GHz. Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30MHz RBW=9 kHz, VBW=9 kHz; 30MHz - 1000MHz RBW=120 kHz, VBW=120 kHz; 1000MHz - 20 GHz RBW=1MHz, VBW=1MHz. Note: No emissions found, recorded data represents noise floor level.

Transducer Legend:

T1=Hi Freq_40GHz_3ft_CAB-ANP02945-091809	T2=HPF_3GHz-AN02744-032510

Measurement Data: Reading listed by margin. Test Lead: Antenna Port

#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dΒ	dB	Table	dΒμV	dΒμV	dB	Ant
	1 3869.600M	43.1	+0.7	+0.4			+0.0	44.2	94.0	-49.8	Anten
								$WCDMA_DL$			
	2 3704.480M	42.7	+0.7	+0.5			+0.0	43.9	94.0	-50.1	Anten
	GSM _UL										

Page 35 of 99 Report No.: FC08-094

3	3863.060M	42.7	+0.7	+0.4	+0.0 43.8	94.0 -50	0.2 Anten
						GSM_DL	
4	3815.200M	42.3	+0.7	+0.5	+0.0 43.5	94.0 -50	0.5 Anten
						WCDMA_UL	
5	3760.000M	42.2	+0.7	+0.5	+0.0 43.4	94.0 -50	0.6 Anten
						GSM UL	
6	3760.000M	41.9	+0.7	+0.5	+0.0 43.1	94.0 -50	.9 Anten
						WCDMA_UL	
7	3815.970M	41.5	+0.7	+0.5	+0.0 42.7	94.0 -51	.3 Anten
						GSM_UL	
8	3816.000M	41.4	+0.7	+0.5	+0.0 42.6	94.0 -51	.4 Anten
						EDGE_UL	
9	3759.960M	41.3	+0.7	+0.5	+0.0 42.5	94.0 -51	.5 Anten
						EDGE UL	
10	3948.360M	41.4	+0.7	+0.4	+0.0 42.5	94.0 -51	.5 Anten
						GSM DL	
11	3706.000M	41.2	+0.7	+0.5	+0.0 42.4	94.0 -51	.6 Anten
	3700.000111	.1.2	. 0.7	. 0.5	12.1	WCDMA UL	
12	3863.000M	40.9	+0.7	+0.4	+0.0 42.0	94.0 -52	2.0 Anten
						EDGE DL	
13	3973.850M	40.8	+0.7	+0.4	+0.0 41.9	94.0 -52	2.1 Anten
15	27 / 2.02 01.1		0.7	٠	0.0	WCDMA DL	
14	3920.000M	40.8	+0.7	+0.4	+0.0 41.9	94.0 -52	2.1 Anten
1 .	3720.000111	10.0	. 0.7	. 0.1	11.9	EDGE DL	I mitem
15	3704.000M	40.5	+0.7	+0.5	+0.0 41.7	94.0 -52	2.3 Anten
13	3701.000141	10.5	. 0.7	. 0.5	11.7	EDGE UL	
16	3919.920M	39.9	+0.7	+0.4	+0.0 41.0	94.0 -53	0.0 Anten
10	3717.72011	37.7	. 0.7	. 0. 1	11.0	GSM DL	.o zmich
17	4069.000M	39.6	+0.7	+0.4	+0.0 40.7	94.0 -53	3.3 Anten
1 /	4009.000M	37.0	10.7	10.4	10.0 40.7	EDGE DL	Alltell
10	3920.000M	27.7	+0.7	+0.4	+0.0 38.8	94.0 -55	2 Anton
18	3920.000WI	31.1	±0.7	±0.4	±0.0 38.8		5.2 Anten
						WCDMA_DL	

Page 36 of 99 Report No.: FC08-094

$\underline{FCC\ 2.1033(c)(14)/2.105324.238(a)/-FIELD\ STRENGTH\ OF\ SPURIOUS\ RADIATION}$

Test Setup Photos

Page 37 of 99 Report No.: FC08-094

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Powerwave Technologies, Inc.**

Specification: FCC 24.238 Radiated Spurious Emission

Work Order #: 88230 Date: 9/26/2008
Test Type: Radiated Scan Time: 11:27:45
Equipment: Nexus RT Digital Repeater Sequence#: 2
Manufacturer: Powerwave Technologies Tested By: E. Wong

Model: NP50B0-22311

S/N: NA

Test Equipment:

z est zquipment	•	•	•	•
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	MY46186290	02/12/2007	02/12/2009	02869
3.0 GHz HPF	1	03/25/2008	03/25/2010	02744
Loop Antenna	2014	06/16/2008	06/16/2010	00314
18-26.5 GHz Horn	3643A00027	11/27/2006	11/27/2008	02112
Antenna				
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	05/16/2007	05/16/2009	P05050
Cable	Cable15	01/05/2007	01/05/2009	P05198
Pre Amp	1937A02548	05/02/2008	05/02/2010	00309
Horn Antenna	6246	06/06/2008	06/06/2010	00849
Microwave Pre-amp	3123A00281	07/28/2008	07/28/2010	00786
3'-40GHz cable	NA	09/18/2007	09/18/2009	P02945
Heliax Antenna Cable	P5565	09/04/2008	09/04/2010	P05565

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Nexus RT Digital	Powerwave Technologies	NP50B0-22311	NA
Repeater*	_		

Support Devices:

Support 2 criters.				
Function	Manufacturer	Model #	S/N	
Laptop	HP	HSTNNC18C	CND63661JIC7	
Ethernet Switch	Linksys	SD205	REF003600624	
ESG	Agilent	E4433B	US40052191	
Powermeter	HP	E4419B	MY40510694	

Test Conditions / Notes:

FCC part 24 (2007) The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a remote power meter. For uplink configuration, 1900MHz Donor antenna port is connected to remote Power meter and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet switch. All other ports are service ports hence unpopulated. Operation in the 850MHz band is under consideration for this test. Uplink: 1850 to 1910MHz, Downlink: 1930 to 1990MHz. Uplink Modulation: EDGE TX= 1850.5MHz, 1880MHz, 1909.5MHz. Power = 28dBm = 0.63W. Downlink Modulation: EDGE TX=1930.5MHz, 1960MHz, 1989.5MHz. Power = 28dBm = 0.63W. 23°C, 53% relative humidity. Frequency range of measurement = 9 kHz - 20 GHz. Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30MHz RBW=9 kHz, VBW=9 kHz; 30MHz - 1000MHz RBW=120 kHz, VBW=120 kHz; 1000MHz - 20 GHz RBW=1MHz, VBW=1MHz. Note: No emissions found, recorded data represents noise floor level.

Page 38 of 99 Report No.: FC08-094

Operating Frequency: <u>Uplink 1850-1910MHz</u> Downlink 1930-1990MHz

Channels:

Highest Measured Output Power: 27.99 ERP(dBm)= 0.63 ERP(Watts)

Distance: 3 meters
Limit: 43+10Log(P) 40.99 dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
3,976.00	-52.2	Vert	80.19
3,920.00	-53	Horiz	80.99
3,863.00	-55.9	Horiz	83.89
3,703.97	-55.5	Horiz	83.49
3,759.93	-55.2	Vert	83.19
3,816.37	-55.6	Horiz	83.59

Page 39 of 99 Report No.: FC08-094

BLOCKEDGE

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02869	Agilent	E4440A	MY46186290	021207	021209
36" 40GHz cable	02945	Strolab	NA	NA	091807	091809

Test Conditions

The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a remote power meter. For uplink configuration, 1900MHz Donor antenna port is connected to remote Power meter and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet switch. Blockedge plot is recorded with a spectrum analyzer at the Antenna port of the device.

Uplink: 1850 to 1910MHz Downlink: 1930 to 1990MHz

Uplink

Modulation: EDGE, GSM, WCDMA TX= 1850.5MHz, 1880MHz, 1909.5MHz

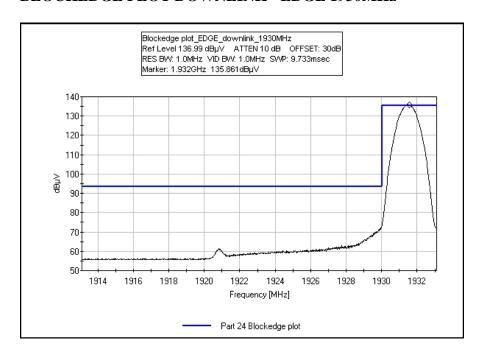
Power = 28dBm = 0.63W

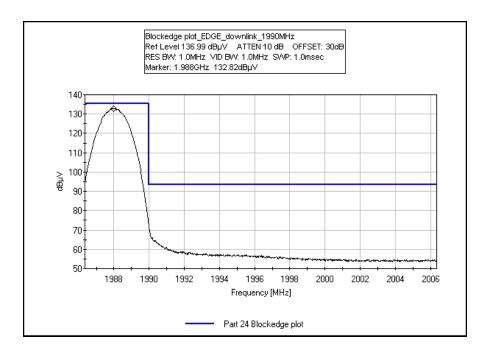
Downlink:

Modulation: EDGE, GSM, WCDMA TX=1930.5MHz, 1960MHz, 1989.5MHz

Power = 28dBm = 0.63W

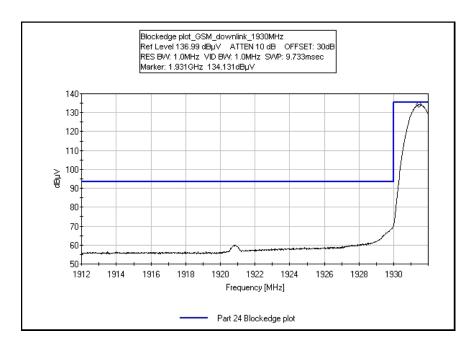
Page 40 of 99 Report No.: FC08-094

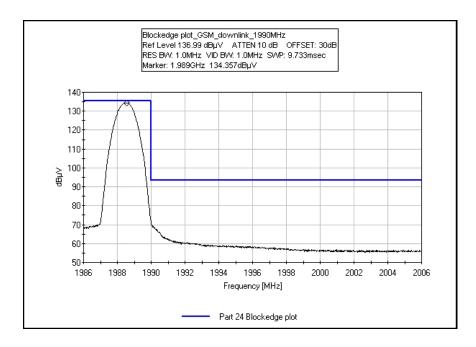

Test Setup Photos



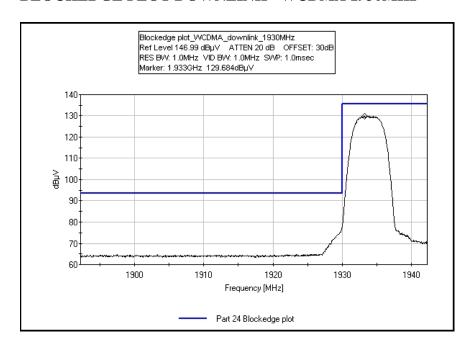
Test Plots

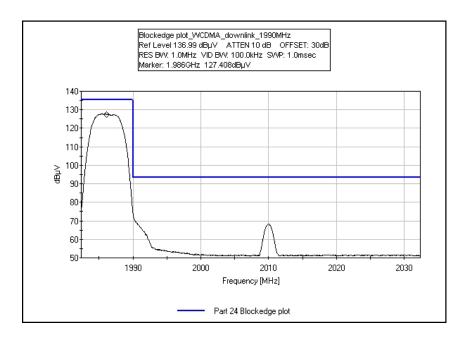
BLOCKEDGE PLOT DOWNLINK - EDGE 1930MHz


BLOCKEDGE PLOT DOWNLINK - EDGE 1990MHz

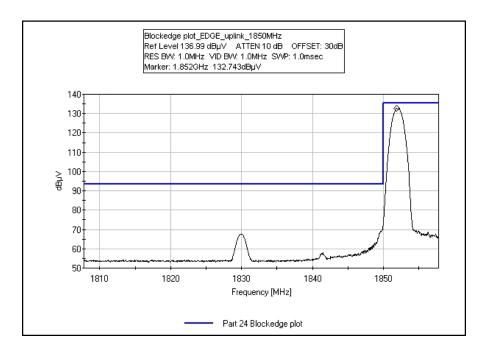

Page 42 of 99 Report No.: FC08-094

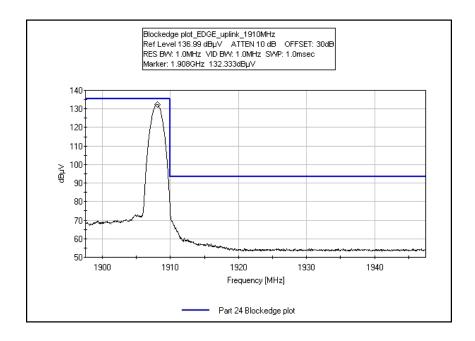
BLOCKEDGE PLOT DOWNLINK - GSM 1930MHz


BLOCKEDGE PLOT DOWNLINK - GSM 1990MHz

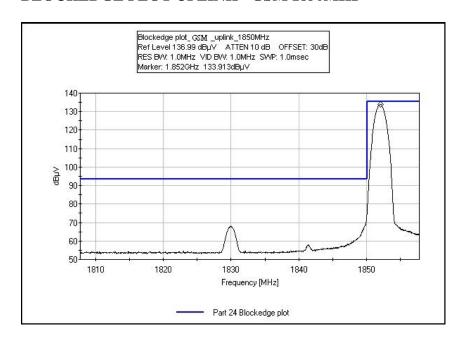

Page 43 of 99 Report No.: FC08-094

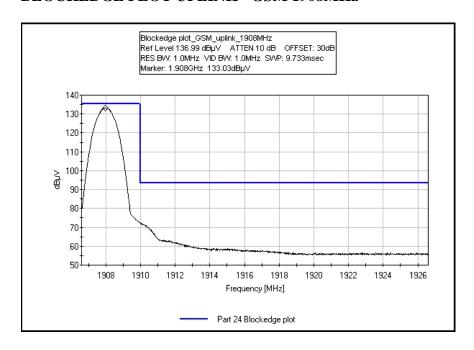
BLOCKEDGE PLOT DOWNLINK - WCDMA 1930MHz


BLOCKEDGE PLOT DOWNLINK - WCDMA 1990MHz

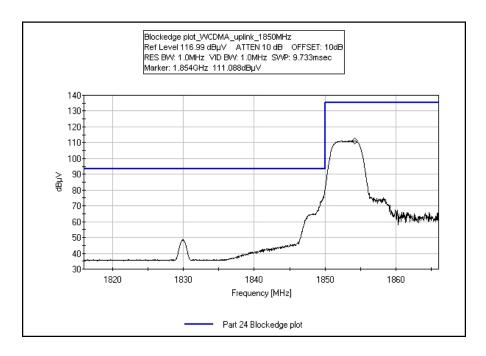

Page 44 of 99 Report No.: FC08-094

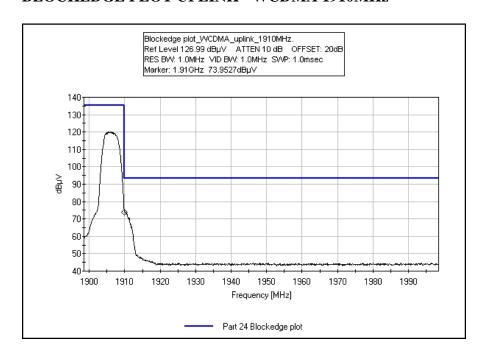
BLOCKEDGE PLOT UPLINK - EDGE 1850MHz


BLOCKEDGE PLOT UPLINK - EDGE 1910MHz


Page 45 of 99 Report No.: FC08-094

BLOCKEDGE PLOT UPLINK - GSM 1850MHz


BLOCKEDGE PLOT UPLINK - GSM 1908MHz


Page 46 of 99 Report No.: FC08-094

BLOCKEDGE PLOT UPLINK - WCDMA 1850MHz

BLOCKEDGE PLOT UPLINK - WCDMA 1910MHz

Page 47 of 99 Report No.: FC08-094

INTERMODULATION

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02869	Agilent	E4440A	MY46186290	021207	021209
36" 40GHz cable	02945	Strolab	NA	NA	091807	091809

Test Conditions

The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a remote power meter. For uplink configuration, 1900MHz Donor antenna port is connected to remote Power meter and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet switch.

Two modulated signal from the support ESG is injected into the device and the intermodulation product is measured at the RF antenna port under investigation.

Uplink: 1850 to 1910MHz Downlink: 1930 to 1990MHz

Uplink

Modulation: EDGE, GSM, WCDMA TX= 1850.5MHz, 1880MHz, 1909.5MHz

Power = 28dBm = 0.63W

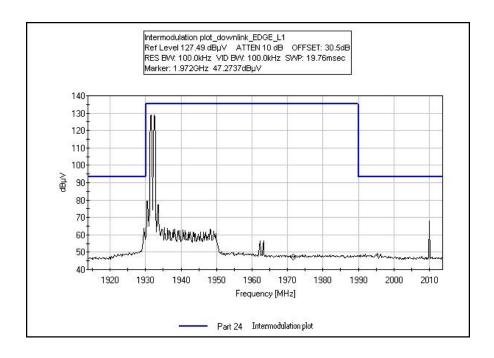
Downlink:

Modulation: EDGE, GSM, WCDMA TX=1930.5MHz, 1960MHz, 1989.5MHz

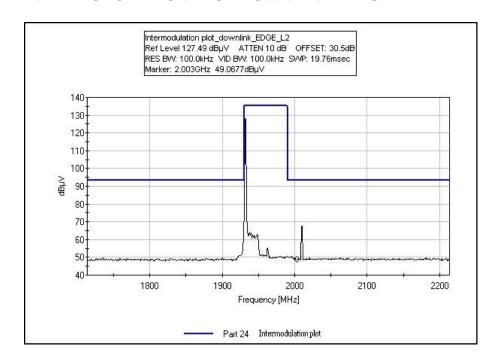
Power = 28dBm = 0.63W

Page 48 of 99 Report No.: FC08-094

Test Setup Photos

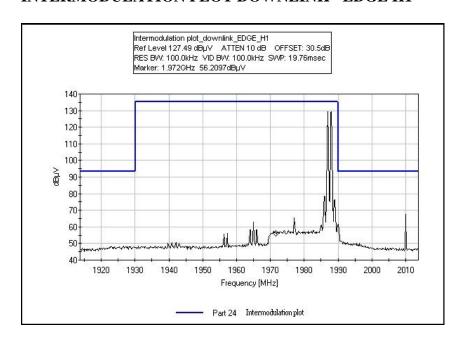


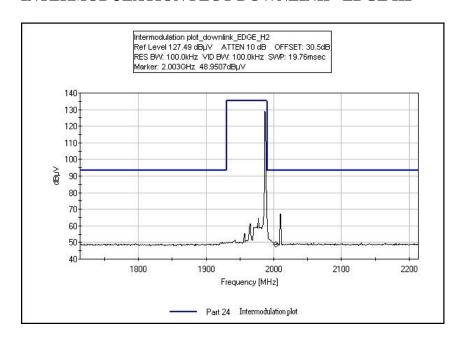
Page 49 of 99 Report No.: FC08-094



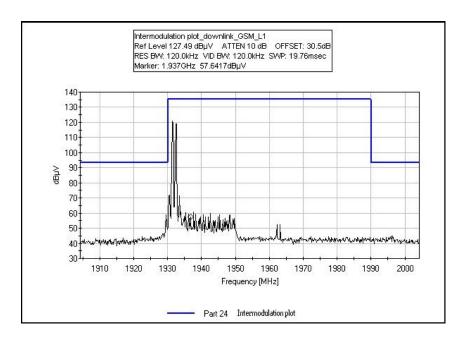
Test Plots

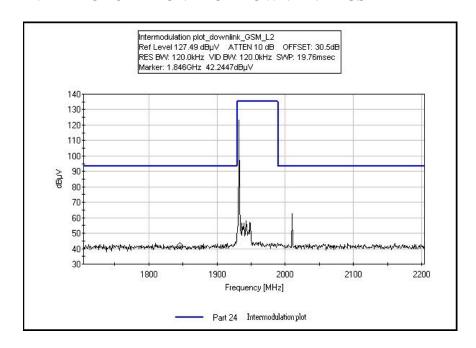
INTERMODULATION PLOT DOWNLINK - EDGE L1


INTERMODULATION PLOT DOWNLINK - EDGE L2

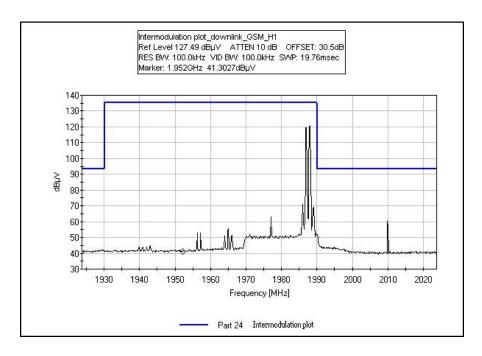

Page 50 of 99 Report No.: FC08-094

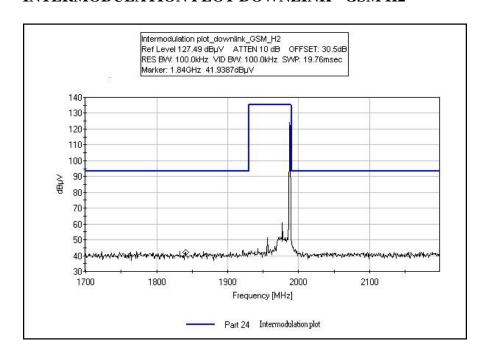
INTERMODULATION PLOT DOWNLINK - EDGE H1


INTERMODULATION PLOT DOWNLINK - EDGE H2

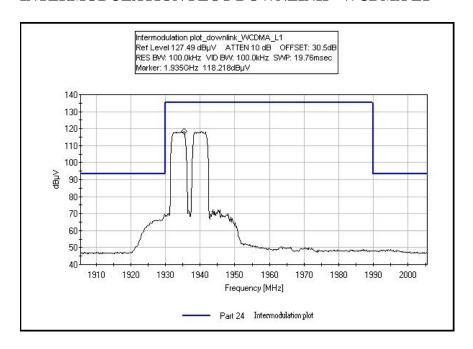

Page 51 of 99 Report No.: FC08-094

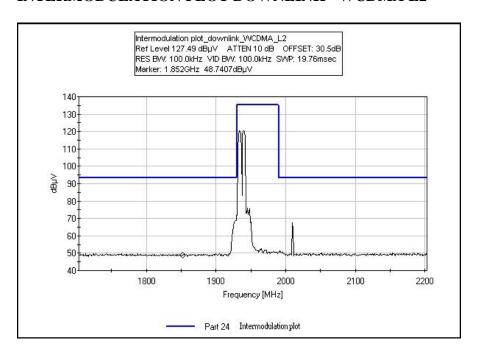
INTERMODULATION PLOT DOWNLINK - GSM L1


INTERMODULATION PLOT DOWNLINK - GSM L2

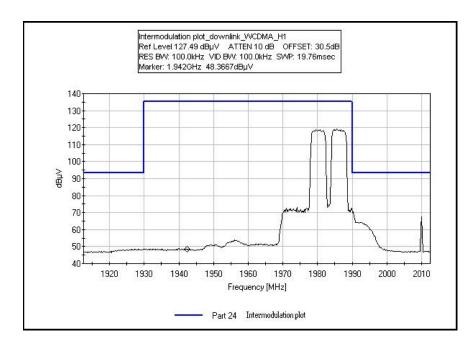

Page 52 of 99 Report No.: FC08-094

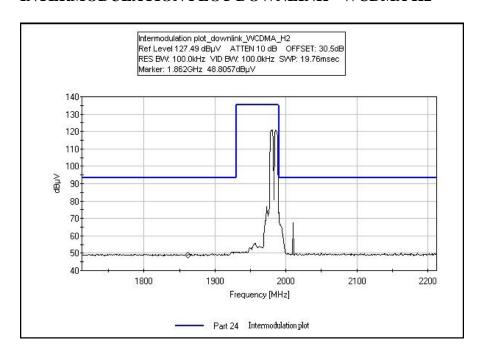
INTERMODULATION PLOT DOWNLINK - GSM H1


INTERMODULATION PLOT DOWNLINK - GSM H2

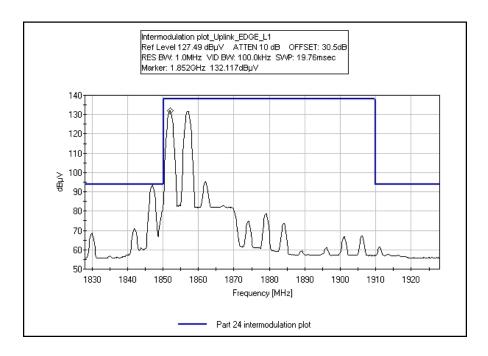

Page 53 of 99 Report No.: FC08-094

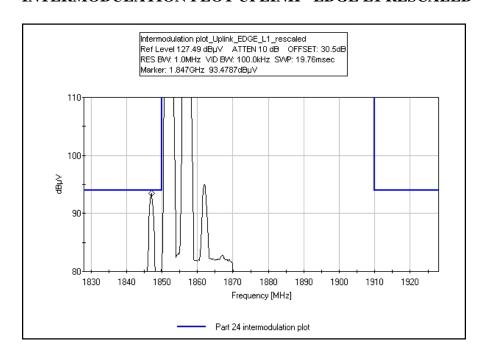
INTERMODULATION PLOT DOWNLINK - WCDMA L1


INTERMODULATION PLOT DOWNLINK - WCDMA L2

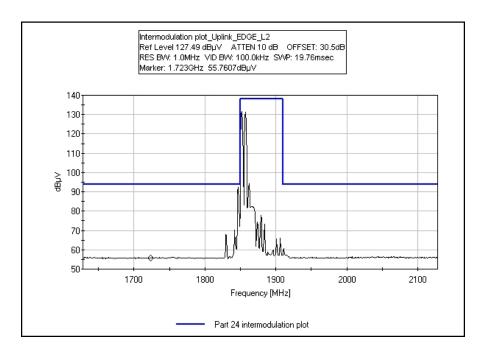

Page 54 of 99 Report No.: FC08-094

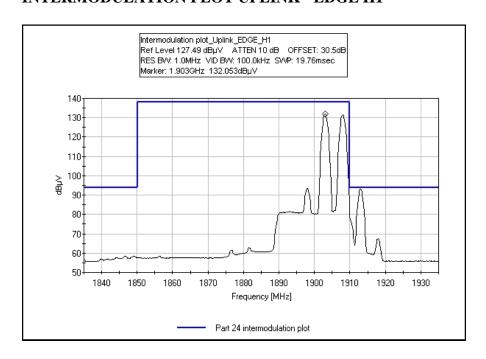
INTERMODULATION PLOT DOWNLINK - WCDMA H1


INTERMODULATION PLOT DOWNLINK - WCDMA H2

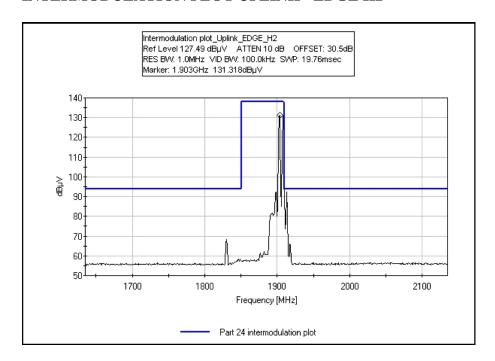

Page 55 of 99 Report No.: FC08-094

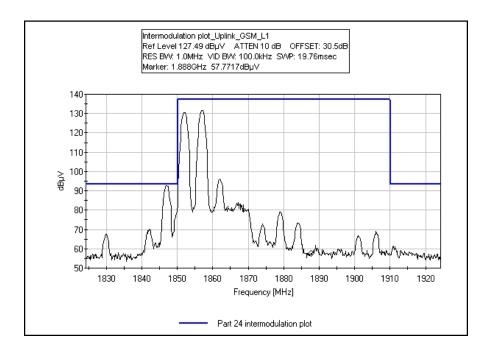
INTERMODULATION PLOT UPLINK - EDGE L1


INTERMODULATION PLOT UPLINK - EDGE L1 RESCALED

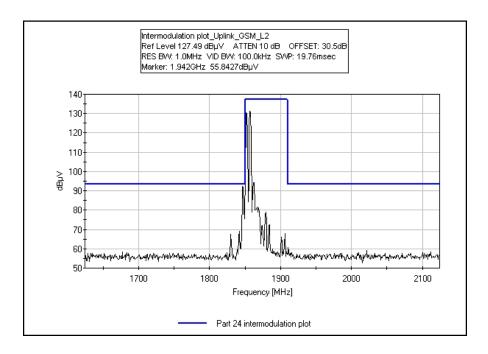

Page 56 of 99 Report No.: FC08-094

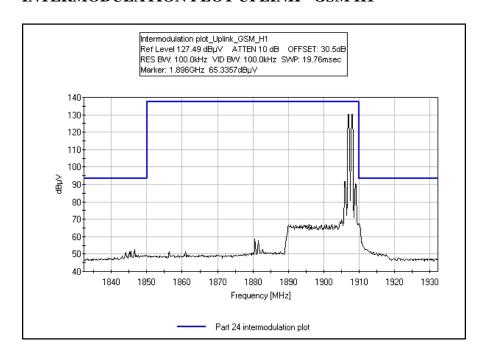
INTERMODULATION PLOT UPLINK - EDGE L2


INTERMODULATION PLOT UPLINK - EDGE H1

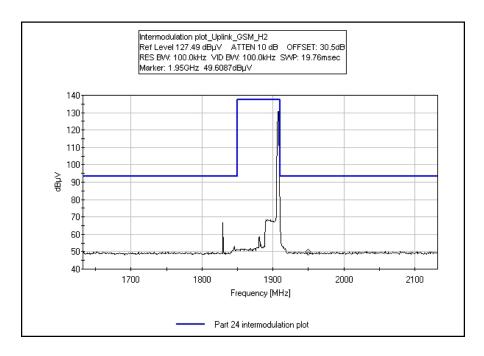

Page 57 of 99 Report No.: FC08-094

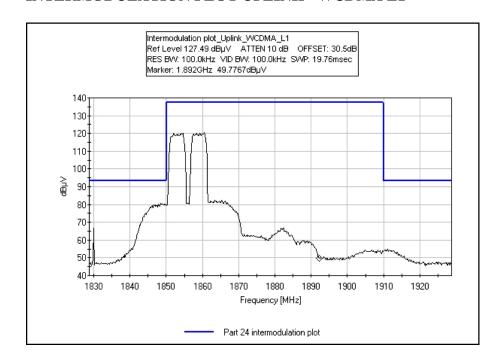
INTERMODULATION PLOT UPLINK - EDGE H2


INTERMODULATION PLOT UPLINK - GSM L1

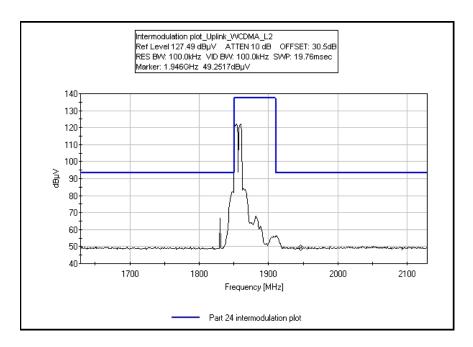

Page 58 of 99 Report No.: FC08-094

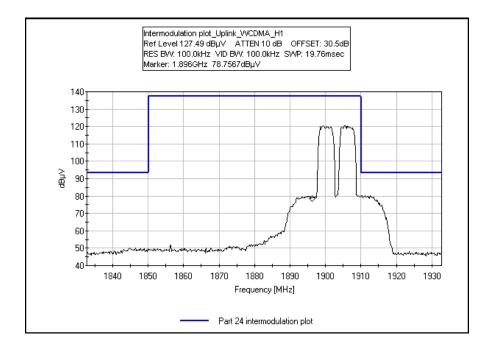
INTERMODULATION PLOT UPLINK - GSM L2


INTERMODULATION PLOT UPLINK - GSM H1

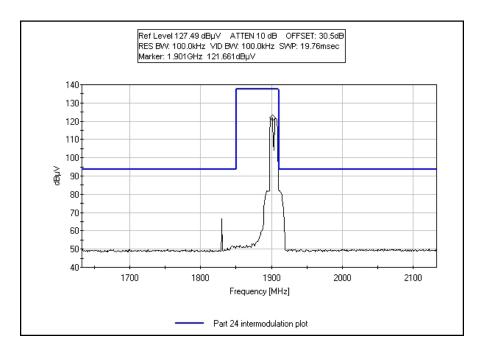

Page 59 of 99 Report No.: FC08-094

INTERMODULATION PLOT UPLINK - GSM H2


INTERMODULATION PLOT UPLINK - WCDMA L1


Page 60 of 99 Report No.: FC08-094

INTERMODULATION PLOT UPLINK - WCDMA L2


INTERMODULATION PLOT UPLINK - WCDMA H1

Page 61 of 99 Report No.: FC08-094

INTERMODULATION PLOT UPLINK - WCDMA H2

Page 62 of 99 Report No.: FC08-094

OUT OF BAND REJECTION

Test Equipment

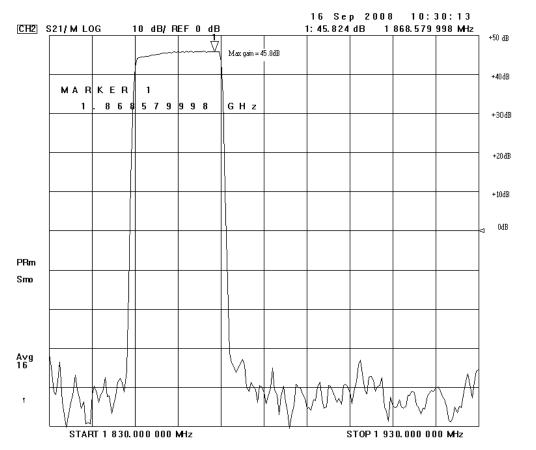
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Network analyzer	C00012	HP	8753E	Us38432770	091208	091210

Test Conditions

The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a remote power meter. For uplink configuration, 1900MHz Donor antenna port is connected to remote Power meter and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet switch.

Uplink: 1850 to 1910MHz Downlink: 1930 to 1990MHz

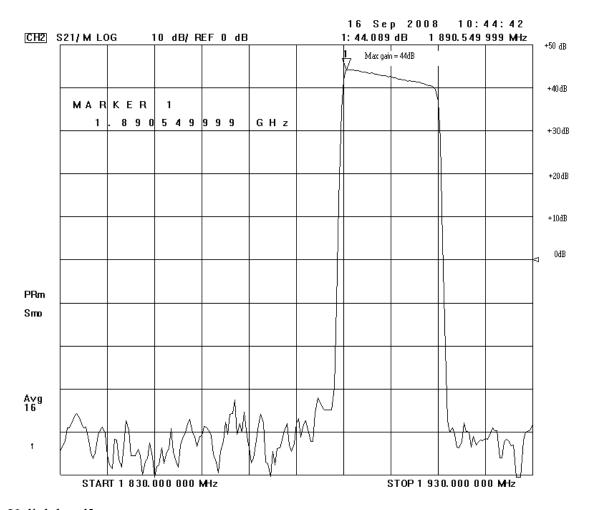
The gain response is measured with a network analyzer in the uplink and down link direction. The total operating band was split into three bands due to the internal programmable block filter.

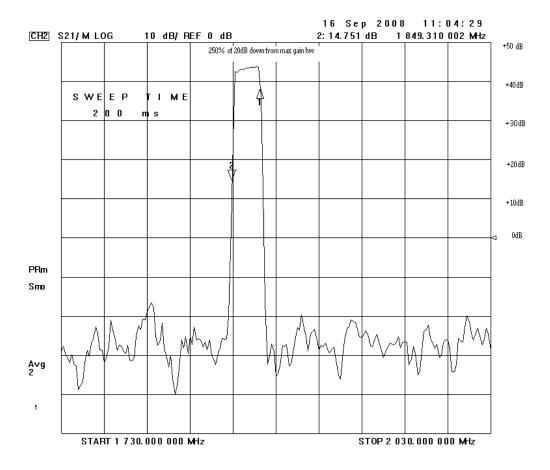


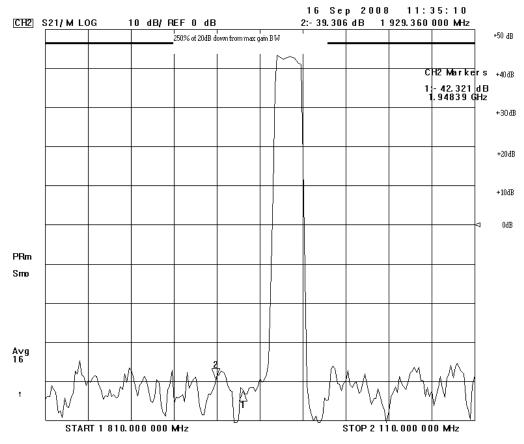
Page 63 of 99 Report No.: FC08-094


Test Plots

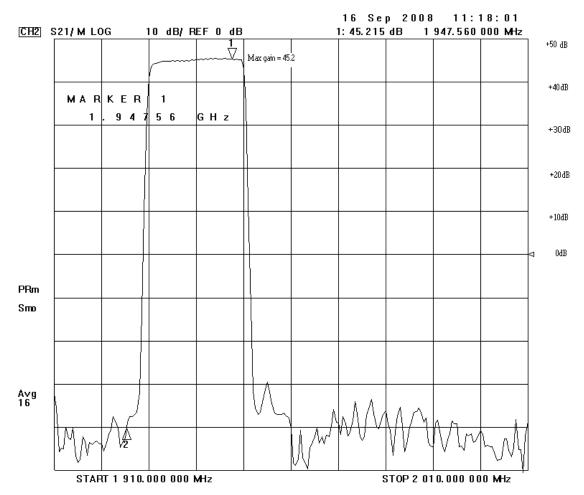
Uplink band1


Page 64 of 99 Report No.: FC08-094


Uplink band2

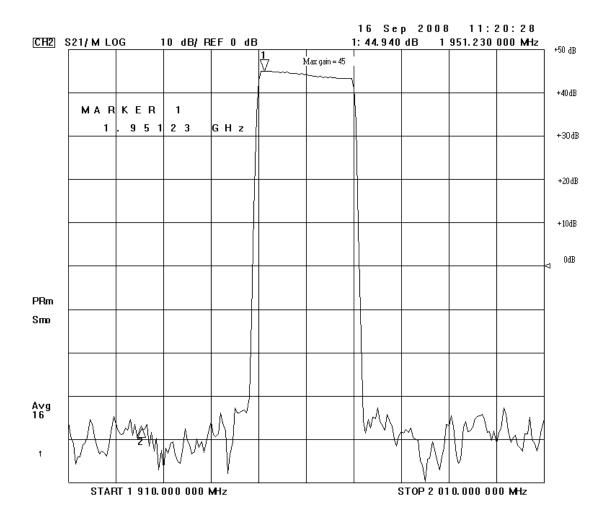

Uplink band3

Uplink split 1



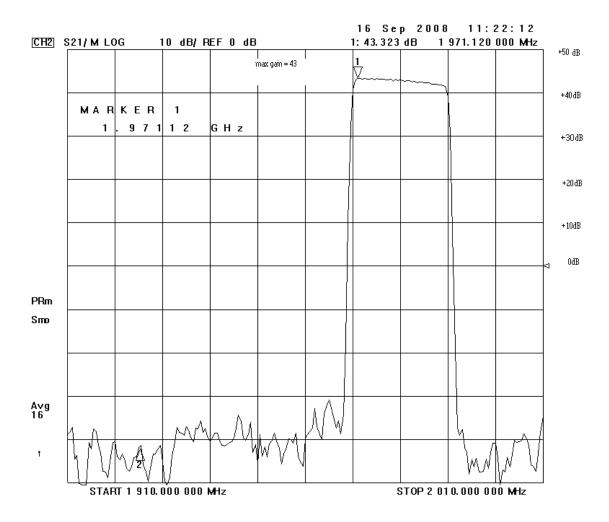
Uplink split 3

Page 68 of 99 Report No.: FC08-094

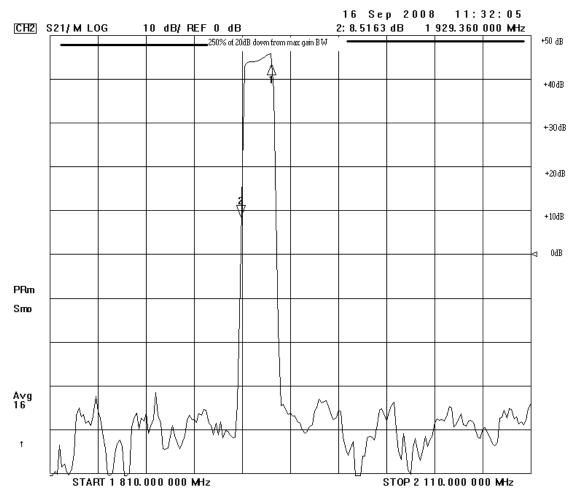

RSS 131 Amplifier gain and Bandwidth:

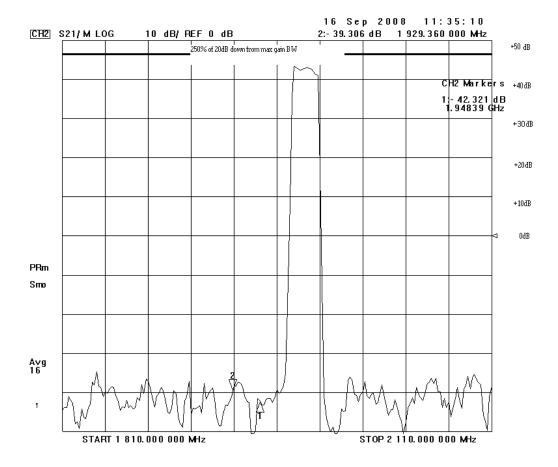
Downlink split 1

Page 69 of 99 Report No.: FC08-094



Downlink split 2


Page 70 of 99 Report No.: FC08-094


Downlink split 3

Downlink split 1

The gain-versus-frequency response of the amplifier from the mid band Fo of the pass band up to at least Fo \pm 250% of the 20dB Bandwidth.

Page 73 of 99 Report No.: FC08-094

99% BANDWIDTH

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02869	Agilent	E4440A	MY46186290	021207	021209
36" 40GHz cable	02945	Strolab	NA	NA	091807	091809

Test Conditions

The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a remote power meter. For uplink configuration, 1900MHz Donor antenna port is connected to remote Power meter and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet switch.

The 99% BW is measured at the RF antenna port under investigation using the occupied bandwidth measurement function of the spectrum analyzer.

Uplink: 1850 to 1910MHz Downlink: 1930 to 1990MHz

Uplink

Modulation: EDGE, GSM, WCDMA TX= 1850.5MHz, 1880MHz, 1909.5MHz

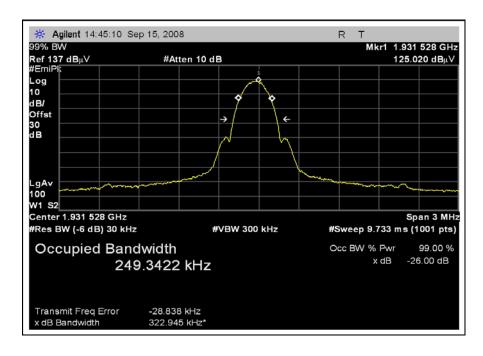
Power = 28dBm = 0.63W

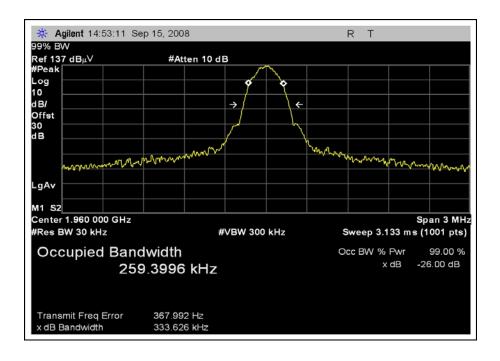
Downlink:

Modulation: EDGE, GSM, WCDMA TX=1930.5MHz, 1960MHz, 1989.5MHz

Power = 28dBm = 0.63W

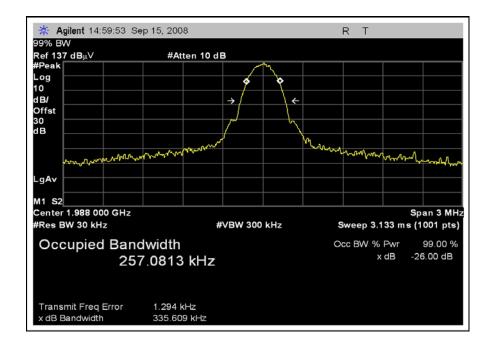
Page 74 of 99 Report No.: FC08-094

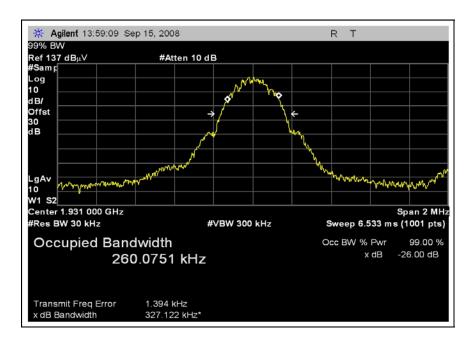

Test Setup Photos



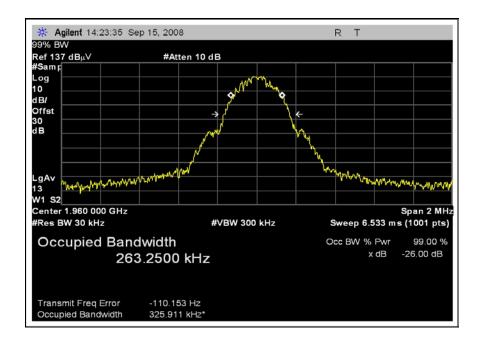
Test Plots

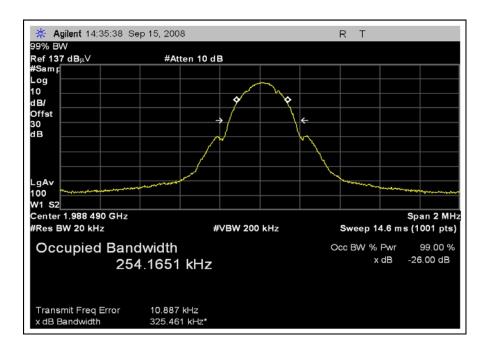
99% BANDWIDTH DOWNLINK - EDGE 1930MHz 249kHz


99% BANDWIDTH DOWNLINK - EDGE 1960MHz 259kHz

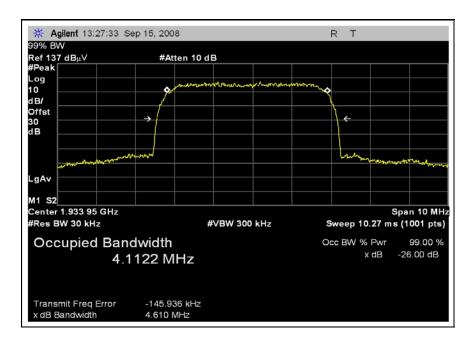

Page 76 of 99 Report No.: FC08-094

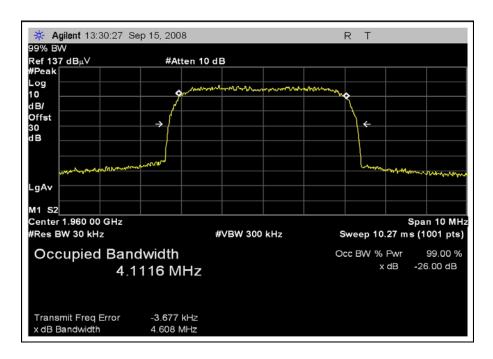
99% BANDWIDTH DOWNLINK - EDGE 1990MHz 257kHz


99% BANDWIDTH DOWNLINK - GSM 1930MHz 260kHz

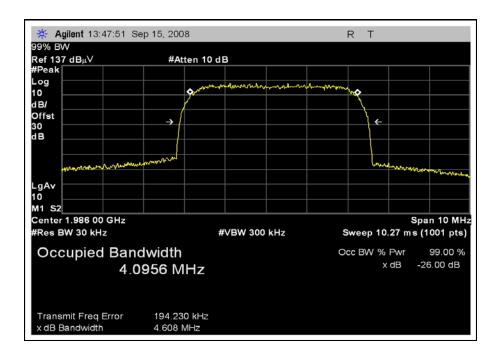

Page 77 of 99 Report No.: FC08-094

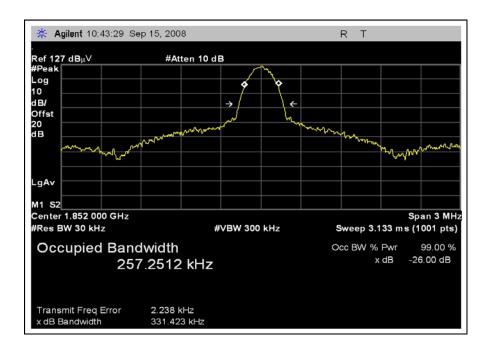
99% BANDWIDTH DOWNLINK - GSM 1960MHz 263kHz


99% BANDWIDTH DOWNLINK - GSM 1990MHz 254kHz

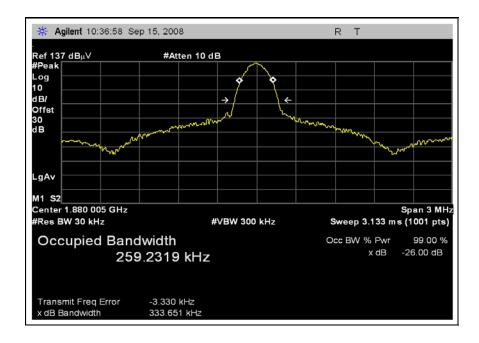

Page 78 of 99 Report No.: FC08-094

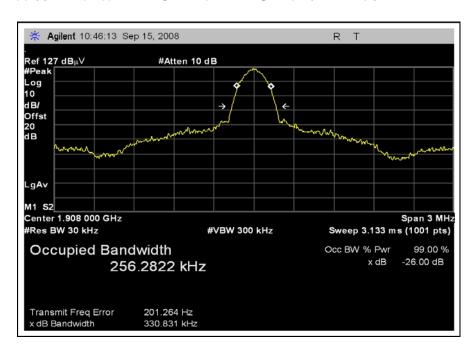
99% BANDWIDTH DOWNLINK - WCDMA 1930MHz 4.1MHz


99% BANDWIDTH DOWNLINK - WCDMA 1960MHz 4.1MHz

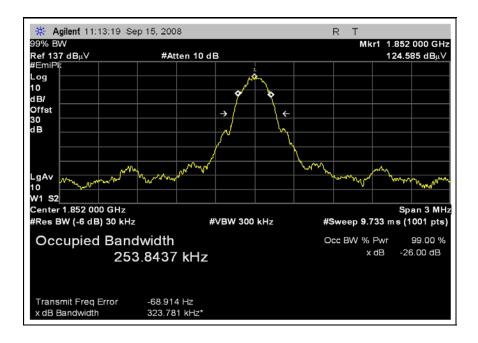

Page 79 of 99 Report No.: FC08-094

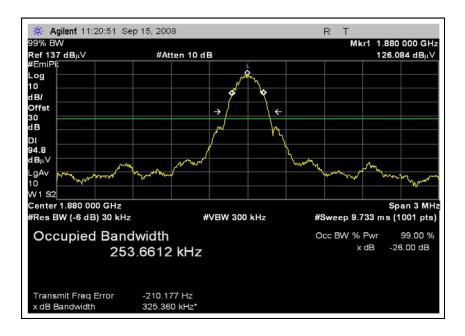
99% BANDWIDTH DOWNLINK - WCDMA 1990MHz 4.1MHz


99% BANDWIDTH UPLINK - EDGE 1850MHz 257kHz

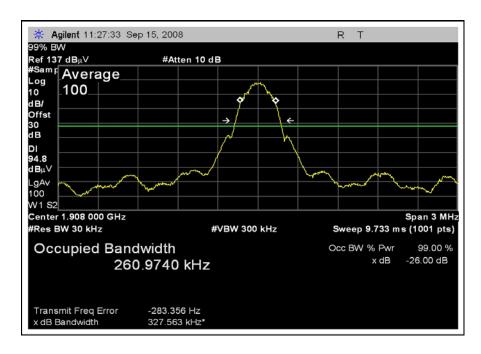

Page 80 of 99 Report No.: FC08-094

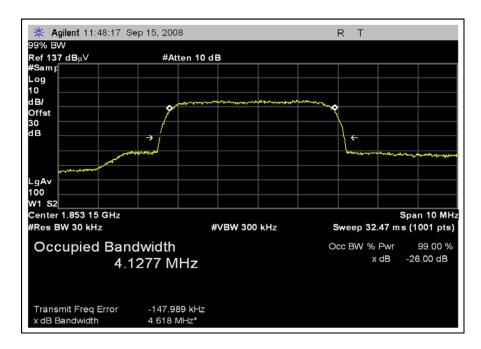
99% BANDWIDTH UPLINK - EDGE 1880MHz 259kHz


99% BANDWIDTH UPLINK - EDGE 1910MHz 256kHz

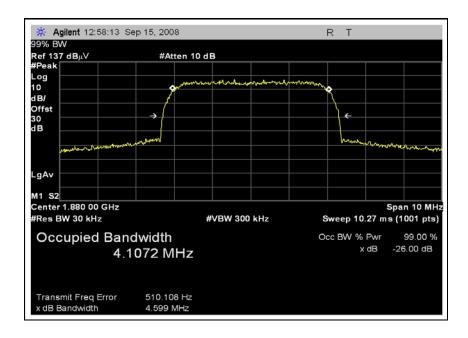

Page 81 of 99 Report No.: FC08-094

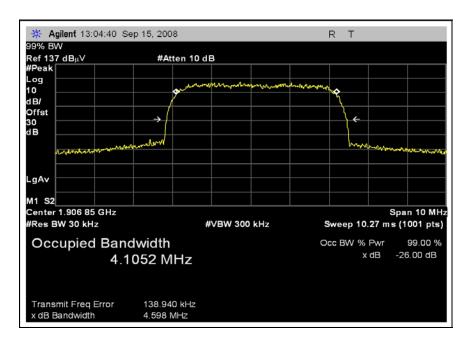
99% BANDWIDTH UPLINK - GSM 1850MHz 253kHz


99% BANDWIDTH UPLINK - GSM 1880MHz 253kHz


Page 82 of 99 Report No.: FC08-094

99% BANDWIDTH UPLINK - GSM 1910MHz 261kHz


99% BANDWIDTH UPLINK - WCDMA 1850MHz 4.1MHz


Page 83 of 99 Report No.: FC08-094

99% BANDWIDTH UPLINK - WCDMA 1880MHz 4.1MHz

99% BANDWIDTH UPLINK - WCDMA 1910MHz 4.1MHz

Page 84 of 99 Report No.: FC08-094

PASSBAND GAIN AND BANDWIDTH

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Network analyzer	C00012	HP	8753E	Us38432770	091208	091210

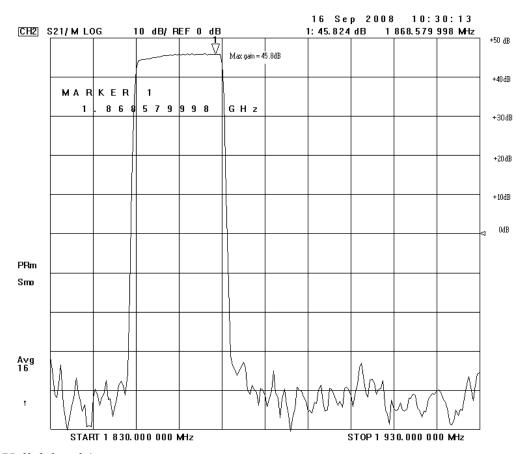
Test Conditions

The rack mount EUT is placed on the wooden table. For downlink configuration, 1900MHz Donor antenna port is connected to remote ESG and 1900MHz Server antenna port is connected to a remote power meter. For uplink configuration, 1900MHz Donor antenna port is connected to remote Power meter and 1900MHz Server antenna port is connected to an ESG. The Ethernet port: Local is connected to a remote support laptop ethernet port; WAN is connected to a remote support ethernet switch

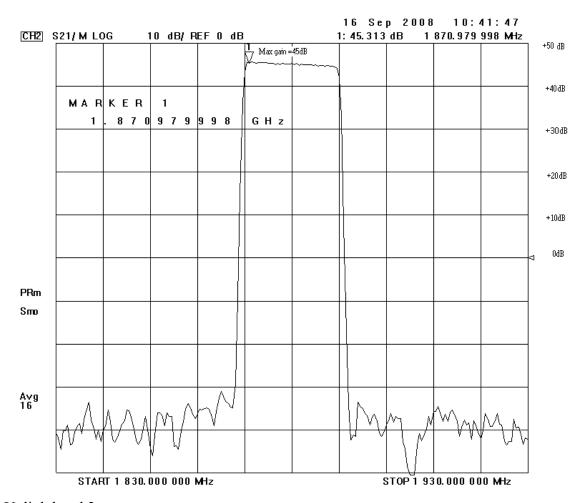
Uplink: 1850 to 1910MHz Downlink: 1930 to 1990MHz

The gain response is measured with a network analyzer in the uplink and down link direction. The total operating band was split into three bands due to the internal programmable block filter.

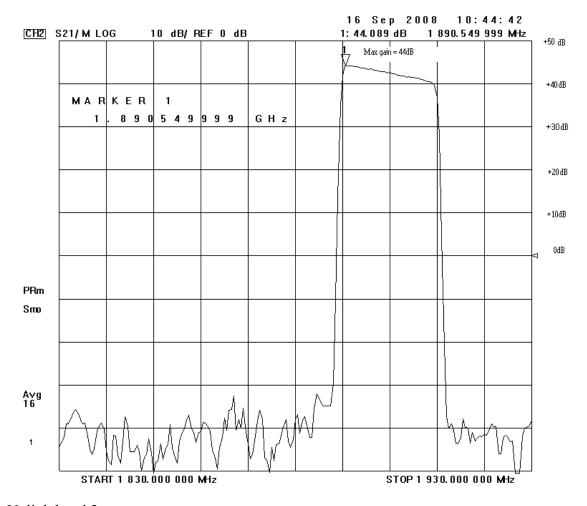
The nominal bandwidth and nominal pass band gain (dB) of the RF enhancer or translator shall be stated by the manufacturer or equipment certification applicant and indicated in the test report.


Test Setup Photos

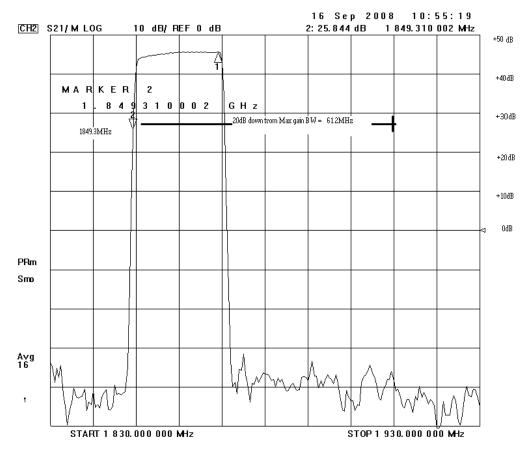
Page 85 of 99 Report No.: FC08-094



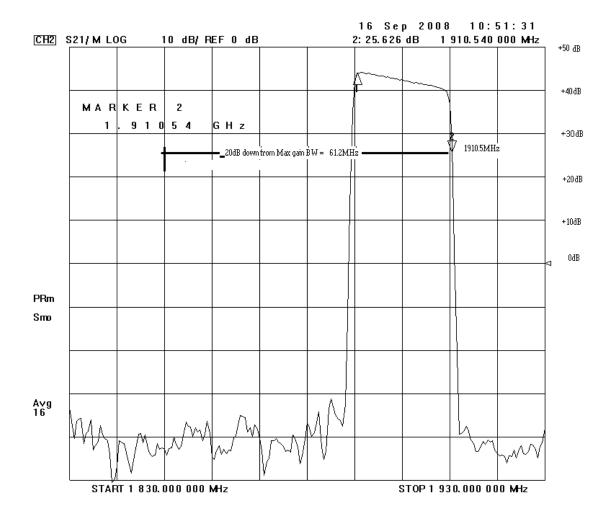
Test Plots


Uplink band 1

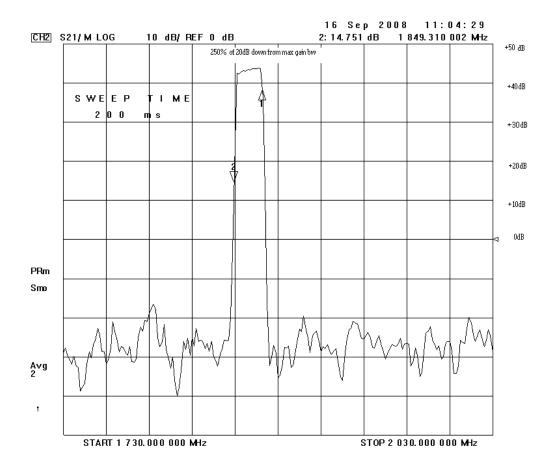
Uplink band 2



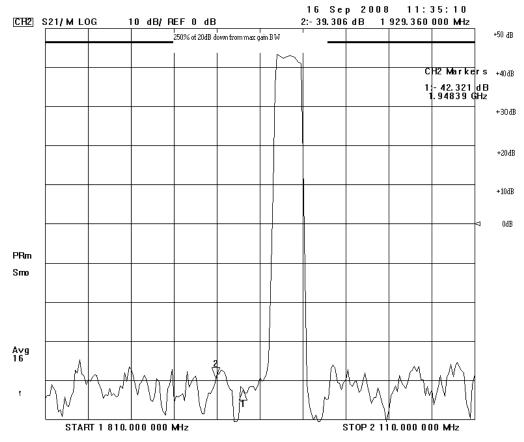
Uplink band 3


The internal control is adjusted to the nominal gain for which equipment certification is sought.

Up link Split 1



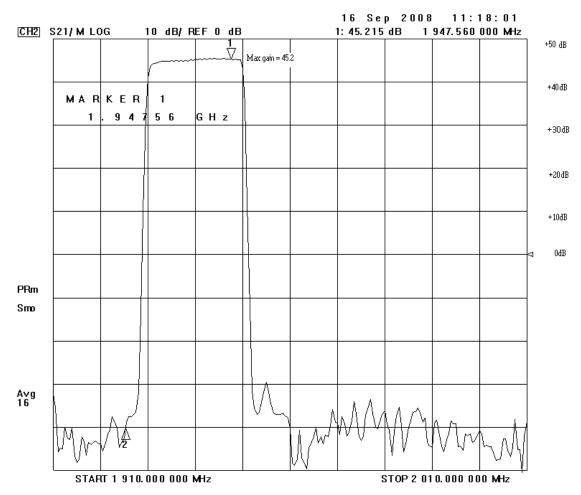
Uplink Split 3


With the aid of a network analyzer, the 20 dB Bandwidth is measured.

Uplink split 1

Uplink split3

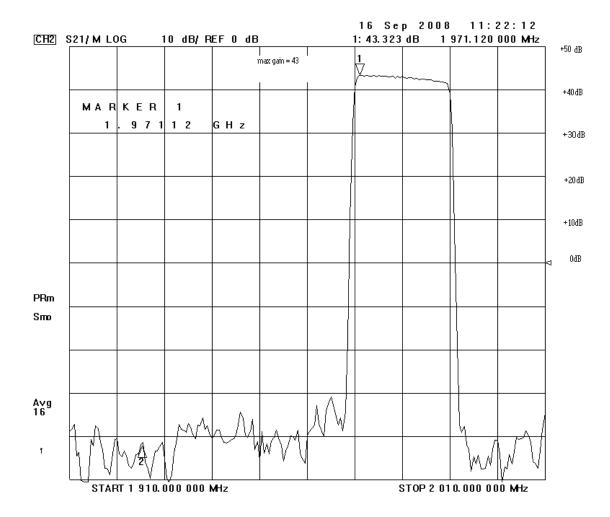
The gain-versus-frequency response of the amplifier from the mid band Fo of the pass band up to at least Fo + -250% of the 20dB Bandwidth.


Minimum standard:

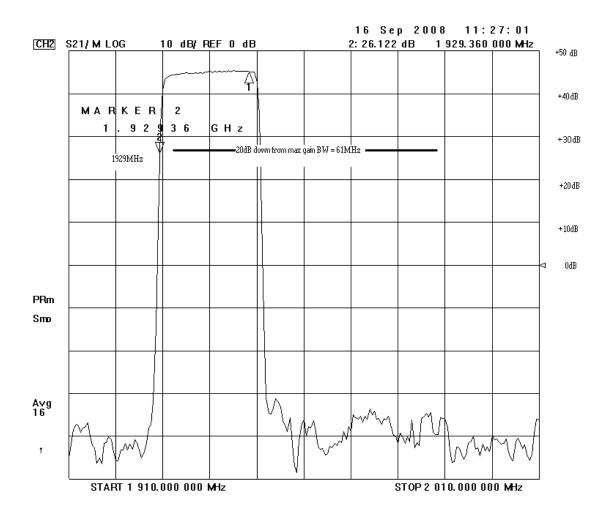
The pass band gain response shall not exceed the nominal gain by more than 1 dB. The 20 dB bandwidth shall not exceed the nominal bandwidth that is stated by the manufacturer.

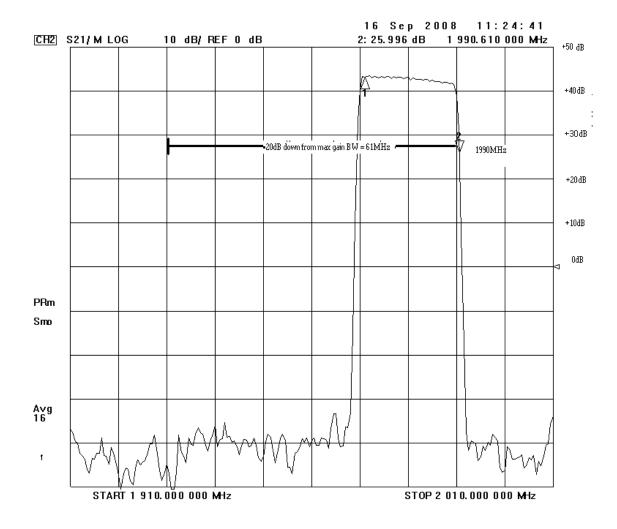
Outside of the 20dB bandwidth the gain shall not exceed that at the 20dB point.

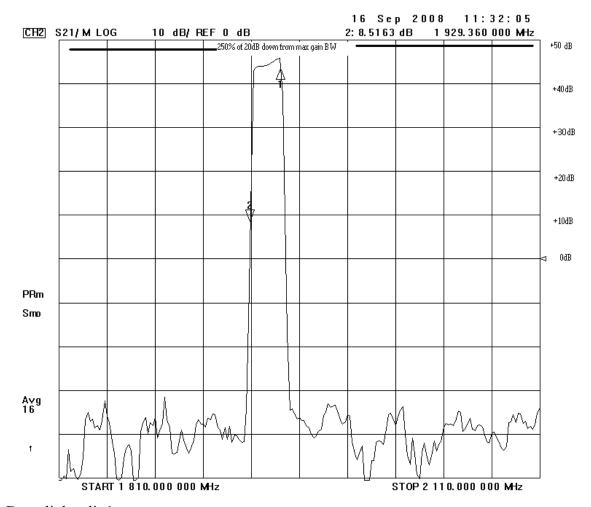
RSS 131 Amplifier gain and Bandwidth:

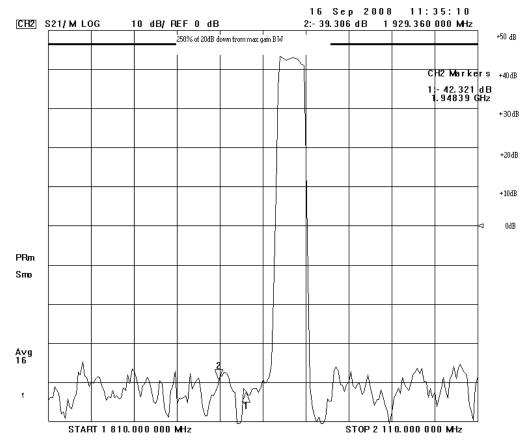

Downlink split 1

Page 93 of 99 Report No.: FC08-094




The internal control is adjusted to the nominal gain for which equipment certification is sought.


Page 96 of 99 Report No.: FC08-094



With the aid of a network analyzer, the 20 dB Bandwidth is measured.

The gain-versus-frequency response of the amplifier from the mid band Fo of the pass band up to at least Fo + - 250% of the 20dB Bandwidth.

Minimum standard:

The pass band gain response shall not exceed the nominal gain by more than 1 dB. The 20 dB bandwidth shall not exceed the nominal bandwidth that is stated by the manufacturer.

Outside of the 20dB bandwidth the gain shall not exceed that at the 20dB point.